YEAR 12
PHYSICS (STAGE 3)
CIRCULAR MOTION TEST
\square Tutorial Group: \square

Teacher's Name: \square Date: \qquad

- Motion is a continuous change in position.
- Uniform circular motion is motion in a circle at constant speed \mathbf{v}.
- When any object undergoes uniform circular motion, the magnitude of its velocity (or speed \mathbf{v}) remains constant, and the direction of its velocity changes continuously.
- As acceleration is defined as the rate of change of velocity, a continuous change in direction constitutes acceleration, just as a change in the magnitude of the velocity (or speed \mathbf{v}) does.

Swinging a Child in a Horizontal Circle

1. Why is a child being swung, at constant speed, in a horizontal circle undergoing uniform acceleration?

[4 marks]

We can draw a free-body diagram to illustrate some selected forces acting as the man swings the child.

- Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation, like a child swung in a horizontal circle at constant speed \mathbf{v}.

An analysis of the Free-body diagram

- The action force is the force exerted by the man on the child.
- The reaction force is the force exerted by the child on the man.
- The action force has been resolved into two rectangular components at 90^{0} to each other.
- The child's weight force acts through his/her centre of gravity.

Any air resistance acting on the child would be negligible, i.e., it would be so small, it can be ignored.

- Newton's Third of Motion can be stated as follows: If object \mathbf{B} exerts a force (F) on object \mathbf{A}, object A exerts an equal but oppositely directed force (-F) on object \mathbf{B}.

2. In what way is the reaction force \mathbf{F} reaction the same as the action force \mathbf{F} action?
3. In what way is the reaction force $\mathbf{F}_{\text {reaction }}$ different from the action force $\mathbf{F}_{\text {action }}$?
\square

Resolution of action Force

The free-body diagram shows that the action force has been resolved into two rectangular component vectors: vertical $\mathbf{F}_{\mathbf{v}}$ and horizontal $\mathbf{F}_{\mathbf{H}}$, which when added together have the same effect as the action force, which they have replaced.
4. How does the free-body diagram show that the action force $\mathbf{F}_{\text {action }}$ has been replaced?
\square
5. There are only two original forces acting on the child being swung in a horizontal circle at constant speed \mathbf{v}. What are names of these two forces?
\square
6. What mathematical equation can be used to calculate the size of the vertical component $\mathbf{F} \mathbf{v}$?
\square
7. What does the vertical component of the action force $\mathbf{F} \mathbf{v}$ do for the child? What is the effect of $\mathbf{F} \mathbf{v}$?
\square
8. What mathematical equation can be used to calculate the size of the horizontal component $\mathbf{F} \mathbf{H}$?
\square
[2 marks]
9. What does the horizontal component of the action force $\mathbf{F}_{\mathbf{H}}$ do to the child? What is the effect of $\mathbf{F}_{\mathbf{H}}$?
\square
10. Why is the child swung in a horizontal circle, at constant speed, undergoing constant acceleration?
\square

Centripetal Force

- According to Newton's second law of motion $\mathbf{\Sigma} \mathbf{F}=\mathbf{m a}$, an object that is accelerating must have a resultant force acting on it. Any object moving in a circular path must therefore have a force applied to it to keep it moving in that circular path.
- The resultant force $\boldsymbol{\Sigma} \mathbf{F} \mathbf{c}$ giving centripetal acceleration act to the object, can be calculated using this physics formula: $\boldsymbol{\Sigma} \mathbf{F} \mathbf{c}=\mathbf{m} \times \mathbf{a c}=\mathbf{m} \times\left(\mathbf{v}^{2} / \mathbf{r}\right)$

11. Is the child swung at constant speed \mathbf{v}, in a horizontal circle, being acted upon by a resultant force \mathbf{F} ? If so, can you name the force?
\square

Mechanical Equilibrium

- An object in mechanical equilibrium is either at rest, or moving with a constant velocity.

12. Is the child swung at constant speed, in a horizontal circle, in a state of mechanical equilibrium? You must answer either yes or no, and then fully explain your answer.
\square
[4 marks]

Circular Motion and a Common Misconception

A common misconception in physics is that an object moving in a circle has an outward force acting on it, referred to as the centrifugal or ("centre-fleeing") force. This is incorrect as there is no outward force on a revolving object.

13. How does Image (b) show that there is no outward force acting on the (green) ball?

Numerical Problem Solving

14. The moon of mass of $\mathbf{7 . 3 0} \times \mathbf{1 0}^{\mathbf{2 2}} \mathrm{kg}$ orbits the Earth in a circular orbit of radius $\mathbf{1 . 7 4} \times \mathbf{1 0}^{\mathbf{6}} \mathrm{m}$, once every $\mathbf{2 9 . 5}$ days. Can you calculate the: (a) orbital speed ($\mathrm{m} \mathrm{s}^{-1}$); (b) centripetal acceleration ($\mathrm{m} \mathrm{s}^{-2}$), and centripetal force (N) needed to keep the moon in its orbit?

Q14 (a) [3 marks]: (b) [3 marks], and (c) [3 marks]
[Total marks $=40$] \square

