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The Theory of
Curved Dislocations

4-1. INTRODUCTION

This chapter is concerned with an extension to generally curved dislocatians of
the ideas developed for straight dislocations. The development mainly involves
the mathematical formalism required to derive four key equations in disloca-
tion theory: the Burgers formula for the displacements produced by an
mfinitesimal element of dislocation line; the two Peach-Kochler formulas for
the stress produced by such an element and for the force on it produced by an
external stress; and the Blin formula for the interaction energy between two
such elements. These formulas are all very important in providing toals to
handle interactions between complex arrays of dislocations as discussed in the
subsequent two chapters. Because of their importance, we present their deriva-
tion in sufficient detail that it can be followed through step by step.

4-2. CONSERVATIVE AND NONCONSERVYATIVE MOTION

Let us extend the concepts of Chap. 3 to generally curved dislocations.
Consider a closed loop C, bounding some surface 4 (Fig. 4-1). Ascribe a sense
£ to C. The positive normal n to an element dA is defined by the requirement
that if C were made to shrink continuously in A until it just bounded dA, it
would encircle n in the positive sense, by the right-hand rule. Also dA=ndA.

C becomes a dislocation line of Burgers vector b if, over the surface A4, one
removes (or inserts) material

8V =Db-dA (4-1)

displaces the surface on the negative side of the cut by b relative to the positive
side, and then pastes the surfaces together. The surface 4 is perfect again, and
a pure line defect, the dislocation line C, results. Any surface A bounded by C
could be used for the operation. For example, the identical dislocation could
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Conservative and Nonconservative Motion 97

FIGURE 4-1. Closed dislocation loop
bounding surface A.

be produced by cutting and displacing any of the three surfaces shown in Fig.
4-2,
If the dislocation moves by ér, matter

SV==0Pb-(drxdl)  di=¢dl (4-2)
4

must be removed, according to Eq. (4-1). r is variable along C. Surface
elements A= 8rX d1 are added to 4 by the motion.

_ If everywhere along C the quantity b+ (8rX d1) is zero, the motion is one of
pure slip. This occurs if 8r is perpendicular to b x d1, since b+ (§r x dl)=—(b
X dl)+ 8r. The dislocation can move conservatively, by pure slip, on the cylindri-
cal surface containing C and b.

Equation (4-2) can be interpreted geometrically as follows:
Project the dislocation onto a screen normal to b (Fig. 4-3). The total mass
transport to the dislocation during dislocation motion is given as the magnitude of
the Burgers vector b times the change in projected enclosed area, counted negative
if the projection of C encircles b in the positive sense.

Exercise 4-1. The above condition for conservative motion, ile., that ér be
perpendicular to bX 41, is sufficient but not necessary. A segment for which

(3)

FIGURE 4-2. Three possible surface [cuts, 1, 2, and 3,
for producing a pure edge dislocation in a cylinder.
Projection is along the z axis.
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Projection of

Cand C’ = i
Positive area

Projection
of C"*

FIGURE 4-3. Projection on a screen normal to b of a dislocation line € which has undergone
glide to position C* and climb to position C".

bX d1=0 (dl being a pure screw segment) is not restricted to glide on the
cylindrical surface. Discuss how the statements of the preceding section should
be qualified to take this special case into account. How will such conservative
motion out of the cylindrical surface appear on the screen?

4-3. DISPLACEMENTS CAUSED BY CURVED DISLOCATIONS
Application of Green’s Function Method

The derivation of the displacements associated with a dislocation loop of
arbitrary shape involves the application of the theory, and Theorem  2-1,
presented in Sec. 2-7. Consider a material of infinite extent, and suppose that a
closed dislocation loop C of Burgers vector b is created (Fig. 4-4). The creation
of the dislocation produces some displacement u(r) at r. Imagine for the
moment that a point force acts at r. If a point force F acts at r while the
dislocation is created, it does work

W=F-u(r)=F,u,(r) (4-3)

I

where u,, and F,, are the components of u and F, respectively. If the displace-

1 m

ments relieve the point force, they decrease the energy of the mechanism
producing the point force by an amount W, the interaction energy. Therefore,
a positive W represents a decrease in the system energy. Since, by Theorem 2-1,
there is no cross term in the elastic energy between the stress field of the
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FIGURE 4-4. A point force F acting within
an elastic continuum containing a closed
dislocation loop.

dislocation and the stress field produced by the force F, and since the dislocation
line is not a sink of interaction energy, the entire energy W is spent as work done
on the surface A,

W= - LM}&,F o, (F—r) (4-4)

L

where £, g, (r'—r) is the stress 0;; at r’ caused by the components F,,, of a point
force F at r. The b, are the components of b, dA; are the components of dA, etc.
In terms of the displacement functions u,,,(r'—r) introduced in Eq. (2-70),

the so-called Green’s functions of elastici ty, Eq. (4-4), can be written as

W= —fdA be, g F.u .(r'—r) (4-5)
A m T

i rjk!ax;

with summation over /, J» k, and m understood, Equating Egs. (4-3) and (4-5)
with only one nonvanishing component of F, F,. =0 when m’= m, one obtains
the displacement field U, caused by the dislocation, by canceling F, |

d
”nr(r) = fl dAjb:CJ'jkfé-x_;“mk(r’ == l'} (4"6)

In other words, we use the point force F as a test probe to determine, via Eq.
(2-71), the displacement field of the dislocation. The surface work is written in
terms of the surface displacement b, and the stress in A, produced by the point

"That is, less encrgy is introduced at the cut surface, and since there is no cross term, less by
exactly the amount W if the point force has such a sign that it contributes to the energy of
formation of the loop. The total energy contributed by the external mechanisms producing the
surface displacements and the point lorce equals the elastic encrgy of the self-stress field of the
loop.
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force, at the point r’. By the elasticity equations (2-3) and (2-15), this stress can
1 turn be written in terms of the displacements at r’ produced by the point
force. Thus, component by component in the point force, one can equale the
work done by the point force at r and the surface work, cancel F,,, and deduce

the displacement field of the dislocation.

Mura® has demonstrated that the Burgers integral expression for u,,(r) can ¢
be transformed to a line integral for the gradient of u,(r). Because they are ;
relative coordinates (Fig. 4-4) dx, = — dx, so the derivative of Eq. (4-6) can be
written, with R=r¢"—r, as i

I

du,,(r 0%u,,(R)

(_) = hr(‘:’ 'k!f dA ’ A( ' (4—7) 9

axs 4 A ! 8)(5 ax!
This quantity enters the strains [Eq. (2-3)], which must be continuous across +
the cut A.
In accord with Eq. (2-8), we obtain

3%u,,(R) )

¢y =0 4-8 e

1kl a:‘.jd.\:; ( ) iI.J

when R 0. This condition is similar to the requirement for mechanical
equilibrium in the strain field of a point force. Since A can always be chosen so
that R #0 on the cut surface, Eqgs. (4-7) and (4-8) can be combined to give

-]
0 u,, 4

ou,,(r) e T
e i S - _.._"_'.—— i 11 1 -G
= b | ey~ Aigra (4-9)

&

Stokes' theorem® has the form

8 3 e
L(adeA,- ax'dA_I]_—eukE’iﬁadx* (4-10)

where, in terms of the orthogonal unit veclors, the Einstein permutation
operator [Eq. (3-94)] is given by

(I;k:cr.(c;xeﬁ] (d']l)

2T, Mura, Phil. Mag., 8, 843 (1963).
*Srokes’ theorem is widely known in the form

LcurlM-dAZ(fg_M-dl

See 1. S. Sokolnikoff and E. S. Sokolnikoff, “Higher Mathematics for Engineers and Physicists,”
McGraw-Hill, New York, 1941, p. 421. With M= ¢e, and d1= dx;e,, Eq. (4-10) follows directly.
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Application of Stokes’ theorem to Eq, (4-9) yields the line integral

aum(r}

dx,

me Cum’¢ a ”m}\(R) d ; (4'12)

which is Mura’s formula.

Equations (4-6) and (4-12) are generally valid for an anisotropic material. If
the Green’s function u, ,(r'—r) is known, the displacement and strain fields
caused by a dislocation of any shape can in principle be calculated. In the
further development we shall assume elastic isotropy. Much of what follows is
based on a review article by R. de Wit.*

The Burgers Displacement Equation

With the use of Eq. (2-47), Eq. (4-6) becomes, in a more extended form,

= aumk a m: aum;’
“’"(r)_' ALJAJb}' ax; !"'f dAjbr a. ’ #‘[IdAjbj ax: (4—13}

In order to derive the first term on the right-hand side of this equation, a
change of dummy indices dd b, =dAb, is required. Next, introducing Eq.
(2-70) for the Green’s functions into Eq. (4-13), one obtains

A  _n 4 _n -
u,(r)= QLL[(MJB — 2R dA +pb,,,ax;v RdA;+ pb;— 7V RdA,,
At 9°R
— Ab————dA,
At2p | ox, 0%
8,3
-14
+2ebigxr axiox, L (8:14)
Here
R=|r—r| (4-15)
and
R=r-r (4-16)

1R. de Wit, Solid State Phys., 10: 249 (1960).
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Finally, since 8%/0x/>=v'% etc., one can rewrite Eq. (4-14) in a more
symmetrical form suitable for the introduction of vector notation,

| ) 0
—_ 'l S — 2 iyt xmi2
u,,(r)= Swfb V"R dA, f(b,.ax;v RdA, — b=V Ra‘A)

mox] 87 A
qenl A 9 R o, 8 PR (4-17)
4 N +2p | 71 0x] Oxp,dx; T/ T Ax) Ox,, 0x; ¢

Again some changes in dummy indices are required. Equations (4-10) and
(4-17) combine to give

9 2 — __i_ 2 ’
(r)'_ fbma ’ v RdAJ 8 yscbfimikv Rdxk

] 9’R
8w(1—r) f{;bmﬁ dx,, 0x; dx (L)

where use is made of Eq. (2-50) in the form (A +p)/(A+2p)=1/2(1—»).
Since

2
r2R=_
YETR
and
,1 R
grad R B (4-19)
the vector form of Eq. (4-18) is
b 1 ¢ bxdl 1 (bXR)-dr
=222 R TEl=m) 2" Si—?e—_ 4:20)
Here
R-dA
Q== 4-21
| = (4-21)

is the solid angle through which the positive side of A is seen from r. The
change in sign in the last term from Eq. (4-18) to Eq. (4-20) comes about
because the variable with respect to which differentiation is performed has
been changed; grad= —grad’. Equation (4-20) was first derived by Burgers®
(with a difference in sign because of his different definition of b).

51, M. Burgers, Proc. Kon. Ned. Akad. Wetenschap., 42: 293, 378 (1939).
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The first term in Eq. (4-20) gives a discontinuity Au=b over the surface A,
consistent with the operation of producing the dislocation by cutting and
displacing 4. The other two terms are continuous except at the dislocation line.

With the use of Eq. (4-20), the displacement produced at a point r by an
arbitrarily curved dislocation, or array of dislocations, can be determined by
integration over the dislocation line.

4-4. SELF-STRESS OF A CURVED DISLOCATION

The stresses for the isotropic case could be derived starting with Eq. (4-12).
Instead, the stresses are derived following deWit’s derivation,® developed
before Mura’s formula’ was known. The stresses are obtained by the differenti-
ation of Eq. (4-18) and insertion of the result into Eq. (2-46). In the formula
for the displacements, there is a discontinuity over the surface A. In the
formula for the stresses, this discontinuity must disappear for continuity and
equilibrium to be maintained. Hence, unlike the case for displacements, the
stresses can be expressed in terms of line integrals alone; the dislocation is
defined by an operation that leaves the material perfect and continuous except
at the dislocation core.

The only term that is not expressed as a line integral in Eq. (4-20) is the one
involving the solid angle €. Consider 92 /dx;. Evidently, 8x,(0Q/9x;) can be
interpreted as the change in solid angle as seen from r if C is displaced by
or=—108x;¢ (Fig. 4-5). Thus Eq. (4-21) indicates that

09 _ )R-(ejxd!)

Ej c R (4-22)
or, written out in the notation of Eq. (4-18),
g%=*%ﬁﬁc‘uk§% V2R dx] (4-23)
The stresses are obtained from Egs. (2-7) and (2-47) in the form
0up = [ ABagBimi + (8arBpm + SanDa )] %L;—’: (4-24)

A simple but tedious rearrangement of Eqgs. (4-18), (4-20), and (4-24), involving

6R. deWit, Solid State Phys., 10: 249 (1960).
7T, Mura, Phil. Mag., 8: 843 (1963).
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FIGURE 4-5. A dislocation loop,

changes of dummy indices, leads to the expression

(1) (2) (3) (4)

1 | a rd '
Guﬂ = g 95([ 8GISBRJEF'J'R * afri'aﬁ.‘(hnk i Samﬁﬁfedk + 6n|’6,ﬁi€.‘mk ]‘bmig: % R dxk
. p(A+p) ; d°R v
T 27N +2p) ﬁ"’*‘w‘ 8x/,dxp0x, i
1AS, 4 ) 5
e S i 53
o 4'?T(A +2pt) ﬁbm(unk ax: VR dxk (4 “5)

This relation can be simplified by the following procedure of de Wit.® By
use of the relation’

8, 8 (4-26)

(Uk(Hm == 8:’1’8 im i

gm -
one can transform the first term in Eq. (4-25) to leave a more symmetrical form

*R. de Wit, Solid Stare Phys., 10: 249 (1960).

“Relation (4-26) is proved as follows: Equation (4-11) can be rewritten as
€k =" (ef- A e,‘.) =€, (e‘ Xc;)
Taking the dot product of e, and the above equation, one finds
€ Xe; =€ ey so that e Xe, = Gyl
Multiplying the two last equations, one obtains
€ uEicin = (e‘ Xe, ) (e, Xe, )=e,* [e!- X (e, Xon,}]
—e (6" 6)e (¢ e)e, ]

=(e;ver)(e;e, ) —(eme, ) (e ¢)

which proves Eq. (4-26).
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for 0,,. With the aid of Eq. (4-26), the four subterms (1), (2), (3), and (4) in the
first term of Eq. (4-25) can be expanded as follows:

(1) (1y
Srziaﬁ m€itk = Epip€ pmeSitk ¥ Sﬂﬂshvrc itk
(2) 2y
0, 01€ 1k = € p€ prafim A 0001 € pmk
(3) (3
8remOn1€otr =€pmp€ pio€ith +8,00,,€ i1
7'*R dx;, ' (4) 4y
' Br i € ouk = Ep1p€ pick Ik 80ttt (4-27)

A second application of Eq. (4-26) to the factor ez €, in (1)’ gives

| —
(4‘25J i fﬁ.fpff.f.h = S;JASIHJ - 'SptSﬁ.f\' (4-28]
55 ! and a term
Wit." By i
| Sﬂ."spkfpmu = Sﬂieknm
(4-26) i is obtained, which is evidently the negative of term (4),
]
§ = i
rical form : B Bpi€imn = Ogi€amk = — Bpi€hma

1 In this fashion, (1) is decomposed to yield a term —(4), (2) yiclds a term
l —(3), (3) yields a term —(2), and (4) yields a term —(1). The sum of terms
' (1)+(2)+(3)+(4) is

[ lj_i_ (2)—1— (3} % (4] = E:‘nmaﬁk - {rmﬁa:ri\ + zﬁrxﬁfmlk ‘\4‘29}

After the substitution of Eq. (4-29), and of » for A, Eq. (4-25) takes the neater

form
- P‘ j a '2 f |U‘ E] 2 5
Urq'i = Eﬂ— %ﬂhﬁrﬁf”m a_\‘: v R d,\lﬁ T g; _fﬁ'(.hmeunﬂ —"a-\’; vR dx 4
" :
[ 'R J 3 ) . )
2 be | aomae =8z VR| A 4-30
4q(l—») (]? i img ( dx;dx; dxp o gt v . dx | )

e yransemens
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This equation was first derived by Peach and Koehler'” (with a |different sign
because of their different definition of b). Equation (4-30) enables one to
determine the stress field of an arbitrarily curved dislocation by line integra-
tion. Specific examples of such a procedure are given in Chap. 5. A more
contracted form of Eq. (4-30) is given in dyadic notation

[ ]
=—-— Xv')—=@dl
" 4 Eﬁ(_—{b )R e
[l ; 1
il @ 7t .
+4ﬂf__dl (I)XV)R (4-31)

N B |15 , _Jo?
417“_;’)ng (bX dl)(v®v—1v?)R

where 1 is the unit dyadic or idemfactor, given by ¢,@e, +¢,@e, +e,Be,.

Exercise 4-2. Derive the stress o, of a straight pure edge dislocation in an
infinite medium, b=(b,,0,0), from Eq. (4-30). The result is given in Eq. (3-43).
Notice that the derivatives in (4-30) are expressed in the r’ coordinates of Fig.
4-4 and that R=r'—r, R=[(x'—x)?+(y— y)* +(z’'—2)*)"/?. Hint: Even
though x'= y’=0 in this problem, in terms involving d/dx’ and d/0dy’, the
derivatives must be taken before setting x’= y’=0. Equation (4-30) formally
applies to a closed loop of dislocation, yet here line integrals are taken only
over the z’ axis. Imagine that the dislocation is a portion of a closed loop with
the portions other than that along z” infinitely far removed, and|rationalize the
fact that these portions do not contribute to the integral.

4-5. ENERGY OF INTERACTION BETWEEN TWO
DISLOCATION LOOPS

If 1oop 1 is created while loop 2 is present, the stresses originating from loop 2
do work — W,,, where W, is the interaction energy between the two loops
(Fig. 4-6). Since, by Eq. (4-3), the work done on the surface of loop | is
W = — W,;, and since, by Theorem 2-1, no energy flows in or out of loop 2, the
work done on loop 1 represents a decrease in the strain energy of the total
system. Therefore, if W, is negative, the energy of the system decreases if loop
1 is created in the presence of loop 2, and an attractive force exists between the
loops.
The interaction energy is, from Eq. (4-4),

= afl

Wia= f.4ld"1n”1n°v (4-32)

ON{ 0. Peach and J. S. Koehler, Phys. Rev., 80: 436 (1950).
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FIGURE 4-6. Two dislocation loops within
the same elastic continuum.

e inserts Eq. (4-30) into this formula, recalling that 9/9x; = —(9/9x3 ),

If on
one finds
. a 5
T 8 i s
Wia 3‘”L,yscszl”dxz’*bl”bl‘"e’"'“ axl' v R (4 3 a)
- _E_ 2 |
T 8w J:h c_~2dAlﬁ dxl..blﬁbl Ema.ﬂ ax Avi R (4 335)

. _wr
+ 417(1_?).‘:‘? d{d dleb ub €imk ax ax1 axlﬂ (4 33C)

_ b 9 o3 |
477{]_”}'[1[ Csz1ﬂdx2*b,“b2mc,.mk8a5 T R (4133d)

By Stokes’ theorem, Eg. (4-10), term (4-33a) becomes

9
(4- 33a)“‘~—f 95dA dx3,b\ b2 Cima gy vZR

n
* e jg ﬁ;eﬁ” dxl;dx'zﬂblﬂblmcfmav ’R (4'34)
3

The first term in (a) vanishes because

= a 2D i 2 =
fﬁdt%@:v = E’idxznaxg v2R= Sﬁcd(v R)=0
2 1 2

Thus (a) is given by the second term in Eq. (4-34), which 1s

)= 9555 (b, Xb,) " (dl X dl,) 435)
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More simply for (b),

(4-330)= 4= Bli‘:h, : dlzj;il(grad, v 2R Xb, )+ dA,

_ K 2
= gsﬁﬁhl . (ﬂzj;llcurh TR b, dA,

o (b,-dl1,)(b,-dl))
4 ﬁ 95@ R (4-36)

The subscript 1 on grad and curl is inserted as a reminder that| the derivatives

are to be taken in terms of the r, coordinates in Fig. (4-6).
For term (¢), Stokes’ theorem, in the form of Eq. (4-10), yields'!

L a°R
4-33¢)=—F— dA, dxy by by €51
( ¢) 47(1—») LLEEE 1R T R time E},\']"d“.tiﬁ

The first term in (c¢) exactly cancels term (d). Thus
(4-33¢)+ (4-33d) 1_ = ffr i‘(b! X dl,)-T+(byXdl,) (4-38)
where T is a tensor with components

iy
Collection of terms and use of the relation

(bXb, ) (d1, X d1;)=(by*d1,)(by = dly) = (b= dl)by- dl,)

to eliminate (4-36) now yields

(b, Xb,) a’l xXdl,)  p 5(J6 (b, -d1,)(by - dl,)

W= 95 ff eS8 R

Sﬂ(h,XdI,}-T-(bZchIz) (4-40)
G

AT (=1

e simply write %R /8x,0xg, since 3R /dx, Ox,, =87R /Bxy Xy, In symmetrical terms,

where the subscript does not matter, it is left out.
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The above formula was first obtained by Blin.'> An alternative form'® for the
last term in Eq. (4-40) is

pr s ] f [ — (b T, ) %(b, X d1,)- (b, x_fznz)]

The integrands are not identical but differ by terms which give no net
contribution after integration over complete loops C, and C,. They would
differ for integrals over segments; Chap. 6. The form derived by Blin is always
used in this book. Equation (4-40) has a much more extensive application than
simply to two loops of dislocation; in Chap. 6, Eq. (4-40) is extended to yield
the interaction energy between two arbitrarily positioned segments of disloca-
tion line.

4-6. FORCE PRODUCED BY AN EXTERNAL STRESS ACTING
ON A DISLOCATION LOOP

Let o denote the stress tensor in the medium, excluding the self-stress of the
dislocation loop under consideration. As the loop is created, the stress does

work

W=L—b-(u-dA) (4-41)

IT every line element d1 of the loop is displaced by some distance, the area 4
changes by increments §rX d1 and the stress o does addition work

gw:-r_fdp.{;r: ﬂ-fb-[a-(arx d1)]
C C

:--f’:(b-o]-(ﬁrxdl)=iﬁ[(b-a)xdl]-Sr (4-42)
C C

Thus, since §r is arbitrarily variable along C,

dF=(b+o)Xdl (4-43)

Each element dl is acted upon by a force dF, as given in Eq. (4-43), in
agreement with Eq. (3-90). Equation (4-43) also was derived first by Peach and
Koehler.'* Together with Eq. (4-30), Eq. (4-43) can be used to determine the
interaction force between dislocation segments, as demonstrated in Chap. 5.

5. Blin, Acta. Met., 3: 199 (1955).
BR. Fuentes-Samaniego, research in progress.
“M. O. Peach and I. S. Koehler, Phys. Rev., 80: 436 (1950).
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4-7. SELF-ENERGY OF A DISLOCATION LOOP

In the preceding section we considered the work done by stresses other than
the self-stresses when a loop is created. In forming the dislocation, work must
also be done against the self-stress of the loop. Each element d1 of the loop is
acted upon by a force caused by the stress originating from all other parts of
the loop, and the work done against all these forces is the work done to supply
the self-energy. Only when the total force on each element dl of the loop is
zero is the loop in equilibrium, and only then does one find an extremum in
the total energy of the system.

Formally, the self-energy W, is obtained if in Eq. (4-40) one inserts
C,=C,=C and b,=b, =b and then divides by 2:

m=tf § (b-dl,)(b-dl,)
Po8mle—cle=c R

# ) R Rl
¥ 8m(1—») f;.lzcyfcz:c(bxcfl]) r-(bxdl,) (4-44)

P oo 3°R
Yo 9x,0x;

The factor of 2 can be justified by the following reasoning, which is generally
useful in the consideration of dislocation interactions. Imagine that the loop is
created in infinitesimal increments of the Burgers vector b; for each increment
the self-energy increases by the interaction energy of a loop of fractional
Burgers vector bf and a loop of vector b df. The sum of all interactions leads to
an average factor

INCAE

with which Eq. (4-40) must be multiplied.

Alternatively, one can regard the self-energy as the interaction energy
between all segments of the loop. Since the integrations in Eq. (4-44) count the
interactions between twe given elements twice, one again concludes that the
result must be divided by 2.

As is expected from the discussion of the core region of] straight disloca-
tions, Eq. (4-44) diverges as the separation between elements, R, approaches
zero. Cutoff procedures must be introduced to avoid the divergence, as
discussed in detail in Chap. 6. This problem is characteristic of all types of
interaction between two adjacent segments of the same dislocation line.
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PROBLEMS

4-1. Consider the originally pure screw dislocation lying along ABC in Fig.
47, 1f AB is moved conservatively through positions 4'B’, A"B", elc., while
BC is held fixed, a screw with a loop results. Is the loop a vacancy or an
interstitial loop?

FIGURE 4-7. A screw dislocation along A BC.
ABis moved conservatively in a clockwise manner
viewed along £ to form a closed loop BB'B"B.

4.2. The formation of the loop in Prob. 4-1 requires material transport.
Where is the source or sink for this matter? Hinr: Consider that the screw
emerges normal to a free surface at A and study the configuration at A as the
loop is formed.

4-3. Derive the stress field for a pure screw dislocation in an infinite medium
from Eq. (4-30).

4-4. Demonstrate that the displacements u(r), given by Eq. (4-20), change
discontinuously by Au= =b if the point r is intersected by the surface.

4-5. Show that the displacements given by Eq. (4-20) are dependent only on
the configuration of the dislocation line forming the loop, and not on the shape
of the surface A4, provided the surface A is not intersected in the mannger of
Prob. 4-4.
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