Genetic variation

From The Encyclopedia of Earth
(Redirected from Genetic variance)
Jump to: navigation, search
Evolutionary Biology (main)


November 15, 2007, 6:42 pm
August 24, 2011, 1:45 pm


Genetic variation, variation in alleles of genes, occurs both within and among populations. Genetic variation is important because it provides the “raw material” for natural selection.

Genetic Variation Among Individuals Within a Population

Genetic variation among individuals within a population can be identified at a variety of levels. It is possible to identify genetic variation from observations of phenotypic variation in either quantitative traits (traits that vary continuously and are coded for by many genes, e.g., leg length in dogs) or discrete traits (traits that fall into discrete categories and are coded for by one or a few genes (e.g., white, pink, red petal color in certain flowers).

Genetic variation can also be identified by examining variation at the level of enzymes using the process of protein electrophoresis. Polymorphic genes have more than one allele at each locus. Half of the genes that code for enzymes in insects and plants may be polymorphic, whereas polymorphisms are less common in vertebrates.

Ultimately, genetic variation is caused by variation in the order of bases in the nucleotides in genes. New technology now allows scientists to directly sequence DNA which has identified even more genetic variation than was previously detected by protein electrophoresis. Examination of DNA has shown genetic variation in both coding regions and in the non-coding intron region of genes.

Genetic variation will result in phenotypic variation if variation in the order of nucleotides in the DNA sequence results in a difference in the order of amino acids in enzymes coded by that DNA sequence, and if the resultant differences in amino acid sequence influence the shape, and thus the function of the enzyme.

Genetic Variation Between Populations

Geographic variation in genes often occurs among populations living in different locations. Geographic variation may be due to differences in selective pressures or to genetic drift.

Measurement of Genetic Variation

Genetic variation within a population is commonly measured as the percentage of gene loci that are polymorphic or the percentage of gene loci in individuals that are heterozygous.

Sources of Genetic Variation

Mutations are the ultimate source of genetic variation because they alter the order of bases in the nucleotides of DNA. Mutations are likely to be rare and most mutations are probably harmful, but in some instances the new alleles can be favored by natural selection. Genetic variation can also be produced by the recombination of chromosomes that occurs during sexual reproduction. The crossing over that occurs during meiosis can result in the production of new alleles or new combinations of alleles.

Maintenance of Genetic Variation in Populations

A variety of factors maintain genetic variation in populations. Potentially harmful recessive alleles can be hidden from selection in the heterozygous individuals in populations of diploid organisms (recessive alleles are only expressed in the less common homozygous individuals). Natural selection can also maintain genetic variation in balanced polymorphisms. Balanced polymorphisms may occur when heterozygotes are favored or when when selection is frequency dependent.

Further Reading

  • Campbell, N.A., J.B. Reece, and L.G. Mitchhell. 2006. Biology. Addison Wesley Longman, Inc. Menlo Park, CA. ISBN: 080537146X
  • Raven, P.H., G.B. Johnson, J.B. Losos, K.A. Mason, and S.R. Singer. 2008. Biology, 8th edition. McGraw Hill, New York, NY. ISBN: 0073227390

Citation

McGinley, M. (2011). Genetic variation. Retrieved from http://editors.eol.org/eoearth/wiki/Genetic_variation