YEAR 12

PHYSICS (STAGE 3)

VECTORS TEST

Student's Name:	Tutorial Group:
Teacher's Name:	Date:

- A scalar quantity has magnitude only.
- A vector quantity has both magnitude and direction.
- 1. For each physical quantity listed in TABLE 1, can you indicate which quantity is a vector, and which is a scalar by printing either V for a vector or S for a scalar in the appropriate cell in the table?

TABLE 1: Which are Scalars? Which are Vectors?					
	Physical Quantity	Scalar	Vector		
1	mass				
2	weight				
3	time				
4	temperature				
5	distance				
6	displacement				
7	speed				
8	velocity				
9	acceleration				
10	force				
11	kinetic energy				
12	potential energy				
13	momentum				
14	impulse				

[14 marks]

Suppose that you are a passenger, sitting at rest, on a school bus that is travelling West at 10.0 m s^{-1} .

г

2.	What is your speed relative to the bus?	[1 mark]
3.	What is your speed relative to the ground?	[1 mark]
4.	What is your velocity relative the ground?	[2 marks]

1

- Graphically a vector is represented by an arrow, whose length gives the magnitude of the vector, and whose arrowhead gives the direction of the vector.
- 5. How would you **graphically** show the velocity of a school bus, which is travelling **West** at 10.0 m s^{-1} ?
- 6. How would you **graphically** show the velocity of a school bus, which is travelling **East** at 10.0 m s^{-1} ?
- 7. Can a velocity of 10.0 m s⁻¹ East be **mathematically** shown as 10.0 m s⁻¹ West? You must fully explain your answer.

[3 marks]

[3 marks]

[3 marks]

Vector Addition ($\underline{\mathbf{C}} = \underline{\mathbf{A}} + \underline{\mathbf{B}}$)

Does the order of vector addition affect either the magnitude or the direction of the resultant vector?

10. If vector $\underline{\mathbf{B}}$ is added to vector $\underline{\mathbf{A}}$ is the resultant obtained the same, as when vector $\underline{\mathbf{A}}$ is added to vector $\underline{\mathbf{B}}$? You must fully explain your answer? HINT: Refer back to the **vector addition** diagram on Page 2.

Trigonometric Formulas

For a right-angled Triangle

For any Triangle

Law of cosines

$$c^{2} = a^{2} + b^{2} - 2 a b \cos \gamma$$

Law of sines

 $\sin \alpha / a = \sin \beta / b = \sin \gamma / c$

[3 marks]

11. If a bushwalker walks 6.5 km North East, then 4.5 km North, what is his/her resultant displacement? You must draw a **vector addition** diagram, with labelled arrows, in your solution to this problem.

[6 marks]

Vector Difference $(\underline{\mathbf{C}} = \underline{\mathbf{A}} - \underline{\mathbf{B}})$

• The difference of vectors <u>A</u> and <u>B</u>, represented by <u>A</u> – <u>B</u> is best defined as the sum of <u>A</u> + (– <u>B</u>).

12. How is vector $-\underline{\mathbf{B}}$ different from vector $\underline{\mathbf{B}}$?

[1 mark]

13. How could you describe mathematically the unknown vector (?) in terms of vectors <u>A</u> and <u>B</u>?

[1 mark]

14. How does **reversing the order of subtraction** of two vectors affect the vector difference? For example, how would the vector difference of $\underline{\mathbf{A}} - \underline{\mathbf{B}}$ differ from the vector difference of $\underline{\mathbf{B}} - \underline{\mathbf{A}}$?

[1 mark]

• Change in velocity $(\Delta \mathbf{v}) = (\mathbf{v} - \mathbf{u}) = \mathbf{v} + (-\mathbf{u})$; where $\mathbf{v} = \text{final velocity}$, and $\mathbf{u} = \text{initial velocity}$.

In a tennis match at the Kooyong Classic, a player receives a served ball that was travelling at 30 m s⁻¹ South just before the ball hit his/her racquet. Immediately after leaving his/her racquet, the tennis ball is now travelling at 25 m s⁻¹ North.

15. What **change in velocity** (magnitude and direction) did the receiving player give to the tennis ball? You must draw a **vector difference** diagram, with labelled arrows, in your solution to this problem.

[5 marks]

A cyclist travelling at 12 km h⁻¹ East makes a right-hand turn at an intersection without changing speed.

16. What **change in velocity** (magnitude and direction) did the cyclist experience in making the righthand turn? You must draw a **vector difference** diagram, with labelled arrows, in your solution to this problem.

Resolution of a Vector

• **Resolution** is the process of splitting or resolving a single vector into its component vectors.

Consider a single vector $\underline{\mathbf{R}}$ making an angle θ^{0} with the horizontal.

Vector $\underline{\mathbf{R}}$ can be resolved or split into two rectangular (at 90⁰) component vectors:

Vertical component: $\mathbf{R} \mathbf{v} = \mathbf{R} \sin \theta$

Horizontal component: $\mathbf{R}_{\mathrm{H}} = \mathbf{R} \cos \theta$.

The single vector $\underline{\mathbf{R}}$ has been replaced by its two rectangular (at 90⁰) component vectors $\mathbf{R}_{\mathbf{V}}$ and $\mathbf{R}_{\mathbf{H}}$.

A gardener is pushing with a force of 150 N on the handle of a lawn roller inclined at 40^{0} to the ground.

17. What vertical downward force is exerted by the gardener on the lawn roller?

[2 marks]

18. What horizontal force is moving the lawn roller forward across the lawn?

[2 marks]

19. If the lawn roller has a weight of **303.6** N, what is the total force pushing downwards on the lawn?

[2 marks]

[Total marks = 60]

Percent score =