Introductory chapter

From The Encyclopedia of Earth
(Redirected from Introductory)
Jump to: navigation, search

Earth as Modified by Human Action, The: Chapter 01 (historical)

July 9, 2007, 7:01 pm
Topics:
This content is not assigned to a topic

Historical E-Book: The Earth as Modified by Human Action
Author: George Perkins Marsh
First published: 1874

Chapter I: Introductory (Earth as Modified by Human Action, The: Chapter 01 (historical))

Natural Advantages of the Territory of the Roman Empire

The Roman Empire, at the period of its greatest expansion, comprised the regions of the earth most distinguished by a happy combination of physical conditions. The provinces bordering on the principal and the secondary basins of the Mediterranean enjoyed in healthfulness and equability of climate, in fertility of soil, in variety of vegetable and mineral products, and in natural facilities for the transportation and distribution of exchangeable commodities, advantages which have not been possessed in any equal degree by any territory of like extent in the Old World or the New. The abundance of the land and of the waters adequately supplied every material want, ministered liberally to every sensuous enjoyment. Gold and silver, indeed, were not found in the profusion which has proved so baneful to the industry of lands richer in veins of the precious metals; but mines and river beds yielded them in the spare measure most favorable to stability of value (Value theory) in the medium of exchange, and, consequently, to the regularity of commercial transactions. The ornaments of the barbaric pride of the East, the pearl, the ruby, the sapphire, and the diamond—though not unknown to the luxury of a people whose conquests and whose wealth commanded whatever the habitable world could contribute to augment the material splendor of their social life—were scarcely native to the territory of the empire; but the comparative rarity of these gems in Europe, at somewhat earlier periods, was, perhaps, the very circumstance that led the cunning artists of classic antiquity to enrich softer stones with engravings, which invest the common onyx and cornelian with a worth surpassing, in cultivated eyes, the lustre of the most brilliant oriental jewels.

Of these manifold blessings the temperature of the air, the distribution of the rains, the relative disposition of land and water, the plenty of the sea, the composition of the soil, and the raw material of the primitive arts, were wholly gratuitous gifts. Yet the spontaneous nature of Europe, of Western Asia, of Libya, neither fed nor clothed the civilized inhabitants of those provinces. The luxuriant harvests of cereals that waved on every field from the shores of the Rhine to the banks of the Nile, the vines that festooned the hillsides of Syria, of Italy and of Greece, the olives of Spain, the fruits of the gardens of the Hesperides, the domestic quadrupeds and fowls known in ancient rural husbandry—all these were original products of foreign climes, naturalized in new homes, and gradually ennobled by the art of man, while centuries of persevering labor were expelling the wild vegetation, and fitting the earth for the production of more generous growths. Every loaf was eaten in the sweat of the brow. All must be earned by toil. But toil was nowhere else rewarded by so generous wages; for nowhere would a given amount of intelligent labor produce so abundant, and, at the same time, so varied returns of the good things of material existence.

Physical Decay of the Territory of the Roman Empire

If we compare the present physical condition of the countries of which I am speaking, with the descriptions that ancient historians and geographers have given of their fertility and general capability of ministering to human uses, we shall find that more than one-half their whole extent—not excluding the provinces most celebrated for the profusion and variety of their spontaneous and their cultivated products, and for the wealth and social advancement of their inhabitants—is either deserted by civilized man and surrendored to hopeless desolation, or at least greatly reduced in both productiveness and population. Vast forests have disappeared from mountain spurs and ridges; the vegetable earth accumulated beneath the trees by the decay of leaves and fallen trunks, the soil of the alpine pastures which skirted and indented the woods, and the mould of the upland fields, are washed away; meadows, once fertilized by irrigation, are waste and unproductive because the cisterns and reservoirs that supplied the ancient canals are broken, or the springs that fed them dried up; [[river]s] famous in history and song have shrunk to humble brooklets; the willows that ornamented and protected the banks of the lesser watercourses are gone, and the rivulets have ceased to exist as perennial currents, because the little water that finds its way into their old channels is evaporated by the droughts of summer, or absorbed by the parched earth before it reaches the lowlands; the beds of the brooks have widened into broad expanses of pebbles and gravel, over which, though in the hot season passed dryshod, in winter sealike torrents thunder; the entrances of navigable streams are obstructed by sandbars; and harbors, once marts of an extensive commerce, are shoaled by the deposits of the rivers at whose mouths they lie; the elevation of the beds of estuaries, and the consequently diminished velocity and increased lateral spread of the streams which flow into them, have converted thousands of leagues of shallow sea and fertile lowland into unproductive and miasmatic morasses.

Besides the direct testimony of history to the ancient fertility of the now exhausted regions to which I refer—Northern Africa, the greater Arabian peninsula, Syria, Mesopotamia, Armenia and many other provinces of Asia Minor, Greece, Sicily, and parts of even Italy and Spain—the multitude and extent of yet remaining architectural ruins, and of decayed works of internal improvement, show that at former epochs a dense population inhabited those now lonely districts. Such a population could have been sustained only by a productiveness of soil of which we at present discover but slender traces; and the abundance derived from that fertility serves to explain how large armies, like those of the ancient Persians, and of the Crusaders and the Tartars in later ages, could, without an organized commissariat, secure adequate supplies in long marches through territories which, in our times, would scarcely afford forage for a single regiment.

It appears then, that the fairest and fruitfulest provinces of the Roman Empire, precisely that portion of terrestrial surface, in short, which, about the commencement of the Christian era, was endowed with the greatest superiority of soil, climate, and position, which had been carried to the highest pitch of physical improvement, and which thus combined the natural and artificial conditions best fitting it for the habitation and enjoyment of a dense and highly refined and cultivated population, are now completely exhausted of their fertility, or so diminished in productiveness, as, with the exception of a few favored oases that have escaped the general ruin, to be no longer capable of affording sustenance to civilized man. If to this realm of desolation we add the now wasted and solitary soils of Persia and the remoter East that once fed their millions with milk and honey, we shall see that a territory larger than all Europe, the abundance of which sustained in bygone centuries a population scarcely inferior to that of the whole Christian world at the present day, has been entirely withdrawn from human use, or, at best, is thinly inhabited by tribes too few in numbers, too poor in superfluous products, and too little advanced in culture and the social arts, to contribute anything to the general moral or material interests of the great commonwealth of man.

Causes of this Decay

The decay of these once flourishing countries is partly due, no doubt, to that class of geological causes whose action we can neither resist nor guide, and partly also to the direct violence of hostile human force; but it is, in a far greater proportion, either the result of man's ignorant disregard of the laws of nature, or an incidental consequence of war and of civil and ecclesiastical tyranny and misrule. Next to ignorance of these laws, the primitive source, the causa causarum, of the acts and neglects which have blasted with sterility and physical decrepitude the noblest half of the empire of the Caesars, is, first, the brutal and exhausting despotism which Rome herself exercised over her conquered kingdoms, and even over her Italian territory; then, the host of temporal and spiritual tyrannies which she left as her dying curse to all her wide dominion, and which, in some form of violence or of fraud, still brood over almost every soil subdued by the Roman legions[1]. Man cannot struggle at once against human oppression and the destructive forces of inorganic nature. "When both are combined against him, he succumbs after a shorter or longer struggle, and the fields he has won from the primeval wood relapse into their original state of wild and luxuriant, but unprofitable forest growth, or fall into that of a dry and barren wilderness. The abbey of Saint-Germain-des-Pres, which, in the time of Charlemagne, had possessed a million of acres, was, down to the Revolution, still so wealthy, that the personal income of the abbot was 300,000 livres. Theabbey of Saint-Denis was nearly as rich as that of Saint-Germain-des-Pres.—Lavergne, Economie Rurale de la France, p. 104.

Paul Louis Courier quotes from La Bruyere the following striking picture of the condition of the French peasantry in his time: "One sees certain dark, livid, naked, sunburnt, wild animals, male and female, scattered over the country and attached to the soil, which they root and turn over with indomitable perseverance. They have, as it were, an articulate voice, and when they rise to their feet, they show a human face. They are, in fact, men; they creep at night into dens, where they live on black bread, water, and roots. They spare other men the labor of ploughing, Bowing, and harvesting, and therefore deserve some small share of the bread they have grown." "These are his own words," adds Courier, "and he is speaking of the fortunate peasants, of those who had work and bread, and they were then the few."—Petition a la Chambre des Deputes pour les Villageois l'en empeche ce danser.

Arthur Young, who travelled in France from 1787 to 1789, gives, in the twenty-first chapter of his Travels, a frightful account of the burdens of the rural population even at that late period. Besides the regular governmental taxes, and a multitude of heavy fines imposed for trifling offense, he enumerates about thirty seignorial rights, the very origin and nature of some of which are now unknown, while those of some others are as repulsive to humanity and morality, as the worst abuses ever practised by heathen despotism. But Young underrates the number of these oppressive impositions. Moreau de Jonnes, a higher authority, asserts that in a brief examination he had discovered upwards of three hundred distinct lights of the feudatory over the person or the property of his vassal. See Etat Economique et Social de la France, Paris, 1890, p. 389. Most of these, indeed, had been commuted for money payments, and were levied on the peasantry as pecuniary imposts for the benefit of prelates and lay lords, who, by virtue of their nobility, were exempt from taxation. The collection of the taxes was enforced with unrelenting severity. On one occasion, in the reign of Louis XIV., the troops sent out against the recreant peasants made more than 3,000 prisoners, of whom 400 were condemned to the galleys for life, and a number so large that the government did not dare to disclose it, were hung on trees or broken on the wheel.—Moreau de Jonnes, Etat Economique et Social de la France, p. 420. Who can wonder at the hostility of the French plebeian classes towards the aristocracy in the days of the Revolution?

Rome imposed on the products of agricultural labor in the rural districts taxes which the sale of the entire harvest would scarcely discharge; she drained them of their population by military conscription; she impoverished the peasantry by forced and unpaid labor on public works; she hampered industry and both foreign and internal commerce by absurd restrictions and unwise regulations[2]. Hence, large tracts of land were left uncultivated, or altogether deserted, and exposed to all the destructive forces which act with such energy on the surface of the earth when it is deprived of those protections by which nature originally guarded it, and for which, in well-ordered husbandry, human ingenuity has contrived more or less efficient substitutes[3]. Similar abuses have tended to perpetuate and extend these evils in later ages, and it is but recently that, even in the most populous parts of Europe, public attention has been half awakened to the necessity of restoring the disturbed harmonies of nature, whose well-balanced influences are so propitious to all her organic offspring, and of repaying to our great mother the debt which the prodigality and the thriftlessness of former generations have imposed upon their successors—thus fulfilling the command of religion and of practical wisdom, to use this world as not abusing it.

Reaction of Man on Nature

The revolutions of the seasons, with their alternations of temperature and of length of day and night, the climates of different zones, and the general conditions and movements of the atmosphere and the seas, depend upon causes for the most part cosmical, and, of course, wholly beyond our control. The elevation, configuration, and composition of the great masses of terrestrial surface, and the relative extent and distribution of land and water, are determined by geological influences equally remote from our jurisdiction. It would hence seem that the physical adaptation of different portions of the earth to the use and enjoyment of man is a matter so strictly belonging to mightier than human powers, that we can only accept geographical nature as we find her, and be content with such [[soil]s] and such skies as she spontaneously offers.

But it is certain that man has reacted upon organized and inorganic nature, and thereby modified, if not determined, the material structure of his earthly home. The measure of that reaction manifestly constitutes a very important element in the appreciation of the relations between mind and matter, as well as in the discussion of many purely physical problems. But though the subject has been incidentally touched upon by many geographers, and treated with much fulness of detail in regard to certain limited fields of human effort and to certain specific effects of human action, it has not, as a whole, so far as I know, been made matter of special observation, or of historical research, by any scientific inquirer. Indeed, until the influence of geographical conditions upon human life was recognized as a distinct branch of philosophical investigation, there was no motive for the pursuit of such speculations; and it was desirable to inquire how far we have, or can, become the architects of our own abiding place, only when it was known how the mode of our physical, moral, and intellectual being is affected by the character of the home which Providence has appointed, and we have fashioned, for our material habitation[4]. It is still too early to attempt scientific method in discussing this problem, nor is our present store of the necessary facts by any means complete enough to warrant me in promising any approach to fulness of statement respecting them. Systematic observation in relation to this subject has hardly yet begun, and the scattered data which have chanced to be recorded have never been collected. It has now no place in the general scheme of physical science, and is matter of suggestion and speculation only, not of established and positive conclusion. At present, then, all that I can hope is to excite an interest in a topic of much economical importance, by pointing out the directions and illustrating the modes in which human action has been, or may be, most injurious or most beneficial in its influence upon the physical conditions of the earth we inhabit. We cannot always distinguish between the results of man's action and the effects of purely geological or cosmical causes. The destruction of the forests, the drainage of lakes and marshes, and the operations of rural husbandry and industrial art have unquestionably tended to produce great changes in the hygrometric, thermometric, electric, and chemical condition of the atmosphere, though we are not yet able to measure the force of the different elements of disturbance, or to say how far they have been neutralised by each other, or by still obscurer influences; and it is equally certain that the myriad forms of animal and vegetable life, which covered the earth when man first entered upon the theatre of a nature whose harmonies he was destined to derange, have been, through his interference, greatly changed in numerical proportion, sometimes much modified in form and product, and sometimes entirely extirpated[5].

The modification of organic species by domestication is a branch of philosophic inquiry which we may almost say has been created by Darwin; but the geographical results of these modifications do not appear to have yet been made a subject of scientific investigation.

I do not know that the following passage from Pliny has ever been cited in connection with the Darwinian theories but it is worth a reference:

"But behold a very strange and new fashion of them [cucumbers] in Campane, for there you shall have abundance of them come up in forme of a Quince. And as I heare say, one of the channced so to grow first at a very venture; but afterwards from the seed of it came a whole race and progenie of the like, which therefore they call Melonopopones, as a man would say, the Quince-pompions or cucumbers"—Pliny, Nat. Hist., Holland's translation, book xix, c.5

The word cucumis used in the original of this passage embraces many of the cucurbitaceae, but the context shows that here means the cucumber.

The physical revolutions thus wrought by man have not indeed all been destructive to human interests, and the heaviest blows he has inflicted upon nature have not been wholly without their compensations. Soils to which no nutritious vegetable was indigenous, countries which once brought forth but the fewest products suited for the sustenance and comfort of man—while the severity of their climates created and stimulated the greatest number and the most imperious urgency of physical wants—surfaces the most rugged and intractable, and least blessed with natural facilities of communication, have been brought in modern times to yield and distribute all that supplies the material necessities, all that contributes to the sensuous enjoyments and conveniences of civilized life. The Scythia, the Thule, the Britain, the Germany, and the Gaul which the Roman writers describe in such forbidding terms, have been brought almost to rival the native luxuriance and easily won plenty of Southern Italy; and, while the fountains of oil and wine that refreshed old Greece and Syria and Northern Africa have almost ceased to flow, and the [[soil]s] of those fair lands are turned to thirsty and inhospitable deserts, the hyperborean regions of Europe have learned to conquer, or rather compensate, the rigors of climate, and have attained to a material wealth and variety of product that, with all their natural advantages, the granaries of the ancient world can hardly be said to have enjoyed.

Observation of Nature

In these pages it is my aim to stimulate, not to satisfy, curiosity, and it is no part of my object to save my readers the labor of observation or of thought. For labor is life, and Death lives where power lives unused[6].

Self is the schoolmaster whose lessons are best worth his wages; and since the subject I am considering has not yet become a branch of formal instruction, those whom it may interest can, fortunately, have no pedagogue but themselves. To the natural philosopher, the descriptive poet, the painter, the sculptor, and indeed every earnest observer, the power most important to cultivate, and, at the same time, hardest to acquire, is that of seeing what is before him. Sight is a faculty; seeing, an art. The eye is a physical but not a self-acting apparatus, and in general it sees only what it seeks. Like a mirror, it reflects objects presented to it; but it may be as insensible as a mirror, and not consciously perceive what it reflects[7].

It has been maintained by high authority, that the natural acuteness of our sensuous faculties cannot be heightened by use, and hence, that the minutest details of the image formed on the retina are as perfect in the most untrained as in the most thoroughly disciplined organ. This may be questioned, and it is agreed on all hands that the power of multifarious perception and rapid discrimination may be immensely increased by well-directed practice[8].

This exercise of the eye I desire to promote, and, next to moral and religious doctrine, I know no more important practical lessons in this earthly life of ours—which, to the wise man, is a school from the cradle to the grave—than those relating to the employment of the sense of vision in the study of nature.

The pursuit of physical geography, embracing actual observation of terrestrial surface, affords to the eye the best general training that is accessible to all. The majority of even cultivated men have not the time and means of acquiring anything beyond a very superficial acquaintance with any branch of physical knowledge.

Natural science has become so vastly extended, its recorded facts and its unanswered questions so immensely multiplied, that every strictly scientific man must be a specialist, and confine the researches of a whole life within a comparatively narrow circle. The study I am recommending, in the view I propose to take of it, is yet in that imperfectly developed state which allows its votaries to occupy themselves with broad and general views attainable by every person of culture, and it does not now require a knowledge of special details which only years of application can master. It may be profitably pursued by all; and every traveller, every lover of rural scenery, every agriculturist, who will wisely use the gift of sight, may add valuable contributions to the common stock of knowledge on a subject which, as I hope to convince my readers, though long neglected, and now inartificially presented, is not only a very important but a very interesting field of inquiry.

Measurement of Man's Influence

The exact measurement of the geographical and climatic changes hitherto effected by man is impracticable, and we possess, in relation to them, the means of only qualitative, not quantitative analysis. The fact of such revolutions is established partly by historical evidence, partly by analogical deduction from effects produced, in our own time, by operations similar in character to those which must have taken place in more or less remote ages of human action. Both sources of information are alike defective in precision; the latter, for general reasons too obvious to require specification; the former, because the facts to which it bears testimony occurred before the habit or the means of rigorously scientific observation upon any branch of physical research, and especially upon climatic changes, existed.

Uncertainty of Our Historical Conclusions on Ancient Climates

The invention of measures of heat and of atmospheric moisture, pressure (Atmospheric pressure), and precipitation, is extremely recent. Hence, ancient physicists have left us no thermometric or barometric records, no tables of the fall, evaporation, and flow of waters, and even no accurate maps of coast lines and the course of [[river]s]. Their notices of these phenomena are almost wholly confined to excessive and exceptional instances of high or of low [[temperature]s], extraordinary falls of rain and snow, and unusual floods or droughts. Our knowledge of the meteorological condition of the earth, at any period more than two centuries before our own time, is derived from these imperfect details, from the vague statements of ancient historians and geographers in regard to the volume of rivers and the relative extent of forest and cultivated land (Land-use and land-cover change), from the indications furnished by the history of the agriculture and rural economy of past generations, and from other almost purely casual sources of information[9].

Among these latter we must rank certain newly laid open fields of investigation, from which facts bearing on the point now under consideration have been gathered. I allude to the discovery of artificial objects in geological formations older than any hitherto recognized as exhibiting traces of the existence of man; to the ancient lacustrine habitations of Switzerland and of the terremare of Italy[10], containing the implements of the occupants, remains of their food, and other relics of human life; to the curious revelations of the Kjokkenmoddinger, or heaps of kitchen refuse, in Denmark and elsewhere, and of the peat mosses in the same and other northern countries; to the dwellings and other evidences of the industry of man in remote ages sometimes laid bare by the movement of sand dunes on the coasts of France and of the North Sea (North Sea, Europe); and to the facts disclosed on the tide-washed flats of the latter shores by excavations in Halligs or inhabited mounds which were probably raised before the era of the Roman Empire[11]. These remains are memorials of races which have left no written records, which perished at a period beyond the reach of even historical tradition. The plants and animals that furnished the relics found in the deposits were certainly contemporaneous with man; for they are associated with his works, and have evidently served his uses. In some cases, the animals belonged to species well ascertained to be now altogether extinct; in some others, both the animals and the vegetables, though extant elsewhere, have ceased to inhabit the regions where their remains are discovered. From the character of the artificial objects, as compared with others belonging to known dates, or at least to known periods of civilization, ingenious inferences have been drawn as to their age; and from the vegetable remains which accompany them, as to the climates of Central and Northern Europe at the time of their production.

There are, however, sources of error which have not always been sufficiently guarded against in making these estimates. When a boat, composed of several pieces of wood fastened together by pins of the same material, is dug out of a bog, it is inferred that the vessel, and the skeletons and implements found with it, belong to an age when the use of iron was not known to the builders. But this conclusion is not warranted by the simple fact that metals were not employed in its construction; for the Nubians at this day build boats large enough to carry half a dozen persons across the Nile, out of small pieces of acacia wood pinned together entirely with wooden bolts, and large vessels of similar construction are used by the islanders of the Malay archipelago. Nor is the occurrence of flint arrow heads and knives, in conjunction with other evidences of human life, conclusive proof as to the antiquity of the latter. Lyell informs us that some Oriental tribes still continue to use the same stone implements as their ancestors, "after that mighty empires, where the use of metals in the arts was well known, had flourished for three thousand years in their neighborhood;"[12] and the North American Indians now manufacture weapons of stone, and even of glass, chipping them in the latter case out of the bottoms of thick bottles, with great facility[13].

We may also be misled by our ignorance of the commercial relations existing between savage tribes. Extremely rude nations, in spite of their jealousies and their perpetual wars, sometimes contrive to exchange the products of provinces very widely separated from each other. The mounds of Ohio contain pearls, thought to be marine, which must have come from the Gulf of Mexico, or perhaps even from California, and the knives and pipes found in the same graves are often formed of far-fetched material, that was naturally paid for by some home product exported to the locality whence the material was derived. The art of preserving fish, flesh, and fowl by drying and smoking is widely diffused, and of great antiquity. The Indians of Long Island Sound are said to have carried on a trade in dried shell fish with tribes residing very far inland. From the earliest ages, the inhabitants of the Faroe and Orkney Islands, and of the opposite mainland coasts, have smoked wild fowl and other flesh. Hence it is possible that the animal and the vegetable food, the remains of which are found in the ancient deposits I am speaking of, may sometimes have been brought from climates remote from that where it was consumed.

The most important, as well as the most trustworthy conclusions with respect to the climate of ancient Europe and Asia, are those drawn from the accounts given by the classical writers of the growth of cultivated plants; but these are by no means free from uncertainty, because we can seldom be sure of an identity of species, almost never of an identity of race or variety, between vegetables known to the agriculturists of Greece and Rome and those of modern times which are thought most nearly to resemble them. Besides this, there is always room for doubt whether the habits of plants long grown in different countries may not have been so changed by domestication or by natural selection, that the conditions of temperature and humidity which they required twenty centuries ago were different from those at present demanded for their advantageous cultivation[14].

Even if we suppose an identity of species, of race, and of habit to be established between a given ancient and modern plant, the negative fact that the latter will not grow now where it flourished two thousand years ago does not in all cases prove a change of climate. The same result might follow from the exhaustion of the soil[15], or from a change in the quantity of moisture it habitually contains. After a district of country has been completely or even partially cleared of its forest growth, and brought under cultivation, the drying of the soil, under favorable circumstances, goes on for generations, perhaps for ages[16].

In other cases, from injudicious husbandry, or the diversion or choking up of natural water-courses, it may become more highly charged with humidity. An increase or diminution of the moisture of a soil almost necessarily supposes an elevation or a depression of its winter or its summer heat, and of its extreme if not of its mean annual temperature, though such elevation or depression may be so slight as not sensibly to raise or lower the mercury in a thermometer exposed to the open air. Any of these causes, more or less humidity, or more or less warmth of soil, would affect the growth both of wild and of cultivated vegetation, and consequently, without any appreciable change in atmospheric temperature, precipitation, or evaporation, plants of a particular species might cease to be advantageously cultivated where they had once been easily reared[17].

Uncertainty of Modern Meteorology

We are very imperfectly acquainted with the present mean and extreme temperature, or the precipitation and the evaporation of any extensive region, even in countries most densely peopled and best supplied with instruments and observers. The progress of science is constantly detecting errors of method in older observations, and many laboriously constructed tables of meteorological phenomena are now thrown aside as fallacious, and therefore worse than useless, because some condition necessary to secure accuracy of result was neglected, in obtaining and recording the data on which they were founded.

To take a familiar instance: it is but recently that attention has been drawn to the great influence of slight differences in station upon the results of observations of temperature and precipitation. Two thermometers hung but a few hundred yards from each other differ not unfrequently five, sometimes even ten degrees in their readings[18]; and when we are told that the annual fall of rain on the roof of the observatory at Paris is two inches less than on the ground by the side of it, we may see that the height of the rain-gauge above the earth is a point of much consequence in making estimates from its measurements[19].

The data from which results have been deduced with respect to the hygrometrical and thermometrical conditions, to the climate in short, of different countries, have very often been derived from observations at single points in cities or districts separated by considerable distances. The tendency of errors and accidents to balance each other authorizes us, indeed, to entertain greater confidence than we could otherwise feel in the conclusions drawn from such tables; but it is in the highest degree probable that they would be much modified by more numerous series of observations, at different stations within narrow limits[20].

There is one branch of research which is of the utmost importance in reference to these questions, but which, from the great difficulty of direct observation upon it, has been less successfully studied than almost any other problem of physical science. I refer to the proportions between precipitation, superficial drainage, absorption, and evaporation. Precise actual measurement of these quantities upon even a single acre of ground is impossible; and in all cabinet experiments on the subject, the conditions of the surface observed are so different from those which occur in nature, that we cannot safely reason from one case to the other. In nature, the inclination and exposure of the ground, the degree of freedom or obstruction of the flow of water over the surface, the composition and density of the soil, the presence or absence of perforations by worms and small burrowing quadrupeds—upon which the permeability of the ground by water and its power of absorbing and retaining or transmitting moisture depend—its temperature, the dryness or saturation of the subsoil, vary at comparatively short distances; and though the precipitation upon very small geographical basins and the superficial flow from them may be estimated with an approach to precision, yet even here we have no present means of knowing how much of the water absorbed by the earth is restored to the atmosphere by evaporation, and how much carried off by infiltration or other modes of underground discharge. When, therefore, we attempt to use the phenomena observed on a few square or cubic yards of earth, as a basis of reasoning upon the meteorology of a province, it is evident that our data must be insufficient to warrant positive general conclusions. In discussing the climatology of whole countries, or even of comparatively small local divisions, we may safely say that none can tell what percentage of the water they receive from the atmosphere is evaporated; what absorbed by the ground and conveyed off by subterranean conduits; what carried down to the sea by superficial channels; what drawn from the earth or the air by a given extent of forest, of short pasture vegetation, or of tall meadow-grass; what given out again by surfaces so covered, or by bare ground of various textures and composition, under different conditions of atmospheric temperature, pressure (Atmospheric pressure), and humidity; or what is the amount of evaporation from water, ice, or snow, under the varying exposures to which, in actual nature, they are constantly subjected. If, then, we are so ignorant of all these climatic phenomena in the best-known regions inhabited by man, it is evident that we can rely little upon theoretical deductions applied to the former more natural state of the same regions—less still to such as are adopted with respect to distant, strange, and primitive countries.

Stability of Nature

Nature, left undisturbed, so fashions her territory as to give it almost unchanging permanence of form, outline, and proportion, except when shattered by geologic convulsions; and in these comparatively rare cases of derangement, she sets herself at once to repair the superficial damage, and to restore, as nearly as practicable, the former aspect of her dominion. In new countries, the natural inclination of the ground, the self-formed slopes and levels, are generally such as best secure the stability of the soil. They have been graded and lowered or elevated by frost and chemical forces and gravitation and the flow of water and vegetable deposit and the action of the winds, until, by a general compensation of conflicting forces, a condition of equilibrium has been readied which, without the action of main, would remain, with little fluctuation, for countless ages. We need not go far back to reach a period when, in all that portion of the North American continent which has been occupied by British colonization, the geographical elements very nearly balanced and compensated each other. At the commencement of the seventeenth century, the soil, with insignificant exceptions, was covered with forests[21]; and whenever the Indian, in consequence of war or the exhaustion of the beasts of the chase, abandoned the narrow fields he had planted and the woods he had burned over, they speedily returned, by a succession of herbaceous, arborescent, and arboreal growths, to their original state. Even a single generation sufficed to restore them almost to their primitive luxuriance of forest vegetation[22].

The unbroken forests had attained to their maximum density and strength of growth, and, as the older trees decayed and fell, they were succeeded by new shoots or seedlings, so that from century to century no perceptible change seems to have occurred in the wood, except the slow, spontaneous succession of crops. This succession involved no interruption of growth, and but little break in the "boundless contiguity of shade;" for, in the husbandry of nature, there are no fallows. Trees fall singly, not by square roods, and the tall pine is hardly prostrate, before the light and heat, admitted to the ground by the removal of the dense crown of foliage which had shut them out, stimulate the germination of the seeds of broad-leaved trees that had lain, waiting this kindly influence, perhaps for centuries.

Formation of Bogs

Two natural causes, destructive in character, were, indeed, in operation in the primitive American forests, though, in the Northern colonies, at least, there were sufficient compensations; for we do not discover that any considerable permanent change was produced by them. I refer to the action of beavers and of fallen trees in producing [[bog]s][23], and of smaller animals, insects, and birds, in destroying the woods[24].

Bogs generally originate in the checking of watercourses by the falling of timber or of earth and rocks, or by artificial obstructions across their channels. If the impediment is sufficient to retain a permanent accumulation of water behind it, the trees whose roots are overflowed soon perish, and then by their fall increase the obstruction, and, of course, occasion a still wider spread of the stagnating stream. This process goes on until the water finds a new outlet, at a higher level, not liable to similar interruption. The fallen trees not completely covered by water are soon overgrown with mosses; aquatic (Aquatic plants) and semiaquatic plants propagate themselves, and spread until they more or less completely fill up the space occupied by the water, and the surface is gradually converted from a pond to a quaking morass. The morass is slowly solidified by vegetable production and deposit, then very often restored to the forest condition by the growth of black ashes, cedars, or, in southern latitudes, cypresses, and other trees suited to such a soil, and thus the interrupted harmony of nature is at last reestablished[25].

In countries somewhat further advanced in civilization than those occupied by the North American Indians, as in mediaeval Ireland, the formation of [[bog]s] may be commenced by the neglect of man to remove, from the natural channels of superficial drainage, the tops and branches of trees felled for the various purposes to which wood is applicable in his rude industry; and, when the flow of the water is thus checked, nature goes on with the processes I have already described. In such half-civilized regions, too, windfalls are more frequent than in those where the forest is unbroken, because, when openings have been made in it for agricultural or other purposes, the entrance thus afforded to the wind occasions the sudden overthrow of hundreds of trees which might otherwise have stood for generations and have fallen to the ground, only one by one, as natural decay brought them down[26]. Besides this, the flocks bred by man in the pastoral state keep down the incipient growth of trees on the half-dried bogs, and prevent them from recovering their primitive condition. Young trees in the native forest are sometimes girdled and killed by the smaller rodent quadrupeds, and their growth is checked by birds which feed on the terminal bud; but these animals, as we shall see, are generally found on the skirts of the wood only, not in its deeper recesses, and hence the mischief they do is not extensive.

In fine, in countries untrodden by man, the proportions and relative positions of land and water, the atmospheric precipitation and evaporation, the thermometric mean, and the distribution of vegetable and animal life, are maintained by natural compensations, in a state of approximate equilibrium, and are subject to appreciable change only from geological influences so slow in their operation that the geographical conditions may be regarded as substantially constant and immutable.

Natural Conditions Favorable to Geographical Change

There are, nevertheless, certain climatic conditions and certain forms and formations of terrestrial surface, which tend respectively to impede and to facilitate the physical degradation both of new countries and of old. If the precipitation, whether great or small in amount, be equally distributed through the seasons, so that there are neither torrential rains nor parching droughts, and if, further, the general inclination of ground be moderate, so that the superficial waters are carried off without destructive rapidity of flow, and without sudden accumulation in the channels of natural drainage, there is little danger of the degradation of the soil in consequence of the removal of forest or other vegetable covering, and the natural face of the earth may be considered as virtually permanent. These conditions are well exemplified in Ireland, in a great part of England, in extensive districts in Germany and France, and, fortunately, in an immense proportion of the valley of the Mississippi and the basin of the great American lakes, as well as in many parts of the continents of South America and of Africa, and it is partly, though by no means entirely, owing to topographical and climatic causes that the blight, which has smitten the fairest and most fertile provinces of Imperial Rome, has spared Britannia, Germania, Pannonia, and Moesia, the comparatively inhospitable homes of barbarous races, who, in the days of the Caesars, were too little advanced in civilized life to possess either the power or the will to wage that war against the order of nature which seems, hitherto, an almost inseparable condition precedent of high social culture, and of great progress in fine and mechanical art. Destructive changes are most frequent in countries of irregular and [[mountain]ous] surface, and in climates where the precipitation is confined chiefly to a single season, and where, of course, the year is divided into a wet and a dry period, as is the case throughout a great part of the Ottoman empire, and, indeed, in a large proportion of the whole Mediterranean basin. In mountainous countries various causes combine to expose the soil to constant dangers. The rain and snow usually fall in greater quantity, and with much inequality of distribution; the snow on the summits accumulates for many months in succession, and then is not unfrequently almost wholly dissolved in a single thaw, so that the entire precipitation of months is in a few hours hurried down the flanks of the mountains, and through the ravines that furrow them; the natural inclination of the surface promotes the swiftness of the gathering currents of diluvial rain and of melting snow, which soon acquire an almost irresistible force and power of removal and transportation; the soil itself is less compact and tenacious than that of the plains, and if the sheltering forest has been destroyed, it is contined by few of the threads and ligaments by which nature had bound it together, and attached it to the rocky groundwork. Hence every considerable shower lays bare its roods of rock, and the torrents sent down by the thaws of spring, and by occasional heavy discharges of the summer and autumnal rains, are seas of mud and rolling stones that sometimes lay waste and bury beneath them acres, and even miles, of pasture and field and vineyard[27].

Destructiveness of Man

Man has too long forgotten that the earth was given to him for usufruct alone, not for consumption, still less for profligate waste. Nature has provided against the absolute destruction of any of her elementary matter, the raw material of her works; the thunderbolt and the tornado, the most convulsive throes of even the volcano and the earthquake, being only phenomena of decomposition and recomposition. But she has left it within the power of man irreparably to derange the combinations of inorganic matter and of organic life, which through the night of aeons she had been proportioning and balancing, to prepare the earth for his habitation, when in the fulness of time his Creator should call him forth to enter into its possession.

Apart from the hostile influence of man, the organic and the inorganic world are, as I have remarked, bound together by such mutual relations and adaptations as secure, if not the absolute permanence and equilibrium of both, a long continuance of the established conditions of each at any given time and place, or at least, a very slow and gradual succession of changes in those conditions. But man is everywhere a disturbing agent. Wherever he plants his foot, the harmonies of nature are turned to discords. The proportions and accommodations which insured the stability of existing arrangements are overthrown. Indigenous vegetable and animal species are extirpated, and supplanted by others of foreign origin, spontaneous production is forbidden or restricted, and the face of the earth is either laid bare or covered with a new and reluctant growth of vegetable forms, and with alien tribes of animal life. These intentional changes and substitutions constitute, indeed, great revolutions; but vast as is their magnitude and importance, they are, as we shall see, insignificant in comparison with the contingent and unsought results which have flowed from them.

The fact that, of all organic beings, man alone is to be regarded as essentially a destructive power, and that he wields energies to resist which Nature—that nature whom all material life and all inorganic substance obey—is wholly impotent, tends to prove that, though living in physical nature, he is not of her, that he is of more exalted parentage, and belongs to a higher order of existences, than those which are born of her womb and live in blind submission to her dictates.

There are, indeed, brute destroyers, beasts and birds and insects of prey—all animal life feeds upon, and, of course, destroys other life,—but this destruction is balanced by compensations. It is, in fact, the very means by which the existence of one tribe of animals or of vegetables is secured against being smothered by the encroachments of another; and the reproductive powers of species, which serve as the food of others, are always proportioned to the demand they are destined to supply. Man pursues his victims with reckless destructiveness; and, while the sacrifice of life by the lower animals is limited by the cravings of appetite, he unsparingly persecutes, even to extirpation, thousands of organic forms which he cannot consume[28].

The earth was not, in its natural condition, completely adapted to the use of man, but only to the sustenance of wild animals and wild vegetation. These live, multiply their kind in just proportion, and attain their perfect measure of strength and beauty, without producing or requiring any important change in the natural arrangements of surface, or in each other's spontaneous tendencies, except such mutual repression of excessive increase as may prevent the extirpation of one species by the encroachments of another. In short, without man, lower animal and spontaneous vegetable life would have been practically constant in type, distribution, and proportion, and the physical geography of the earth would have remained undisturbed for indefinite periods, and been subject to revolution only from slow development, from possible, unknown cosmical causes, or from geological action.

But man, the domestic animals that serve him, the field and garden plants the products of which supply him with food and clothing, cannot subsist and rise to the full development of their higher properties, unless brute and unconscious nature be effectually combated, and, in a great degree, vanquished by human art. Hence, a certain measure of transformation of terrestrial surface, of suppression of natural, and stimulation of artificially modified productivity becomes necessary. This measure man has unfortunately exceeded. He has felled the forests whose network of fibrous roots bound the mould to the rocky skeleton of the earth; but had he allowed here and there a belt of woodland to reproduce itself by spontaneous propagation, most of the mischiefs which his reckless destruction of the natural protection of the soil has occasioned would have been averted. He has broken up the mountain reservoirs, the percolation of whose waters through unseen channels supplied the fountains that refreshed his cattle and fertilized his fields; but he has neglected to maintain the cisterns and the canals of irrigation which a wise antiquity had constructed to neutralize the consequences of its own imprudence. While he has torn the thin glebe which confined the light earth of extensive plains, and has destroyed the fringe of semi-[[aquatic (Aquatic plants)] plants] which skirted the coast and checked the drifting of the sea sand, he has failed to prevent the spreading of the dunes by clothing them with artificially propagated vegetation. He has ruthlessly warred on all the tribes of animated nature whose spoil he could convert to his own uses, and he has not protected the birds which prey on the insects most destructive to his own harvests.

Purely untutored humanity, it is true, interferes comparatively little with the arrangements of nature[29], and the destructive agency of man becomes more and more energetic and unsparing as he advances in civilization, until the impoverishment with which his exhaustion of the natural resources of the soil is threatening him, at last awakens him to the necessity of preserving what is left, if not of restoring what has been wantonly wasted. The wandering savage grows no cultivated vegetable, fells no forest, and extirpates no useful plant, no noxious weed. If his skill in the chase enables him to entrap numbers of the animals on which he feeds, he compensates this loss by destroying also the lion, the tiger, the wolf, the otter, the seal, and the eagle, thus indirectly protecting the feebler quadrupeds and fish and fowls, which would otherwise become the booty of beasts and birds of prey. But with stationary life, or at latest with the pastoral state, man at once commences an almost indiscriminate warfare upon all the forms of animal and vegetable existence around him, and as he advances in civilization, he gradually eradicates or transforms every spontaneous product of the soil he occupies[30].

Human and Brute Action Compared

It is maintained by authorities as high as any known to modern science, that the action of man upon nature, though greater in DEGREE, does not differ in KIND from that of wild animals. It is perhaps impossible to establish a radical distinction in genere between the two classes of effects, but there is an essential difference between the motive of action which calls out the energies of civilized man and the mere appetite which controls the life of the beast. The action of man, indeed, is frequently followed by unforeseen and undesired results, yet it is nevertheless guided by a self-conscious will aiming as often at secondary and remote as at immediate objects. The wild animal, on the other hand, acts instinctively, and, so far as we are able to perceive, always with a view to single and direct purposes. The backwoodsman and the beaver alike fell trees; the man that he may convert the forest into an olive grove that will mature its fruit only for a succeeding generation, the beaver that he may feed upon the bark of the trees or use them in the construction of his habitation. The action of brutes upon the material world is slow and gradual, and usually limited, in any given case, to a narrow extent of territory. Nature is allowed time and opportunity to set her restorative powers at work, and the destructive animal has hardly retired from the field of his ravages before nature has repaired the damages occasioned by his operations. In fact, he is expelled from the scene by the very efforts which she makes for the restoration of her dominion. Man, on the contrary, extends his action over vast spaces, his revolutions are swift and radical, and his devastations are, for an almost incalculable time after he has withdrawn the arm that gave the blow, irreparable. The form of geographical surface, and very probably the climate of a given country, depend much on the character of the vegetable life belonging to it. Man has, by domestication, greatly changed the habits and properties of the plants he rears; he has, by voluntary selection, immensely modified the forms and qualities of the animated creatures that serve him; and he has, at the same time, completely rooted out many forms of animal if not of vegetable being[31].

What is there, in the influence of brute life, that corresponds to this? We have no reason to believe that, in that portion of the American continent which, though peopled by many tribes of quadruped and fowl, remained uninhabited by man or only thinly occupied by purely, savage tribes, any sensible geographical change had occurred within twenty centuries before the epoch of discovery and colonization, while, during the same period, man had changed millions of square miles, in the fairest and most fertile regions of the Old World, into the barrenest deserts. The ravages committed by man subvert the relations and destroy the balance which nature had established between her organized and her inorganic creations, and she avenges herself upon the intruder, by letting loose upon her defaced provinces destructive energies hitherto kept in check by organic forces destined to be his best auxiliaries, but which he has unwisely dispersed and driven from the field of action. When the forest is gone, the great reservoir of moisture stored up in its vegetable mould is evaporated, and returns only in deluges of rain to wash away the parched dust into which that mould has been converted. The well-wooded and humid hills are turned to ridges of dry rock, which encumbers the low grounds and chokes the watercourses with its debris, and—except in countries favored with an equable distribution of rain through the seasons, and a moderate and regular inclination of surface—the whole earth, unless rescued by human art from the physical degradation to which it tends, becomes an assemblage of bald [[mountain]s], of barren, turfless hills, and of swampy and malarious plains. There are parts of Asia Minor, of Northern Africa, of Greece, and even of Alpine Europe, where the operation of causes set in action by man has brought the face of the earth to a desolation almost as complete as that of the moon; and though, within that brief space of time which we call "the historical period," they are known to have been covered with luxuriant woods, verdant pastures, and fertile meadows, they are now too far deteriorated to be reclaimable by man, nor can they become again fitted for human use, except through great geological changes, or other mysterious influences or agencies of which we have no present knowledge, and over which we have no prospective control. The earth is fast becoming an unfit home for its noblest inhabitant, and another era of equal human crime and human improvidence, and of like duration with that through which traces of that crime and that improvidence extend, would reduce it to such a condition of impoverished productiveness, of shattered surface, of climatic excess, as to threaten the depravation, barbarism, and perhaps even extinction of the species[32].

Physical Improvement

True, there is a partial reverse to this picture. On narrow theatres, new forests have been planted; inundations of flowing streams restrained by heavy walls of masonry and other constructions; torrents compelled to aid, by depositing the slime with which they are charged, in filling up lowlands, and raising the level of morasses which their own overflows had created; ground submerged by the encroachments of the ocean, or exposed to be covered by its [[tide]s], has been rescued from its dominion by diking; swamps and even lakes have been drained, and their beds brought within the domain of agricultural industry; drifting coast dunes have been checked and made productive by plantation; seas and inland waters have been repeopled with fish, and even the sands of the Sahara have been fertilized by artesian fountains. These achievements are more glorious than the proudest triumphs of war, but, thus far, they give but faint hope that we shall yet make full atonement for our spendthrift waste of the bounties of nature[33].

Limits Of Human Power

It is on the one hand, rash and unphilosophical to attempt to set limits to the ultimate power of man over inorganic nature, and it is unprofitable, on the other, to speculate on what may be accomplished by the discovery of now unknown and unimagined natural forces, or even by the invention of new arts and new processes. But since we have seen aerostation, the motive power of elastic vapors, the wonders of modern telegraphy, the destructive explosiveness of gunpowder, of nitro-glycerine, and even of a substance so harmless, unresisting, and inert as cotton, there is little in the way of mechanical achievement which seems hopelessly impossible, and it is hard to restrain the imagination from wandering forward a couple of generations to an epoch when our descendants shall have advanced as far beyond us in physical conquest, as we have marched beyond the trophies erected by our grandfathers. There are, nevertheless, in actual practice, limits to the efficiency of the forces which we are now able to bring into the field, and we must admit that, for the present, the agencies known to man and controlled by him are inadequate to the reducing of great Alpine precipices to such slopes as would enable them to support a vegetable clothing, or to the covering of large extents of denuded rock with earth, and planting upon them a forest growth. Yet among the mysteries which science is hereafter to reveal, there may be still undiscovered methods of accomplishing even grander wonders than these. Mechanical philosophers have suggested the possibility of accumulating and treasuring up for human use some of the greater natural forces, which the action of the elements puts forth with such astonishing energy. Could we gather, and bind, and make subservient to our control, the power which a West Indian hurricane exerts through a small area in one continuous blast, or the momentum expended by the waves in a tempestuous winter, upon the breakwater at Cherbourg[34], or the lifting power of the tide, for a month, at the head of the Bay of Fundy, or the pressure of a square mile of sea water at the depth of five thousand fathoms, or a moment of the might of an earthquake or a volcano, our age—which moves no [[mountain]s] and casts them into the sea by faith alone—might hope to scarp the ragged walls of the Alps and Pyrenees and Mount Taurus, robe them once more in a vegetation as rich as that of their pristine woods, and turn their wasting torrents into refreshing streams[35].

Could this old world, which man has overthrown, be rebuilded, could human cunning rescue its wasted hillsides and its deserted plains from solitude or mere nomade occupation, from barrenness, from nakedness, and from insalubrity, and restore the ancient fertility and healthfulness of the Etruscan sea coast, the Campagna and the Pontine marshes, of Calabria, of Sicily, of the Peloponnesus and insular and continental Greece, of Asia Minor, of the slopes of Lebanon and Hermon, of Palestine, of the Syrian desert, of Mesopotamia and the delta of the Euphrates, of the Cyrenaica, of Africa proper, Numidia, and Mauritania, the thronging millions of Europe might still find room on the Eastern continent, and the main current of emigration be turned towards the rising instead of the setting sun.

But changes like these must await not only great political and moral revolutions in the governments and peoples by whom these regions are now possessed, but, especially, a command of pecuniary and of mechanical means not at present enjoyed by these nations, and a more advanced and generally diffused knowledge of the processes by which the amelioration of soil and climate is possible than now anywhere exists. Until such circumstances shall conspire to favor the work of geographical regeneration, the countries I have mentioned, with here and there a local exception, will continue to sink into yet deeper desolation, and in the meantime the American continent, Southern Africa, Australia, New Zealand, and the smaller oceanic islands, will be almost the only theatres where man is engaged, on a great scale, in transforming the face of nature.

Importance of Physical Conservation and Restoration

Comparatively short as is the period through which the colonization of foreign lands by European emigrants extends, great and, it is to be feared, sometimes irreparable injury has already been done in the various processes by which man seeks to subjugate the virgin earth; and many provinces, first trodden by the homo sapiens Europae within the last two centuries, begin to show signs of that melancholy dilapidation which is now driving so many of the peasantry of Europe from their native hearths. It is evidently a matter of great moment, not only to the population of the states where these symptoms are manifesting themselves, but to the general interests of humanity, that this decay should be arrested, and that the future operations of rural husbandry and of forest industry, in districts yet remaining substantially in their native condition, should be so conducted as to prevent the widespread mischiefs which have been elsewhere produced by thoughtless or wanton destruction of the natural safeguards of the soil. This can be done only by the diffusion of knowledge on this subject among the classes that, in earlier days, subdued and tilled ground in which they had no vested rights, but who, in our time, own their woods, their pastures, and their ploughlands as a perpetual possession for them and theirs, and have, therefore, a strong interest in the protection of their domain against deterioration.

Physical Restoration

Many circumstances conspire to invest with great present interest the questions: how far man can permanently modify and ameliorate those physical conditions of terrestrial surface and climate on which his material welfare depends; how far he can compensate, arrest, or retard the deterioration which many of his agricultural and industrial processes tend to produce; and how far he can restore fertility and salubrity to soil which his follies or his crimes have made barren or pestilential. Among these circumstances, the most prominent, perhaps, is the necessity of providing new homes for a European population which is increasing more rapidly than its means of subsistence, new physical comforts for classes of the people that have now become too much enlightened and have imbibed too much culture to submit to a longer deprivation of a share in the material enjoyments which the privileged ranks have hitherto monopolized.

To supply new hives for the emigrant swarms, there are, first, the vast unoccupied prairies and forests of America, of Australia, and of many other great oceanic islands, the sparsely inhabited and still unexhausted soils of Southern and even Central Africa, and, finally, the impoverished and half-depopulated shores of the Mediterranean, and the interior of Asia Minor and the farther East. To furnish to those who shall remain after emigration shall have conveniently reduced the too dense population of many European states, those means of sensuous and of intellectual well-being which are styled "artificial wants" when demanded by the humble and the poor, but are admitted to be "necessaries" when claimed by the noble and the rich, the soil must be stimulated to its highest powers of production, and man's utmost ingenuity and energy must be tasked to renovate a nature drained, by his improvidence, of fountains which a wise economy would have made plenteous and perennial sources of beauty, health, and wealth.

In those yet virgin lands which the progress of modern discovery in both hemispheres has brought and is still bringing to the knowledge and control of civilized man, not much improvement of great physical conditions is to be looked for. The proportion of forest is indeed to be considerably reduced, superfluous waters to be drawn off, and routes of internal communication to be constructed; but the primitive geographical and climatic features of these countries ought to be, as far as possible, retained.

In reclaiming and reoccupying lands laid waste by human improvidence or malice, and abandoned by man, or occupied only by a nomade or thinly scattered population, the task of the pioneer settler is of a very different character. He is to become a co-worker with nature in the reconstruction of the damaged fabric which the negligence or the wantonness of former lodgers has rendered untenantable. He must aid her in reclothing the mountain slopes with forests and vegetable mould, thereby restoring the fountains which she provided to water them; in checking the devastating fury of torrents, and bringing back the surface drainage to its primitive narrow channels; and in drying deadly morasses by opening the natural sluices which have been choked up, and cutting new canals for drawing off their stagnant waters. He must thus, on the one hand, create new reservoirs, and, on the other, remove mischievous accumulations of moisture, thereby equalizing and regulating the sources of atmospheric humidity and of flowing water, both which are so essential to all vegetable growth, and, of course, to human and lower animal life.

I have remarked that the effects of human action on the forms of the earth's surface could not always be distinguished from those resulting from geological causes, and there is also much uncertainty in respect to the precise influence of the clearing and cultivating of the ground, and of other rural operations, upon climate. It is disputed whether either the mean or the extremes of temperature, the periods of the seasons, or the amount or distribution of precipitation and of evaporation, in any country whose annals are known, have undergone any change during the historical period. It is, indeed, as has been already observed, impossible to doubt that many of the operations of the pioneer settler TEND to produce great modifications in atmospheric humidity, temperature, and electricity; but we are at present unable to determine how far one set of effects is neutralized by another, or compensated by unknown agencies. This question scientific research is inadequate to solve, for want of the necessary data; but well conducted observation, in regions now first brought under the occupation of man, combined with such historical evidence as still exists, may be expected at no distant period to throw much light on this subject.

Australia and New Zealand are, perhaps, the countries from which we have a right to expect the fullest elucidation of these difficult and disputable problems. Their colonization did not commence until the physical sciences had become matter of utmost universal attention, and is, indeed, so recent that the memory of living men embraces the principal epochs of their history; the peculiarities of their fauna, their flora, and their geology are such as to have excited for them the liveliest interest of the votaries of natural science; their mines have given their people the necessary wealth for procuring the means of instrumental observation, and the leisure required for the pursuit of scientific research; and large tracts of virgin forest and natural meadows are rapidly passing under the control of civilized man. Here, then, exist greater facilities and stronger motives for the careful study of the topics in question than have ever been found combined in any other theatre of European colonization.

In North America, the change from the natural to the artificial condition of terrestrial surface began about the period when the most important instruments of meteorological observation were invented. The first settlers in the territory now constituting the United States and the British American provinces had other things to do than to tabulate barometrical and thermometrical readings, but there remain some interesting physical records from the early days of the colonies[36], and there is still an immense extent of North American soil where the industry and the folly of man have as yet produced little appreciable change. Here, too, with the present increased facilities for scientific observation, the future effects, direct a contingent, of man's labors, can be measured, and such precautions taken in those rural processes which we call improvements, as to mitigate evils, perhaps, in some degree, inseparable from every attempt to control the action of natural laws.

In order to arrive at safe conclusions, we must first obtain a more exact knowledge of the topography, and of the present superficial and climatic condition of countries where the natural surface is as yet more or less unbroken. This can only be accomplished by accurate surveys, and by a great multiplication of the points of meteorological registry[37], already so numerous; and as, moreover, considerable changes in the proportion of forest and of cultivated land (Land-use and land-cover change), or of dry and wholly or partially submerged surface, will often take place within brief periods, it is highly desirable that the attention of observers, in whose neighborhood the clearing of the soil, of the drainage of lakes and swamps, or other great works of rural improvement, are going on or meditated, should be especially drawn not only to revolutions in atmospheric temperature and precipitation, but to the more easily ascertained and perhaps more important local changes produced by these operations in the temperature and the hygrometric state of the superficial strata of the earth, and in its spontaneous vegetable and animal products.

The rapid extension of railroads, which now everywhere keep pace with, and sometimes even precede, the occupation of new soil for agricultural purposes, furnishes great facilities for enlarging our knowledge of the topography of the territory they traverse, because their cuttings reveal the composition and general structure of surface, and the inclination and elevation of their lines constitute known hypsometrical sections, which give numerous points of departure for the measurement of higher and lower stations, and of course for determining the relief and depression of surface, the slope of the beds of watercourses, and many other not less important questions[38].

The geological, hydrographical, and topographical surveys, which almost every general and even local government of the civilized world is carrying on, are making yet more important contributions to our stock of geographical and general physical knowledge, and, within a comparatively short space, there will be an accumulation of well established constant and historical facts, from which we can safely reason upon all the relations of action and reaction between man and external nature.

But we are, even now, breaking up the floor and wainscoting and doors and window frames of our dwelling, for fuel to warm our bodies and to seethe our pottage, and the world cannot afford to wait till the slow and sure progress of exact science has taught it a better economy. Many practical lessons have been learned by the common observation of unschooled men; and the teachings of simple experience, on topics where natural philosophy has scarcely yet spoken, are not to be despised.

In these humble pages, which do not in the least aspire to rank among scientific expositions of the laws of nature, I shall attempt to give the most important practical conclusions suggested by the history of man's efforts to replenish the earth and subdue it; and I shall aim to support those conclusions by such facts and illustrations only as address themselves to the understanding of every intelligent reader, and as are to be found recorded in works capable of profitable perusal, or at least consultation, by persons who have not enjoyed a special scientific training.

==Notes ^In the Middle Ages, feudalism, and a nominal Christianity, whose corruptions had converted the most beneficent of religions into the most baneful of superstitions, perpetuated every abuse of Roman tyranny, and added new oppressions and new methods of extortion to those invented by older despotisms. The burdens in question fell most heavily on the provinces that had been longest colonized by the Latin race, and those are the portions of Europe which have suffered the greatest physical degradation. "Feudalism," says Blanqui, "was a concentration of scourges. The peasant, stripped of the inheritance of his fathers, became the property of inflexible, ignorant, indolent masters; he was obliged to travel fifty leagues with their carts whenever they required it; he labored for them three days in the week, and surrendered to them half the product of his earnings during the other three; without their consent he could not change his residence, or marry. And why, indeed, should he wish to marry, when he could scarcely save enough to maintain himself. The Abbot Alcuin had twenty thousand slaves, called SERFS, who were forever attached to the soil (Earth as Modified by Human Action, The: Chapter 01 (historical)) . This is the great cause of the rapid depopulation observed in the Middle Ages, and of the prodigious multitude of monasteries which sprang up on every side. It was doubtless a relief to such miserable men to find in the cloisters a retreat from oppression; but the human race never suffered a more cruel outrage, industry never received a wound better calculated to plunge the world again into the darkness of the rudest antiquity. It suffices to say that the prediction of the approaching end of the world, industriously spread by the rapacious monks at this time, was received without terror."—Resume de l'Histoire du Commerce, p. 156. * ^Commerce, in common with all gainful occupations except agriculture, was despised by the Romans, and the exercise of it was forbidden to the higher ranks. Cicero, however, admits that though retail trade, which could only prosper by lying and knavery, was contemptible, yet wholesale commerce was not altogether to be condemned, and might even be laudable, provided the merchant retired early from trade and invested his gaits in farm lands.—De Officiis, lib. i.,42. * ^The temporary depopulation of an exhausted soil may be, in some cases, a physical, though, like fallows in agriculture, a dear-bought advantage. Under favorable circumstances, the withdrawal of man and his flocks allows the earth to clothe itself again with forests, and in a few generations to recover its ancient productiveness. In the Middle Ages, worn-out fields were depopulated, in many parts of the Continent, by civil and ecclesiastical tyrannies, which insisted on the surrender of the half of a loaf already too small to sustain its producer. Thus abandoned, these lands often relapsed into the forest state, and, some centuries later, were again brought under cultivation with renovated fertility. * ^Gods Almagt wenkte van den troon, En schiep elk volk een land ter woon: Hier vestte Zij een grondgebied, Dat Zij ona zelven scheppon llet. * ^Man has not only subverted the natural numerical relations of wild as well as domestic quadrupeds, fish, birds, reptile, insect, and common plants, and even of still humbler tribes of animal and vegetable life, but he has effected in the forms, habits, nutriment and products of the organisms which minister to his wants and his pleasures, changes which, more than any other manifestation of human energy, resemble the exercise of a creative power. Even wild animals have been compelled by him, through the destruction of plants and insects which furnished their proper aliment, to resort to food belonging to a different kingdom of nature. Thus a New Zealand bird, originally granivorous and insectivorous, has become carnivorous, from the want of its natural supplies, and now tears the fleeces from the backs of the sheep, in order to feed on their living flesh. All these changes have exercised more or less direct or indirect action on the inorganic surface of the globe; and the history of the geographical revolutions thus produced would furnish ample material for a volume. * ^Verses addressed by G. C. to Sir Walter Raleigh.—Haklutt, i., p. 608. * ^—I troer, at Synets Sands er lagt i Oiet, Mens dette kun er Redskab. Synet strommer Fra Sjaelens Dyb, og Oiets fine Nerver Gaae ud fra Hjernens hemmelige Vaerksted. Henrik Hertz, Kong Rene's Datter, sc. ii.In the material eye, you think, sight lodgeth! The EYE is but an organ. SEEING streameth from the soul's inmost depths. The fine perceptive Nerve springeth from the brain's mysterious workshop. * ^Skill in marksmanship, whether with firearms or with other projectile weapons, depends more upon the training of the eye than is generally supposed, and I have often found particularly good shots to possess an almost telescopic vision. In the ordinary use of the rifle, the barrel is guided by the eye, but there are sportemen who fire with the butt of the gun at the hip. In this case, as in the use of the sling, the lasso, and the bolas, in hurling the knife (see Babinet, Lectures, vii., p. 84), in throwing the boomerang, the javelin, or a stone, and in the employment of the blowpipe and the bow, the movements of the hand and arm are guided by that mysterious sympathy which exists between the eye and the unseeing [[organ]s] of the body. "Some men wonder whye, in casting a man's eye at the marke, the hand should go streighte. Surely if he considered the nature of a man's eye he would not wonder at it: for this I am certaine of, that no servaunt to his maister, no childe to his father, is so obedient, as every joynte and peece of the bodye is to do whatsover the eye biddes."—Roger Ascham, Taxophilus, Book ii.In shooting the tortoises of the Amazon and its tributaries, the Indians use an arrow with a long twine and a float attached to it. Ave-Lallemant (Die Benutzung der Palmen am Amazonenstrom, p. 32) thus describes their mode of aiming: "As the arrow, if aimed directly at the floating tortoise, would strike it at a small angle and glance from its fiat and wet shell, the archers have a peculiar method of shooting. They are able to calculate exactly their own muscular effort, the velocity of the stream, the distance and size of the tortoise, and they shoot the arrow directly up into the air, so that it falls almost vertically upon the shell of the tortoise, and sticks in it." Analogous calculations—if such physico-mental operations can properly be so called—are made in the use of other missiles; for no projectile flies in a right line to its mark. But the exact training of the eye lies at the bottom of them all, and marksmanship depends almost wholly upon the power of that organ, whose directions the blind muscles implicitly follow. Savages accustomed only to the use of the bow become good shots with firearms after very little practice. It is perhaps not out of place to observe here that our English word aim comes from the Latin aestimo, I calculate or estimate. See Wedgwood's Dictionary of English Etymology, and the note to the American edition, under Aim.Another proof of the control of the limbs by the eye has been observed in deaf-and-dumb schools, and others where pupils are first taught to write on large slates or blackboards. The writing is in large characters, the small letters being an inch or more high. They are formed with chalk or a slate pencil firmly grasped in the fingers, and by appropriate motions of the wrist, elbow, and shoulder, not of the finger joints. Nevertheless, when a pen is put into the hand of a pupil thus taught, his handwriting, though produced by a totally different set of muscles and muscular movements, is identical in character with that which he has practised on the blackboard. For a very remarkable account of the restoration of vision impaired from age, by judicious training, see Lessons in Life, by Timothy Titcomb, lesson xi. It has been much doubted whether the artists of the classic ages possessed a more perfect light than those of modern times, or whether, in executing their minute mosaics and gem engravings, they need magnifiers. Glasses ground convex have been found at Pompeii, but they are too rudely fashioned and too imperfectly polished to have been of any practical use for optical purposes. But though the ancient artists may have had a microscopic vision, their astronomers cannot have had a telescopic power of sight; for they did not discover the satellites of Jupiter, which are often seen with the naked eye at Oormeeah, in Persia, and sometimes, as I can testify by personal observation, at Cairo. * ^The subject of climatic change, with and without reference to human action as a cause, has been much discussed by Moreau de Jonnes, Dureau de la Malle, Arago, Humboldt, Fuster, Gasparin, Becquerel (Becquerel, Antoine Henri), Schleiden, and many other writers in Europe, and by Noah Webster, Forry, Drake, and others in America. Fraas has endeavored to show, by the history of vegetation in Greece, not merely that clearing and cultivation have affected climate, but that change of climate has essentially modified the character of vegetable life. See his Klima und Pflansenwelt in der Zeit. * ^See two learned articles by Pigorini, in the Nuova Antologia for January and October, 1870. * ^For a very picturesque description of the Halligs, see Pliny, N.H., Book xvi, c. 1. * ^Antiquity of Man, p. 377. * ^"One of the Indians seated himself near me, and made from a fragment of quartz, with a simple piece of round bone, one end of which was hemispherical, with a small crease in it (as if worn by a thread) the sixteenth of an inch deep, an arrow head which was very sharp and piercing, and such as they use on all their arrows. The skill and rapidity with which it was made, without a blow, but by simply breaking the sharp edges with the creased bone by the strength of his hands—for the crease merely served to prevent the instrument from slipping, affording no leverage—was remarkable."—Reports of Explorations and Surveys for Pacific Railroad, vol. ii., 1855, Lieut. Beckwith'S Report, p. 43. See also American Naturalist for May, 1870, and especially Stevens, Flint Chips, London, 1870, pp. 77 et seq. Mariette Bey lately saw an Egyptian barber shave the head of an Arab with a flint razor. * ^Probably no cultivated vegetable affords so good an opportunity of studying the law of acclimation of plants as maize or Indian corn. Maize is grown from the tropics to at least lat. 47 degrees in Northeastern America, and farther north in Europe. Every two or three degrees of latitude brings you to a new variety with new climatic adaptations, and the capacity of the plant to accommodate itself to new conditions of temperature and season seems almost unlimited.Many persons now living remember that, when the common tomato was first introduced into Northern New England, it often failed to ripen; but, in the course of a very few years, it completely adapted itself to the climate, and now not only matures both its fruit and its seeds with as much certainty as any cultivated vegetable, but regularly propagates itself by self-sown seed. Meteorological observations, however, do not show any amelioration of the summer climate in those States within that period.It may be said that these cases—and indeed all cases of a supposed acclimation consisting in physiological changes—are instances of the origination of new varieties by natural selection, the hardier maize, tomato, and other vegetables of the North, being the progeny of seeds of individuals endowed, exceptionally, with greater power of resisting cold than belongs in general to the species which produced them. But, so far as the evidence of change of climate, from a difference in vegetable growth, is concerned, it is immaterial whether we adopt this view or maintain the older and more familiar doctrine of a local modification of character in the plants in question.Maize and the tomato, if not new to human use, have not been long known to civilization, and were, very probably, reclaimed and domesticated at a much more recent period than the plants which form the great staples of agricultural husbandry in Europe and Asia. Is the great power of accommodation to climate possessed by them due to this circumstance. There is some reason to suppose that the character of maize has been sensibly changed by cultivation in South America; for, according to Tschudi, the ears of this grain found in old Peruvian tombs belong to varieties not now known in Peru.—Travels in Peru, chap. vii. See important observations in Schubeler, Die Pflanzenwelt Norwegans (Allgemeiner Theil), Christinania, 1873, 77 and following pp.] * ^The cultivation of madder is said to have been introduced into Europe by an Oriental in the year 1765, and it was first planted in the neighborhood of Avignon. Of course, it has been grown in that district for less than a century; but upon [[soil]s] where it has been a frequent crop, it is already losing much of its coloring properties.—Lavergne, Economic Rurale de la France, pp. 250-201.I believe there is no doubt that the cultivation of madder in the vicinity of Avignon is of recent introduction; but it is certain that it was grown by the ancient Romans, and throughout nearly all Europe in the middle ages. The madder brought from Persia to France, may belong to a different species, or at least variety. * ^In many parts of New England there are tracts, many square miles in extent and presenting all varieties of surface and exposure, which were partially cleared sixty or seventy years ago, and where little or no change (Land-use and land-cover change) in the proportion of cultivated ground, pasturage, and woodland has taken place since. In some cases, these tracts compose basins apparently scarcely at all exposed to any local influence in the way of percolation or infiltration of water towards or from neighboring valleys. But in such situations, apart from accidental disturbances, the ground is growing drier and drier from year to year, springs are still disappearing, and rivulets still diminishing in their summer supply of water. A probable explanation of this is to be found in the rapid drainage of the surface of cleared ground, which prevents the subterranean natural reservoirs, whether cavities or merely strata of bibulous earth, from filling up. How long this process is to last before an equilibrium is reached, none can say. It may be, for years; it may be, for centuries.Livingstone states facts which strongly favor the supposition that a secular desiccation is still going on in central Africa, and there is reason to suspect that a like change is taking place in California. When the regions where the earth is growing drier were cleared of wood, or, indeed, whether forests ever grew there, we are unable to say, but the change appears to have been long in progress. A similar revolution appears to have occurred in Arabia Petraea. In many of the wadis, and particularly in the gorges between Wadi Feiran and Wadi Esh Sheikh, there are water-worn banks showing that, at no very remote period, the winter floods must have risen fifty feet in channels where the growth of acacias and tamarisks and the testimony of the Arabs concur to prove that they have not risen six feet within the memory or tradition of the present inhabitants. Recent travellers have discovered traces of extensive ancient cultivation, and of the former existence of large towns in the Tih desert, in localities where all agriculture is now impossible for want of water. Is this drought due to the destruction of ancient forests or to some other cause?For important observations on supposed changes of climate in our Western prairie region, from cultivation of the soil and the introduction of domestic cattle, see Bryant's valuable Forest Trees, 1871, chapter v., and Hayden, Preliminary Report on Survey of Wyoming, p. 455. Some physicists believe that the waters of our earth are, from chemical of other less known causes, diminishing by entering into new inorganic combinations, and that this element will finally disappear from the globe. * ^The soil of newly subdued countries is generally highly favorable to the growth of the fruits of the garden and the orchard, but usually becomes much less so in a very few years. Plums, of many varieties, were formerly grown, in great perfection and abundance, in many parts of New England where at present they can scarcely be reared at all; and the peach, which, a generation or two ago, succeeded admirably in the southern portion of the same States, has almost ceased to be cultivated there. The disappearance of these fruits is partly due to the ravages of insects, which have in later years attacked them; but this is evidently by no means the sole, or even the principal cause of their decay. In these cases, it is not to the exhaustion of the particular acres on which the fruit trees have grown that we are to ascribe their degeneracy, but to a general change in the condition of the soil or the air; for it is equally impossible to rear them successfully on absolutely new land in the neighborhood of grounds where, not long since, they bore the finest fruit.I remember being told, many years ago, by intelligent early settlers of the State of Ohio, that the apple trees raised there from seed sown soon after the land was cleared, bore fruit in less than half the time required to bring to bearing those reared from seed gown when the ground had been twenty years under cultivation. Analogous changes occur slowly and almost imperceptibly even in spontaneous vegetation. In the peat mosses of Denmark, Scotch firs and other trees not now growing in the same localities, are found in abundance. Every generation of trees leaves the soil in a different state from that in which it found it; every tree that springs up in a group of trees of another species than its own, grows under different influences of light and shade and atmosphere from its predecessors. Hence the succession of crops, which occurs in all natural forests, seems to be due rather to changes of condition than of climate. See chapter iii., post. * ^Tyndall, in a lecture on Radiation, expresses the opinion that from ten to fifteen per cent. of the heat radiated from the earth is absorbed by aqueous vapor within ten feet of the earth's surface.—Fragments of Science, 3d edition, London, 1871, p. 203. Thermometers at most meteorological stations, when not suspended at points regulated by the mere personal convenience of the observer, are hung from 20 to 40 feet above the ground. In such positions they are less exposed to disturbance from the action of surrounding bodies than at a lower level, and their indications are consequently more uniform; but according to Tyndall's views they do not mark the temperature of the atmospheric stratum in which nearly all the vegetables useful to man, except forest trees, bud and blossom and ripen, and in which a vast majority of the ordinary operations of material life are performed. They give the rise and fall of the mercury at heights arbitrarily taken, without reference to the relations of temperature to human interests, or to any other scientific consideration than a somewhat less liability to accidental disturbance. * ^Careful observations by the late lamented Dallas Bache appeared to show that there is no such difference in the quantity of precipitation falling at slightly different levels as has been generally supposed. The apparent difference was ascribed by Prof. Bache to the irregular distribution of the drops of rain and flakes of snow, exposed, as they are, to local disturbances by the currents of air around the corners of buildings or other accidents of the surface. This consideration much increases the importance of great care in the selection of positions for rain-gauges. But Mr. Bache's conclusions seem not to be accepted by late experimenters in England. See Quarterly Journal of Science for January, 1871, p. 123. * ^The nomenclature of meteorology is vague and sometimes equivocal. Not long since, it was suspected that the observers reporting to a scientific institution did not agree in their understanding of the mode of expressing the direction of the wind prescribed by their instructions. It was found, upon inquiry, that very many of them used the names of the compass-points to indicate the quarter FROM which the wind blew, while others employed them to signify the quarter TOWARDS which the atmospheric currents were moving. In some instances, the observers were no longer within the reach of inquiry, and of course their tables of the wind were of no value. "Winds," says Mrs. Somerville, "are named from the points whence they blow, currents exactly the reverse. An easterly wind comes from the east; whereas on easterly current comes from the west, and flows towards the east."—Physical Geography, p. 229.There is no philological ground for this distinction, and it probably originated in a confusion of the terminations -WARDLY and -ERLY, both of which are modern. The root of the former ending implies the direction TO or TO-WARDS which motion is supposed. It corresponds to, and is probably allied with, the Latin VERSUS. The termination -ERLY is a corruption or softening of -ERNLY, easterly for easternly, and many authors of the nineteenth century so write it. In Haklnyt (i., p. 2), EASTERLY is applied to place, "EASTERLY bounds," and means EASTERN. In a passage in Drayton, "EASTERLY winds" must mean winds FROM the east; but the same author, in speaking of nations, uses NORTHERLY for NORTHERN. Lakewell says: "The sonne cannot goe more SOUTHERNLY from us, nor come more NORTHERNLY towards us." Holland, in his translation of Pliny, referring to the moon, has: "When shee is NORTHERLY," and "shee is gone SOUTHERLY." Richardson, to whom I am indebted for the above citations, quotes a passage from Dampier where WESTERLY is applied to the wind, but the context does not determine the direction. The only example of the termination -WARDLY given by this lexicographer is from Donne, where it means TOWARDS the west.Shakespeare, in Hamlet(v., ii.), uses NORTHERLY wind for wind FROM the north. Milton does not employ either of these terminations, nor were they known to the Anglo-Saxons, who, however, had adjectives of direction in -AN or -EN, -ern and -weard, the last always meaning the point TOWARDS which motion in supposed, the others that FROM which it proceeds. The vocabulary of science has no specific name for one of the most important phenomena in meteorology—I mean for watery vapor condensed and rendered visible by cold. The Latins expressed this condition of water by the word vapor. For INVISIBLE vapor they had no name, because they did not know that it existed, and Van Helmont was obliged to invent a word, gas, as a generic name for watery and other fluids in the invisible state. The moderns have perverted the meaning of the word vapor, and in science its use is confined to express water in the gaseous and invisible state. When vapor in rendered visible by condensation, we call it fog or mist—between which two words there is no clearly established distinction—if it is lying on or near the surface of the earth or of water; when it floats in the air we call it cloud. But these words express the form and position of the humid aggregation, not the condition of the water-globules which compose it. The breath from our mouths, the steam from an engine, thrown out into cold air, become visible, and consist of water in the same state as in fog or cloud; but we do not apply those terms to these phenomena. It would be an improvement in meteorological nomenclature to restore vapor to its original meaning, and to employ a new word, such for example as hydrogas, to explain the new scientific idea of water in the invisible state.] * ^I do not here speak of the vast prairie region of the Mississippi valley, which cannot properly said ever to have been a field of British colonization; but of the original colonies, and their dependencies in the territory of the present United States, and in Canada. It is, however, equally true of the Western prairies as of the Eastern forest land, that they had arrived at a state of equilibrium, though under very different conditions. * ^The great fire of Miramichi in 1825, probably the most extensive and terrific conflagration recorded in authentic history, spread its ravages over nearly six thousand square miles, chiefly of woodland, and was of such intensity that it seemed to consume the very soil itself. But so great are the recuperative powers of nature, that, in twenty-five years, the ground was thickly covered again with tree of fair dimensions, except where cultivation and pasturage kept down the forest growth. * ^The English nomenclature of this geographical feature does not seem well settled. We have bog, swamp, marsh, morass, moor, fen, turf-moss, peat-moss, quagmire, all of which, though sometimes more or less accurately discriminated, are often used interchangeably, or are perhaps employed, each exclusively, in a particular district. In Sweden, where, especially in the Lappish provinces, this terr-aqueous formation is very extensive and important, the names of its different kinds are more specific in their application. The general designation of all [[soil]s] permanently pervaded with water is Karr. The elder Laestadius divides the Karr into two genera: Myror (sing. myra), and Mossar (sing. mosse). "The former," he observes, "are grass-grown, and overflowed with water through almost the whole summer; the latter are covered with mosses and always moist, but very seldom overflowed." He enumerates the following species of Myra, the character of which will perhaps be sufficiently understood by the Latin terms into which he translates the vernacular names, for the benefit of strangers not altogether familiar with the language and the subject: 1. Homyror, paludes graminosae. 2. Dy, paludes profundae. 3. Flarkmyror, or proper karr, paludes limosae. 4. Fjalimyror, paludes uliginosae. 5. Tufmyror, paludes caespitosae. 6. Rismyror, paludes virgatae. 7. Starrangar, prata irrigata, with their subdivisions, dry starrungar or risangar, wet starrangar and frakengropar. 8. Polar, lacunae. 9. Golar, fossae inundatae. The Mossar, paludes turfosae, which are of great extent, have but two species: 1. Torfmossar, called also Mossmyror and Snottermyror, and, 2. Bjornmossar.The accumulations of stagnant or stagnating water originating in [[bog]s] are distinguished into Trask, stagna, and Tjernar or Tjarnar (sing. Tjern or Tjarn), stagnatiles. Trask are pools fed by bogs, or water emanating from them, and their bottoms are slimy; Tjernar are small Trask situated within the limits of Mossar.—L.L. Laestadius, om Mojligheten af Uppodlingar i Lappmarken, pp. 23, 24.Although the quantity of bog land in New England is less than in many other regions of equal area, yet there is a considerable extent of this formation in some of the Northeastern States. Dana (Manual of Geology, p. 614) states that the quantity of peat in Massachusetts is estimated at 120,000,000 cords, or nearly 569,000,000 cubic yards, but he does not give either the area or the depth of the deposits. In any event, however, bogs cover but a small percentage of the territory in any of the Northern States, while it is said that one tenth of the whole surface of Ireland is composed of bogs, and there are still extensive tracts of undrained marsh in England. The amount of this formation in Great Britain is estimated at 6,000,000 acres, with an average depth of twelve feet, which would yield 21,600,000 tons of air-dried peat.—Asbjornsen, Tore og Torodrift, Christiania, 1868, p. 6. Peat beds have sometimes a thickness of ten or twelve yards, or even more. A depth of ten yards would give 48,000 cubic yards to the acre. The greatest quantity of firewood yielded by the forests of New England to the acre is 100 cords solid measure, or 474 cubic yards; but this comprises only the trunks and larger branches. If we add the small branches and twigs, it is possible that 600 cubic yards might, in some cases, be cut on an acre. This is only one eightieth part of the quantity of peat sometimes found on the same area. It is true that a yard of peat and a yard of wood are not the equivalents of each other, but the fuel on an acre of deep peat is worth much more than that on an acre of the best woodland. Besides this, wood is perishable, and the quantity of an acre cannot be increased beyond the amount just stated; peat is indestructible, and the beds are always growing. See post, Chap. IV. Cold favors the conversion of aquatic vegetables into peat. Asbjornsen says some of the best peat he has met with is from a bog which is frozen for forty weeks in the year.The Greeks and Romans were not acquainted with the employment of peat as fuel, but it appears from a curious passage which I have already cited from Pliny, N. H., book xvi., chap. 1, that the inhabitants of the North Sea (North Sea, Europe) coast used what is called kneaded turf in his time. This is the finer and more thoroughly decomposed matter lying at the bottom of the peat, kneaded by the hands, formed into small blocks and dried. It is still prepared in precisely the same way by the poorer inhabitants of those shores.But though the Low German tribes, including probably the Anglo-Saxons, have used peat as fuel from time immemorial, it appears not to have been known to the High Germans until a recent period. At least, I can find neither in Old nor in Middle High German lexicons and glossaries any word signifying peat. Zurb indeed is found in Graff as an Old High German word, but only in the sense of grass-turf, or greensward. Peat bogs of vast extent occur in many High German localities, but the former abundance of wood in the same regions rendered the use of peat unnecessary. * ^See Chapter II., post. * ^"Aquatic plants have a utility in raising the level of marshy grounds, which renders them very valuable, and may well be called a geological function. The engineer drains ponds at a great expense by lowering the surface of the water; nature attains the same end, gratuitously, by raising the level of the soil without depressing that of the water; but she proceeds more slowly. There are, in the Landes, marshes where this natural filling has a thickness of four metres, and some of them, at first lower than the sea, have been thus raised and drained so as to grow summer crops, such, for example, as maize."—Boitel, Mise en valeur des Terres pauvres, p. 227.The [[bog]s] of Denmark—the examination of which by Steenstrap and Vaupell has presented such curious results with respect to the natural succession of forest trees—appear to have gone through this gradual process of drying, and the birch, which grow freely in very wet soils, has contributed very effectually by its annual deposits to raise the surface above the water level, and thus to prepare the ground for the oak.—Vaupell, Bogens Indvandring, pp. 39, 40.The growth of the peat not unfrequently raises the surface of [[bog]s] considerably above the level of the surrounding country, and they sometimes burst and overflow lower grounds with a torrent of mud and water as destructive as a current of lava. * ^Careful examination of the peat mosses in North Sjaelland—which are so abundant in fossil wood that, within thirty years, they have yielded above a million of trees—shows that the trees have generally fallen from age and not from wind. They are found in depressions on the declivities of which they grew, and they lie with the top lowest, always falling towards the bottom of the valley.—Vaupell, Bogens Indvandring i de Danske Skove, pp. 10,14. * ^The character of geological formation is an element of very great importance in determining the amount of erosion produced by running water, and, of course, in measuring the consequences of clearing off the forests. The soil of the French Alps yields very readily to the force of currents, and the declivities of the northern Apennines, as well as of many minor mountain ridges in Tuscany and other parts or Italy, are covered with earth which becomes itself almost a fluid when saturated with water. Hence the erosion of such surfaces is vastly greater than on many other mountains of equal steepness of inclination. The traveller who passes over the route between Bologna and Florence, and the Perugia and the Siena roads from the latter city to Rome, will have many opportunities of observing such localities. * ^The terrible destructiveness of man is remarkably exemplified in the chase of large mammalia and birds for single products, attended with the entire waste of enormous quantities of flesh, and of other parts of the animal which are capable of valuable uses. The wild cattle of South America are slaughtered by millions for their hides and hairs; the buffalo of North America for his skin or his tongue; the elephant, the walrus, and the narwhal for their tusks; the cetacen, and some other marine animals, for their whalebone and oil; the ostrich and other large birds, for their plumage. Within a few years, sheep have been killed in New England, by whole flocks, for their pelts and suet alone, the flesh being thrown away; and it is even said that the bodies of the same quadrupeds have been used in Australia as fuel for limekilns. What a vast amount of human nutriment, of bone, and of other animal products valuable in the arts, is thus recklessly squandered! In nearly all these cases, the part which constitutes the motive for this wholesale destruction, and is alone saved, is essentially of insignificant value (Value theory) as compared with what is thrown away. The horns and hide of an ox are not economically worth a tenth part as much as the entire carcass. During the present year, large quantities of Indian corn have been used as domestic fuel, and even for burning lime, in Iowa and other Western States. Corn at from fifteen to eighteen cents per bushel is found cheaper than wood at from five to seven dollars per cord, or coal at six or seven dollars per ton.—Rep. Agric. Dept., Nov. and Dec., 1872, p. 487.One of the greatest benefits to be expected from the improvement civilization is, that increased facilities of communication will render it possible to transport to places of consumption much valuable material that is now wasted because the price at the nearest market will not pay freight. The cattle slaughtered in South America for their hides would feed millions of the starving population of the Old World, if their flesh could be economically preserved and transported across the ocean. This, indeed, is already done, but on a scale which, though absolutely considerable, is relatively insignificant. South America sends to Europe a certain quantity of nutriment in the form of meat extracts, Liebig's and others; and preserved flesh from Australia is beginning to figure in the English market. We are beginning to learn a better economy in dealing with the inorganic world. The utilization—or, as the Germans more happily call it, the Verwerthung, the BEWORTHING—of waste from metallurgical, chemical, and manufacturing establishments, is among the most important results of the application of science to industrial purposes. The incidental products from the laboratories of manufacturing chemists often become more valuable than those for the preparation of which they were erected. The slags from silver refineries, and even from smelting houses of the coarser metals, have not unfrequently yielded to a second operator a better return than the first had derived from dealing with the natural ore; and the saving of lead carried off in the smoke of furnaces has, of itself, given a large profit on the capital invested in the works. According to Ure's Dictionary of Arts, see vol. ii., p. 832, an English miner has constructed flues five miles in length for the condensation of the smoke from his lead-works, and makes thereby an annual saving of metal to the value of ten thousand pounds sterling. A few years ago, an officer of an American mint was charged with embezzling gold committed to him for coinage. He insisted, in his defence, that much of the metal was volatilized and lost in refining and melting, and upon scraping the chimneys of the melting furnaces and the roofs of the adjacent houses, gold enough was found in the soot to account for no small part of the deficiency.The substitution of expensive machinery for manual labor, even in agriculture—not to speak of older and more familiar applications—besides being highly remunerative, has better secured the harvests, and it is computed that the 230,000 threshing machines used in the United States in 1870 obtained five per cent. more grain from the sheaves which passed through them than could have been secured by the use of the flail.The cotton growing States in America produce annually nearly three million tons of cotton seed. This, until very recently, has been thrown away as a useless incumbrance, but it is now valued at ten or twelve dollars per ton for the cotton fibre which adheres to it, for the oil extracted from it, and for the feed which the refuse furnishes to cattle. The oil—which may be described as neutral—is used very largely for mixing with other oils, many of which bear a large proportion of it without injury to their special properties.There are still, however, cases of enormous waste in many mineral and mechanical industries. Thus, while in many European countries common salt is a government monopoly, and consequently so dear that the poor do not use as much of it as health requires, in others, as in Transylvania, where it is quarried like stone, the large blocks only are saved, the fragments, to the amount of millions of hundred weights, being thrown away.—Bonar, Transylvania, p. 455, 6.One of the most interesting and important branches of economy at the present day is the recovery of agents such as ammonia and ethers which had been utilized in chemical manufactures, and re-employing them indefinitely afterwards in repeating the same process.Among the supplemental exhibitions which will be formed in connection with the Vienna Universal Exhibition is to be one showing what steps have been taken since 1851 (the date of the first London Exhibition) in the utilization of substances previously regarded as waste. On the one hand will be shown the waste products in all the industrial processes included in the forthcoming Exhibition; on the other hand, the useful products which have been obtained from such wastes since 1851. This is intended to serve as an incentive to further researches in the same important direction. * ^It is an interesting and not hitherto sufficiently noticed fact, that the domestication of the organic world, so far as it has yet been achieved, belongs, not indeed to the savage state, but to the earliest dawn of civilization, the conquest of inorganic nature almost as exclusively to the most advanced stages of artificial culture. Civilization has added little to the number of vegetable or animal species grown in our fields or bred in our folds—the cranberry and the wild grape being almost the only plants which the Anglo-American has reclaimed out of our most native flora and added to his harvests—while, on the contrary, the subjugation of the inorganic forces, and the consequent extension of man's sway over, not the annual products of the earth only, but her substance and her springs of action, is almost entirely the work of highly refined and cultivated ages. The employment of the elasticity of wood and of horn, as a projectile power in the bow, is nearly universal among the rudest savages. The application of compressed air to the same purpose, in the blowpipe, is more restricted, and the use of the mechanical powers, the inclined plane, the wheel and axle, and even the wedge and lever, seems almost unknown except to civilized man. I have myself seen European peasants to whom one of the simplest applications of this latter power was a revelation.It is familiarly known to all who have occupied themselves with the psychology and habits of the ruder races, and of persons with imperfectly developed intellects in civilized life, that although these humble tribes and individuals sacrifice, without scruple, the lives of the lower animals to the gratification of their appetites and the supply of their other physical wants, yet they nevertheless seem to cherish with brutes, and even with vegetable life, sympathies which are much more feebly felt by civilized men. The popular traditions of the simpler peoples recognize a certain community of nature between man, brute animals, and even plants; and this serves to explain why the apologue or fable, which ascribes the power of speech and the faculty of reason to birds, quadrupeds, insects, flowers, and trees, is one of the earliest forms of literary composition.In almost every wild tribe, some particular quadruped or bird, though persecuted as a destroyer of other animals more useful to man, or hunted for food, is regarded with peculiar respect, one might almost say, affection. Some of the North American aboriginal nations celebrate a propitiatory feast to the manes of the intended victim before they commence a bear hunt; and the Norwegian peasantry have not only retained an old proverb which ascribes to the same animal "ti Maends Styrke og tolo Maends Vid," ten men's strength and twelve men's cunning, but they still pay to him something of the reverence with which ancient superstition invested him. The student of Icelandic literature will find in the saga of Finnbogi hinn rami a curious illustration of this feeling, in an account of a dialogue between a Norwegian bear and an Icelandic champion—dumb show on the part of Bruin, and chivalric words on that of Finnbogi—followed by a duel, in which the latter, who had thrown away his arms and armor in order that the combatants might meet on equal terms, was victorious. See also Friis, Lappisk Mythologi, Christiania, 1871, section 37, and the earlier authors there cited. Drummond Hay's very interesting work on Morocco contains many amusing notices of a similar feeling entertained by the Moors towards the redoubtable enemy of their flocks—the lion.This sympathy helps us to understand how it is that most if not all the domestic animals—if indeed they ever existed in a wild state—were appropriated, reclaimed and trained before men had been gathered into organized and fixed communities, that almost every known esculent plant had acquired substantially its present artificial character, and that the properties of nearly all vegetable drugs and poisons were known at the remotest period to which historical records reach. Did nature bestow upon primitive man some instinct akin to that by which she has been supposed to teach the brute to select the nutritious and to reject the noxious vegetables indiscriminately mixed in forest and pasture?This instinct, it must be admitted, is far from infallible, and, as has been hundreds of times remarked by naturalists, it is in many cases not an original faculty but an acquired and transmitted habit. It is a fact familiar to persons engaged in sheep husbandry in New England—and I have seen it confirmed by personal observation—that sheep bred where the common laurel, as it is called, Kalmia angustifolia, abounds, almost always avoid browsing upon the leaves of that plant, while those brought from districts where laurel is unknown, and turned into pastures where it grows, very often feed upon it and are poisoned by it. A curious acquired and hereditary instinct, of a different character, may not improperly be noticed here. I refer to that by which horses bred in provinces where quicksands are common avoid their dangers or extricate themsleves from them. See Bremontier, Memoire sur les Dunes, Annales des Ponts et Chaussees, 1833; premier semestre, pp. 155-157.It is commonly said in New England, and I believe with reason, that the crows of this generation are wiser than their ancestors. Scarecrows which were effectual fifty years ago are no longer respected by the plunderers of the cornfield, and new terrors must from time to time be invented for its protection.Schroeder van der Kolk, in Het Verschil tusschen den Psychischen, Aanleg van het Dier en van den Mensch, cites many interesting facts respecting instincts lost, or newly developed and become hereditary, in the lower animals, and he quotes Aristotle and Pliny as evidence that the common quadrupeds and fowls of our fields and our poultry yards were much less perfectly [[domestic]ated] in their times than long, long ages of servitude have now made them.Among other inntances of obliterated instincts, this author states that in Holland, where, for centuries, the young of the cow has been usually taken from the dam at birth and fed by hand, calves, even if left with the mother, make no attempt to suck; while in England, where calves are not weaned until several weeks old, they resort to the udder as naturally as the young of wild quadrupeds.—Ziel en Ligchaam, p. 128. n.Perhaps the half-wild character ascribed by P. Laestadius and other Swedish writers to the reindeer of Lapland, may be in some degree due to the comparative shortness of the period during which he has been partially tamed. The domestic swine bred in the woods of Hungary and the buffalo of Southern Italy are so wild and savage as to be very dangerous to all but their keepers. The former have relapsed into their original condition, the latter, perhaps, have never been fully reclaimed from it. * ^The difference between the relations of savage life, and of incipient civilization, to nature, is well seen in that part of the valley of the Mississippi which was once occupied by the mound builders and afterwards by the far less developed Indian tribes. When the tillers of the fields, which must have been cultivated to sustain the large population that once inhabited those regions, perished, or were driven out, the soil fell back to the normal forest state, and the savages who succeeded the more advanced race interfered very little, if at all, with the ordinary course of spontaneous nature. * ^Whatever may be thought of the modification of organic species by natural selection, there is certainly no evidence that animals have exerted upon any form of life an influence analogous to that of domestication upon plants, quadrupeds, and birds reared artificially by man; and this is as true of unforeseen as of purposely effected improvements accomplished by voluntary selection of breeding animals.It is true that nature employs birds and quadrupeds for the dissemination of vegetable and even of animal species. But when the bird drops the seed of a fruit it has swallowed, and when the sheep transports in its fleece the seed-vessel of a burdock from the plain to the mountain, its action is purely mechanical and unconscious, and does not differ from that of the wind in producing the same effect. * ^—-"And it may be remarked that, as the world has passed through these several stages of strife to produce a Christendom, so by relaxing in the enterprises it has learnt, does it tend downwards, through inverted steps, to wildness and the waste again. Let a people give up their contest with moral evil; disregard the injustice, the ignorance, the greediness, that may prevail among them, and part more and more with the Christian element of their civilization; and in declining this battle with sin, they will inevitably get embroiled with men. Threats of war and revolution punish their unfaithfulness; and if then, instead of retracing their steps, they yield again, and are driven before the storm, the very arts they had created, the structures they had raised, the usages they had established, are swept away; 'in that very day their thoughts perish.' The portion they had reclaimed from the young earth's ruggedness is lost; and failing to stand fast against man, they finally get embroiled with nature, and are thrust down beneath her ever-living hand.—Martineau's Sermon, "The Good Soldier of Jesus Christ." * ^The wonderful success which has attended the measures for subduing torrents and preventing inundations employed in Southern France since 1863 and described in Chapter III., post, ought to be here noticed as a splendid and most encouraging example of well-directed effort in the way of physical restoration. * ^In heavy storms, the force of the waves as they strike against a sea-wall is from one and a half to two tons to the square foot, and Stevenson, in one instance at Skerryvore and in another at the Bell Rock lighthouse, found this force equal to nearly three tons per foot. The seaward front of the breakwater at Cherbourg exposes a surface about 2,500,000 square feet. In rough weather the waves beat against this whole face, though at the depth of twenty-two yards, which is the height of the breakwater, they exert a very much less violent motive force than at and near the surface of the sea, because this force diminishes in geometrical, and the distance below the surface increases in arithmetical, proportion. The shock of the waves is received several thousand times in the course of twenty four hours, and hence the sum of impulse which the breakwater resists in one stormy day amounts to many thousands of millions of tons. The breakwater is entirely an artificial construction. If then man could accumulate and control the forces which he is able effectually to resist, he might be said to be physically speaking, omnipotent. * ^Some well-known experiments show that it is quite possible to accumulate the solar heat by a simple apparatus, and thus to obtain a temperature which might be economically important even in the climate of Switzerland. Saussure, by receiving the sun's rays in a nest of boxes blackened within and covered with glass, raised a thermometer enclosed in the inner box to the boiling point; and under the more powerful sun of the Cape of Good Hope, Sir John Hershel cooked the materials for a family dinner by a similar process, using however, but at single box, surrounded with dry sand and covered with two glasses. Why should not so easy a method of economizing fuel be resorted to in Italy, in Spain, and even in more northerly climate. The unfortunate John Davidson records in his journal that he saved fuel in Morocco by exposing his teakettle to the sun on the roof of his house, where the water rose to the temperature of one hundred and forty degrees, and, of course, needed little fire to bring it to boil. But this was the direct and simple, not the concentrated or accumulated heat of the sun.On the utilizing of the solar heat, simply as heat, see the work of Mouchot, La Chaleur solaire et ses applications industrielles. Paris, 1860.The reciprocal convertibility of the natural forces has suggested the possibility of advantageously converting the heat of the sun into mechanical power. Ericsson calculates that in all latitudes between the equator and 45 degrees, a hundred square feet of surface exposed to the solar rays develop continuously, for nine hours a day on an average, eight and one fifth horse-power.I do not know that any attempts have been made to accumulate and store up, for use at pleasure, force derived from this powerful source. * ^The Travels of Dr. Dwight, president of Yale College, which embody the results of his personal observations, and of his inquiries among the early settlers, in his vacation excursions in the Northern States of the American Union, though presenting few instrumental measurements or tabulated results, are of value for the powers of observation they exhibit, and for the sound common sense with which many natural phenomena, such for instance as the formation of the river meadows, called "intervales," in New England, are explained. They present a true and interesting picture of physical conditions, many of which have long ceased to exist in the theatre of his researches, and of which few other records are extant. * ^The general law of temperature is that it decreases as we ascend. But in hilly areas the law is reversed in cold, still weather, the cold air descending, by reason of its greater gravity, into the valleys. If there be wind enough however, to produce a disturbance and intermixture of higher and lower atmospheric strata, this exception to the general law does not take place. These facts have long been familiar to the common people of Switzerland and of New England, but their importance has not been sufficiently taken into account in the discussion of meteorological observations. The descent of the cold air and the rise of the warm effect the relative temperatures of hills and valleys to a much greater extent that has been usually supposed. A gentleman well known to me kept a thermometrical record for nearly a half century in a New England county town, at an elevation of at least 15,000 feet above the sea. During these years his thermometer never fell lower that 26 degrees Farrenheit, while at the shire town of the county, situated in a basin thousand feet lower, and only tem miles distant, as well as at other points in similar positions, the mercury froze several times in the same period. * ^Railroad surveys must be received with great caution where any motive exists for COOKING them. Capitalists are shy of investments in roads with steep grades, and of course it is important to make a fair show of facilities in obtaining funds for new routes. Joint-stock companies have no souls; their managers, in general, no consciences. Cases can be cited where engineers and directors of railroads, with long grades above one hundred foot to the mile, have regularly sworn in their annual reports, for years in succession, that there were no grades upon their routes exceeding half that elevation. In fact, every person conversant with the history of these enterprises knows that in their public statements falsehood is the rule, truth the exception.What I am about to remark is not exactly relevant to my subject; but it is hard to "get the floor" in the world's great debating society, and when a speaker who has anything to say once finds access to the public ear, he must make the must of his opportunity, without inquiring too nicely whether his observations are "in order." I shall harm no honest man by endeavoring, as I have often done elsewhere, to excite the attention of thinking and conscientious men to the dangers which threaten the great moral and even political interests of Christendom, from the unscrupulousness of the private associations that now control the monetary affairs, and regulate the transit of persons and property, in almost every civilized country. More than one American State is literally governed by unprincipled corporations, which not only defy the legislative power, but have, too often, corrupted even the administration of justice. The tremendous power of these associations is due not merely to pecuniary corruption, but partly to an old legal superstition—fostered by the decision of the Supreme Court of the United States in the famous Dartmouth College case—in regard to the sacredness of corporate prerogatives. There is no good reason why private rights derived from God and the very constitution of society should be less respected than privileges granted by legislatures. It should never be forgotten that no privilege can be a right, and legislative bodies ought never to make a grant to a corporation, without express reservation of what many sound jurists now hold to be involved in the very nature of such grants, the power of revocation. Similar evils have become almost equally rife in England, and on the Continent; and I believe the decay of commercial morality, and of the sense of all higher obligations than those of a pecuniary nature, on both sides of the Atlantic, is to be ascribed more to the influence of joint-stock banks and manufacturing and railway companies, to the workings, in short, of what is called the principle of "associate action," than to any other one cause of demoralization.The apophthegm, "the world is governed too much," though unhappily too truly spoken of many countries—and perhaps, in some aspects, true of all—has done much mischief whenever it has been too unconditionally accepted as a political axiom. The popular apprehension of being over-governed, and, I am afraid, more emphatically the fear of being over-taxed, has had much to do with the general abandonment of certain governmental duties by the ruling powers of most modern states. It is theoretically the duty of government to provide all those public facilities of intercommunication and commerce, which are essential to the prosperity of civilized commonwealths, but which individual means are inadequate to furnish, and for the due administration of which individual guarantees are insufficient. Hence public roads, canals, railroads, postal communications, the circulating medium of exchange whether metallic or representative, armies, navies, being all matters in which the nation at large has a vastly deeper interest than any private association can have, ought legitimately to be constructed and provided only by that which is the visible personification and embodiment of the nation, namely, its legislative head. No doubt the organization and management of those insitutions by government are liable, as are all things human, to great abuses. The multiplication of public placeholders, which they imply, is a serious evil. But the corruption thus engendered, foul as it is, does not strike so deep as the rottenness of private corporations; and official rank, position, and duty have, in practice, proved better securities for fidelity and pecuniary integrity in the conduct of the interests in question, than the suretyships of private corporate agents, whose bondsmen so often fail or abscond before their principal is detected. Many theoretical statesmen have thought that voluntary associations for strictly pecuniary and industrial purposes, and for the construction and control of public works, might furnish, in democratic countries, a compensation for the small and doubtful advantages, and at the same time secure an exemption from the great and certain evils, of aristocratic institutions. The example of the American States shows that private corporations—whose rule of action is the interest of the association, not the conscience of the individual—though composed of ultra-democratic elements, may become most dangerous enemies to rational liberty, to the moral interests of the commonwealth, to the purity of legislation and of judicial action, and to the sacredness of private rights.

Glossary

Citation

Cleveland, C. (2007). Earth as Modified by Human Action, The: Chapter 01 (historical). Retrieved from http://editors.eol.org/eoearth/wiki/introductory_chapter