YEAR 12
PHYSICS (STAGE 3)

VECTORS TEST

Student's Name:	\square
Teacher's Name:	\square

- A scalar quantity has magnitude only.
- A vector quantity has both magnitude and direction.

1. For each physical quantity listed in TABLE 1, can you indicate which quantity is a vector, and which is a scalar by printing either \mathbf{V} for a vector or \mathbf{S} for a scalar in the appropriate cell in the table?

TABLE 1: Which are Scalars? Which are Vectors?			
Physical Quantity			Scalar
1	mass		
2	weight		
3	time		
4	temperature		
5	distance		
6	displacement		
7	speed		
8	velocity		
9	acceleration		
10	force		
11	kinetic energy		
12	potential energy		
13	momentum		
14	impulse		

[14 marks]
Suppose that you are a passenger, sitting at rest, on a school bus that is travelling West at $10.0 \mathrm{~m} \mathrm{~s}^{-1}$.
2. What is your speed relative to the bus? \square
3. What is your speed relative to the ground? \square
4. What is your velocity relative the ground?

- Graphically a vector is represented by an arrow, whose length gives the magnitude of the vector, and whose arrowhead gives the direction of the vector.

5. How would you graphically show the velocity of a school bus, which is travelling West at $10.0 \mathrm{~m} \mathrm{~s}^{-1}$? \square
6. How would you graphically show the velocity of a school bus, which is travelling East at $10.0 \mathrm{~m} \mathrm{~s}^{-1}$?

7. Can a velocity of $10.0 \mathrm{~m} \mathrm{~s}^{-1}$ East be mathematically shown as $-10.0 \mathrm{~m} \mathrm{~s}^{-1}$ West? You must fully explain your answer.
\square

Vector Addition $(\underline{\mathbf{C}}=\underline{\mathbf{A}}+\underline{\mathbf{B}})$

- The resultant or vector sum of vectors $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$ is a vector $\underline{\mathbf{C}}$ whose effect on an object is equal to the combined effects of vectors $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$ on that object.

8. How could you describe in words the unknown vector (?) in terms of vectors $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$?

9. How could you describe mathematically the magnitude of the unknown vector (?) in terms of vectors $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$?

Does the order of vector addition affect either the magnitude or the direction of the resultant vector?
10. If vector $\underline{\mathbf{B}}$ is added to vector $\underline{\mathbf{A}}$ is the resultant obtained the same, as when vector $\underline{\mathbf{A}}$ is added to vector B? You must fully explain your answer? HINT: Refer back to the vector addition diagram on Page 2.

Trigonometric Formulas

For a right-angled Triangle

For any Triangle

11. If a bushwalker walks 6.5 km North East, then 4.5 km North, what is his/her resultant displacement? You must draw a vector addition diagram, with labelled arrows, in your solution to this problem.

Vector Difference $(\underline{\mathbf{C}}=\underline{\mathbf{A}}-\underline{\mathbf{B}})$

- The difference of vectors $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$, represented by $\underline{\mathbf{A}}-\underline{\mathbf{B}}$ is best defined as the sum of $\underline{\mathbf{A}}+(-\underline{\mathbf{B}})$.

12. How is vector $-\underline{\mathbf{B}}$ different from vector $\underline{\mathbf{B}}$?
\square
13. How could you describe mathematically the unknown vector (?) in terms of vectors $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$?

14. How does reversing the order of subtraction of two vectors affect the vector difference? For example, how would the vector difference of $\underline{\mathbf{A}}-\underline{\mathbf{B}}$ differ from the vector difference of $\underline{\mathbf{B}}-\underline{\mathbf{A}}$?
\square

- Change in velocity $(\Delta \mathbf{v})=(\mathbf{v}-\mathbf{u})=\mathbf{v}+(-\mathbf{u})$; where $\mathbf{v}=$ final velocity, and $\mathbf{u}=$ initial velocity.

In a tennis match at the Kooyong Classic, a player receives a served ball that was travelling at $30 \mathrm{~m} \mathrm{~s}^{-1}$ South just before the ball hit his/her racquet. Immediately after leaving his/her racquet, the tennis ball is now travelling at $25 \mathrm{~m} \mathrm{~s}^{-1}$ North.
15. What change in velocity (magnitude and direction) did the receiving player give to the tennis ball? You must draw a vector difference diagram, with labelled arrows, in your solution to this problem.

A cyclist travelling at $12 \mathrm{~km} \mathrm{~h}^{-1}$ East makes a right-hand turn at an intersection without changing speed.
16. What change in velocity (magnitude and direction) did the cyclist experience in making the righthand turn? You must draw a vector difference diagram, with labelled arrows, in your solution to this problem.

Resolution of a Vector

- Resolution is the process of splitting or resolving a single vector into its component vectors.

Consider a single vector $\underline{\mathbf{R}}$ making an angle $\boldsymbol{\theta}^{\mathbf{0}}$ with the horizontal.

Vector $\underline{\mathbf{R}}$ can be resolved or split into two rectangular (at 90°) component vectors:

Vertical component: $\mathbf{R} \mathbf{v}=\mathbf{R} \sin \theta$
Horizontal component: $\mathbf{R}_{\mathbf{H}}=\mathbf{R} \cos \boldsymbol{\theta}$.
The single vector $\underline{\mathbf{R}}$ has been replaced by its two rectangular (at 90°) component vectors $\mathbf{R v}$ and $\mathbf{R}_{\mathbf{H}}$.

A gardener is pushing with a force of $\mathbf{1 5 0} \mathbf{N}$ on the handle of a lawn roller inclined at $\mathbf{4 0}{ }^{0}$ to the ground.
17. What vertical downward force is exerted by the gardener on the lawn roller?
\square
18. What horizontal force is moving the lawn roller forward across the lawn?
\square
[2 marks]
19. If the lawn roller has a weight of $\mathbf{3 0 3 . 6} \mathbf{N}$, what is the total force pushing downwards on the lawn?
\square
[2 marks]
[Total marks $=60]$
Percent score $=$ \square

