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The general solution of Eq. (2-59) is"! For the
result

Y(r)= f |I.(‘)(—r!r)’[ dv’ (2-60)

Physically, Eq. (2-60) expresses the fact that the potential at r is the sum of
individual potential contributions

or, In vec
i r')dV’
d““d’:——-——p( ) =
[r—r|
; Letuss
produced by charges p(r)dV’. For a point charge e at r, thtc :csull)l
p(r)=ed(r—r,) (2-61) (2:65) the
where 6(r'—ry) is the Dirac delta function, with the property
J1) 8 —rg) av = f(x,) (2-62)
with f(r') any function. Inserting Eq. (2-61) into (2-60) gives|the Green's
function for the potential arising from a point charge,
W)= — (2-63)
r—ro| The resu
) terms of
and from Eq. (2-39),
1
v2|r-—r | =—478(r—r,) (2-64)
0 In this r
tives is i

Thus in the Green’s function method the potential at any point can be
determined by the integration of Eq. (2-60) over a continuous distribution of
charge, each charge element p(r') d¥’ contributing to the potential like a point
charge situated at r’.

Application to Elasticity

In the elasticity case the elastic displacement u is analogous to the electrostatic
potential V', and the body forces f to the charge density p. Our aim is to
develop an expression in the form of Poisson’s equation (2-59), so that the
displacements can be determined from an expression like Eq. (2-60). The
procedure is somewhat more complicated for elasticity than in the preceding 25ee 1. S,
cases, because vector quantities are involved instead of scalars. McGraw-
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For the case of isotropy, the substitution of Eq. (2-47) into (2-8) yields the
result

du a u,;
) o
(P\-rlu),)t %, + 1 '!\ —+ f=0
or, in vector notation,
A+ pu)v (9 -u)+pviutf=0 (2-65)

Let us specialize to only one component of the body force and then generalize
the result. Suppose that a point force f,8(r) is acting at the origin. Equation
(2-65) then becomes

(?\-l—p)%(v cu)+p v iu, + £,8(r)=0
d

(A Hr)a

(¢ u)+pviu,=0 (2-66)

d
(A+p)=—(v u)+pviu;=0
04 :
The results of potential theory'? show that a vector u can be reprcsented in
terms of a scalar potential ¢ and a vector potential A,
u=v ¢ +curl A (2-67)

In this representation, Eq. (2-66) becomes, after the sequence of some deriva-
tives is interchanged,

895 04, 94, "
(o) S e 2 - 52 |+ 100)=0
d¢ 04 04
2 i 72— = 1
(A4 2]~ dx, =Y ( dx,  dx, ) 0 (2168)
0A
9 2 flci) 4 2 aAZ e s | —
(A2 x4 BN dx,  0x,

12600 1. 5. Sokolnikoff and R. M. Redheffer, “Mathematics of Physics and Modern Engineering,”
McGraw-Hill, New York, 1966, p. 408.
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It is easily verified that v *|r]=2/|r|, so that Eq. (2-64) is cquivalent|to
v v ?r|=—8nd(r) (2-69)

Now, if Egs. (2-68) and (2-69) can be shown to be equivalent, then the Green's
function analog will be established. A solution which gives this equivalency, as
can be verified by direct substitution, is

A dr _fi or

¢18W(?\-5-2p)TX| Ar= By x4

_ _ f]. ar
Ar=0 A3_8wp dx,

Substituting these definitions into (2-67) and generalizing the result to a point
force f,8(r), one finds that the ith component of the displacement uu(r) caused
by a unit point force f, =1 applied in the jth direction at the origin i$

_ .4 2, Atp a%r
uu.(r)— Swp(auv 8 A+2p 0x,0x,;

(2-70)

Also, u, (r)= u;(r), by symmetry. u, ;(n) 1s called the tensor Green’s function for
the elastic displacements. A contmuous distribution of forces f(r) in an elastic
medium causes displacements

::i-(r)=fu”. r—r')f(r')dV’ (2-71)

Equation (2-71) is analogous to Eq. (2-60), and the analogy with the electro-
static case is complete.

Equation (2-70) gives the response of an infinite body to a point force. In a
finite body, boundary conditions at the surface must be satisfied. For example,
no forces can act on a free surface,

n,=0 (2-72)

where the n, are the components of n, the local surface normal. The displace-
ments in a fmlte body subjected to a point force can be described as a
superposition of the displacements (2-70) and displacements caused by “image”

stresses applied on the external surface of the body in order to satisfy
boundary conditions. The image displacements are continuous throughout the
entire body. At a point sufficiently close to that at which the point force is
applied, Eq. (2-70) gives the dominant part of the nonuniform displacement
giving rise to stress.
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FIGURE 2-5. Displacements «, and 1, associated
with point forces f, and /.

Point Source of Expansion

As an example of the application of Eq. (2-70), consider the displacement| field
of a point source of expansion. Three perpendicular double forces produce a
stress field typical of such a source. In Fig. 2-5, let &, k, and / tend to |zero,
while fh=f k= [I=M is kept constant. The force — f_ at the origin
produces a displacement — f u; (r), given by Eq. (2-70). The opposite force f.
at h produces a displacement f u (r)— f(Du,, /dx)h. Thus the force| pair
produces a displacement —(du,, /0x)f k. Proceeding similarly for the other
force couples, one finds that the total displacement in the x direction is, from
Eq. (2-70),

d d 0 M B
= Vi — — M— P —_— e R
u, M A { T u,— M 32 Y13 87 (N +35) ax Xy
M d 1 Vi >
SO Al M 5 (2-73)

a(A+2p) 0x r dm(A+2up) 3

u, and u_ follow from symmetry. Inspection of Eq. (2-73) reveals that u ., u
and u, can be derived from a purely radial displacement

e

M 1 _
—_——_— — A
T da(N+2p) 2 Cal

This displacement is representative of a point of expansion with a strength

M
A2

Sv=4nriu = (2-75)

Suppose that the source of expansion is at the origin of a free sphere of
radius R. In order to obtain a displacement field u, consistent with the free
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surface condition [Eq. (2-72)], a term ar must be added to make o,, vanish at Near the
r=R: region tf
bv
u,= =<F o (2-76)
4ar-
In spherical coordinates, the appropriate form of Eq. (2-7) is" The 1
are also
du 2Au u du (2-70) a
o, =(A+2 o o 0, =0 =2(A+R)—+tA— (2 4
rr ( H) a." r ae ol ( F‘) r +;\ ar (— 77) analog}
special
Combining Egs. (2-76) and (2-77) and setting 0., =0 at r = R, one finds contint
4 do
a=—r— (2-78)
2p+3A 47R3
The displacement at the surface is then
(R]—M +6u Ov 3B +4p v
u —_—— T ——
AT A2 4R 3B 4ak? The m
s . | o in lin
This displacement produces an expansion of the total volume V =(47w/3)R", o
e 14
given by from
th
3B+4 e
y=2"""Rs, (2-80) linear
3B
In
stress
- : R = i 5 assur
L. D. Landau and E. M. Lifshitz, “Theory of Elasticity,” Pergamon, New York, 1959, p. 3. -
14The relation between point force distributions and external volume changes is general, as shown —
by I. D. Eshelby, Sofid State Phys., 3 79 (1956). We briefly outline the derivation. The total
external volume change 81 is related to the local dilatation ¢;, by |
where
V= [e dv= Sy f o dV (a) inie
where Hooke's law is used in the second step. An identity is
o, Xy da, day
I8 g B =+ Ty,
dx; Y dx; F 0 8k = X o, Uk (ol :
for
Substituting (b) in (a) and using Eq. (2-2) gives
do,x
e d i S i %
sV = s,m[f = [5x4 u‘l’] (c)
Recognizing 5,4 0;%) a$ & veclor v), one Sees that the first integral is the volume integral of the Thu
divergence of v, so Stoke’s theorem can be used to transform the integral to an integral over a Eq.
closed surface A: SR
Ihj.

ﬁlf’——s,m[fnj,n‘._t,‘ dAd 4 f_f;,.x'*dl’] {d) ¥f=)
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Near the singularity, for r < R, the first term in Eq. (2-76) is dominant. In this
region the dominant part of the internal stress is found from Eq. (2-77) to be

pdo __pdo
0, ] Ogg — G¢-¢ =

ar 2ar?

(2-81)

The results of this section are useful in the treatment of point defects and
are also applied in the next section. Other specific examples of the use of Egs.
(2-70) and (2-71) are given in Chap. 4. In closing this section we note that the
analogy between electromagnetics and elasticity is more general than the
special case invoked above. The general analogy is sometimes used in the
continuum theory of dislocations.'*"”

2-7. INTERACTION BETWEEN INTERNAL STRESS AND
EXTERNAL STRESS

Approximations in Linear Elasticity

The main purpose of this section is to develop a very important theorem, valid
in linear elasticity, about the elastic energy of a body containing internal
stresses and subjected to external forces. The desired theorem follows directly
from a discussion of the limitations of linear elasticity, without the complicated
mathematical considerations of a formal development from the equations of
linear elasticity.

In linear elasticity the superposition principle is assumed to hold true. The
stresses and displacements caused by a set of forces acting on a body are
assumed to be the sum of those caused by the individual forces. The linear-
elasticity assumption clearly is invalid for large strains, where force-distance

where 1 is a unit vector normal to AL If the surface is 4 free surfuce Ot musl be zero and appropriate

image tlerms can be incorporated into modified values of &'

BV =5y | fxdV ()
for an isotropic elastic solid, &', = 0 unless j = & and .‘\"”J.r = 1 + (4u/3B) = &/3B,|s0

- . .9

v= 2> | feav (2-79)

Thus o sct ol point ferces [ at positions x produce i volume change as in the special case of
Eg. (2-80)
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