Measurement Errors

Precision of an experiment is a measure of the reliability of the experiment (how well it can be reproduced.
Accuracy refers to the agreement between a measurement and the true or correct value

I measured time to a precision of 0.1 s . The time I measured was 0.2 s . What is the relative uncertainty?

$$
0.1 / 0.2=0.5
$$

If you need the $\%$ then

$$
0.5 \times 100=50 \%
$$

Rule 1:
 If a measured quantity is multiplied or divided by a constant then the absolute uncertainty is multiplied or divided by the same constant. (In other words the relative uncertainty stays the same.)

- Suppose that you want to find the average thickness of a page of a book. We might find that 100 pages of the book have a total thickness of 9 mm . If this measurement is made using an instrument having a precision of 0.1 mm , we can write

```
thickness of 100 pages,T T 9.0mm \pm0.1mm
and, the average thickness of one page, t, is obviously given by
t=T/100
therefore our result can be stated as t=9/100mm \pm0.1/100mm
or t=0.090mm \pm0.001mm
```

Rule 2: If two measured quantities are added or subtracted then their absolute uncertainties are added.

- To find a change in temperature, DT, we find an initial temperature, T 1 , a final temperature, T 2 , and then use DT = T2-T1
- If T 1 is found to be $20^{\circ} \mathrm{C}$ and if T 2 is found to be $40^{\circ} \mathrm{C}$ then $\mathrm{DT}=20^{\circ} \mathrm{C}$.
- But if the temperatures were measured to a precision of $\pm 1^{\circ} \mathrm{C}$ then we must remember that
- $19^{\circ} \mathrm{C}<\mathrm{T} 1<21^{\circ} \mathrm{C}$ and $39^{\circ} \mathrm{C}<\mathrm{T} 2<41^{\circ} \mathrm{C}$
- The smallest difference between the two temperatures is therefore (39-21) $=18^{\circ} \mathrm{C}$ and the biggest difference between them is $(41-19)=22^{\circ} \mathrm{C}$
- This means that
- $18^{\circ} \mathrm{C}<\mathrm{DT}<22^{\circ} \mathrm{C}$
- In other words
- $\mathrm{DT}=20^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$

Rule 3: If two (or more) measured quantities are multiplied or divided then their relative uncertainties are added.

- To measure a surface area, S, we measure two dimensions, say, x and y, and then use
- $S=x y$
- Using a ruler marked in mm , we measure $\mathrm{x}=50 \mathrm{~mm} \pm 1 \mathrm{~mm}$ and $\mathrm{y}=80 \mathrm{~mm} \pm 1 \mathrm{~mm}$
- This means that the area could be anywhere between
- $(49 \times 79) \mathrm{mm}^{2}$ and $(51 \times 81) \mathrm{mm}^{2}$
- that is
- $3871 \mathrm{~mm}^{2}<\mathrm{S}<4131 \mathrm{~mm}^{2}$
- To state our answer we now choose the number half-way between these two extremes and for the indeterminacy we take half of the difference between them.
- Therefore, we have
- so $\mathrm{S}=4000 \mathrm{~mm}^{2} \pm 130 \mathrm{~mm}^{2}$
- (well...actually $4001 \mathrm{~mm}^{2}$ but the " 1 " is irrelevant when the uncertainty is $130 \mathrm{~mm}^{2}$).
- Now, let's look at the relative uncertainties.
- Relative uncertainty in x is $1 / 50$ or 0.02 mm .
- Relative uncertainty in y is $1 / 80$ or 0.0125 mm . So, if the theory is correct, the relative uncertainty in the final result should be $(0.02+0.0125)=0.0325$.
\cdot
Check
- Relative uncertainty in final result for S is $130 / 4000=0.0325$

Rule 4: If a measured quantity is raised to a power then the relative uncertainty is multiplied by that power. (If you think about this rule, you will realise that it is just a special case of rule 3.)

To find the volume of a sphere. We then use the formula: $\mathrm{V}=(4 / 3) \mathrm{pr} 3$
Suppose that the diameter of a sphere is measured (using an instrument having a precision of $\pm 0 \times 1 \mathrm{~mm}$) and found to be 50 mm .

- Diameter $=50 \cdot 0 \mathrm{~mm} \pm 0 \cdot 1 \mathrm{~mm}$
- so, $\ldots \mathrm{r}=25.0 \mathrm{~mm} \pm 0.05 \mathrm{~mm}$
- This means that V could be between
- $\quad(4 / 3) p(24.95) 3$ and $(4 / 3) p(25.05) 3$
- so 65058 mm 3 < V < 65843 mm 3
- As in the previous example we now state the final result as
- $\mathrm{V}=65451 \mathrm{~mm} 3 \pm 393 \mathrm{~mm} 3$
- Check
- Relative uncertainty in r is $0 \times 05 / 25=0.002$
- Relative uncertainty in V is $393 / 65451=0.006$ so, again the theory is verified

