Health effects of chlordane

From The Encyclopedia of Earth
Jump to: navigation, search


Introduction

Chlordane is a man-made chemical that was used as a pesticide (Health effects of chlordane) in the United States from 1948 to 1988. It is sometimes referred to by the trade names Octachlor® and Velsicol 1068®. It is a thick liquid whose color ranges from colorless to amber, depending on its purity. It may have no smell or a mild, irritating smell. We do not know what it tastes like. Chlordane is not a single chemical, but is a mixture of many related chemicals, of which about 10 are major components. Some of the major components are trans-chlordane, cis-chlordane, beta-chlordene, heptachlor, and trans-nonachlor. Chlordane does not dissolve in water. Therefore, before it can be used as a spray, it must be placed in water with emulsifiers (soap-like substances), which results in a milky-looking mixture.

From 1983 until 1988, chlordane's only approved use was to control termites in homes. The pesticide was applied underground around the foundation of homes. When chlordane is used in the soil around a house, it kills termites that come into contact with it.

Before 1978, chlordane was also used as a pesticide on agricultural crops, lawns, and gardens and as a fumigating agent. Because of concerns over cancer risk, evidence of human exposure and build up in body fat, persistence in the environment, and danger to wildlife, the EPA canceled the use of chlordane on food crops and phased out other above-ground uses over the next 5 years. In 1988, when the EPA canceled chlordane's use for controlling termites, all approved use of chlordane in the United States stopped. Manufacture for export continues.

Pathways for chlordane in the environment

When used as a pesticide on crops, on lawns and gardens, and to control termites in houses, chlordane enters the environment. Although it is no longer used in the United States, it may be used in other countries. In soil, it attaches strongly to particles in the upper layers of soil and is unlikely to enter into groundwater. It is not known whether chlordane breaks down in most soils. If breakdown occurs, it is very slow. Chlordane is known to remain in some soils for over 20 years. Persistence is greater in heavy, clayey or organic soil than in sandy soil. Most chlordane is lost from soil by evaporation. Evaporation is more rapid from light, sandy soils than from heavy soils. Half of the chlordane applied to the soil surface may evaporate in 2 to 3 days. Evaporation is much slower after chlordane penetrates into the soil. In water, some chlordane attaches strongly to sediment and particles in the water column and some is lost by evaporation. It is not known whether much breakdown of chlordane occurs in water or in sediment. Chlordane breaks down in the atmosphere by reacting with light and with some chemicals in the atmosphere. However, it is sufficiently long lived that it may travel long distances and be deposited on land or in water far from its source. Chlordane or the chemicals that chlordane changes into accumulate in fish, birds, and mammals. Chlordane stays in the environment for many years and is still found in food, air, water, and soil. Chlordane is still commonly found in some form in the fat of fish, birds, mammals, and almost all humans.

Exposure to chlordane

Everyone in the United States has been exposed to low levels of chlordane. A more relevant question is whether or not you may have been exposed to high levels of chlordane. Before its ban in 1988, you might have been exposed to high levels of chlordane if you worked in the manufacture, formulation, or application of chlordane. Therefore, farmers and lawn-care workers may have been exposed to chlordane before 1978, and pest control workers may have been exposed to chlordane before 1988 by skin contact and breathing dust and vapor. A national survey conducted from 1980 to 1983 estimated that 3,732 workers were potentially exposed to chlordane in the United States. This number of potentially exposed workers should have decreased after chlordane's use was banned in the United States. However, the ban on chlordane did not eliminate it from your environment, and some of your opportunities for exposure to chlordane continue.

Today, people receive the highest exposure to chlordane from living in homes that were treated with chlordane for termites. Chlordane may be found in the air in these homes for many years after treatment. Houses in the deep south and southwest were most commonly treated. However, chlordane use extended from the lower New England States south and west to California. Houses built since 1988 have not been treated with chlordane for termite control. You can determine if your home was treated with chlordane by examining your records or contacting your termite treatment service.

Over 50 million persons have lived in chlordane-treated homes. Indoor air in the living spaces of treated homes have been found to contain average levels of between 0.00003 and 0.002 milligram (mg) of chlordane in a cubic meter of air (mg/m³). However, levels as high as 0.06 mg/m³ have been measured in the living areas of these homes. Even higher levels are found in basements and crawl spaces.

The most common source of chlordane exposure is from ingesting chlordane- contaminated food. Chlordane remains in the food supply because much of the farmland was treated with chlordane in the 1960s and 1970s, and it remains in some soil for over 20 years. However, since chlordane has been banned, the levels in soils would be expected to decrease with the passage of time. Chlordane may also be found in fish and shellfish caught in chlordane-contaminated waters. If you are in doubt about whether a lake or river is contaminated, call your local Game and Fish or Health departments. Chlordane is almost never detected in drinking water. A survey conducted by the Food and Drug Administration (FDA) determined daily intake of chlordane from food to be 0.0013 microgram per kilogram of body weight (µg/kg) for infants and 0.0005-0.0015 µg/kg for teenagers and adults (a microgram is one thousandth of a milligram). The average adult would, therefore, consume about 0.11 µg of chlordane.

You may come into contact with chlordane while digging in soil around the foundation of homes where it was applied to protect the homes against termites. Soil may also be contaminated with chlordane around certain NPL hazardous waste sites. Chlordane has been found at 176 of 1,350 hazardous waste sites on the NPL in the United States. The highest level of chlordane found in soil near an NPL site was 344 ppm. People may be exposed to chlordane at these sites by breathing low levels of chlordane volatilizing from the soil or from touching the soil. Levels of chlordane found in groundwater near NPL sites containing chlordane ranged from 0.02 to 830 parts of chlordane per billion parts of water (ppb).

Finally, some chlordane may be left over from pre-ban days. Old containers of material thought to contain chlordane should be disposed of carefully and contact with the skin and breathing vapors should be avoided.

Pathways for chlordane in the body

Chlordane can enter the body through the skin if skin contact occurs with contaminated soils, through the lungs if breathed in with contaminated air, and through the digestive tract if swallowed. Uptake through the skin and digestive tract increases if chlordane is in an oily mixture, which might occur at hazardous waste sites. The importance of each of these ways for chlordane to enter the body depends on the kind of exposure. For example, people living in houses that have been treated with chlordane will be exposed mostly by breathing the vapor in the air. Workers who sprayed chlordane as a pesticide were exposed mostly by breathing the compound in the air and by contact with the skin. Other people may be exposed to small quantities by eating food or drinking water that contains chlordane. People at or near waste sites may be exposed by touching chlordane in the soil, by breathing chlordane that evaporates into the air, by drinking water that contains chlordane or by eating contaminated fish or crops. The amount of chlordane that enters the body depends on the amount in air, food, or water, and the length of time a person is exposed to it. Most chlordane that enters the body leaves in a few days, mostly in the feces, and a much smaller amount leaves in the urine. Chlordane and its breakdown products may be stored in body fat, where they cause no bad effects, unless released from body fat in large amounts. It may take months or years before the chlordane and the breakdown products that are stored in fat are able to leave the body.

Health effects of chlordane

Chlordane can enter the body through the skin if skin contact occurs with contaminated soils, through the lungs if breathed in with contaminated air, and through the digestive tract if swallowed. Uptake through the skin and digestive tract increases if chlordane is in an oily mixture, which might occur at hazardous waste sites. The importance of each of these ways for chlordane to enter the body depends on the kind of exposure. For example, people living in houses that have been treated with chlordane will be exposed mostly by breathing the vapor in the air. Workers who sprayed chlordane as a pesticide were exposed mostly by breathing the compound in the air and by contact with the skin. Other people may be exposed to small quantities by eating food or drinking water that contains chlordane. People at or near waste sites may be exposed by touching chlordane in the soil, by breathing chlordane that evaporates into the air, by drinking water that contains chlordane or by eating contaminated fish or crops. The amount of chlordane that enters the body depends on the amount in air, food, or water, and the length of time a person is exposed to it. Most chlordane that enters the body leaves in a few days, mostly in the feces, and a much smaller amount leaves in the urine. Chlordane and its breakdown products may be stored in body fat, where they cause no bad effects, unless released from body fat in large amounts. It may take months or years before the chlordane and the breakdown products that are stored in fat are able to leave the body.

You should know that one way to learn whether a chemical will harm people is to determine how the body absorbs, uses, and releases the chemical. For some chemicals, animal testing may be necessary. Animal testing may also help identify such health effects as cancer or birth defects. Without laboratory animals, scientists would lose a basic method for getting information needed to make wise decisions that protect public health. Scientists have the responsibility to treat research animals with care and compassion. Scientists must comply with strict animal care guidelines because laws today protect the welfare of research animals.

Additionally, there are vigorous national and international efforts to develop alternatives to animal testing. The efforts focus on both in vitro and in silico approaches and methods. For example, the National Toxicology Program (NTP) at the National Institute of Environmental Health Sciences (NIEHS) created the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) in 1998. The role of NICEATM is to serve the needs of high quality, credible science by facilitating development and validation—and regulatory and public acceptance—of innovative, revised test methods that reduce, refine, and replace the use of animals in testing while strengthening protection of human health, animal health and welfare, and the environment. In Europe, similar efforts at developing alternatives to animal based testing are taking place under the aegis of the European Centre for the Validation of Alternative Methods (ECVAM).

Medical tests for exposure to chlordane

Chlordane can enter the body through the skin if skin contact occurs with contaminated soils, through the lungs if breathed in with contaminated air, and through the digestive tract if swallowed. Uptake through the skin and digestive tract increases if chlordane is in an oily mixture, which might occur at hazardous waste sites. The importance of each of these ways for chlordane to enter the body depends on the kind of exposure. For example, people living in houses that have been treated with chlordane will be exposed mostly by breathing the vapor in the air. Workers who sprayed chlordane as a pesticide were exposed mostly by breathing the compound in the air and by contact with the skin. Other people may be exposed to small quantities by eating food or drinking water that contains chlordane. People at or near waste sites may be exposed by touching chlordane in the soil, by breathing chlordane that evaporates into the air, by drinking water that contains chlordane or by eating contaminated fish or crops. The amount of chlordane that enters the body depends on the amount in air, food, or water, and the length of time a person is exposed to it. Most chlordane that enters the body leaves in a few days, mostly in the feces, and a much smaller amount leaves in the urine. Chlordane and its breakdown products may be stored in body fat, where they cause no bad effects, unless released from body fat in large amounts. It may take months or years before the chlordane and the breakdown products that are stored in fat are able to leave the body.

Further Reading

Disclaimer: This article is taken wholly from, or contains information that was originally published by, the Agency for Toxic Substances and Disease Registry. Topic editors and authors for the Encyclopedia of Earth may have edited its content or added new information. The use of information from the Agency for Toxic Substances and Disease Registry should not be construed as support for or endorsement by that organization for any new information added by EoE personnel, or for any editing of the original content.

Citation

(2008). Health effects of chlordane. Retrieved from http://editors.eol.org/eoearth/wiki/Health_effects_of_chlordane