Finding Antiderivatives

Read this section to see how you can (sometimes) find an antiderivative. In particular, we will discuss the change of variable technique. Change of variable, also called substitution or u-substitution (for the most commonly-used variable), is a powerful technique that you will use time and again in integration. It allows you to simplify a complicated function to show how basic rules of integration apply to the function. Work through practice problems 1-4.

Properties of Antiderivatives (Indefinite Integrals)

The following properties are true of all antiderivative


General Properties of Antiderivatives

If f and g are integrable functions, then

1. Constant Multiple \int \mathrm{k} \cdot \mathrm{f}(x) \mathrm{dx}=\mathrm{k} \cdot \int \mathrm{f}(x) \mathrm{dx}

2. Sum \int \mathrm{f}(x)+\mathrm{g}(x) \mathrm{dx}=\int \mathrm{f}(x) \mathrm{dx}+\int \mathrm{g}(x) \mathrm{dx}

3. Difference \int \mathrm{f}(x)-\mathrm{g}(x) \mathrm{dx}=\int \mathrm{f}(x) \mathrm{dx}-\int \mathrm{g}(x) \mathrm{dx}

There are general rules for derivatives of products and quotients. Unfortunately, there are no easy general patterns for antiderivatives of products and quotients, and only one more general property will be added to the list (in Chapter 6).

We have already found antiderivatives for a number of important functions


Particular Antiderivative

1. Constant Function: \int \mathrm{k} \mathrm{d} \mathrm{x}=\mathrm{k} x+\mathrm{C}

2. Powers of x: \begin{aligned}
&\int x^{\mathrm{n}} \mathrm{dx}=\frac{x^{\mathrm{n}+1}}{\mathrm{n}+1}+\mathrm{C} \quad \text { if } \mathrm{n} \neq-1 \\
&\int x^{-1} \mathrm{dx}=\int \frac{1}{x} \mathrm{~d} \mathrm{x}=\ln |x|+\mathrm{C}
\end{aligned}

Common special cases: \begin{aligned}
&\int \sqrt{x} \mathrm{dx}=\frac{2}{3} x^{3 / 2}+\mathrm{C} \\
&\int \frac{1}{\sqrt{x}} \mathrm{dx}=2 x^{1 / 2}+\mathrm{C}=2 \sqrt{x}+\mathrm{C}
\end{aligned}

3. Trigonometric Functions: \begin{aligned}
&\int \cos (x) \mathrm{dx}=\sin (x)+\mathrm{C} \quad \int \sin (x) \mathrm{d} \mathrm{x}=-\cos (x)+\mathrm{C} \\
&\int \sec ^{2}(x) \mathrm{d} \mathrm{x}=\tan (x)+\mathrm{C} \quad \int \csc ^{2}(x) \mathrm{d} x=-\cot (x)+\mathrm{C} \\
&\int \sec (x) \cdot \tan (x) \mathrm{dx}=\sec (x)+\mathrm{C} \quad \int \csc (x) \cdot \cot (x) \mathrm{dx}=-\csc (x)+\mathrm{C}
\end{aligned}

4. Exponential Functions: \int \mathrm{e}^{x} \mathrm{dx}=\mathrm{e}^{x}+\mathrm{C}

All of these antiderivatives can be verified by differentiating. The list of antiderivatives of particular functions will continue to grow in the coming chapters and will eventually include antiderivatives of additional trigonometric functions, the inverse trigonometric functions, logarithms, and others.