Health effects of bromodichloromethane (BDCM)
Contents
Introduction
Bromodichloromethane (BDCM) is a colorless, heavy, nonburnable liquid. BDCM does not usually exist as a liquid in the environment. Rather, it usually is found evaporated in air or dissolved in water. Most BDCM in the environment is formed as a by-product when chlorine is added to drinking water to kill disease-causing organisms. Small amounts of BDCM are also made in chemical plants for use in laboratories or in making other chemicals. A very small amount (less than 1% of the amount coming from human activities) is formed by algae in the ocean. BDCM evaporates quite easily, so most BDCM that escapes into the environment from chemical facilities, waste sites, or drinking water enters the atmosphere as a gas. BDCM is slowly broken down (about 90% in a year) by chemical reactions in the air. Any BDCM that remains in water or soil may also be broken down slowly by bacteria. (Health effects of bromodichloromethane (BDCM))
Exposure to BDCM
For most people, the most likely means of exposure to BDCM is by drinking chlorinated water. Usually the levels in drinking water are between 1 and 10 ppb (parts per billion). BDCM is also found in some foods and beverages such as ice cream or soft-drinks that are made using chlorinated water, but this is probably not a major source of exposure. BDCM has been found in chlorinated swimming pools, where exposure might occur by breathing the vapors or through the skin. Exposure to BDCM might also occur by breathing BDCM in the air in or near a laboratory or factory that made or used BDCM.
However, BDCM is not widely used in this country, so this is not likely for most people. Average levels of BDCM in air are usually quite low (less than 0.2 ppb). Another place where human exposure might occur is near a waste site where BDCM has been allowed to leak into water or soil. In this situation, people could be exposed by drinking the water or by getting the soil on their skin. BDCM has been found in water and soil at some waste sites (about 1% to 10% of those tested), usually at levels of 1 to 50 ppb.
Pathways for BDCM in the body
Studies in animals show that almost all BDCM swallowed in water or food will enter the body by moving from the stomach or intestines into the blood. It is likely that BDCM would also move from the lungs into the blood if it were breathed in and would cross the skin if skin contact occurred, but this has not been studied. Bromodichloromethane leaves the body mostly by being breathed out through the lungs. Smaller amounts leave in the urine and feces. BDCM removal is fairly rapid and complete (about 95% in 8 hours), so it does not usually build up in the body.
Health effects of BDCM
You should know that one way to learn whether a chemical will harm people is to determine how the body absorbs, uses, and releases the chemical. For some chemicals, animal testing may be necessary. Animal testing may also help identify such health effects as cancer or birth defects. Without laboratory animals, scientists would lose a basic method for getting information needed to make wise decisions that protect public health. Scientists have the responsibility to treat research animals with care and compassion. Scientists must comply with strict animal care guidelines because laws today protect the welfare of research animals.
Additionally, there are vigorous national and international efforts to develop alternatives to animal testing. The efforts focus on both in vitro and in silico approaches and methods. For example, the National Toxicology Program (NTP) at the National Institute of Environmental Health Sciences (NIEHS) created the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) in 1998. The role of NICEATM is to serve the needs of high quality, credible science by facilitating development and validation—and regulatory and public acceptance—of innovative, revised test methods that reduce, refine, and replace the use of animals in testing while strengthening protection of human health, animal health and welfare, and the environment. In Europe, similar efforts at developing alternatives to animal based testing are taking place under the aegis of the European Centre for the Validation of Alternative Methods (ECVAM).
The effects of BDCM depend on how much is taken into the body. In animals, the main effect of eating or drinking large amounts of BDCM is injury to the liver and kidneys. These effects can occur within a short time after exposure. High levels can also cause effects on the brain, leading to incoordination and sleepiness. There is some evidence that BDCM can be toxic to developing fetuses, but this has not been well-studied. Studies in animals show that intake of BDCM for several years in food or water can lead to cancer of the liver, kidney and intestines. Although effects of BDCM have not been reported in humans, effects would probably occur if enough BDCM were taken into the body.
Harmful levels of exposure to BDCM
It is not known at what levels BDCM causes harmful health effects in people. Liver and kidney damage have occurred when animals ate food with BDCM at levels of 190 parts per million (ppm) and greater. Impaired fetal development was seen at levels of 1,000 ppm in rats.
Medical tests for exposure to BDCM
Methods are available to measure low levels of BDCM in human blood, breath, urine and fat (these methods are known as biomonitoring; but not enough information is available to use such tests to predict if any health effects might result. Because special equipment is needed, these tests are not usually done in doctors' offices. Because BDCM leaves the body fairly quickly, these methods are best suited to detecting recent exposures.
Further Reading
Disclaimer: This article is taken wholly from, or contains information that was originally published by, the Agency for Toxic Substances and Disease Registry. Topic editors and authors for the Encyclopedia of Earth may have edited its content or added new information. The use of information from the Agency for Toxic Substances and Disease Registry should not be construed as support for or endorsement by that organization for any new information added by EoE personnel, or for any editing of the original content. |