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Introduction. 
Digital logic is the foundation, not only of computing but also 
many other electronic devices and control systems found in 
almost every part of modern life. 

This module introduces the basics of digital logic and shows 
how the whole of digital electronics depends on just seven 
types of logic gates, connected together with a minimum of 
additional components. Combinations of logic gates then 
form circuits that can perform specific tasks within larger 
circuits or systems. The process of producing complex 
circuits using combinations of basic devices is called 
Combinational Logic. 

There are many ways that a number of logic gates can be 
combined to perform a specific task. They may all work, but 

some combinations will perform the task that better than others. For example, a circuit designer 
may want to design a combinational logic circuit that uses the minimum number of gates, or 
performs the required task in the least time, or at the minimum cost. 

This module also introduces the way digital logic gates work and teaches you key methods by 
which a basic digital logic circuit design may be minimised, made more efficient and/or cheaper.  
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Module 

2 

What you’ll learn in Module 2  

Section 2.0 Introduction.  

Section 2.1 Logic Gates.  

• 74 Series standard logic gates. 

• Standard logic functions.  

AND, OR,  NAND, NOR, 
XOR, XNOR, NOT. 

• Truth tables for standard logic 
functions. 

  Section 2.2 Combinational Logic  

• Combining logic gates. 

• Truth tables. 

• Boolean equations. 

Section 2.3 Boolean Algebra.  

• Simplifying Boolean equations 

• Boolean laws and rules 

• De Morgan’s theorem 

Section 2.4 Karnaugh Maps.  

• Constructing Karnaugh maps 

• Minimising Karnaugh maps 

• Software for Boolean 
simplification  

Section 2.5 Digital Logic Quiz. 

•Test your knowledge of Digital 
Logic. 
 



www.learnabout-electronics.org                                                                Digital Logic 

DIGITAL ELECTRONICS MODULE 02.PDF 2                                                                                                  E. COATES 2007-2014 

2.1 Logic Gates 
Seven Basic Logic Gates 
Digital electronics relies on the actions of just seven types 
of logic gates, called AND, OR, NAND (Not AND), NOR 
(Not OR), XOR (Exclusive OR) XNOR (Exclusive NOR) 
and NOT. 

Because, in binary logic there are only two states, 1 and 0 
or ‘on and off,’ NOT in the world of binary logic therefore 
means ‘the opposite of’. If something is not 1 it must be 0, 
if it is not on, it must be off. So NAND (not AND) simply 
means that a NAND gate performs the opposite function to 
an AND gate. 

A logic gate is a small transistor circuit, basically a type of 
amplifier, which is implemented in different forms within 
an integrated circuit. Each type of gate has one or more 
(most often two) inputs and one output. 

The principle of operation is that the circuit operates on just two voltage levels, called logic 0 and 
logic 1. When either of these voltage levels is applied to the inputs, the output of the gate responds 
by assuming a 1 or a 0 level, depending on the particular logic of the gate. The logic rules for each 
type of gate can be described in different ways, by a written description of the action, by a truth 
table, which is a table showing all the possible logic states at the inputs and output of the gate, or by 
a Boolean algebra statement. 

Boolean statements use letters from the beginning of the alphabet, such as A, B, C etc. to indicate 
inputs, and letters from the second half of the alphabet, very commonly X or Y and sometimes Q or 
P to label an output. The letters have no meaning in themselves, other than just to label the various 
points in the circuit. The letters are then linked by a symbol indicating the logical action of the gate. 

The • symbol indicates AND although in many cases the • may be omitted. (A•B may also be 
written as AB or A.B) 

+ indicates OR  

⊕ indicates XOR (Exclusive OR) 

Although the symbols • and + are the same as those used in normal algebra to indicate product 
(multiplication) and sum (addition) respectively, in binary logic the + symbol does not exactly 
correspond to sum. In digital logic 1 + (OR) 1 = 1, but the binary sum of 1 + (plus) 1 = 102, 
therefore in digital logic + must always be considered as OR.  

Three further types of logic gate give an output that is an inverted version of the three basic gate 
functions listed above, and these are indicated by a bar drawn above a statement using the AND, 
OR, or XOR symbols to indicate NAND, NOR and XNOR. 

A•B means A AND B but A•B means A NAND B 

For example: 

An AND gate gives an output of logic 1 when input A AND input B are at logic 1, but a NAND 
gate would give a logic 0 output for the same input conditions. Also where the AND gate gives a 
logic zero for a particular input combination, the NAND gate would give a logic 1. The ‘N’ in the 
gate’s name, or the bar above the Boolean expression therefore indicates that the output logic is 
‘inverted’. In digital logic NAND is ‘NOT’ AND or the opposite of AND. Similarly NOR is ‘NOT’ 
OR and XNOR is ‘NOT’ XOR. 

What you’ll learn in Module 2.1  

After studying this section, you should 
be able to: 

Describe the action of logic gates. 

• AND, OR, NAND, NOR, NOT, 
XOR and XNOR 

• Using Boolean expressions. 

• Using truth tables. 

Understand the use of universal gates. 

• NAND  

• NOR  

Recognise common 74 series ICs 
containing standard logic gates. 
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The final gate type, the NOT gate or inverter is a single input gate that has an output having the 
opposite logic state, or the inverse of the input. 

Table 2.1.1 shows each of the seven basic logic gates, which may be illustrated by either the 
traditional "Distinctive Shape" ANSI symbol or the newer rectangular IEC symbol, and a written 
description of its logic function compared with its Boolean equation. 

 
 
Logic ICs 
Fig. 2.1.1 illustrates a selection of the basic gates logic gates that are available from a number of 
manufacturers in standard families of integrated circuits. Each logic family is designed so that gates 
and other logic ICs within that family (and other related families) can be easily combined, and built 
into larger logic circuits to carry out complex functions with the minimum of additional 
components. 

Typically, standard logic gates are available in 14 pin or 16 pin DIL (dual in line) chips. The 
number of gates per IC varies depending on the number of inputs per gate. Two-input gates are 
common, but if only a single input is required, such as in the 7404 NOT (or inverter) gates, a 14 pin 
IC can accommodate 6 (or Hex) gates.  The greatest number of inputs on a single gate is on the 
74133 13 input NAND gate, which is accommodated in a 16 pin package. 

 

 

 

 

 

 

 

 

 

Fig. 2.1.1 Logic Gates From the 74 series TTL IC Family 

 

74133 Single 13 input 
NAND Gate 

7432 Quad 2 input 
OR Gates 

7408 Quad 2 input 
AND Gates 

7400 Quad 2 input 
NAND Gates 

7402 Quad 2 input 
NOR Gates 

7486 Quad 2 input 
XOR Gates 

74266 Quad 2 input 
XNOR Gates 

7404 Hex NOT Gates 
(Inverters) 
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 Logic Functions 

 
Logic Functions 
Fig 2.1.2 shows how the seven basic logic functions can also be 
described using a ‘truth table’ to show the relationship between 
the output (X) and all possible input combinations for inputs A 
and B, shown as a four value binary count from 00 to 11. Each 
diagram shows the input and output conditions for one of the 
seven logic functions in its two input form. Some types of gate 
however, are also available with more (e.g. 3 to 13) inputs. For 
these gates the truth tables would need to be extended to include 
all possible input conditions. 

 

 

 

Universal Gates 
Because gates are manufactured in IC form, typically containing two to six gates of the same type, 
it is often uneconomical to use a complete IC of six gates to perform a particular logic function. A 
better solution may be to use just a single type of gate to perform any of the logic operations 
required. Two types of gate, NAND and NOR are often used to perform the functions of any of the 
other standard gates, by connecting a number of either of these ‘universal’ gates in a combinational 
circuit. Although it may not seem efficient to use several universal gates to perform the function of 
a single gate, if there are a number of unused gates in one or more NAND and NOR ICs, these can 
be used to perform other functions such as AND or OR rather than using extra ICs to perform that 
function. This technique is especially useful in the design of complex ICs where whole circuits 
within the IC can be fabricated using a single type of gate.  
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Fig. 2.1.3 shows how NAND gates can be used to obtain any of the standard functions, using only 
this single gate type. 

NOT Function 

a. Connecting the inputs of the NAND 
gate together creates a NOT function.  

 

b. Alternatively the NOT function can be 
achieved by using only 1 input and 
connecting the other input permanently to 
logic 1. 

 

AND Function 

c. Adding the NOT function (an inverter) 
to the output of a NAND gate creates an 
AND function. 

 

OR Function 

d. Inverting the inputs to a NAND gate 
creates an OR function. 

 

NOR Function 

e. Using a NOT function to invert the 
output of an OR function creates a NOR 
function. 

 

XOR function 

f. Four NAND gates (a single IC) 
connected as shown creates an XOR 
function (and a Quad NAND IC is about 
15% cheaper than a Quad XOR IC). 

XNOR Function 

g. Inverting the output of the XOR 
function creates an XNOR function. 

 

Similar conversions can be achieved using NOR gates, but as NAND gates are generally the least 
expensive ICs, the conversions shown in Fig. 2.1.3 are more frequently used. The reason for such 
conversions is usually cost. This may not seem very useful since none of the basic 74 series ICs are 
expensive, but when several thousand units of a particular circuit are to be manufactured, the small 
savings in cost and space on printed circuit boards by maximising the use of otherwise unused gates 
in multi gate ICs can become very important. 

Fig 2.1.3 Creating any Logic 

Function Using NAND Gates 
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2.2 Combinational logic. 

Combinational logic.  
Combining a number of basic logic gates in a larger circuit 
to produce more complex logical operations is called 
combinational logic. Using such circuits, logical 
operations can be performed on any number of inputs 
whose logic state is either 1 or 0 and this technique is the 
basis of all digital electronics. 

 Combinational logic circuits can vary in complexity from 
simple combinations of two or three standard gates, to 
circuits containing hundreds of thousands, or even millions 
of gates. It is this ability to combine just a few simple gate 
circuits, which can be manufactured to microscopic 
dimensions, but in almost limitless combinations that 
makes digital electronics so powerful. 

To understand the operation of a combinational logic 
circuit, and what logic state should be present at any 

particular point in the circuit, it is necessary to accurately analyse the operation of the circuit. For 
this purpose, several methods can be used, depending on the complexity of the circuit. These 
include truth tables, Boolean algebra, Karnaugh maps and computer software methods. 

Truth Tables. 
A truth table can be used for analysing the operation of logic 
circuits. A simple example of a combinational logic circuit is 
shown in Fig. 2.2.1. To analyse its operation a truth table can be 
compiled as shown in the following tree steps. Firstly a number 
of columns are written down which will describe, using ones 
and zeros, all possible conditions that can occur at the inputs 
and outputs of the circuit. For the circuit in Fig 2.2.1, three 
inputs A, B and C are used. 

 Step 1 
Three columns marked A, B and C are needed, filled with a binary count from 000 to 111, i.e. a 
decimal count from 0 to 7. These columns now contain ALL possible input conditions because 
three inputs can have only 23 (eight) combinations of 1 and 0. More inputs would of course have 
more possible combinations, but as long as a binary count is used with one column per input, all 
possible input conditions are covered. 

Step 2 
Two more columns are 
added next, for the 
intermediate points D and 
E in the circuit, showing 
in column D, the result of 
‘ANDing’ columns A and 
B, and in column E the 
results of ‘ANDing’ 
columns A and C. Each 
column is labelled with a 
Boolean expression for 
that particular gate output. 

What you’ll learn in Module 2.2  

After studying this section, you should 
be able to: 

Describe complex logic functions. 

• Using truth tables. 

• Using Boolean expressions. 

Understand the relationship between truth 
tables and logic circuits. 

• Analyse simple digital circuits 
using truth tables. 

• Formulate Boolean equations from 
truth tables. 

• Use truth tables to simplify logic 
circuits. 

 

Fig. 2.2.1 Combinational Logic 
Fig 2.2.1 Combinational Logic 

Table 2.2.1 Making a Truth Table 
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Each cell in columns D and E is filled with the appropriate 1 or 0 by working out the logic state that 
would occur at that gate output for the given inputs. In this case each column follows the rule for an 
AND gate, illustrated in Digital Electronics Module 2, Table 2.1.1. 

Step 3 
Then the final column X is completed by ‘ORing’ the intermediate columns D and E. This final 
column now shows all the logic states at the output X for any combination of logic states at the 
inputs A, B and C. A truth table produced in this way is also very valuable in fault finding in 
combinational logic circuits, as it shows the logic states at any point in the circuit for a given 
combination of inputs. These may be checked against the actual operation of the circuit to reveal 
faults. 

Circuit Simplification Using Truth Tables 
Creating a circuit from a truth table reverses to the process 
described above, and looking at Table 2.2.1 it can be seen 
that a logic 1 is produced at output X whenever the circuit 
inputs A, B and C are at logic 1. This can be described by 
compiling an appropriate Boolean equation from the truth 
table, which shows that X is 1 (is true) when A and B are 1, 
or when A and C are 1, or when A and B and C are 1. This 
can be written as:  

X = (A•B) + (A•C) + (A•B•C) 

The circuit therefore provides a logic 1 output at X for any 
input combination where the binary value of the inputs is greater than 1002 (410). Building a circuit 
to implement the Boolean equation would give the result shown in Fig. 2.2.2.  Notice however, that 
this circuit gives the same output as the original circuit in Fig 2.2.1 so could the simpler circuit of 
Fig. 2.2.1 do the job just as well?  

The Boolean equation derived from Table 2.2.1 suggests that a more complex circuit, as shown in 
Fig 2.2.2 would be needed, which requires two 2 input AND gates for columns D and E and a three 
input AND gate for column F. These are then ‘ORed’ together by a 3 input OR gate to provide the 
single output X.  

Compiling a truth table for Fig. 2.2.2 to check its 
operation produces Table 2.2.2. The output column X 
shows that the circuit in Fig. 2.2.2 does give the same 
outputs as Fig. 2.2.1. However, although a logic 1 at 
X is produced on the bottom row, where all three 
inputs (A•B•C) are logic 1, the third row up from the 
bottom of the table where A•C (shaded cells) also 
provides a logic 1 in column E and at output X. 

Therefore it doesn’t matter whether columns D, E or F 
in the bottom row are at logic 1 or not. With the inputs 
at 111 the logic 1s on inputs A and C will still 
produce a logic 1 at E and therefore logic 1 at the output X. The bottom row for Columns D, E an F 
can therefore be marked with ✗ to indicate “Don’t Care”, it doesn’t matter whether these cells are 1 
or 0, column X will still be logic 1.  

This means that column F (and the three input AND gate) are not needed, also the three input OR 
gate can be replaced by a two input OR gate. 

Although the circuit shown in Fig. 2.2.2, designed from a Boolean equation derived directly from a 
truth table, does give the required output, the simpler (and cheaper) circuit shown in Fig. 2.2.1 does 
the job just as well. Using a truth table in this way will certainly give workable results and produce 

Fig. 2.2.2 Three Input 

Combinational Logic Circuit  
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a working circuit, however it may not be the best circuit. In this case, the Boolean equation could be 
reduced and simplified by getting rid of the redundant A•B•C. The simplified circuit produced is 
then adequately described by the shorter Boolean equation: 

X = (A•B) + (A•C) 

This shows that although truth tables are an excellent method for analysing the operation of a digital 
circuit, they may not be the best design tool, when used on their own, for arriving at the simplest 
design. Simplifying circuit design using truth tables does require some practice in reading the truth 
table, although possible simplifications are still much easier to see in the truth table than by trying 
to visually analyse the circuit schematic diagram. However, with more complex circuits and more 
than two or three inputs, simplification using truth tables becomes a very laborious process, and 
therefore more prone to errors. For circuits using up to three or four inputs, better results can be 
obtained by the direct manipulation of the Boolean algebra equations obtained from a truth table. 
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2.3 Boolean Algebra. 
Digital Electronics Module 2.1 showed that the operation of 
a single gate could be described by using a Boolean 
expression. For example the operation of a single AND gate 
with inputs A and B and an output X can be expressed as: 

X = A•B 

Note: 

The symbol • represents a logical AND, but because the use 
of special symbols can be inconvenient in printed material, 
the AND symbol is often omitted, as in AB or separated by a 
full stop as in A.B as used to indicate multiplication in 
standard algebra. The multiplication symbols x and * can 
also be seen in some texts, because the logical AND is 
similar to binary multiplication, (but not the same when 
numbers having more than one-bit are used).  

Module 2.2 showed the relationship between a truth table 
that describes the operation of a circuit, and a Boolean 
equation that describes the logic of the circuit. 

A combinational logic circuit such as that shown in Fig 2.3.1 
(a repeat of Fig 2.2.2) is described by a Boolean equation as: 

X = (A•B) + (A•C) + (A•B•C). 

 

 

This could also be written (less clearly) as “The output X 
will be 1 when A and B or A and C or A and B and C are 
1, otherwise X will be 0”. 

 However Module 2.2 also showed that although a 
Boolean equation may give an accurate description of a 
logic process described by a truth table, it might require 
simplification before being interpreted as an actual circuit. 
The circuit shown in Fig 2.3.1 was simplified in Module 
2.2 by closely examining a truth table to find redundant 
gates. However, with anything but the simplest circuits 
this can be tedious and it is easy to make mistakes. 

This module therefore describes methods for simplifying Boolean equations directly, using Boolean 
algebra, rather than by the use of truth tables. 

 
Circuit Simplification Using Boolean Algebra 
The algebraic method used to simplify digital circuits applies a number of Boolean laws to 
successively simplify complex equations. Selected laws and rules are applied, step by step, to the 
original equation, so as to eventually arrive at a simplified version that can be implemented with a 
smaller number of gates and therefore lead to a simpler circuit.  

Fig. 2.3.1 Three Input 

Combinational Circuit  with 

Redundant Gates 

What you’ll learn in Module 2.3  

After studying this section, you should 
be able to: 

Describe logic circuits using Boolean 
equations. 

• Create Boolean expressions for 
intermediate gate outputs. 

• Use complex Boolean equations to 
describe complete logic circuits. 

Simplify Boolean equations using 
Boolean laws. 

• Commutative.  

• Associative. 

• Distributive. 

•Identity. 

•Complement. 

•Reduction. 

•Duality. 

•De Morgan’s Theorem. 

Use De Morgan’s theorem to convert 
multiple gate circuits to universal gates. 
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Boolean Laws 
The laws of Boolean algebra are similar in some ways to those of standard algebra, but in some 
cases Boolean laws are unique. This is because when logic is applied to digital circuits, any variable 
such as A can only have two values 1 or 0, whereas in standard algebra A can have many values. 

Commutative Laws  

In a group of variables connected by operators AND or OR, the order of the variables does not 
matter. 

1a. Boolean addition (OR):  A+B = B+A 

1b. Boolean multiplication (AND): A•B = B•A 

Associative Laws 

The order of calculation can be changed without affecting the result  (Change which terms are in 
brackets, or remove brackets). Note: This is only OK so long as all signs (+ or •) are the same. 

2a. Boolean addition (OR):   (A+B)+C = A+(B+C) = A+B+C 

2b. Boolean Multiplication (AND):  (A•B)•C = A•(B•C) = A•B•C = ABC 

Distributive Laws 

The same answer is arrived at when multiplying (ANDing) a variable by a group of bracketed 
variables added (ORed) together, as when each multiplication (AND) is performed separately.  

Law 3a is similar to factoring in normal algebra, but law 3b is unique to Boolean algebra because 
unlike normal algebra, where A x A=A2, in Boolean algebra A•A = A 

3a. A•(B+C)  = A•B+A•C 

3b. A+(B•C) = (A+B) • (A+C)  

Identity Elements 

In rule 4a, when the variable A is ANDed with logic 1 (called the Identity 
Element for the AND operator). The variable ANDed with 1 retains its 
identity.  

Rule 4b, shows that the Identity Element for the OR operator is 0, and any 
variable (e.g. A) ORed with 0 it retains its identity. 

4a. A•1 = A   

4b. A+0 = A  

5a and 5b show how by ‘forcing the Identity Element’, (in B column of the 
truth tables) to the opposite states to those used in 4a and 4b, produces an 
output that is the same as the Identity Element. 

5a. A•0 = 0 

5b. A+1 = 1 

6a and 6b show that ANDing or ORing two identical variables, produces an 
output equal to a single variable, showing that one of the variables is 
redundant, a useful rule when simplifying Boolean equations.  

6a. A•A = A 

6b. A+A = A 
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Complement Law 

7a. A + A  = 1 Any variable ORed with its inverse is 1 

7b. A • A  = 0 Any variable ANDed with its inverse is 0 

 

 

Reduction 

8a. When a single variable (A) is ANDed with itself OR a second variable (A+B), the result is equal 
to the single variable.  

8a A• (A+B) = A   

8b. When a single variable (A) is ORed with 
itself AND a second variable (A•B), the result 
is equal to the single variable.  

8b A+ (A•B) = A   

8c. When a single variable (A) is ORed with 
itself OR a second variable (A+B), the single 
variable disappears.  

8c A+ (A+B) = (A+B)   

8d. When a single variable (A) is ANDed with 
itself AND a second variable (A•B), the single 
variable disappears. 

8d A• (A•B) =  (A•B)   

 

 

 Duality Rules 

It is possible to derive additional identities by obtaining the Dual of an 
identity. This involves changing the AND operators to OR and the OR 
operators to AND. Additionally any 0s are changed to 1s and 1s to 0s as 
shown in Table 2.3.2. 

 

 

 

 

The duality rule can be used to change a logic expression 
containing both AND and OR elements to its equivalent dual 
expression.  

Table 2.3.3 shows that A•(B+C) is the same as A+(B•C). 

 

Table 2.3.1 The Reduction Rules 

8a 8b 

A B A+B A•(A+B) A B A•B A+(A•B) 

0 0 0 0 0 0 0 0 

0 1 1 0 0 1 0 0 

1 0 1 1 1 0 0 1 

1 1 1 1 1 1 1 1 

  

8c 8d 

A B A+B A+(A+B) A B A•B A•(A•B) 

0 0 0 0 0 0 0 0 

0 1 1 1 0 1 0 0 

1 0 1 1 1 0 0 0 

1 1 1 1 

 

1 1 1 1 

Table 2.3.2 

Identity Dual 

0  = 1 1  = 0 

A + 1 = 1 A • 0 = 0 

A + A = A A • A = A 

A + A  = 1 A • A  = 0 

Table 2.3.3 

A B C A•(B+C) A+(B•C) 

0 0 0 0 0 

0 0 1 0 0 

0 1 0 0 0 

0 1 1 0 0 

1 0 0 0 0 

1 0 1 1 1 

1 1 0 1 1 

1 1 1 1 1 

A = A Double inversion (NOT NOT) returns the variable to its previous state. 

Note: 
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Simplifying Boolean Equations 
 Minimising complex Boolean expressions to their simplest form using Boolean laws and rules is a 
matter of choosing the most appropriate law or rule to reduce the expression step by step. If the 
resulting minimisation is correct, the minimised equation and the original equation should give 
identical output columns when truth tables for the original and minimised circuits are compared. 

These Boolean algebraic methods would normally be used on logic circuits with just a few gates 
and only two or three inputs, as this method of simplification becomes more difficult and 
cumbersome to use when more gates or inputs are involved. 

Which laws are applied to change an equation, and in what order is a matter of practice and 
intuition. This method involves looking at the original complex equation and selecting a law that 
will simplify a particular part, so obtaining a simpler equation, and then choosing another law that 
will simplify the equation further, and so on until the equation can no longer be made simpler. 

There is no simple algorithm to specify the order of steps to be taken and several routes may be 
taken to reach the goal of a simplified and ideally minimised circuit. 

Whether the result is also the minimum possible circuit can only be judged by looking for any 
possible further reduction using the Boolean laws. 

In practice, small circuits with just two or three inputs can very often be simplified just by looking 
at the truth table and picking out any redundant logic combinations, as shown in Table 2.2.2 in 
Module 2.2 (Combinational Logic), but Boolean simplification is useful for more complex circuits. 

 

Boolean Simplification Examples 
Example 1  

Suppose the cash room at a store has access restricted to certain employees, each of who has a key, 
which produces a logic 1 at particular inputs to an unlocking circuit. 

Only the store manager (M) can enter alone. The assistant manager (A) 
and the cashier (C) also have access, but only when accompanied by 
each other, or by the store manager. Design a combinational logic 
circuit that will allow access by producing a logic 1 when the above 
conditions are met. 

 Truth table 

The conditions requiring a logic 1 output can be arranged as a truth 
table (Table 2.3.4) and Boolean expressions can be derived from the 
truth table for each input combination that produces a logic 1 output. 

The five Boolean AND expressions can be separated by OR operators 
to form a complete Boolean equation. 

X = M + M•C + A•C + A•M + A•C•M   

This suggests a circuit like that shown in Fig. 2.3.2, which 
would require four I.Cs: 

1x 74HCT08    2 input AND (containing 4 gates). 

1x 74HCT10     3 input AND (containing 3 gates). 

1x 74HCT32    2 input OR (containing 4 gates). 

1x 74HCT4075 3 input OR (containing 3 gates). 

However, by choosing appropriate laws and rules from 
those listed above, the circuit can be considerably 
simplified. 

 

Table 2.3.4 

A M C X Boolean 

0 0 0 0  

0 0 1 0  

0 1 0 1 M   

0 1 1 1 M • C 

1 0 0 0  

1 0 1 1 A • C 

1 1 0 1 A • M  

1 1 1 1 A • C • M 

Fig. 2.3.2 Cash Room Access Circuit 
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Starting with the equation derived from Table 2.3.4: 

 X = M + M•C  + A•C + A•M + A•C•M   

       Since M + M•C  = M (Reduction rule 8b) 

X = M + A•C + A•M + A•C•M 

       And as M + A•C +  A•M  = M + A•M + A•C 
(Commutative Law 1a) 

X = M + A•M  + A•C + A•C•M 

       And as M + A•M  = M (Reduction rule 8b) 

X = M + A•C + A•C•M 

      And as M +  A•C + A•C•M = M +  A•C•M  + A•C (Commutative 
Law 1a) 

X = M + A•C•M  + A•C  

And as M + A•C•M = M (Reduction rule 8b) 

X = M + A•C 

No further reduction possible. 

The simplified circuit is shown in Fig 2.3.3, which provides exactly the 
same function as Fig. 2.3.2. This can be confirmed by comparing the 
simplified equation X = M + A•C with the original column X in Table 
2.3.5. 

 

The simplified circuit in Fig 2.3.3 still requires two I.Cs, (AND and OR) and it now only uses one 
gate per chip. Unless the spare gates are to be used elsewhere in another part of the circuit, this is 
still wasteful. 

A better option could be to replace the AND and OR functions 
with universal gates such as NOR or NAND. A ‘NAND only’ 
version of the simplified circuit is shown in Fig. 2.3.4. This version 
uses three gates instead of two, but all the gates are the same and 
can be accommodated within a single 7400 IC. The original circuit 
has therefore now been reduced from four ICs to one. 

NAND Circuit Operation 
NAND 1 has both its inputs connected together, which converts it 

to an inverter or NOT gate and therefore produces Mat its output. 

NAND 2 works as an AND gate with its output inverted and so 

produces an output of A•C. The Boolean expression for the 

circuit using NAND gates now becomes: 

X = M + A•C 

The inversion bars have now disappeared because of the application of another very useful Boolean 
algebra law, De Morgan’s Theorem. Before looking at how the theorem works, note the difference 
in the use of the inversion bars in Boolean expressions. This is an important feature in the 
application of De Morgan’s Theorem: 

A broken bar A• B  indicates that the inputs (to an AND gate for example) are inverted, whilst an 

unbroken bar A • B indicates an inverted output. 

Table 2.3.5  

A M C X M + A•C 

0 0 0 0 0 

0 0 1 0 0 

0 1 0 1 1 

0 1 1 1 1 

1 0 0 0 0 

1 0 1 1 1 

1 1 0 1 1 

1 1 1 1 1 

Fig. 2.3.3 Simplified Cash 

Room Access Circuit 

Fig. 2.3.4 NAND only Cash 

Room Access Circuit 
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De Morgan’s Theorem 
Augustus De Morgan formulated an extension to George Boole’s Algebraic logic that has become 
very important in digital logic. Not only is it used in the simplification of Boolean expressions but 
can also be used to change the function of logic gates, so that NAND gates (or NOR gates) can 
carry out any of the other standard logic functions of gates. The theorem comprises two laws that 
describe how inverting the inputs to a gate, changes the gate’s function. 

Law 1. A + B  = A • B  Inverting the inputs to an OR gate changes its function to NAND. 

Law 2. A • B  = A + B  Inverting the inputs to an AND gate changes its function to NOR 

Considering these two equalities the other way round, A + B  = A • B  De Morgan’s Theorem is 

often described as “Break the bar and change the sign.” Meaning that by placing, or removing the 
bar above the AND or OR operator (• or +) the operator is inverted. Therefore the complement of 
the AND function is OR. 

Applying De Morgan’s Theorem 

These equalities, generally called De Morgan’s Laws 1 and 2 are illustrated in Fig. 2.3.5 and Fig. 
2.3.6 as they apply to AND, NOR, NAND and OR gates. Note however, that when De Morgan’s 
theorem is applied to the XOR and XNOR gates there is no change in the gate’s function. 

 

 

 

 

 

 

The usefulness of De Morgan’s theorem when applied to circuits can be seen by comparing Fig. 
2.3.3 and Fig. 2.3.4 where it was instrumental in changing the functions of the AND and OR gates 
in Fig.2.3.3 to all NAND gates in Fig. 2.3.4, so the circuit can be made using one IC instead of two. 

Inverting the Inputs 

In Fig. 2.3.4 an additional gate NAND 1 appears in the circuit, and has its two inputs connected 
together to act as a NOT gate (check this by looking at the truth table for a NAND gate in Fig. 
2.3.5), when both inputs are the same (row 1 and row 4) the output (X) is an inverted version of the 
inputs (A•B). 

This additional gate in Fig. 2.3.4 provides M at the top input to NAND 3 instead of the M applied 

to the top input of the OR gate in Fig 2.3.3. 

NAND 2 in Fig. 2.3.4 replaces the AND gate in Fig 2.3.3 so that the bottom input to NAND 3 is 

now A•C  instead of A•C. 

Therefore inputs to NAND 3 are now M and M•C. Therefore both inputs to NAND 3 have been 

inverted (without actually using any NOT gates) to make NAND 3 act, according to De Morgan’s 
theorem, as an OR function, so giving the correct output of X = M + A•C. 

 Summary 

Boolean algebra gives a more compact way to describe a combinational logic circuit than truth 
tables alone. It can also be used for simplification of circuits, however this can also be cumbersome 
and error prone. When circuits with more than two or three inputs are involved a better method of 
circuit reduction that works well with circuits having up to four or six inputs is the Karnaugh Map.

Fig. 2.3.5 De Morgan’s Law 1 Fig. 2.3.6 De Morgan’s Law 2 
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Fig. 2.4.1 Karnaugh Maps 

2.4 Karnaugh Maps 

Why Karnaugh Maps? 
Karnaugh Maps offer a graphical method of reducing a 
digital circuit to its minimum number of gates. The map is 
a simple table containing 1s and 0s that can express a truth 
table or complex Boolean expression describing the 
operation of a digital circuit. The map is then used to work 
out the minimum number of gates needed, by graphical 
means rather than by algebra. Karnaugh maps can be used 
on small circuits having two or three inputs as an 
alternative to Boolean algebra, and on more complex 
circuits having up to 6 inputs, it can provide quicker and 
simpler minimisation than Boolean algebra. 

Constructing Karnaugh Maps 
 The shape and size of 
the map is dependent on 
the number of binary 
inputs in the circuit to be 
analysed. The map needs 
one cell for each 
possible binary word 
applied to the inputs. 

 

 

Therefore:  

2 input circuits with inputs A and B require maps with 22 = 4 cells 
(Fig 2.4.1a). 

3 input circuits with inputs A B and C require maps with 23 = 8 cells (Fig 2.4.1b). 

4 input circuits with inputs A B C and D require maps with 24 = 16 cells (Fig 2.4.1c). 

The input labels are written at the top left hand corner, divided by a diagonal line. The top and left 
edges of the map then represent all the possible input combinations for the inputs allocated to that 
edge. 

For example, in the 3 input map (b) in Fig. 2.4.1, the top edge of the map represents the 4 possible 
combinations for inputs A and B, so the 
cells are labelled 00,01, 11, and 10 (See 
*Important note).  

Because example (b) in Fig. 2.4.1 is a 3 
input map, input C on the left hand edge 
only has two possible combinations, 0 and 
1. This map is therefore rectangular rather 
than square to cover the 8 possible 
combinations available from 3 inputs. 

*Important 

Notice that this edge numbering does not follow the 
normal binary counting sequence, but uses a Gray 
Code sequence where only one bit changes from 
one cell to the next. This is an important feature of 
Karnaugh maps; get the sequence wrong and the 
map will not work! 

What you’ll learn in Module 2.4  

After studying this section, you should 
be able to: 

Understand the use of Karnaugh maps. 

• Draw maps for Multi input circuits.  

• Use Gray code notation. 

• Derive Karnaugh maps from truth 
tables. 

Uses Karnaugh Maps. 

• Group Karnaugh map cells. 

• Simplify logic circuits. 

• Produce minimised Boolean 
equations. 

Make choices in cell selection to achieve a 
desired circuit result. 

• Cost reduction. 

• Propagation delay. 

Understand manual and software based 
Boolean minimisation. 

• Minimise a complex Boolean 
equation using appropriate software. 
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Using the Karnaugh Map 
The Karnaugh map can be populated with data from either a truth table 
or a Boolean equation. 

As an example, Table 2.4.1 shows the truth table for the 3 input ‘cash 
room’ example, together with the Boolean expressions derived from 
each input combination that results in a logic 1 output. This results in a 
Boolean equation for the un-simplified circuit: 

X = M  + M•C + A•C + A•M + A•M•C 

This table will serve to show the process of transferring the data from 
Table 2.4.1 into the cells of the Karnaugh map. The Process is shown 
step by step in Fig. 2.4.2 

 

 

Step (a)  

From Table 2.4.1 row 3, inputs AMC have values of 010, producing a logic 1 
at the output (X) and giving the Boolean expression M in the Boolean column. 
Therefore 1 is placed in the map cell corresponding to A=0 and MC=10 as 
shown at (a) in Fig. 2.4.2. 

Step (b)  

In Table 2.4.1 row 4, inputs AMC have values of 011, producing a logic 1 at 
the output (X) and giving the Boolean expression MC in the Boolean column. 
Therefore 1 is placed in the map cell corresponding to A=0 and MC=11 as 
shown at (b) in Fig. 2.4.2. 

Step (c)  

In Table 2.4.1 row 5, output (X), is 0 so this row is ignored. However, in row 
6, inputs AMC have values 101, producing a logic 1 at the output (X) and 
giving the Boolean expression AC in the Boolean column. Therefore 1 is 
placed in the map cell corresponding to A=1 and MC=01 as shown at (c) in 
Fig. 2.4.2. 

Step (d) 

In Table 2.4.1 row 7, the inputs AMC have values of 110, producing a logic 1 
at the output (X) and giving the Boolean expression AM in the Boolean 
column. Therefore 1 is placed in the map cell corresponding to A=1 and 
MC=10 as shown at (d) in Fig. 2.4.2. 

Step (e) 

Finally, in Table 2.4.1 row 8 the inputs AMC have values of 111 producing a 
logic 1 at the output (X) and giving the Boolean expression of AMC in the 
Boolean column. Therefore 1 is placed in the map cell corresponding to A=1 
and MC=11 as shown at (e) in Fig. 2.4.2. 

The completed map (f) 

All the truth table rows that produced a logic 1 have now been entered into the 
map and those lines that produced a logic 0 can be ignored, so the remaining 
three cells are left blank. Later it will be shown that these blank cells can be 
useful when mapping larger circuits, but for now the map is ready for 
simplification. 

Table 2.4.1 

A M C X Boolean 

0 0 0 0  

0 0 1 0  

0 1 0 1 M   

0 1 1 1 M • C 

1 0 0 0  

1 0 1 1 A • C 

1 1 0 1 A • M  

1 1 1 1 A • M • C 
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 Simplifying Karnaugh Maps 
Circuit simplification in any Karnaugh map is achieved by combining the cells containing 1 to 
make groups of cells. In grouping the cells it is necessary to follow six rules.  

How these rules are applied is illustrated using a four input 16-cell map shown in Fig. 2.4.3. 

 

Karnaugh Map Rules 
1. Groups should contain as many ‘1’ cells (i.e. cells containing a logic 1) as possible and no 

blank cells.  

2. Groups can only contain 1, 2, 4, 8, 16 or 32… etc. cells (powers of 2). 

3. A ‘1’ cell can only be grouped with adjacent ‘1’ cells that are immediately above, below, 
left or right of that cell; no diagonal grouping. 

4. Groups of ‘1’ cells can overlap. This helps make smaller groups as large as possible, which 
is an advantage in finding the simplest solution. 

5. The top/bottom and left/right edges of the map are considered to be continuous, as shown in 
Fig. 2.4.3, so larger groups can be made by grouping cells across the top and bottom or left 
and right edges of the map. 

6. There should be as few groups as possible. 

Map (a) follows rules 2, 3 and 4 and shows three groups containing 8, 
4 and 2 cells. This will simplify the circuit being produced, but it is 
not optimum. 

Map (b) shows an improvement, still with 3 groups but they now 
contain 8, 4 and 4 cells. This map takes advantage of rule 5 by joining 
the 2 cells ringed in green in Map (a) with the top two cells in the blue 
group, see Map (b) to form a group of 4 (ringed in cyan) instead of a 
group of 2. The map now conforms to all 6 rules. 

Map (c) (for a different circuit) shows how a potentially single ‘1’cell 
(second cell from the bottom in the right hand column) can be 
grouped with two other cells in the blue group, and one cell in the 
green group, to make a (cyan) group of 4. 

Sometimes however there may be a single cell that cannot be joined 
with other groups, as shown in map (d). Rule 3 prohibits diagonal 
grouping so there is no alternative other than to leave a group of 1. 
This is permissible, but in map (d), which represents a four input 
circuit, the simplified Boolean equation will contain an un-simplified 
expression relating to the single cell, which will have all four possible 
terms e.g. A•B•C•D. 

Example: 

Using the Karnaugh map rules on the three input map created from Table 2.4.1, there are just 2 
possible groups, as shown in Fig. 2.4.4. The next task is to simplify the original Boolean equation 
for this circuit: 

X = M  + M•C + A•C + A•M + A•M•C 

Converting the two groups in the Karnaugh map to Boolean 
expressions is done by discovering which input or inputs (A, M or C) 
does NOT change within each group. 

Step 1 

Taking the (blue) group of 4 first, notice that it spans two rows 

Fig 2.4.4 Groups 

for Example 1 

Fig. 2.4.3 Typical 

Karnaugh Groups 
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vertically, and so contains rows A=0 and A=1, therefore A changes within the group so cannot 
appear in the expression. 

The blue group also spans two columns and so contains MC=11 and MC=10. Here, C = both 1 and 
0, but M=1 in both columns. 

Therefore the only input that does not change in the blue group is M, so the Boolean expression for 
the blue group is simply M. 

Step 2 

Looking at the (green) group of 2, A does not change but MC changes from 01 to 11. This indicates 
that although M changes, C does not. Therefore there are two non-changing inputs in this group A 
and C. 

Putting the results of the simplification together by ‘ANDing’ any non-changing inputs within a 
single group, and ‘ORing’ the different groups, produces the simplified Boolean equation for the 
whole circuit: 

X = M + A•C 

This result agrees with the simplification produced in Module 2.3 using Boolean algebra. The main 
advantage of using a Karnaugh map for circuit simplification is that the Karnaugh method uses 
fewer rules, and these rules can be applied systematically rather than intuitively as with Boolean 
algebra. Therefore with a little practice the Karnaugh system should produce more reliable 
minimisation. Although Karnaugh mapping may have only slight advantages over Boolean algebra 
in simple circuits, the advantages become more apparent when minimising more 
complex circuits. 

Karnaugh Minimisation of a 4 Input Circuit 
With four-input circuits, Karnaugh maps become more useful, compared with 
minimisation using Boolean algebra alone. 

Table 2.4.2 shows an example of a truth table for a BCD to 7 segment decoder, 
the purpose of this circuit is to illuminate the LEDs (or activate the LCD 
segments) that make up typical numerical displays. 

As shown in Fig. 2.4.5, a typical display consists of 7 LEDs arranged in a figure 
of 8 formation. The LEDs (labelled a to g) must be activated independently to 
make up the numbers 0 to 9. Because 9 is the highest number that can be 
displayed, the usual data driving each digit of the display is in the form of ‘8421 
Binary Coded Decimal’, which restricts the range 
of the binary data to between 00002 and 10012. 

The truth table for a BCD to 7 segment decoder is 
shown in Table 2.4.2 and demonstrates the 
relationship between the four inputs ABC and D, 
and each of the display LEDs. 

In columns a to g, an output of logic 1 lights one 
particular segment of the display. Logic 0 turns it 
off. An X output is called a ‘Don’t Care’ as it 
does not matter what the possible binary value 
would be in the BCD input columns A to D as 
they will not occur, (BCD will not produce values 
higher than 910 or 10012). The value of including 
these ‘Don’t Care’ outputs however, will be seen 
when working on the Karnaugh maps. 

Table 2.4.2 

Decimal BCD Inputs 7 Segment Outputs 

 D C B A a b c d e f g 

0 0 0 0 0 1 1 1 1 1 1 0 

1 0 0 0 1 0 1 1 0 0 0 0 

2 0 0 1 0 1 1 0 1 1 0 1 

3 0 0 1 1 1 1 1 1 0 0 1 

4 0 1 0 0 0 1 1 0 0 1 1 

5 0 1 0 1 1 0 1 1 0 1 1 

6 0 1 1 0 1 0 1 1 1 1 1 

7 0 1 1 1 1 1 1 0 0 0 0 

8 1 0 0 0 1 1 1 1 1 1 1 

9 1 0 0 1 1 1 1 1 0 1 1 

10 X X X X 0 0 0 0 0 0 0  

11 X X X X 0 0 0 0 0 0 0  

12 X X X X 0 0 0 0 0 0 0  

13 X X X X 0 0 0 0 0 0 0  

14 X X X X 0 0 0 0 0 0 0  

15 X X X X 0 0 0 0 0 0 0  

Fig. 2.4.5 LED 

7 Segment 

Display 
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Notice that it is the convention to list the BCD input columns A to D in reverse order, making A 
represent the least significant digit and D, the most significant digit. 

 

Designing a Decoder Circuit 

The processes, and some of the choices to be made 
when using Karnaugh maps to minimise the digital 
circuits derived from complex truth tables such as 
Table 2.4.2 can be illustrated by creating a circuit to 
decode the 4 bit input to drive a single segment 
(segment ‘a’) of a 7 segment display. A similar 
process could be used to design circuits for each of 
the other six outputs b to g. 

Table 2.4.3 illustrates the Boolean expressions 
derived from the BCD input columns that cause a 
logic 1 output at ‘a’. 

Segment ‘a’ must be illuminated when any of the 
numbers 0,2,3,5,6,7,8 or 9 are present at the decoder 
inputs as a BCD value. Therefore 8 Boolean 
expressions are derived from Table 2.4.3, which will 
cause the decoder circuit to output logic 1 for these 
inputs. 

 

The Boolean equation needed for the design of an appropriate circuit will therefore contain these 8 
Boolean expressions, and so will be long and complex. It is therefore essential that such an equation 
is minimised, in order to make a practical circuit. 

Decoder Minimisation Using Karnaugh Maps 
The full Boolean formula for segment ‘a’ of the display, derived from Table 2.4.3 is: 

a =  ( D • C • B • A ) + ( D • C • B • A ) + ( D • C • B • A) + ( D  • C • B • A ) + ( D • C • B • A ) + ( D • C • B • A) + ( D • C • B • A ) + (D • C • B • A)  

 

Each of the individual AND expressions in the formula are now used to populate a 16 cell (four 
input) Karnaugh map with logic 1s, corresponding with the cell values for A B C and D around the 
edges of the map, as shown in Fig. 2.4.6. 

 
For example, the cell in the second row down, and the first 
column from the left contains a logic 1 that is labelled D 

• C • B • A corresponding to CD = 01 and AB = 00. Each 

logic 1 cell in the map is therefore equivalent to one of the 
Boolean expressions derived from Table 2.4.3. The 
complete Boolean formula for output &lsquo;a&rsquo; is 
therefore contained in the Karnaugh map. 

 

Table 2.4.3 

Decimal BCD Inputs  

 D C B A a Boolean 

0 0 0 0 0 1 D • C • B • A  

1 0 0 0 1 0  

2 0 0 1 0 1 D • C • B • A  

3 0 0 1 1 1 D • C • B • A 

4 0 1 0 0 0  

5 0 1 0 1 1 D • C • B • A 

6 0 1 1 0 1 D • C • B • A  

7 0 1 1 1 1 D • C • B • A 

8 1 0 0 0 1  D • C • B • A  

9 1 0 0 1 1  D • C • B • A 

10 X X X X 0 

11 X X X X 0 

12 X X X X 0 

13 X X X X 0 

14 X X X X 0 

15 X X X X 0 

 

Fig. 2.4.6 Karnaugh map 

populated with Logic 1s 
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The logic 1 cells in the Karnaugh map can then be grouped as described in ‘Simplifying Karnaugh 
Maps’ to produce minimal Boolean expressions as shown in Fig. 2.4.7. 

In this example one group of four (in blue) has been found, containing: 

( D  •  C •  B • A ) + ( D  • C • B  •  A) + ( D • C • B • A ) + ( D • C • B  •  A) 

 

This group follows the Karnaugh Map Rule 5 and 

the cells that DON’T change are B • D, so this 

group simplifies to B • D . 

There is also a Karnaugh Map Rule 5 group of two 
(in red) containing: 

( D • C • B • A ) + (D • C • B • A) 

 

This group also follows the Karnaugh Map Rule 5 

and the cells that DON’T change are D• C• B , so 

this group simplifies to B • C • D. 

Two further groups of two (green) simplify: 

( D • C • B • A ) + ( D • C • B • A )     to     A  • B  • C   

 

And: 

( D  • C • B • A ) + ( D • C • B • A)      to     A  •  C • D   

 

This produces a simplified Boolean equation for output ‘a’ of:  

a = (B • D ) + ( B • C • D) + ( A • B • C ) + (A • C • D ) 

 

This equation could be implemented as a 
circuit in a number of different ways, using 
AND OR and NOT gates, but Fig. 2.4.8 
shows a circuit for the ‘a’ output, produced 
from the Karnaugh simplified equation, 
using NOT gates and the universal gates, 
NAND and NOR. Because there are not 
more than four of either NAND or NOR 
gates used, and less than 6 NOT gates, such 
a circuit would require one integrated 
circuit of each type, 3 in total. 

However, although this circuit has been produced from a simplified Boolean equation, this does not 
automatically mean that the circuit is fully minimised, so may not yet be in its most economical 
form. 

Fig. 2.4.7 Minimising 

the Karnaugh Map 

Fig. 2.4.8 Simplified Circuit for BCD to 

7 segment decoder ‘a’ Output. 



www.learnabout-electronics.org                                                                Digital Logic 

DIGITAL ELECTRONICS MODULE 02.PDF 21                                                                                                  E. COATES 2007-2014 

Using ‘Don’t Care’ Cells 
The Karnaugh map in Fig. 2.4.7 used only logic 1s to make the simplified groups; if use is also 
made of the ‘don’t care’ cells, larger groups can be made, resulting in shorter Boolean expressions. 

Groups of one make 4 term expressions. 

Groups of two make 3 term expressions. 

Groups of four make 2 term expressions. 

Groups of eight make 1 term expressions. 

Including the ‘don’t care’ cells will not change the correct ‘a’ output of the resulting circuit, as 
although the input combinations creating these cells could (in pure binary) occur, in BCD, numbers 
greater than 10012  (910) can’t happen. 

Fig. 2.4.9 shows the result of including the ‘don’t 
care’ cells in the groups. This allows two (red) 8 
cell groups and two (blue) 4 cell groups to be made. 
The cells containing 0 are still ignored, as they do 
not produce the required logic 1 outputs. The map 
now results in a minimised, and therefore simpler 
Boolean equation than in Fig. 2.4.7. All relevant 
cells are now grouped using the maximum possible 
sizes for the groups, which results in a Boolean 
equation of: 

a = B + D + (C • A) + ( C• A ) 

This produces the circuit shown in Fig. 2.4.10, 
using only six gates instead of the ten required 
for Fig 2.4.8. The circuit now requires only 
two ICs. Additionally, as each gate has a finite 
propagation delay (the time from when the 
gate input becomes valid to the time when the 
output becomes valid), so the fewer gates 
there are between the circuit’s input and 
output, the faster the data can be processed. 
Notice that in Fig. 2.4.10 one of the NAND 
gates has one input connected permanently to 
logic 1 to convert it to a NOT gate, as 
described in Module 2.1. As there are four two input gates per chip, using a spare NAND gate in 
this way saves the use of a NOT IC.  

Minimisation Using Zeros 
A further option in simplifying circuits using 
Karnaugh maps is to produce a map grouping 
zeros instead of ones. Using the Karnaugh map 
produced from Table 2.4.3 again, if Zeros and 
‘Don’t Cares’ are both included, this produces 
a map like that illustrated in Fig. 2.4.11. 

The Boolean equation using zeros only, would 
produce:  

a = ( D • C • B • A ) + ( D • C • B • A ) 

 

Fig. 2.4.9 Karnaugh Map with 

‘Don’t Care’ Cells Included 

Fig 2.4.10 Minimised Circuit for BCD to 7 

Segment decoder ‘a’ Output. 

Fig. 2.4.11 Grouping Zeros 

and ‘Don’t Cares’ 
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but including the one available X (Don’t Care) produces a slightly simplified equation: 

a = (C • B • A ) + ( D • C • B • A) 

 

However this produces logic 1 outputs where 
‘a’ was at logic 0 (for inputs 0001 and 0100 in 
Table 2.4.3). If this output is inverted 
however, the correct ‘a’ output according to 
the truth table for the decoder is produced. A 
circuit implementing this method is illustrated 
in Fig. 2.4.12. This circuit uses the same 
number of ICs as Fig. 2.4.10 but has a 50% 
longer propagation delay due to the extra 
gates used. 

 

A circuit with a shorter propagation delay can be 
made, by using just the zeros in the Karnaugh 
map as shown in Fig. 2.4.13. This map contains 
only two 4-term groups but provides the 
opportunity to use two 4 input AND gates in the 
circuit illustrated in Fig. 2.4.14  

This circuit again uses three ICs, a Hex inverter 
(with 6 NOT gates), a Dual 4 input AND and a 
Quad 2 input OR. 

Because only two expressions are used the circuit is not minimised, but implemented as: 

a = ( D • C • B • A ) + ( D • C • B • A ) 

 

In terms of propagation delay this circuit should be 
the fastest version of those discussed in this section, 
but the cost (based on average prices for 74 series 
ICs) would be approximately 30% more expensive 
than the cheapest. 

 Clearly, in designing digital circuits there are 
choices the designer must make. Cost, speed, 
physical space and time to design are just some of 
the design considerations. 

Relatively few new designs of medium to large 
systems will be implemented using 74 series ICs today. Now, large and complex Programmable 
Logic Devices will be used, where the actual logic functions within an integrated circuit, as well as 
the complex relationships between the functions are set by computer software, but for small scale 
and one-off designs, the low cost and reduced complexity of the 74 series chips is still valued. 

Minimisation using Boolean algebra will largely be confined to simple circuits having few inputs, 
Karnaugh mapping being preferred as complexity increases. However both of these manual systems 
of circuit minimisation can be time consuming and error prone. Although Karnaugh mapping can 
theoretically handle circuits with up to six inputs, much work of this type can be better handled by 
computer based systems. 

Fig. 2.4.12 Inverting the Output 

of a Circuit Using Zeros 

Fig 2.4.13 Two Expression 

Karnaugh Map Using Zeros 

Fig 2.4.14 Karnaugh Derived 

Faster Circuit Using Zeros. 
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An excellent software tool for circuit simplification that will produce a minimised circuit from 
schematic diagrams, truth tables or Boolean expressions is ‘Logic Friday’ from Sontrak. The 
program can be downloaded free of charge from http://www.sontrak.com/. 

The minimisation problems discussed in this module have described the process for manually 
arriving at a design that will activate just one LED on a seven-segment display, but what about a 
circuit for a complete (4 input, 7 output) BCD decoder to drive the full display? 

The screen grab shown in Fig. 2.4.15 was taken from Logic Friday and shows the result of just a 
few minutes work entering the truth table (similar to Table 2.4.2) for the complete decoder logic. 

 

The program has compiled the Boolean equations for all seven outputs, minimised the equations 
and drawn the complete circuit using a selected combination of NAND, NOR and NOT gates. 

This does not mean that the whole process is automated, there are still decisions to be made whilst 
using the program, and many of these decisions depend on knowledge of the manual operations 
introduced in this module. An exploration of both manual and computer based methods is to be 
recommended, together with an understanding of the way logic devices work, which is explained in 
Digital Electronics Module 3 on www.learnabout-electronics.org. 

Fig. 2.4.15 Minimisation of the Complete Decoder Logic 

for a BCD to 7 Segment Decoder In ‘Logic Friday’ 
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2.5 Digital Logic Quiz  
Try our quiz, based on the information you can find in Digital Electronics Module 2 − Digital 
Logic. Check your answers at  http://www.learnabout-electronics.org/Digital/dig25.php and see 
how many you get right. If you get any answers wrong. Just follow the hints to find the right answer 
and learn about digital logic as you go. 

 

1.  

What is the device illustrated in Fig.2.5.1? 

a. A two input AND gate. 

b. A two input NAND gate. 

c. A two input OR gate. 

d. A two input XNOR gate. 

 
2. 

Which of the following Boolean equations describes the action of Fig. 2.5.2? 

a. X = ( A • B  ) + (B • C) 

b. X = (A • B) • (B + C) 

c. X =( A • B ) + (B • C) 

d. X = ( A • B  ) + C 

 

3. 

Which Boolean law is described by the equation  A•(B+C) = A•B+A•C? 

a. Commutative law. 

b. Associative law. 

c. Distributive law. 

d. Complement law. 

 
4. 

Which of the following logic functions is illustrated by Fig. 2.5.3? 

a. XOR 

b. NOR 

c. AND 

d. NAND 

 
5. 

Which of the following Boolean equations describes the truth table in Fig. 2.5.4? 

a. X = A + B 

b. X = A • (A + B) 

c. X = (A • B ) + B 
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d. X = A + B  

 
6. 

What type of I.C does Fig. 2.5.5 represent? 

a. 7400 

b. 7402 

c. 7404 

d. 7408 

 
7. 

Which logic function does the circuit in Fig. 2.5.6 perform? 

a. NAND 

b. NOR 

c. XOR 

d. XNOR 

 
8.  

What is the Boolean expression that can be obtained for the Karnaugh map cell  

indicated in Fig. 2.5.7? 

a. A  • B  •  C • D 

b.  A • B  • C  • D 

c.  A  • B  • C • D   

d.. A  • B  • C  • D 

 
9. 

Refer to Fig. 2.5.7: 

What is the minimum number of cell groups that can be obtained from the Karnaugh map using 
logic 1 cells only? 

a. Two groups. 

b. Three groups. 

c. Four groups. 

d. Five groups. 

 
10. 

Which  of the segments on a 7 segment LED display need to be illuminated to display the decimal 
number 4? 

a. Segments a, f, b, c 

b. Segments c, d, e, f 

c. Segments a, d, e, g 

d. Segments b, c, f, g 


