new Plural(function(num) { return i18n.ngettext("mole", "moles", num); }) new Plural(function(num) { return i18n.ngettext("gram", "grams", num); }) i18n._("grams of") i18n._("molar mass of") i18n._("moles of") i18n._("of") randRange(1, 40) randRange(1, 40 * (R2_RATIO * R2_MOLAR_MASS) / (R1_RATIO * R1_MOLAR_MASS)) roundTo(3, R1_MASS / R1_MOLAR_MASS) roundTo(3, R2_MASS / R2_MOLAR_MASS) R1_MOL * R2_RATIO / R1_RATIO < R2_MOL roundTo(3, R1_LIMIT ? R1_MOL * P1_RATIO / R1_RATIO : R2_MOL * P1_RATIO / R2_RATIO) roundTo(3, P1_MOL * P1_MOLAR_MASS)

Given the following reaction:

\qquad R1_RATIO === 1 ? "" : R1_RATIOR1 + R2_RATIO === 1 ? "" : R2_RATIOR2 \rightarrow P1_RATIO === 1 ? "" : P1_RATIOP1 + P2_RATIO === 1 ? "" : P2_RATIOP2

How many grams of P1 will be produced from R1_MASS \text{g} of R1 and R2_MASS \text{g} of R2?

P1_MASS grams (you can round to the nearest gram)

\dfrac{R1_MASS \cancel{\text{g}}}{R1_MOLAR_MASS \cancel{\text{g}} / \text{mol}} = \blue{\text{ R1_MOL plural_form(MOLE, R1_MOL)}} \text{ OF }R1 [Explain]

First we want to convert the given amount of R1 from grams to moles. To do this, we divide the given amount of R1 by the molar mass of R1.

\dfrac{\text{GRAMS_OF }R1}{\text{MOLAR_MASS_OF }R1} = \text{MOLES_OF }R1

To find the molar mass of R1, we look up the atomic weight of each atom in a molecule of R1 in the periodic table and add them together. In this case, it's R1_MOLAR_MASS \text{g/mol}.

Dividing the given R1_MASS \text{g} of R1 by the molar mass of R1_MOLAR_MASS \text{g/mol} tells us we're starting with R1_MOL\text{ plural_form(MOLE, R1_MOL) OF }R1.

\dfrac{R2_MASS \cancel{\text{g}}}{R2_MOLAR_MASS \cancel{\text{g}} / \text{mol}} = \green{\text{ plural(R2_MOL, "mole")}} \text{ OF }R2 [Explain]

We want to convert the given amount of R2 from grams to moles. To do this, we divide the given amount of R2 by the molar mass of R2.

\dfrac{\text{GRAMS_OF }R2}{\text{MOLAR_MASS_OF }R2} = \text{MOLES_OF }R2

To find the molar mass of R2, we look up the atomic weight of each atom in a molecule of R2 in the periodic table and add them together. In this case, it's R2_MOLAR_MASS \text{g/mol}.

Dividing the given R2_MASS \text{g} of R2 by the molar mass of R2_MOLAR_MASS \text{g/mol} tells us we're starting with \text{ R2_MOL plural_form(MOLE, R2_MOL)} \text{ OF }R2.

The mole ratio of \dfrac{R1}{R2} in the reaction is \dfrac{R1_RATIO}{R2_RATIO}. [Explain]

The reaction is \blue{R1_RATIO}R1 + \red{R2_RATIO}R2 \rightarrow P1_RATIOP1 + P2_RATIOP2. The coefficients in front of each molecule tell us in what ratios the molecules react. In this case cardinalThrough20(R1_RATIO) R1 for every cardinalThrough20(R2_RATIO) R2 molecule

The reaction is \blue{R1_RATIO}R1 + \red{R2_RATIO}R2 \rightarrow P1_RATIOP1 + P2_RATIOP2. The coefficients in front of each molecule tell us in what ratios the molecules react. In this case cardinalThrough20(R1_RATIO) R1 for every cardinalThrough20(R2_RATIO) R2 molecules

\qquad \dfrac{R1}{R2} = \dfrac{R1_RATIO}{R2_RATIO} = \dfrac{\blue{\text{ R1_MOL plural_form(MOLE, R1_MOL)}}}{x} [Show alternate approach]

\dfrac{R1}{R2} = \dfrac{R1_RATIO}{R2_RATIO} = \dfrac{x}{\green{\text{ plural(R2_MOL, "mole")}}}

Instead of finding out how much R2 we need to react with all of our R1, we could figure out how much R1 we need to react with all of our R2. In this case, x = \text{ roundTo(3, R2_MOL * R1_RATIO / R2_RATIO) plural_form(MOLE, roundTo(3, R2_MOL * R1_RATIO / R2_RATIO))} of R1 needed, which is more than we have. Therefore R1 is the limiting reagent.

x = \text{ roundTo(3, R1_MOL * R2_RATIO / R1_RATIO) plural_form(MOLE, roundTo(3, R1_MOL * R2_RATIO / R1_RATIO))} of R2 needed. We have \text{ R2_MOL plural_form(MOLE, R2_MOL)} of R2, which is more than we need. Therefore R1 is the limiting reagent.

The mole ratio of \dfrac{R1}{P1} in the reaction is \dfrac{R1_RATIO}{P1_RATIO}. [Explain]

The reaction is \blue{R1_RATIO}R1 + R2_RATIOR2 \rightarrow \red{P1_RATIO}P1 + P2_RATIOP2. The coefficients in front of each molecule tell us in what ratios the molecules react. In this case cardinalThrough20(R1_RATIO) R1 for every cardinalThrough20(P1_RATIO) P1 molecule.

The reaction is \blue{R1_RATIO}R1 + R2_RATIOR2 \rightarrow \red{P1_RATIO}P1 + P2_RATIOP2. The coefficients in front of each molecule tell us in what ratios the molecules react. In this case cardinalThrough20(R1_RATIO) R1 for every cardinalThrough20(P1_RATIO) P1 molecules.

\qquad \dfrac{R1}{P1} = \dfrac{R1_RATIO}{P1_RATIO} = \dfrac{\blue{\text{ R1_MOL plural_form(MOLE, R1_MOL)}}}{x}

x = \text{ P1_MOL plural_form(MOLE, P1_MOL)} of P1 produced.

The mole ratio of \dfrac{R1}{R2} in the reaction is \dfrac{R1_RATIO}{R2_RATIO}. [Explain]

The reaction is \blue{R1_RATIO}R1 + \red{R2_RATIO}R2 \rightarrow P1_RATIOP1 + P2_RATIOP2. The coefficients in front of each molecule tell us in what ratios the molecules react. In this case cardinalThrough20(R1_RATIO) R1 for every cardinalThrough20(R2_RATIO) R2 molecule.

The reaction is \blue{R1_RATIO}R1 + \red{R2_RATIO}R2 \rightarrow P1_RATIOP1 + P2_RATIOP2. The coefficients in front of each molecule tell us in what ratios the molecules react. In this case cardinalThrough20(R1_RATIO) R1 for every cardinalThrough20(R2_RATIO) R2 molecules.

\qquad \dfrac{R1}{R2} = \dfrac{R1_RATIO}{R2_RATIO} = \dfrac{x}{\green{\text{ R2_MOL plural_form(MOLE, R2_MOL)}}} \qquad [Show alternate approach]

\dfrac{R1}{R2} = \dfrac{R1_RATIO}{R2_RATIO} = \dfrac{\blue{\text{ R1_MOL plural_form(MOLE, R1_MOL)}}}{x}

Instead of finding out how much R1 we need to react with all of our R2, we could figure out how much R2 we need to react with all of our R1. In this case, x = \text{ roundTo(3, R1_MOL * R2_RATIO / R1_RATIO) plural_form(MOLE, roundTo(3, R1_MOL * R2_RATIO / R1_RATIO))} of R2 needed, which is more than we have. Therefore R2 is the limiting reagent.

x = \text{ roundTo(3, R2_MOL * R1_RATIO / R2_RATIO) plural_form(MOLE, roundTo(3, R2_MOL * R1_RATIO / R2_RATIO))} of R1 needed. We have \text{ R1_MOL plural_form(MOLE, R1_MOL)} of R1, which is more than we need. Therefore R2 is the limiting reagent.

The mole ratio of \dfrac{R2}{P1} in the reaction is \dfrac{R2_RATIO}{P1_RATIO}. [Explain]

The reaction is R1_RATIOR1 + \blue{R2_RATIO}R2 \rightarrow \red{P1_RATIO}P1 + P2_RATIOP2. The coefficients in front of each molecule tell us in what ratios the molecules react. In this case cardinalThrough20(R2_RATIO) R2 for every cardinalThrough20(P1_RATIO) P1 molecule.

The reaction is R1_RATIOR1 + \blue{R2_RATIO}R2 \rightarrow \red{P1_RATIO}P1 + P2_RATIOP2. The coefficients in front of each molecule tell us in what ratios the molecules react. In this case cardinalThrough20(R2_RATIO) R2 for every cardinalThrough20(P1_RATIO) P1 molecules.

\qquad \dfrac{R2}{P1} = \dfrac{R2_RATIO}{P1_RATIO} = \dfrac{\green{\text{ R2_MOL plural_form(MOLE, R2_MOL)}}}{x}

x = \text{ P1_MOL plural_form(MOLE, P1_MOL)} of P1 produced.

\cancel{\text{P1_MOL plural_form(MOLE, P1_MOL)}} P1 \times \dfrac{P1_MOLAR_MASS \text{g}}{\cancel{\text{plural_form(MOLE, 1)}}} = \text{ P1_MASS plural_form(GRAM, P1_MASS)} \text{ OF }P1

"\\text{CH}_4" 1 roundTo(3, molarMass("C") + molarMass("H") * 4) "\\text{O}_2" 2 roundTo(3, molarMass("O") * 2) "\\text{CO}_2" 1 roundTo(3, molarMass("C") + molarMass("O") * 2) "\\text{H}_2\\text{O}" 2
"\\text{Mg(OH)}_2" 1 roundTo(3, molarMass("Mg") + (molarMass("O") + molarMass("H")) * 2) "\\text{HCl}" 2 roundTo(3, molarMass("H") + molarMass("Cl")) "\\text{MgCl}_2" 1 roundTo(3, molarMass("Mg") + molarMass("Cl") * 2) "\\text{H}_2\\text{O}" 2
"\\text{NaCl}" 1 roundTo(3, molarMass("Na") + molarMass("Cl")) "\\text{AgNO}_3" 1 roundTo(3, molarMass("Ag") + molarMass("N") + molarMass("O") * 3) "\\text{AgCl}" 1 roundTo(3, molarMass("Ag") + molarMass("Cl")) "\\text{NaNO}_3" 1
"\\text{C}_3\\text{H}_8" 1 roundTo(3, molarMass("C") * 3 + molarMass("H") * 8) "\\text{O}_2" 5 roundTo(3, molarMass("O") * 2) "\\text{CO}_2" 3 roundTo(3, molarMass("C") + molarMass("O") * 2) "\\text{H}_2\\text{O}" 4
"\\text{Zn}" 1 roundTo(3, molarMass("Zn")) "\\text{HCl}" 2 roundTo(3, molarMass("H") + molarMass("Cl")) "\\text{ZnCl}_2" 1 roundTo(3, molarMass("Zn") + molarMass("Cl") * 2) "\\text{H}_2" 1
"\\text{Cu}" 1 roundTo(3, molarMass("Cu")) "\\text{AgNO}_3" 2 roundTo(3, molarMass("Ag") + molarMass("N") + molarMass("O") * 3) "\\text{Ag}" 2 roundTo(3, molarMass("Ag")) "\\text{Cu(NO}_3\\text{)}_2" 1
"\\text{Zn}" 1 roundTo(3, molarMass("Zn")) "\\text{CuCl}_2" 1 roundTo(3, molarMass("Cu") + molarMass("Cl") * 2) "\\text{ZnCl}_2" 1 roundTo(3, molarMass("Zn") + molarMass("Cl") * 2) "\\text{Cu}" 1
"\\text{Fe}" 4 roundTo(3, molarMass("Fe")) "\\text{O}_2" 3 roundTo(3, molarMass("O") * 2) "\\text{Fe}_2\\text{O}_3" 2 roundTo(3, molarMass("Fe") * 2 + molarMass("O") * 3) ""
"\\text{Na}" 2 roundTo(3, molarMass("Na")) "\\text{Cl}_2" 1 roundTo(3, molarMass("Cl") * 2) "\\text{NaCl}" 2 roundTo(3, molarMass("Na") + molarMass("Cl")) ""