Health and safety aspects of petroleum refining

From The Encyclopedia of Earth
Jump to: navigation, search


October 31, 2008, 4:03 pm
October 9, 2011, 10:08 pm
Source: OSHA

Crude Oil Pretreatment (Desalting)

Fire Prevention and Protection: The potential exists for a fire due to a leak or release of crude oil from heaters in the crude desalting unit. Low boiling point components of crude may also be released if a leak occurs.

Safety: Inadequate desalting can cause fouling of heater tubes and heat exchangers throughout the refinery. Fouling restricts product flow and heat transfer and leads to failures due to increased pressures and temperatures. Corrosion, which occurs due to the presence of hydrogen sulfide, hydrogen chloride, naphthenic (organic) acids, and other contaminants in the crude oil, also causes equipment failure. Neutralized salts (ammonium chlorides and sulfides), when moistened by condensed water, can cause corrosion. Overpressuring the unit is another potential hazard that causes failures.

Health: Because this is a closed process, there is little potential for exposure to crude oil unless a leak or release occurs. Where elevated operating temperatures are used when desalting sour crudes, hydrogen sulfide will be present. There is the possibility of exposure to ammonia, dry chemical demulsifiers, caustics, and/or acids during this operation. Safe work practices and/or the use of appropriate personal protective equipment may be needed for exposures to chemicals and other hazards such as heat, and during process sampling, inspection, maintenance, and turnaround activities.

Depending on the crude feedstock and the treatment chemicals used, the wastewater will contain varying amounts of chlorides, sulfides, bicarbonates, ammonia, hydrocarbons, phenol, and suspended solids. If diatomaceous earth is used in filtration, exposures should be minimized or controlled. Diatomaceous earth can contain silica in very fine particle size, making this a potential respiratory hazard.

Crude Oil Distillation (Fractionation)

Oil refinery in California. (Source: California Energy Commission)

Fire Prevention and Protection: Even though these are closed processes, heaters and exchangers in the atmospheric and vacuum distillation units could provide a source of ignition, and the potential for a fire exists should a leak or release occur.

Safety: An excursion in pressure, temperature, or liquid levels may occur if automatic control devices fail. Control of temperature, pressure, and reflux within operating parameters is needed to prevent thermal cracking within the distillation towers. Relief systems should be provided for overpressure and operations monitored to prevent crude from entering the reformer charge.

The sections of the process susceptible to corrosion include (but may not be limited to) preheat exchanger (hydrogen chloride (HCl) and hydrogen sulfide (H2S)), preheat furnace and bottoms exchanger (H2S and sulfur compounds), atmospheric tower and vacuum furnace (H2S, sulfur compounds, and organic acids), vacuum tower (H2S and organic acids), and overhead (H2S, HCl, and water). Where sour crudes are processed, severe corrosion can occur in furnace tubing and in both atmospheric and vacuum towers where metal temperatures exceed 450° F. Wet H2S also will cause cracks in steel. When processing high-nitrogen crudes, nitrogen oxides can form in the flue gases of furnaces. Nitrogen oxides are corrosive to steel when cooled to low temperatures in the presence of water.

Chemicals are used to control corrosion by hydrochloric acid produced in distillation units. Ammonia may be injected into the overhead stream prior to initial condensation and/or an alkaline solution may be carefully injected into the hot crude oil feed. If sufficient wash-water is not injected, deposits of ammonium chloride can form and cause serious corrosion. Crude feedstock may contain appreciable amounts of water in suspension which can separate during startup and, along with water remaining in the tower from steam purging, settle in the bottom of the tower. This water can be heated to the boiling point and create an instantaneous vaporization explosion upon contact with the oil in the unit.

Health: Atmospheric and vacuum distillation are closed processes and exposures are expected to be minimal. When sour (high-sulfur) crudes are processed, there is potential for exposure to hydrogen sulfide in the preheat exchanger and furnace, tower flash zone and overhead system, vacuum furnace and tower, and bottoms exchanger. Hydrogen chloride may be present in the preheat exchanger, tower top zones, and overheads. Wastewater may contain water-soluble sulfides in high concentrations and other water-soluble compounds such as ammonia, chlorides, phenol, mercaptans, etc., depending upon the crude feedstock and the treatment chemicals. Safe work practices and/or the use of appropriate personal protective equipment may be needed for exposures to chemicals and other hazards such as heat and noise, and during sampling, inspection, maintenance, and turnaround activities.

Solvent Extraction and Dewaxing

Fire Prevention and Protection: Solvent treatment is essentially a closed process and, although operating pressures are relatively low, the potential exists for fire from a leak or spill contacting a source of ignition such as the drier or extraction heater. In solvent dewaxing, disruption of the vacuum will create a potential fire hazard by allowing air to enter the unit.

Health: Because solvent extraction is a closed process, exposures are expected to be minimal under normal operating conditions. However, there is a potential for exposure to extraction solvents such as phenol, furfural, glycols, methyl ethyl ketone, amines, and other process chemicals. Safe work practices and/or the use of appropriate personal protective equipment may be needed for exposures to chemicals and other hazards such as noise and heat, and during repair, inspection, maintenance, and turnaround activities.

Thermal Cracking

Fire Protection and Prevention: Because thermal cracking is a closed process, the primary potential for fire is from leaks or releases of liquids, gases, or vapors reaching an ignition source such as a heater. The potential for fire is present in coking operations due to vapor or product leaks. Should coking temperatures get out of control, an exothermic reaction could occur within the coker.

Safety: In thermal cracking when sour crudes are processed, corrosion can occur where metal temperatures are between 450° and 900° F. Above 900° F coke forms a protective layer on the metal. The furnace, soaking drums, lower part of the tower, and high-temperature exchangers are usually subject to corrosion. Hydrogen sulfide corrosion in coking can also occur when temperatures are not properly controlled above 900° F.

Continuous thermal changes can lead to bulging and cracking of coke drum shells. In coking, temperature control must often be held within a 10°-20° F range, as high temperatures will produce coke that is too hard to cut out of the drum. Conversely, temperatures that are too low will result in a high asphaltic-content slurry. Water or steam injection may be used to prevent buildup of coke in delayed coker furnace tubes. Water must be completely drained from the coker, so as not to cause an explosion upon recharging with hot coke. Provisions for alternate means of egress from the working platform on top of coke drums are important in the event of an emergency.

Health: The potential exists for exposure to hazardous gases such as hydrogen sulfide and carbon monoxide, and trace polynuclear aromatics (PNAs) associated with coking operations. When coke is moved as a slurry, oxygen depletion may occur within confined spaces such as storage silos, since wet carbon will adsorb oxygen. Wastewater may be highly alkaline and contain oil, sulfides, ammonia, and/or phenol. The potential exists in the coking process for exposure to burns when handling hot coke or in the event of a steam-line leak, or from steam, hot water, hot coke, or hot slurry that may be expelled when opening cokers. Safe work practices and/or the use of appropriate personal protective equipment may be needed for exposures to chemicals and other hazards such as heat and noise, and during process sampling, inspection, maintenance, and turnaround activities. (Note: coke produced from petroleum is a different product from that generated in the steel-industry coking process.)

Fluid Catalytic Cracking

Fire Prevention and Protection: Liquid hydrocarbons in the catalyst or entering the heated combustion air stream should be controlled to avoid exothermic reactions. Because of the presence of heaters in catalytic cracking units, the possibility exists for fire due to a leak or vapor release. Fire protection including concrete or other insulation on columns and supports, or fixed water spray or fog systems where insulation is not feasible and in areas where firewater hose streams cannot reach, should be considered.

In some processes, caution must be taken to prevent explosive concentrations of catalyst dust during recharge or disposal. When unloading any coked catalyst, the possibility exists for iron sulfide fires. Iron sulfide will ignite spontaneously when exposed to air and therefore must be wetted with water to prevent it from igniting vapors. Coked catalyst may be either cooled below 120° F before it is dumped from the reactor, or dumped into containers that have been purged and inerted with nitrogen and then cooled before further handling.

Safety: Regular sampling and testing of the feedstock, product, and recycle streams should be performed to assure that the cracking process is working as intended and that no contaminants have entered the process stream. Corrosives or deposits in the feedstock can foul gas compressors. Inspections of critical equipment including pumps, compressors, furnaces, and heat exchangers should be conducted as needed. When processing sour crude, corrosion may be expected where temperatures are below 900° F. Corrosion takes place where both liquid and vapor phases exist, and at areas subject to local cooling such as nozzles and platform supports.

When processing high-nitrogen feedstock, exposure to ammonia and cyanide may occur, subjecting carbon steel equipment in the FCC overhead system to corrosion, cracking, or hydrogen blistering. These effects may be minimized by water wash or corrosion inhibitors. Water wash may also be used to protect overhead condensers in the main column subjected to fouling from ammonium hydrosulfide. Inspections should include checking for leaks due to erosion or other malfunctions such as catalyst buildup on the expanders, coking in the overhead feeder lines from feedstock residues, and other unusual operating conditions.

Health: Because the catalytic cracker is a closed system, there is normally little opportunity for exposure to hazardous substances during normal operations. The possibility exists of exposure to extremely hot (700° F) hydrocarbon liquids or vapors during process sampling or if a leak or release occurs. In addition, exposure to hydrogen sulfide and/or carbon monoxide gas may occur during a release of product or vapor.

Catalyst regeneration involves steam stripping and decoking, and produces fluid waste streams that may contain varying amounts of hydrocarbon, phenol, ammonia, hydrogen sulfide, mercaptan, and other materials depending upon the feedstock, crudes, and processes. Inadvertent formation of nickel carbonyl may occur in cracking processes using nickel catalysts, with resultant potential for hazardous exposures. Safe work practices and/or the use of appropriate personal protective equipment may be needed for exposures to chemicals and other hazards such as noise and heat; during process sampling, inspection, maintenance and turnaround activities; and when handling spent catalyst, recharging catalyst, or if leaks or releases occur.

Hydrocracking

Fire Prevention and Protection: Because this unit operates at very high pressures and temperatures, control of both hydrocarbon leaks and hydrogen releases is important to prevent fires. In some processes, care is needed to ensure that explosive concentrations of catalytic dust do not form during recharging.

Safety: Inspection and testing of safety relief devices are important due to the very high pressures in this unit. Proper process control is needed to protect against plugging reactor beds. Unloading coked catalyst requires special precautions to prevent iron sulfide-induced fires. The coked catalyst should either be cooled to below 120° F before dumping, or be placed in nitrogen-inerted containers until cooled.

Because of the operating temperatures and presence of hydrogen, the hydrogen sulfide content of the feedstock must be strictly controlled to a minimum to reduce the possibility of severe corrosion. Corrosion by wet carbon dioxide in areas of condensation also must be considered. When processing high-nitrogen feedstock, the ammonia and hydrogen sulfide form ammonium hydrosulfide, which causes serious corrosion at temperatures below the water dew point. Ammonium hydrosulfide is also present in sour water stripping.

Health: Because this is a closed process, exposures are expected to be minimal under normal operating conditions. There is a potential for exposure to hydrocarbon gas and vapor emissions, hydrogen and hydrogen sulfide gas due to high-pressure leaks. Large quantities of carbon monoxide may be released during catalyst regeneration and changeover. Catalyst steam stripping and regeneration create waste streams containing sour water and ammonia. Safe work practices and/or the use of appropriate personal protective equipment may be needed for exposure to chemicals and other hazards such as noise and heat, during process sampling, inspection, maintenance, and turnaround activities, and when handling spent catalyst.

Catalytic Reforming

Fire Prevention and Protection: This is a closed system; however, the potential for fire exists should a leak or release of reformate gas or hydrogen occur.

Safety: Operating procedures should be developed to ensure control of hot spots during start-up. Safe catalyst handling is very important. Care must be taken not to break or crush the catalyst when loading the beds, as the small fines will plug up the reformer screens. Precautions against dust when regenerating or replacing catalyst should also be considered. Also, water wash should be considered where stabilizer fouling has occurred due to the formation of ammonium chloride and iron salts. Ammonium chloride may form in pretreater exchangers and cause corrosion and fouling. Hydrogen chloride from the hydrogenation of chlorine compounds may form acid or ammonium chloride salt.

Health: Because this is a closed process, exposures are expected to be minimal under normal operating conditions. There is potential for exposure to hydrogen sulfide and benzene should a leak or release occur.

Small emissions of carbon monoxide and hydrogen sulfide may occur during regeneration of catalyst. Safe work practices and/or appropriate personal protective equipment may be needed for exposures to chemicals and other hazards such as noise and heat during testing, inspecting, maintenance and turnaround activities, and when handling regenerated or spent catalyst.

Catalytic Hydrotreating

Fire Prevention and Protection: The potential exists for fire in the event of a leak or release of product or hydrogen gas.

Safety: Many processes require hydrogen generation to provide for a continuous supply. Because of the operating temperatures and presence of hydrogen, the hydrogen sulfide content of the feedstock must be strictly controlled to a minimum to reduce corrosion. Hydrogen chloride may form and condense as hydrochloric acid in the lower-temperature parts of the unit. Ammonium hydrosulfide may form in high-temperature, high-pressure units. Excessive contact time and/or temperature will create coking. Precautions need to be taken when unloading coked catalyst from the unit to prevent iron sulfide fires. The coked catalyst should be cooled to below 120° F before removal, or dumped into nitrogen-inerted bins where it can be cooled before further handling. Special antifoam additives may be used to prevent catalyst poisoning from silicone carryover in the coker feedstock.

Health: Because this is a closed process, exposures are expected to be minimal under normal operating conditions. There is a potential for exposure to hydrogen sulfide or hydrogen gas in the event of a release, or to ammonia should a sour-water leak or spill occur. Phenol also may be present if high-boiling point feedstocks are processed. Safe work practices and/or appropriate personal protective equipment may be needed for exposures to chemicals and other hazards such as noise and heat; during process sampling, inspection, maintenance, and turnaround activities; and when handling amine or exposed to catalyst.

Isomerization

Fire Protection and Prevention: Although this is a closed process, the potential for a fire exists should a release or leak contact a source of ignition such as the heater.

Safety: If the feedstock is not completely dried and desulfurized, the potential exists for acid formation leading to catalyst poisoning and metal corrosion. Water or steam must not be allowed to enter areas where hydrogen chloride (HCl) is present. Precautions are needed to prevent HCl from entering sewers and drains.

Health: Because this is a closed process, exposures are expected to be minimal during normal operating conditions. There is a potential for exposure to hydrogen gas, hydrochloric acid, and hydrogen chloride and to dust when solid catalyst is used. Safe work practices and/or appropriate personal protective equipment may be needed for exposures to chemicals and other hazards such as heat and noise, and during process sampling, inspection, maintenance, and turnaround activities.

Polymerization

Fire prevention and Protection: Polymerization is a closed process where the potential for a fire exists due to leaks or releases reaching a source of ignition.

Safety: The potential for an uncontrolled exothermic reaction exists should loss of cooling water occur. Severe corrosion leading to equipment failure will occur should water make contact with the phosphoric acid, such as during water washing at shutdowns. Corrosion may also occur in piping manifolds, reboilers, exchangers, and other locations where acid may settle out.

Health: Because this is a closed system, exposures are expected to be minimal under normal operating conditions. There is a potential for exposure to caustic wash (sodium hydroxide), to phosphoric acid used in the process or washed out during turnarounds, and to catalyst dust. Safe work practices and/or appropriate personal protective equipment may be needed for exposures to chemicals and other hazards such as noise and heat, and during process sampling, inspection, maintenance, and turnaround activities.

Alkylation

Fire Protection and Prevention: Alkylation units are closed processes; however, the potential exists for fire should a leak or release occur that allows product or vapor to reach a source of ignition.

Safety: Sulfuric acid and hydrofluoric acid are potentially hazardous chemicals. Loss of coolant water, which is needed to maintain process temperatures, could result in an upset. Precautions are necessary to ensure that equipment and materials that have been in contact with acid are handled carefully and are thoroughly cleaned before they leave the process area or refinery. Immersion wash vats are often provided for neutralization of equipment that has come into contact with hydrofluoric acid. Hydrofluoric acid units should be thoroughly drained and chemically cleaned prior to turnarounds and entry to remove all traces of iron fluoride and hydrofluoric acid. Following shutdown, where water has been used the unit should be thoroughly dried before hydrofluoric acid is introduced.

Leaks, spills, or releases involving hydrofluoric acid or hydrocarbons containing hydrofluoric acid can be extremely hazardous. Care during delivery and unloading of acid is essential. Process unit containment by curbs, drainage, and isolation so that effluent can be neutralized before release to the sewer system is considered. Vents can be routed to soda-ash scrubbers to neutralize hydrogen fluoride gas or hydrofluoric acid vapors before release. Pressure on the cooling water and steam side of exchangers should be kept below the minimum pressure on the acid service side to prevent water contamination.

Some corrosion and fouling in sulfuric acid units may occur from the breakdown of sulfuric acid esters or where caustic is added for neutralization. These esters can be removed by fresh acid treating and hot-water washing. To prevent corrosion from hydrofluoric acid, the acid concentration inside the process unit should be maintained above 65% and moisture below 4%.

Health: Because this is a closed process, exposures are expected to be minimal during normal operations. There is a potential for exposure should leaks, spills, or releases occur. Sulfuric acid and (particularly) hydrofluoric acid are potentially hazardous chemicals. Special precautionary emergency preparedness measures and protection appropriate to the potential hazard and areas possibly affected need to be provided. Safe work practices and appropriate skin and respiratory personal protective equipment are needed for potential exposures to hydrofluoric and sulfuric acids during normal operations such as reading gauges, inspecting, and process sampling, as well as during emergency response, maintenance, and turnaround activities. Procedures should be in place to ensure that protective equipment and clothing worn in hydrofluoric acid activities are decontaminated and inspected before reissue. Appropriate personal protection for exposure to heat and noise also may be required.

Sweetening and Treating Processes

Fire Protection and Prevention: The potential exists for fire from a leak or release of feedstock or product. Sweetening processes use air or oxygen. If excess oxygen enters these processes, it is possible for a fire to occur in the settler due to the generation of static electricity, which acts as the ignition source.

Health: Because these are closed processes, exposures are expected to be minimal under normal operating conditions. There is a potential for exposure to hydrogen sulfide, caustic (sodium hydroxide), spent caustic, spent catalyst (Merox), catalyst dust and sweetening agents (sodium carbonate and sodium bicarbonate). Safe work practices and/or appropriate personal protective equipment may be needed for exposures to chemicals and other hazards such as noise and heat, and during process sampling, inspection, maintenance, and turnaround activities.

Unsaturated Gas Plants

Fire Prevention and Protection: The potential of a fire exists should spills, releases, or vapors reach a source of ignition.

Safety: In unsat gas plants handling FCC feedstock, the potential exists for corrosion from moist hydrogen sulfide and cyanides. When feedstocks are from the delayed coker or the TCC, corrosion from hydrogen sulfide and deposits in the high pressure sections of gas compressors from ammonium compounds is possible.

Health: Because these are closed processes, exposures are expected to be minimal under normal operating conditions. There is a potential for exposures to amine compounds such as monoethanolamine (MEA), diethanolamine (DEA) and methyldiethanolamine (MDEA) and hydrocarbons. Safe work practices and/or appropriate personal protective equipment may be needed for exposures to chemicals and other hazards such as noise and heat, and during process sampling, inspection, maintenance, and turnaround activities.

Amine Plants

Fire Protection and Prevention: The potential for fire exists where a spill or leak could reach a source of ignition.

Safety: To minimize corrosion, proper operating practices should be established and regenerator bottom and reboiler temperatures controlled. Oxygen should be kept out of the system to prevent amine oxidation.

Health: Because this is a closed process, exposures are expected to be minimal during normal operations. There is potential for exposure to amine compounds (i.e. monoethanolamine, diethanolamine, methyldiethanolamine), hydrogen sulfide and carbon dioxide. Safe work practices and/or appropriate personal protective equipment may be needed for exposures to chemicals and other hazards such as noise and heat, and during process sampling, inspection, maintenance and turnaround activities.

Saturate Gas Plants

Fire Protection and Prevention: There is potential for fire if a leak or release reaches a source of ignition such as the unit reboiler.

Safety: Corrosion could occur from the presence of hydrogen sulfide, carbon dioxide, and other compounds as a result of prior treating. Streams containing ammonia should be dried before processing. Antifouling additives may be used in absorption oil to protect heat exchangers. Corrosion inhibitors may be used to control corrosion in overhead systems.

Health: Because this is a closed process, exposures are expected to be minimal during normal operations. There is potential for exposure to hydrogen sulfide, carbon dioxide, and other products such as diethanolamine or sodium hydroxide carried over from prior treating. Safe work practices and/or appropriate personal protective equipment may be needed for exposures to chemicals and other hazards such as noise and heat, and during process sampling, inspection, maintenance, and turnaround activities.

Asphalt Production

Fire Protection and Prevention: The potential for a fire exists if a product leak or release contacts a source of ignition such as the process heater. Condensed steam from the various asphalt and deasphalting processes will contain trace amounts of hydrocarbons. Any disruption of the vacuum can result in the entry of atmospheric air (Atmospheric composition) and subsequent fire. In addition, raising the temperature of the vacuum tower bottom to improve efficiency can generate methane by thermal cracking. This can create vapors in asphalt storage tanks that are not detectable by flash testing but are high enough to be flammable.

Safety: Deasphalting requires exact temperature and pressure control. In addition, moisture, excess solvent, or a drop in operating temperature may cause foaming, which affects the product temperature control and may create an upset.

Health: Because these are closed processes, exposures are expected to be minimal during normal operations. Should a spill or release occur, there is a potential for exposure to residuals and asphalt. Air blowing can create some polynuclear aromatics. Condensed steam from the air-blowing asphalt process may also contain contaminants. The potential for exposure to hydrogen sulfide and sulfur dioxide exists in the production of asphalt. Safe work practices and/or appropriate personal protective equipment may be needed for exposures to chemicals and other hazards such as noise and heat, and during process sampling, inspection, maintenance, and turnaround activities.

Hydrogen Production

Fire Protection and Prevention: The possibility of fire exists should a leak or release occur and reach an ignition source.

Safety: The potential exists for burns from hot gases and superheated steam should a release occur. Inspections and testing should be considered where the possibility exists for valve failure due to contaminants in the hydrogen. Carryover from caustic scrubbers should be controlled to prevent corrosion in preheaters. Chlorides from the feedstock or steam system should be prevented from entering reformer tubes and contaminating the catalyst.

Health: Because these are closed processes, exposures are expected to be minimal during normal operating conditions. There is a potential for exposure to excess hydrogen, carbon monoxide, and/or carbon dioxide. Condensate can be contaminated by process materials such as caustics and amine compounds, with resultant exposures. Depending on the specific process used, safe work practices and/or appropriate personal protective equipment may be needed for exposures to chemicals and other hazards such as noise and heat, and during process sampling, inspection, maintenance, and turnaround activities.

Blending

Fire Prevention and Protection: Ignition sources in the area need to be controlled in the event of a leak or release.

Health: Safe work practices and/or appropriate personal protective equipment may be needed for exposures to chemicals and other hazards such as noise and heat; when handling additives; and during inspection, maintenance, and turnaround activities.

Lubricant, Wax, and Grease Manufacturing Processes

Fire Protection and Prevention: The potential for fire exists if a product or vapor leak or release in the lube blending and wax processing areas reaches a source of ignition. Storage of finished products, both bulk and packaged, should be in accordance with recognized practices.

While the potential for fire is reduced in lube oil blending, care must be taken when making metal-working oils and compounding greases due to the use of higher blending and compounding temperatures and lower flash point products.

Safety: Control of treater temperature is important as phenol can cause corrosion above 400° F. Batch and in-line blending operations require strict controls to maintain desired product quality. Spills should be cleaned and leaks repaired to avoid slips and falls. Additives in drums and bags need to be handled properly to avoid strain. Wax can clog sewer or oil drainage systems and interfere with wastewater treatment.

Health: When blending, sampling, and compounding, personal protection from steam, dusts, mists, vapors, metallic salts, and other additives is appropriate. Skin contact with any formulated grease or lubricant should be avoided. Safe work practices and/or appropriate personal protection may be needed for exposures to chemicals and other hazards such as noise and heat; during inspection, maintenance, and turnaround activities; and while sampling and handling hydrocarbons and chemicals during the production of lubricating oil and wax.

Disclaimer: This article is taken wholly from, or contains information that was originally published by, the Occupational Safety & Health Administration (OSHA). Topic editors and authors for the Encyclopedia of Earth may have edited its content or added new information. The use of information from the Occupational Safety & Health Administration (OSHA) should not be construed as support for or endorsement by that organization for any new information added by EoE personnel, or for any editing of the original content.

Citation

(2011). Health and safety aspects of petroleum refining. Retrieved from http://editors.eol.org/eoearth/wiki/Health_and_safety_aspects_of_petroleum_refining