YEAR 12

PHYSICS (STAGE 3)

PROJECTILE MOTION TEST

Student's Name: \square Tutorial Group:

Teacher's Name: \square Date: \qquad

- Motion is a continuous change in position. Rectilinear motion is motion in a straight line.
- The equations of rectilinear motion: $\mathbf{v}=\mathbf{u}+\mathbf{a t} ; \mathbf{v}^{2}=\mathbf{u}^{2}+\mathbf{2 a s}$, and $\mathbf{s}=\mathbf{u t}+1 / 2 \mathbf{a} \mathbf{t}^{2}$
- Projectile motion is the motion of an object in a parabolic path near the Earth's surface under the action of gravity alone.

The Principles of Projectile motion

Galileo Galilei (1564-1642) argued that projectile motion was a compound motion made up of a horizontal and a vertical motion.

The adjacent diagram shows a projectile launched with an initial velocity of $\mathbf{V}_{\mathbf{0}}$ at an angle of $\boldsymbol{\theta}^{\boldsymbol{0}}$ to the horizontal.

The three principles of projectile motion can be stated as follows. The projectile:

- Has a horizontal velocity, which is constant.
- Has a vertical velocity, which is increasing downwards at $\mathbf{g}=9.8 \mathbf{m ~ s}^{-2}$.
- Follows a parabolic path (trajectory).

If air resistance can be ignored, the projectile motion can be analysed as two separate motions.

In a rectangular coordinate system, velocity $\mathbf{V}_{\mathbf{0}}$ can be resolved into two vector components $\mathbf{V}_{\mathbf{0 Y}}$ and $V_{0 x}$ at $90{ }^{0}$ to each other.

When answering Questions 1 through 16, assume that air resistance is negligible, i.e., it can be neglected.

1. Can you draw an arrow, on the Diagram on Page 1, to show the velocity (magnitude and direction) of the projectile when it is located at Position 2 (at the top of its flight)?
2. During the projectile's flight, what is the magnitude of its acceleration in the negative \mathbf{Y} direction shown in the Diagram given on Page 1?
\square
3. During the projectile's flight, what is the magnitude of its acceleration in the \mathbf{X} direction shown in the Diagram given on Page 1?
\square
4. If it takes \mathbf{t} seconds for the projectile to travel from Position 1 to Position 3, shown in the Diagram on Page 1, how many seconds will it take to travel from Position1 to Position 2?
\square
5. What is the mathematical equation for the vertical component $\mathbf{V}_{0 y}$ of the initial velocity $\mathbf{V}_{\mathbf{0}}$?
\square
6. What is the mathematical equation for the horizontal component $\mathbf{V}_{\mathbf{0 x}}$ of the initial velocity $\mathbf{V}_{\mathbf{0}}$?
\square
[2 marks]
7. In the absence of air resistance, what single force acts on the projectile during its flight?
\square
8. In the absence of air resistance, why does the horizontal component $\mathbf{V}_{0 x}$ remain constant during the flight of the projectile? To correctly answer this Question, you must apply this formula: $\mathbf{F}=\mathbf{m} \times \mathbf{a}$.
9. What is the acceleration of the projectile when it is located at the top of its flight path (Position 2)?
\square
10. Why does the vertical component of $\mathbf{V}_{\mathbf{0}}: \mathbf{V}_{\mathbf{0 Y}}=\mathbf{0}$, at the top of the projectile's flight path?
\square
[3 marks]

The horizontal Range of a Projectile

- The horizontal range \mathbf{R} of a projectile is the horizontal distance a projectile travels before it returns to its original height, which is typically the ground, i.e., $\mathbf{y}($ final $)=\mathbf{y} \mathbf{0}$.

11. The horizontal range \mathbf{R} is the distance between what two positions in the Diagram given on Page 1?
\square
[2 marks]
12. By referring back to, and analysing the Diagram on Page 1, what mathematical equation can be used to calculate the constant horizontal speed $\mathbf{V}_{\mathbf{0 x}}$ of the projectile during its motion?
\qquad
13. If it takes \mathbf{t} seconds for the projectile to reach its horizontal range \mathbf{R}, while travelling at a constant horizontal speed $\mathbf{V}_{\mathbf{0 x}}$, what mathematical equation can be used to calculate the magnitude of \mathbf{R} ?
\square
[2 marks]

TABLE 1: KINEMATIC EQUATIONS FOR PROJECTILE MOTION

(y is taken as positive upward: $a_{x}=0 ; a_{y}=-g=-9.80 \mathrm{~m} \mathrm{~s}^{-2}$)

HORIZONTAL MOTION	VERTICAL MOTION *
$\left(\mathrm{a}_{\mathrm{x}}=0 ; \mathrm{v}_{\mathrm{x}}=\right.$ constant $)$	$\left(\mathrm{a}_{\mathrm{y}}=-\mathrm{g}=\right.$ constant $)$
$\mathbf{v a x}_{\mathrm{x}}=\mathrm{V}_{0} \mathbf{x}$	$v_{y}=v_{0 y}-\mathbf{g} \times \mathrm{t}$
$\mathrm{x}=\mathrm{x} 0+\mathrm{v} 0 \mathrm{x} \times \mathrm{t}$	$\mathbf{y}=\mathbf{y ~}_{0}+\mathrm{v}_{0} \times \mathbf{x}-1 / 2 \mathrm{~g} \times \mathrm{t}^{\mathbf{2}}$
	$v_{\mathrm{y}}{ }^{2}=v_{0 y}{ }^{2}-2 \mathrm{~g}\left(\mathrm{y}-\mathrm{y}_{0}\right)$

* If \mathbf{y} is taken as positive downward, the minus $(-)$ signs in front of \mathbf{g} become plus (+) signs.

You must answer Questions 14 and 15 in terms of the launch angle $\boldsymbol{\theta}$ as given in the Diagram on Page 1.
14. What is the mathematical equation for the vertical component $\mathbf{V}_{0 \mathrm{y}}$ of the initial velocity $\mathbf{V}_{\mathbf{0}}$?
15. What is the mathematical equation for the horizontal component $\mathbf{V}_{\mathbf{0 x}}$ of the initial velocity $\mathbf{V}_{\mathbf{0}}$?
\square

Numerical Problem Solving

Let's assume that Babe Didrikson's $\mathbf{4 3 . 6 8} \mathrm{m}$ gold wining javelin throw, at the Olympics held in Los Angeles in 1932, had the following physical characteristics:

- Launch speed $=\mathbf{2 5 . 0} \mathrm{m} \mathrm{s}^{-1}$
- Launch angle $=40 . \mathbf{0}^{0}$ to the ground
- Launch height $=\mathbf{2 . 0 0} \mathrm{m}$ above the ground
- Air resistance was negligible

Quadratic formulae:

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{ }\left(b^{2}-4 a c\right)}{2 a}
\end{aligned}
$$

Babe Didrikson wins gold in 1932
16. Can you calculate the (a) size of the horizontal component; (b) size of the vertical component; (c) flight time; (d) height reached above the javelin's release point; (e) maximum height reached above the ground, and (f) horizontal range of the javelin?

Q16 (a) [2 marks]: (b) [2 marks]: (c) [4 marks]: (d) [2 marks]: (e) [1 mark], and (f) [2 marks]
\square

