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The atoms in a crystal containing a dislocation are displaced from b

perfect lattice sites, and the resulting distortion produces a stress field in
the erystal around the dislocation. The dislocation is therefore a source
of internal stress in the erystal. For example, consider the edge dislocu-
tion in Fig. 1.18(b). The region above the slip plane containg the extra
hall-plane Torced between the normal lattice planes, and is in compres-
sion: the region below is in tension. The stresses and strains in the bulk
of the erystal are sufliciently small for conventional elasticity theory to
be applied to obtain them. This approach only ceases o be valid at
positions very close to the centre ol the distocation. Although most
crystalline solids are elastically anisotropic. 1. their elastic properties
are different in different erystallographic directions, it is much simpler o
use fsofropic elasticity theory. This still results in a good approximation

in most cases. From a knowledge of the elastic field, the energy of the
dislocation. the Torce it exerts on other dislocations, its energy ol inter-

action with point defeets, and other important characteristics, can be }u!
obtained. The clastic field produced by a dislocation is not affected by : I T
the application of stress [rom external sources: the total stress onan
clement within the body is the superposition of the internal and externil ' |
sLresses. o 5}‘\}\\
The displacement of a point in a strained body from its position in the {4 E
unstrained state is represented by the vector A

u= [ity, oty 1t-] (4.1]

' ' ; ;
The components iy, i, t1- represent projections of uon the .y, Zaxes s
as shown in Fig. 4.1. In finear elasticity. the nine components of straiiare
given in terms of the first derivatives of the displacement components
thus: 2e,,
e
. ity
sy ="
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Figure 4.1 Displacement of £ to P by displacement vector u.

and
1 {Ou,  Ou-
w=e=3\& " 5
B 1 fOu- Dy s
i:.\-—t.\-:—i K'l"{; (4.3)
J LD, Lr').w_l.
Cxr = Eev = E By T K

The magnitude of these components is < 1. Partial differentials are used
because in general each displacement component is a function of posi-
tion (x.1.z). The three strains defined in (4.2) are the nmormal strains.
They represent the fractional change in length of elements parallel to the
X, v and = axes respectively. The six components defined in (4.3) are the
shear strains. and they also have simple physical meaning. This is
demonstrated by ¢,, in Fig. 4.2(a). in which a small area element ABCD
in the xy plane has been strained to the shape 4BCD’ without change
of area. The angle between the sides 48 and AD initiallv parallel to
xand y respectively has decreased by 2e,,. By rotating. but not deforming.
the element as in Fig. 4.2(h). it is seen that the element has undergone
a simple shear, The simple shear strain often used in engineering practice
is 2¢.,.. as indicated.

The volume I” of a small volume element is changed by strain Lo
(F4+ A = F(l +e.)(] + ¢ )l +e--). The [ractional change in
volume AL known as the dilatation. is therelore

A=Al ',.-“'I I'= (¢xx + Cyy +¢-:) (4.4)

A is independent of the orientation ol the axes v. v, =.

In elasticity theory. an element of volume experiences lorces via
stresses applied to its surface by the surrounding material. Stresy is the
lorce per unit area of surface, A complete description of the stresses
acting therefore requires not only specification of the magnitude and
direction of the force but also of the orientation of the surface. for as the



)

Figure 4.4 Components of
stress in cvlindrical polar

coordimates.

o 2 - P
O, P
" 6, T
= ] ;
o Oy Ya
(8] Oy ] a.
“ ey G4 e
e . v e Lo
X | ) il
va,,
(a) (b)

Figure 4.3  Components of stress acting on (a) the top and front faces and
(b) the bottom and back faces of an elemental cube.

orientation changes so, in general, does the force. Consequently. nine
components must be defined to specify the state of stress. Thev are
shown with reference to an elemental cube aligned with the x, 1. = axes
in Fig. 4.3(a). The component o, where i and j can be x, v or - is
defined as the force per unit area exerted in the +/ direction on a ee
with outward normal in the +j direction by the material ouzside upon the
material fnside. For a face with outward normal in the —j direction. j.e.
the bottom and back faces shown in Fig. 4.3(b). oy; is the force per unit
area exerted in the —i direction. For example. 7, acts in the positive y
direction on the top face and the negative v direction on the bottom face.

The six components with / £ j are the shear stresses. (As explained in
section 3.1. it is customary in dislocation studies to represent the shear
stress acting on the slip plane in the slip direction of a crystal by the
symbol 7.) By considering moments of forces taken about v, v and = axes
placed through the centre of the cube, it can be shown that rotational
equilibrium of the element, i.e. net couple = 0, requires

Oyz =0z Ozy = 0yz Oy = Oy (4.3)
Thus, the order in which subscripts i and / is written is immaterial. The
three remaining components .. @,,. ¢.- are the normal components.
From the definition given above. a positive normal stress results in
tension and a negative one in compression. The effective pressure acting
on a volume element 1s therefore

|

P=- ‘3’(0\'.\' + Ty + 7--) Illlh!'{‘ll

For some problems. it is more convenient to use cylindrical polar
coordinates (r.f.z). The stresses are still defined as above. and dr¢
shown in Fig. 4.4. The notation is easier to follow if the second subscript
/15 considered as referring to the face of the element having a constant
value of the coordinate j.
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4.3 Stress Field of
a Straight Dislocation

The relationship between stress and strain in linear elasticity is
Hooke's Law, in which each stress component is linearly proportional
to each strain. For isotropic solids. only two proportionality constants
are required:

Ty = 2Ge o ,\4.{’\'\ Ty h )

Tuv = Mgy + M + 5y +02) i
(4.7)

G- = 2G¢-- + Aley + Cyp T+ 022 | |

Ty = 2G0y, ay. = 2Gey. 0=y = 2Ge-,

Aand G are the Lamé constants. but G is more commonly known as the
shear modulus. Other elastic constants are frequentlv used. the most
useful being Young's modulus. E. Poisson’s ratio, v. and bullc modulus.
K. Under uniaxial, normal loading in the longitudinal direction. £ is the
ratio of longitudinal stress to longitudinal strain and » is minus the ratio
of lateral strain to longitudinal strain. K is defined to be —p A. Since
only two material parameters are required in Hooke's law. these con-
stants are interrelated. For example,

E=2G(1+v) v=A2AA+G) K=E/3(1-2) (4.8)

Typical values of Eand v for metallic and ceramic solids lic in the ranges
40—600 GNm = and 0.2—0.45 respectively.

The internal energy of a body is increased by strain. The strain energy
per unit volume is one-half the product of stress times strain for each
component. Thus. foran element of volume d V. the elastic strain eneray is

dEy = %dl Z Z T (4.9)

f=aims fewpis

and similarly for polar coordinates.

Serew Dislocation

The elastic distortion around an infinitely-long. straight dislocation can
be represented in terms of a cylinder of elastic material. Consider the
screw dislocation 48 shown in Fig. 4.5(a): the elastic cvlinder in Fig.
4.5(b) has been deformed to produce a similar distortion. A radial slit
LMNO was cut in the cylinder parallel to the z-axis and the free surfaces
displaced rigidly with respect to each other by the distance /. the magni-
tude of the Burgers vector of the screw dislocation. in the =-direction.

The elastic field in the dislocated evlinder can be found by direct
spection. First. it is noted that there are no displacements in the
xoand y directions:

try =ty = () (4.10)
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Figure 4.5 (1) Screw dislocation A B formed in a crystal. (b) Elastic distortion
ol o evlindrical ring simulating the distortion produced by the screw dislocation
m {a),

Secondly. the displacement in the z-direction increases uniformly from
zero to b as # increases from 0 to 2w

ht b

g ===l g (1/x) (4.11)

=i =T

It is then readily found from equations (4.2) and (4.3) that

By =Ey S By = Byy = 0
h ¥ h sint
Gy =¥ = —I%m:_ﬁ P (4.12)
b X h cosd
R e—— FEEHE

dz(x>+y7) 47 1

From equations (4.7) and (4.12). the components ol stress are

&, = O-- = Ty = 45 = ()
Gh v Ghsinf
Toe = 0oy = ——————— = — ————— 1
- 2 (7 4 10) 25 (413
Gh X Gheos il
: ' el 07) 2mor
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The comiponents in cylindrical polar coordinates (Fig. 4.4) take a sim-
pler form. Using the relations

Tp: = Ty=COSH + 78100

(414

Ty = —m-8Sin# + - cosf)

A2

and similarly for the shear strains. the only non-zero components are
found to be

h
€z =0 = —
dar { 12
. | 25 I
Gh
(_TH__ —s {}':H = —
2rr

The elastic distortion contains no tensile or compressive components
and consists of pure shear: oy acts parallel to the =-axis in radial planes
ol constant # and ay- acts in the fashion of u torque on planes normal
to the axis (Fig. 4.4). The field exhibits complete radial symmetry and
the cut LMNO can be made on any radial plane ¢ = constant. For
a dislocation of oppesire sign. i.e. a lefi-handed serew. the signs of all
the field components are reversed.

The stresses and strains are proportional to 1/ and therefore diverge
to infinity as » — 0. Solids cannot withstand infinite stresses. and for
this reason the cylinder in Fig. 4.5 is shown as hollow with 1 hole of
radius ry. Real crystals are not hollow, of course. and so as the centre
of a dislocation in a crystal is approached. clasticity theory ceases 1o be
valid and a non-linear, atomistic model must be used (see section 10.3 ).
The region within which the linear-elastic solution breaks down is called
the core of the dislocation. From equation (4.13) it is seen that the siress
reaches the theoretical limit (equation (1.5)) and the strain exceeds
about 10% when r = b. A reasonable value for the dislocation core radins
ry therelore lies in the range b to 4b. ie. ryp <1 nm in most cuses,

Edge Dislocation

The stress field is more complex than that of a screw but can be
represented in an isotropic cylinder in a similar way. Considering the
edge dislocation in Fig. 4.6(a). the same elastic strain ficld can be
produced in the cylinder by a rigid displacement of the faces of the slit
by a distance b in the x-direction (Fig. 4.6(b)). The displacement and
strains in the z-direction are zero and the deformation is called plane
strain. Derivation of the field components is beyond the scope ol the
present treatment. however. The stresses are found Lo be
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Figure 4.6 (a) Edee dislocation formed in a cryvstal. (b) Elastic distortion of a
B = ; P S
cylindrical ring simulating the distortion produced by the edge dislocation in (a).

(x> —17)
Ty = Oy = Dx T
' ' (¥ =)
T-o = U Tyy + O ) .
Oy = 0.y = 0= = 0= = 0 (4 16]
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Gh
D=——
25(1 — )

The stress field has. therefore. both dilational and shear components.
The largest normal stress is ., which acts parallel to the slip \-'elei‘.
Since the slip plane can be defined as » = 0. the maximum compressive
stress (7., negative) acts immediately above the slip plane and tl?it"
maximum tensile stress (7o positive) acts immediately below lhe.shp
plane. The effective pressure (equation (4.6)) on a volume element is

3 i o

p==(14+v)P——" = (4.1

3 (42

[t is compressive above the slip plane and tensile below. These observa-

tions are implied qualitatively by the type of distortion illustrated in Figs

LIN and 4.6(a). ‘ B
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4.4 Strain Energy

of a Dislocation

an inverse dependence on distance from the line axis and breaks down
when v and y tend to zero. It is valid only outside a core of radius 1.

The elastic field produced by a niived dislocation (Fig. 3.8(b)) having
edge and screw character is obtained from the above equations by udding
the fields of the edge and screw constituents. which have Burgers vectors
given by equation (3.2). The two sets are independent of euch other in
isotropic elasticity.

The existence of distortion around a dislocation implies that a crvstal
containing a dislocation is not in its lowest energy state. The extra
energy is the strain energy. The total strain energy may be divided into
two parts

By = 'Ecpre + Egtasiic strain (4.18)

The elastic part, stored outside the core. may be determined by integra-
tion of the energy of each small element of volume. This is a simple
caleulation for the screw dislocation, because from the symmetry the
appropriate volume element is a cylindrical shell of radius + and thick-
ness dr. From equation (4.9). the elastic energy stored in this volume per
unit length of dislocation is

o

dE. (screw) = 3 2rrdr(op-ep- + 7-ge-p) :
& (4.19)

Il
b

3
mrdr Gej.

Thus. from equation (4.15), the total elastic energy stored in the cylinder
(Fig. 4.5) per unit length of dislocation is

2 Ry, 3
Eq(screw) = ﬁ d—j = Gb In (E) (4.20)
dr J, 1  A4xw I

where R is the outer radius.

The above approach is much more complicated for other dislocations
having less symmetric fields. 1t is generally easier to consider £y as the
work done in displacing the faces of the cut LMNO by b (Figs 4.3 and
4.6) against the resisting internal stresses. For an infinitesimal alement of
area dA of LMNO. the work done is

1
dEy(screw) = 3 - bd 4

(4.21)
l
dfg(edge) = F—JrT_\-_rhd:f
with the stresses evaluated on v = . The factor | enters because the

stresses build up from zero to the final values given by equations (4.13)
and (4.16) during the displacement process. The element of area is a strip
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The screw result is the same as equation (4.20). Strictly. equations (4.22)
neglect small contributions [rom the work done on the core surfuce
r = rq of the cylinder. but they are adequate for most requirements.

Equations (4.22) demonstrate that £, depends on the core radius Iy
and the erystal radius R. but only logarithmically. £, (edge) is greater
than E, (screw) by 1/(1 —v) =32, Taking R = ]mm ry = L nm,
G=40GNm™ and b= 0.25nm. Lhe elastic strain energy of an edge
dislocation will be about 4nJm=' or about 1aJ (6eV) for each atom
plane threaded by the dislocation. ln crystals containing many disloca-
tions. the dislocations tend to form in configurations in which the super-
imposed long-range elastic fields cancel. The energy per dislocation is
thereby reduced and an appropriate value of R is approximately half the
average spacing of the dislocations arranged at random.

Estimates of the energy of the core of the dislocation are necessarily very
approximate, However. the estimates that have been made suggest that
the core energy will be of the order of 1 eV for each atom plane threaded
by the dislocation, and is thus only a small fraction of the clastic energy.
However. in contrast to the elastic energy. the energy of the core will vary
as the dislocation moves through the erystal and this gives rise to the
lattice resistance to dislocation motion discussed in section 10.3.

The validity of elasticity theory for treating dislocation energy outside
a core region has been demonstrated by computer simulation (section
2.7). Figure 4.7 shows data for an atomic model oi alpha iron containing
a straight edge dislocation with Burgers vector 4[11 171 and line direction
[112]. E is the strain energy within a L},lmdu of radius R with the
dislocation along its axis. The eneray varies logarithmically with R. as
predicted by equation (4.22). outside a core of radius 0.7 nm. which is
about 2.6b. The core energy is about 7eV nm !,

It was mentioned in the preceding section that the elastic field of a
mixed dislocation (see Fig. 3.8(b)) is the superposition of the fields of its
edge and screw parts. As there is no interiction between them. the total
clastic energy is simply the sum of the edge and screw energies with
h replaced by bsinfl and hcos# respectively:

(4:22)

, Gl sin® 7hcost g R
Eyq(mixed) = LA Q—JLw ln(—\

dx(1 —p) 4w iy,
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Figure 4.7 The strain energy within u cylinder of radius R that contains 4
straight edge dislocation along its axis. The data was obtained by computer
simulation for a model of iron, (C ourtesy Yu. N. Oscisky.)
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Figure 4.8  Reaction of two dislocations to form u third,

which falls between the energy of an edge and a screw dislocation.
From the expressions for edge. screw and mixed dislocations it is clear
that the energy per unit length is relatively inscnsiti\-‘e Lo the character of
the dislocation and also to the values of R and 7. Taking realistic values
for R and ry all the equations cun be written appr O\l]lldLLE\ s
Ly = aGb’ (4.24)
where a = 0.5~1.0. This leads to a very simple rule (Frank's rude)
for determining whether or not it is energeticallv feasible for two
dislocations to react and combine to form another. Consider the
two dislocations in Fig. 4.8 with Burgers vectors by und b given by
the Burgers circuil construction (section 1.4). Allow them to combine to
form a new dislocation with Burgers vector b; as indicated. From
equation (4.24). the elastic enerey per unit length ol the dis]uculiu:ms 15
proportional 1o A7, b3 and b3 respectively. Thus. if (b7 + 53) > b3. the
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Introduction to Dislocations

4.5 Forces on
Dislocations

Fioure 4.9 The displacement ds

reaction is favourable for it results in a reduction in energy. If
(hy —+ r"’%] < h3. the reaction is unfavourable and the dislocation with
Burgers vector hs is liable to dissociate into the other two. If
(b + b3) = b3. there is no energy change. These three conditions corre-
spond to the angle ¢ in Fig. 4.8 satisfying 72 <o<m 0<o<
7/2 and ¢ = 7/2 respectively. In this argument the assumption is made
that there is no additional interaction energy involved. i.e. that before
and after the reaction the reacting dislocations are separated sufficiently
so that the interaction energy is small. If this is not so, the reactions are
still favourable and unfavourable. but the energy changes are smaller
than implied above. Frank's rule is used to consider the feasibility of
various dislocation reactions in Chapters 5> and 6.

When a sufficiently high stress is applied to a crystal containing disloca-
tions, the dislocations move and produce plastic deformation either by
slip as described in section 3.3 or, at sulficiently high temperatures, by
climb (section 3.6). The load producing the applied stress therefore does
work on the crystal when a dislocation moves, and so the dislocation
responds to the stress as though it experiences a force equal to the work
done divided by the distance it moves. The force defined in this way is
a virtual, rather than real, force, but the force concept is useful for treating
the mechanics of dislocation behaviour. The glide force is considered in
this section and the climb force in section 4.7.

Consider a dislocation moving in a slip plane under the influence of
a uniform resolved shear stress 7 (Fig. 4.9). When an element d/ of the
dislocation line of Burgers vector b moves forward a distance ds the
crystal planes above and below the slip plane will be displaced relative to
each other by b. The average shear displacement of the crystal surface
produced by glide of d/ is

(d"'_f’r) b (4.25)

external foree due to T acting

where A is the area of the slip plane. The
over this area is A7. so that the work done when the element ol slip
OCCurs is

dsdf ’
di'i':,-lr( \-J )h (4.26)

The glide force Fon a unit length of dislocation is defined as the work done
when unit length of dislocation moves unit distance. Therefore
dn di A
o =— = 3h l4: I
dsd/ dA

b’ﬁ' i ST
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aunit length of dislocation is defined as the work done
fislocation moves unir disiance. Therefore

= 7h (4.27)

car stress in the glide plane resolved in the direction of

ce £ acts normal to the dislocation at every point

dislocation

3

62 ./

v

Figure 4.10  Curved element of dislocation under line tension lorces 7°

along its length. irrespective of the line direction. The positive sense of
the force is given by the physical reasoning of section 3.3.

[n addition to the force due to an externally applied stress. a disloca-
tion has a line tension which is analogous to the surface tension of a soap
bubble or a liquid. This arises because. as outlined in the previous
section, the strain energy of a dislocation is proportional to its length
and an increase in length results in an increase inenergy. The line tension
has units of energy per unit length. From the approximation used in
equation (4.24), the line tension. which may be defined as the increase in
energy per unit ncrease in the lewgth of a dislocarion line. will be

T =aGh’ (4.28)

Consider the curved dislocation in Fig. 4.10. The line tension will
produce forces tending to straighten the line and so reduce the total
energy. The direction of the net force is perpendicular to the dislocation
and towards the centre of curvature. The line will only remain curved if
there is a shear stress which produces a force on the dislocation line in the
opposite sense. The shear stress 7, needed to maintain a radius of
curvature R is found in the following way. The angle subtended at the
centre of curvature is d# = d// R, assumed to be < |. The outward [orce
along O4 due to the applied stress acting on the elementary piece of
dislocation is 7ybhd/ from equation (4.27). and the opposing inward [orce
along OA due to the line tension 7 at the ends of the element is
2T sin(d#/2). which is equal to 7d# for small values of df. The line will
be 1 equilibrium in this curved position when

Td0 = mybd!
T (4.29)

L€, Tp = f:ﬁ

Substituting for 7" from equation (4.28)

rr— “Oh -I—]-:IJ'
R

This gives an expression for the stress required to bend a dislocation to
a radius R and is used many times in subsequent chapters. A particularly



4.6

Forces between
Dislocations

direct application is in the understanding of the Frank—Read dislocation
multiplication source described in Chapter 8.

Equation (4.30) assumes from equation (4.24) that edge, screw and
mixed scements have the same energy per unit length, and the curved
dislocation of Fig. 4. 10 is therefore the are of a circle. This is only strictly
valid if Poisson’s ratio v equals zero. In all other cases. the line experi-
ences & torque tending to rotate it towards the screw orientation where its
energy per unit lengthis lower. The true line tension ol o mixed segment is
d=E(60)

T (4.31)
di-

T =Eq@)+

where Ey(#) is given by equation (4.23). T for a screw segment is four
times that of an edge when =173, Thus. for o line bowing under
a uniform stress. the radius of curvature at any point is still given by
equation (4.29). but the overall line shape is approximately elliptical
with major axis parallel to the Burgers vector: the axial ratio is approx-
imately 1/(1 — »). For most calculations. however. equation (4.30) is an
adequate approximation.

A simple semi-qualitative argument will illustrate the significance of the
concept of a force between dislocations. Consider two parallel edge Qis—
locations lying in the same slip plane. They can either have the same sign
asin Fig. 4.1 1(a) or oppositesign usin Fig. 4.1 1(b). When the dislocations
are se pz?mled by a large distance the total elastic energy per unit length of
the dislocations in both situations will be. from equation (4.24)

| . 29
aGh™ +=aGh (4.32)

When the dislocations in Fig. 4.11(a) are very close together the arrang-
ement can be considered approximately as a single dislocation with
1 Burgers vector magnitude 25 and the efastic energy will be given by

3)

which is twice the energy of the dislocations when they are separated by
a4 large distance. Thus the dislocations will tend to repel each (}Ihfl“ to
FCL1IIEC their total elastic energy. When dislocations of opposite sigh
(Fig. 4.11(b}) are close together. the effective magnitude of their Burgers
vectors will be zero. and the corresponding long-runge elastic energy
zero also. Thus dislocations of opposite sign will attract each other 10
reduce their total elastic energy. The positive und negative edge disloci-
tions in Fig. 4.11(b) will combine and annihilate each other. IThﬁ’SC
conclusions regarding repulsion and attraction also [ollow for disloca-

Tl

aG(2h) (4.

. . . . . - A _ 1 T - - iﬂ
tions of mixed orientation [rom Frank's rule by putting o = 0 of a4
. A2 o i 3 ip e

Fie. 4.8, Similur effects occur when the two dislocations do not lie 101

: e i i st A1)
same slip plane (Fig. 4.11(¢)). but the conditions lor attraction
repulsion are usually more complicated. as discussed below.
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Figure 411 Arrangement of edge dislocations with parallel Burgers vectors
lying in purallel slip planes. (a) Like dislocations on the same slip plane.

(b) unlike disfocations on the same slip plane. and (¢) unlike dislocations on
slip planes separated by a few atomic spucings.

The basis of the method used to obtain the force between two dis-
locations is the determination of the additional work done in introdu-
cing the second dislocation into a crystal which already contains the
first. Consider two dislocations lying parallel to the z-axis (Fig. 4.12).
The total energy of the system consists of (a) the self-energy of disloca-
tion I, (b) the self-energy of dislocation II. and (¢) the elastic interaction
energy between 1 and I1. The inreraction energy Ey, is the work done in
displacing the faces of the cut which ereates Il in the presence of the
stress field of I. The displacements across the cut are Ao h,. b.. the
components of the Burgers vector b of I1. By visualising the cut parallel
to either the v or 1 axes. two alternative expressions for £, per unit
length of 11 are

Ling =+ / (hyayy + f’l’_r’-"'_r_r + f’_—I’T;_u-]d-\'
S
=
E::[TI = — / {)’},‘.rT v -+ )"}I.r‘l i h: (T:.-]LIT
A

where the stress components are those due to 1. (The signs of the right-
hand side of these equations arise because if the displacements ol b are
tiaken Lo occur on the face of a cut with outward normal in the positive
yand v directions, respectively, they are in the direction ol positive v. 1. -
for the first case (v-axis cut) and negative v, 1, = for the second (1-uxis
cul).)
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Figure 412 Faorces considered
for the interaction between two

ecdge dislocations.

The interaction force on Il 15 obtained simply by dillerentiation of
Lhese expressions. i.e. F, = —id £, /Ux and Fo= =0k, /Oy, For the two
parallel edge dislocations with parallel Burgers vectors shown in Fig,
4.12. by =h- =0 and by = b. und the components ol the force per unit
length acting on 11 are therelore

-
5 |

Fo=twh Fi==0u.b (4.

n

where 7, and o are the stresses of | evaluated at position (. y) of 1.
The forces are reversed il 11 is u negative edge i.e. the dislocations have
opposite sign. Equal and opposite lorces act on 1. F, is the lorce in the
glide direction and F, the force perpendicular to the glide plane. Sub-
stituting from equation (4.16) gives

Gh*  x(x* —)7)
27(1 —v) (2 +32)°
(4.36)

Fo= Gh- _1'{3_\'3 - _1{)
o 2m(l —v) (442

Since an edge dislocation can move by slip only in the plane contained
by the dislocation line and its Burgers vector, the component of force
which is most important in determining the behaviour ol the disloca-
tions in Fig. 4.12 1s F,. For dislocations of the same sign. inspection of
the variation of F, with x reveals the following:

F_\- flaetaire X range
negative  repulsive  —oc < x < —y
positive  attractive  —y < x <0
negative  attractive O<x<gyr
positive  repulsive AT AT 8

The sign and nature of Fy is reversed i 1 and 11 are edee dislocations of
opposite sign. F, is plotted against x. expressed in units of 1. in Fig. 4.13.
[t is zero when v = 0. =y, =, but of these. the positions of stable
equilibrium are seen to be x = 0. £ for edges of the same sign and =r
if they have the opposite sign.

Tt follows that an array ol edge dislocations of the same sign is most
stable when the dislocations lie vertically above one another as in Fig.
4.14(a). This 1s the arrangement of dislocations in a small angle pure
tilt boundary described in Chapter 9. Furthermore. edge dislocations
of opposite sign gliding past each other on parallel slip planes tend 10
form stable dipofe pairs as in Fig. 4.14(b) at low applied stresscs
(section 10.8).

Comparison of the glide force F, in equation (4.33) with Fin equation

(4.27) shows that since o, is the shear stress in the elide plane ol
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Figure 4.14  Stable positions for two edge dislocations of {a) the same sign and
(b) opposite sign.

dislocation 11 acting in the direction of its Burgers vector. equarion (4.27)
holds for both external and internal sources of stress.

Consider two parallel screw dislocations, one lying along the z-uxis.
The radial and tangential components of force on the other are

r'l‘:, = !'T_—-IJJJ) ;‘-r.: = |'T_—|JI3 (4 ..1‘_'i
and substituting from equations (4.13)
F, =G 2mr Fy=0 (4.38)

The force is much simpler in form than that between two edge disloca-

tions because of the radial symmetry of the screw field. F; is repulsive [«



4.7

(limh Forces

serews of the same sign and altractive for screws ol opposite sign. It is
readily shown [rom either equations (4.33) or equations (4.37) that no
forces acl between a pair of parallel dislocations consisting of a pure

edge and & pure screw. s expected (rom the lack of mixing of their stress

fields (see section 4.3).

The force component F, in equation (4.35) is a climb force per unit
length resulting from the normal stress o, of dislocation | attempting o
squeeze the extra half-plane of 11 from the crystal. This can only occur
physically if intrinsic point defects can be emitted or absorbed at the
dislocation core of 11 (see section 3.6). As in the case of glide Torces.
climb forces can arise from external and internal sources of stress. The
[ormer are l.lTiPOIldlll in u(’e,’l and the latter provided the example of
conservative climb in section 3.8. Line tension can also produce climb
forces. but in this case the force acts to reduce the hnL length in the extra
half-plane: shrinkage of prismatic loops as in Fig. 3.19 is an example.
However. since the creation and annihilation of point defects are
involved in climb. chemical forces due to defect concentration changes
must be taken into account in addition to these mechanical forces.

[t was seen in section 3.6 that when an element 1 of diqmculiml Is
displaced through s. the local volume change is bx1.s. Consider
a segment length / of a positive edge dislocation Lllm.blll“ upwirds
through distance s in response (o 4 mechanical climb foree F per unit
lengeth. The work done is Fls and the number of vacancies absorbed is
hls/ Q). where 2 is the volume per atom. The vacancy formation energy is
therefore changed by F/h. As a result of this chemical potential. the
equilibrium vacancy concentration at temperature T in the presence of
the dislocation is reduced to

¢ = exp|—(£} + FQ/b)/KT]
coexp(—F/bkT)

(4.39)

where u, is the equilibrium concentration in a stress-lree crvstal (equa-
tion (1.3)). For negative climb involving vacancy emission (F < 0) the
sign of the chemical potential is changed so that ¢ > ¢. Thus, the

vacancy concentration deviates from . building up a chemical force
per unit fength on the line

!J."l\ /E“] [4'4“

until £ balances Fin equilibrium. Conversely. in the presence of a super-
saturation ¢ ¢y of vacancies. the dislocation climbs up under the chem-
ical force / until compensated by. say. external stresses or line tension
IhL latter is used in the analvsis for a dislocation climb source in section

The nature of these forces is illustrated schematically in Fig. 4.13.
H} .auh.snluung reasonable values of Tand € in equation (4.40). it 1s cas)

e T

W
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Image Forces
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Figure 4.15  Mechanical and chemical forces for climb ol un edge dislocation.
Vacancies (shown as O) have a local concentration ¢ in comparison with the
equilibrium concentration ¢ in a dislocation-free crystal.

to show that even moderate supersaturations of vacancies can produce
forces much greater than those arising from external stresses.

The rate of climb of a dislocation in practice depends on (a) the
direction and magnitude of the mechanical and chemical [orces. Fand /.
(b) the mobility of jogs (section 3.6) and (c¢) the rate of nugration of
vacancies through the lattice to or from the dislocation.

A dislocation near a surface experiences lorces not encountered in the
bulk of a crystal. The dislocation is attracted towards a free surface
because the material is effectively more compliant there and the disloca-
tion energy is lower: conversely, it is repelled by a rigid surface layer. To
treat this mathematically. extra terms must be added to the infinite-body
stress components given in section 4.3 in order that the required surfuce
conditions dre satisfied. When evaluated at the dislocation hine, as in equa-
tions (4.35) and (4.37). they result in a force. The analysis for infinite.
straightdislocation lines parallel to the surfuceisrelatively straight-forward.

Consider screw and edge dislocations parallel to. and distance « from.
a surface x = 0 (Fig. 4.16): the edge dislocation has Burgers vector b in
the v direction, For a free surlace, the tractions o, o, and -, must be
zero on the plane v = 0. Consideration of equation (4.13) shows that
these boundary conditions are met for the screw if the infinite-body
result 15 modilied by adding to it the stress field of an imaginary screw
dislocation ol opposite sign at v = —d (Fig. 4.16(a)). The required
solution for the stress in the body (v > 0) is therefore

—Adr Av o
oy = ——"— + - (4. 413
o T ) IR D il o S
Ax
= e (4.42)
. (A= 4
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Further Reading

where v = (v — o). x. = (x+d) and 4 = Gh/2w. The force per unit
length in the \'-dircc[iuu Fo(=a-yb) induced by the surface 1s obtained
from the second term in o-, evaluated at x = d. = 0. It is

1’_ = _(Jh ,r el {4.43)

and is simply the force due to the image dislocation at ¥ = —d. For the
edge dislocation (Fig, 4.16(b)). superposing the field of an imaginary
edge dislocation of opposite sign at x = —d annuls the stress oy, on
x = (. but not ¢,,. When the extra terms are included to fully match the
boundary conditions. the shear stress in the body is found to be

Dx_(x: =) Dxo(x2 —1?) 2Ddlx_x — 6xx L1 + ]
Ty = 5 - o ] - : .-| e
: (x2 +2) (X2 4+ 2 (x2 +3°)

(4.44)

where D = A4/(1 — v). The first term is the stress in the absence of the
surface. the second is the stress appropriate to an image dislocation al
v = —d. and the third is that required to make o, = 0 when x = 0. The
force per unit length Fu(=0,.b) arising from the surface is given by
putting x = . v = 0 in the second and third terms. The latter contrib-
utes zero. so that the force is

Fo=—Gb* [4x(1 —v)d (4.45)

and is again equivalent to the force due to the image dislocation.

The image forces decrease slowly with increasing  and are capable of
removing dislocations from near-surface regions. They are important.
for example, in specimens for transmission electron microscopy (section
2.4y when the slip planes are orientated at large angles (=~90%) to the
surface. It should be noted that a second dislocation near the surface
would experience a force due to its own image and the surface terms in
the field of the first. The interaction of dipoles. loops and curved
dislocations with surfaces is therefore complicated. and only given
approximately by images.
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