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Digital Electronics

2.0 Digital Logic

What you’ll learn in Module 2
Section 2.0 Introduction.
Section 2.1 Logic Gates.

74 Series standard logic gates.

« Standard logic functions.

AND, OR, NAND, NOR,
XOR, XNOR, NOT.

* Truth tables for standard logic
functions.

Section 2.2 Combinational Logic
» Combining logic gates.
* Truth tables.
* Boolean equations.
Section 2.3 Boolean Algebra.
« Simplifying Boolean equations
* Boolean laws and rules
» De Morgan'’s theorem
Section 2.4 Karnaugh Maps.
« Constructing Karnaugh maps
« Minimising Karnaugh maps

» Software for Boolean
simplification

Section 2.5 Digital Logic Quiz.

*Test your knowledge of Digital
Logic.

Introduction.

Digital logic is the foundation, not only of commg but also
many other electronic devices and control systeousid in
almost every part of modern life.

This module introduces the basics of digital logd shows
how the whole of digital electronics depends ort gesven
types of logic gates, connected together with aimmim of
additional components. Combinations of logic gatleen
form circuits that can perform specific tasks witHarger
circuits or systems. The process of producing cempl
circuits using combinations of basic devices islechl
Combinational Logic.

There are many ways that a number of logic gatesbesa
combined to perform a specific task. They may aitky but

some combinations will perform the task that bettem others. For example, a circuit designer
may want to design a combinational logic circuiattluses the minimum number of gates, or
performs the required task in the least time, dha@iminimum cost.

This module also introduces the way digital logates work and teaches you key methods by
which a basic digital logic circuit design may baimised, made more efficient and/or cheaper.

DIGITAL ELECTRONICS 02.PDF

1 0 E. COATES 2007 -2014



www.learnabout-electronics.org

Digital Logic

What you’ll learn in Module 2.1

After studying this section, you should
be able to:

Describe the action of logic gates.

* AND, OR, NAND, NOR, NOT,
XOR and XNOR

» Using Boolean expressions.
* Using truth tables.

Understand the use of universal gates.

* NAND
* NOR

Recognise common 74 series ICs
containing standard logic gat

Seven Basic Logic Gates

Digital electronics relies on the actions of jusven types
of logic gates, called AND, OR, NAND (Not AND), NOR
(Not OR), XOR (Exclusive OR) XNOR (Exclusive NOR)
and NOT.

Because, in binary logic there are only two stateand 0
or ‘on and off,” NOT in the world of binary logitiérefore
means ‘the opposite of'. If something is not 1 iishbe O,
if it is not on, it must be off. So NAND (not ANBYmply
means that a NAND gate performs the opposite fandid
an AND gate.

A logic gate is a small transistor circuit, badiga type of
amplifier, which is implemented in different formgthin
an integrated circuit. Each type of gate has onenore

(most often two) inputs and one output.

The principle of operation is that the circuit agtess on just two voltage levels, called logic 0 and
logic 1. When either of these voltage levels isliggpto the inputs, the output of the gate responds
by assuming a 1 or a O level, depending on thecpéat logic of the gate. The logic rules for each
type of gate can be described in different waysahwyritten description of the action, by a truth
table, which is a table showing all the possibtpdestates at the inputs and output of the gatbyor

a Boolean algebra statement.

Boolean statements use letters from the beginnineoalphabet, such as A, B, C etc. to indicate
inputs, and letters from the second half of théalyet, very commonly X or Y and sometimes Q or
P to label an output. The letters have no meamrtpemselves, other than just to label the various
points in the circuit. The letters are then linkgoa symbol indicating the logical action of theega

The « symbol indicates AND although in many cabes-tmay be omitted. (A*B may also be
written as AB or A.B)

+ indicates OR

Uindicates XOR (Exclusive OR)

Although the symbols ¢ and + are the same as these in normal algebra to indicate product
(multiplication) and sum (addition) respectively,binary logic the + symbol does not exactly
correspond to sum. In digital logic 1 + (OR) 1 =biit the binary sum of 1 + (plus) 1 =,10
therefore in digital logic + must always be consadeas OR.

Three further types of logic gate give an outpuatt ils an inverted version of the three basic gate
functions listed above, and these are indicated bgr drawn above a statement using the AND,
OR, or XOR symboils to indicate NAND, NOR and XNOR.

AeB means A AND B but A.Bmeans A NAND B

For example:

An AND gate gives an output of logic 1 when inputAND input B are at logic 1, but a NAND
gate would give a logic 0 output for the same inputditions. Also where the AND gate gives a
logic zero for a particular input combination, tR&ND gate would give a logic 1. The ‘N’ in the
gate’s name, or the bar above the Boolean expresserefore indicates that the output logic is
‘inverted’. In digital logic NAND is ‘NOT’ AND or he opposite of AND. Similarly NOR is ‘NOT’
OR and XNOR is ‘NOT’ XOR.
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The final gate type, the NOT gate or inverter isirggle input gate that has an output having the
opposite logic state, or the inverse of the input.

Table 2.1.1 shows each of the seven basic logiesgarhich may be illustrated by either the
traditional "Distinctive Shape" ANSI symbol or timewer rectangular IEC symbol, and a written
description of its logic function compared with Bsolean equation.

Table 2.1.1

ANSI Symbol IEC Symbol Description Boolean
A—] X A—g X The AND gate output is atlogic 1 when, and only when all its inputs are at logic 1,

B— B— [ | otherwise the output is at logic 0. X=AB
A X A—>1 | x The OR gate output is at logic 1 when one or more of its inputs are atlegic 1. If all the

B B — inputs are at logic 0, the output is at logic 0. X=A+B
A— X A—g e x The NAND Gate ou‘q:_)ut is at_logic Owhen, and only when all its inputs are atlogic 1, X= ﬁ
B— B — otherwise the output is at logic 1.

A X A—31 - The NOR gate output is at logic 0 when one or more of its inputs are at logic 1. If all —
B B — the inputs are at logic 0, the output is at logic 1. X=A+B
A . — . The XOR gate output is atlogic 1 when one and ONLY ONE of its inputs is at logic

X —1 X -
B B — —* | 1.Otherwise the output s logic 0. X=AGB
A a—[=1 The XNOR gate output is at logic 0 when one and ONLY ONE of its inputs is at logic X= AG—)_B
:)D—X g—  [~X | 1.Othernise the outputis logic 1. (Itis similar to the XOR gate, but its output is -
B inverted).
1 - The NOT gate output is atlogic O when its only input is at logic 1, and at logic 1 when -
A —DD—" A— X | fts only inpUt is at logic 0. For this reason it is often called an INVERTER. X=A

Logic ICs

Fig. 2.1.1 illustrates a selection of the basiegdbgic gates that are available from a number of
manufacturers in standard families of integratedutis. Each logic family is designed so that gates
and other logic ICs within that family (and othetated families) can be easily combined, and built
into larger logic circuits to carry out complex @fions with the minimum of additional
components.

Typically, standard logic gates are available indd or 16 pin DIL (dual in line) chips. The
number of gates per IC varies depending on the Burabinputs per gate. Two-input gates are
common, but if only a single input is required, Is@as in the 7404 NOT (or inverter) gates, a 14 pin
IC can accommodate 6 (or Hex) gates. The greatesber of inputs on a single gate is on the
74133 13 input NAND gate, which is accommodated 6 pin package.
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7486 Quad 2 input 74266 Quad 2 input 7404 Hex NOT Gates 74133 Single 13 input
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[l

Fig. 2.1.1 Logic Gates From the 74 series TTL IC Family
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Digital Logic

Logic Functions

Fig 2.1.2 shows how the seven basic logic functicans also be
described using a ‘truth table’ to show the relagitip between
the output (X) and all possible input combinatidos inputs A
and B, shown as a four value binary count from®Q1. Each

+V

diagram shows the input and output conditions foe of the A;}..\o_ i
seven logic functions in its two input form. Sonypds of gate A B X
however, are also available with more (e.g. 3 tpihButs. For o 5TiTo
these gates the truth tables would need to be @stkto include Bd-\—- :: (:ff
all possible input conditions. ov
r
+V = +V +V
A=1 X=1 X A=0 X=1 5 x=0 %
B=0 | B=0 |:
Aqx— OR A : NAND A q NOR
]U ojo W 0/0]1
K | |
B qi_ BN B qi__ |{1J ; : Bq"\c)_. ]“1J ;|3
1111 [1]1]0 1]1]0
ov ov ov
™ mn e
+V A + [|:| +V
A=1 ,D X=0 . ': ): X=1 A=0 D X=1_, «
B=1 =
Aq'%_ XOR ’*:'11"\0_ XNOR i q
Goo jeloiy AR
¥ ICIERE N plrle CE
J-SNl ol qu BRI . [iTo]
ov
mr rr i

Logic Functions

Universal Gates

Because gates are manufactured in IC form, tygicahtaining two to six gates of the same type,
it is often uneconomical to use a complete IC gfgstes to perform a particular logic function. A

better solution may be to use just a single typeyate to perform any of the logic operations
required. Two types of gate, NAND and NOR are oftead to perform the functions of any of the
other standard gates, by connecting a number lodéredtf these ‘universal’ gates in a combinational
circuit. Although it may not seem efficient to useveral universal gates to perform the function of
a single gate, if there are a number of unusedsgatene or more NAND and NOR ICs, these can
be used to perform other functions such as AND Rrr&ther than using extra ICs to perform that
function. This technique is especially useful ie tthesign of complex ICs where whole circuits

within the IC can be fabricated using a single tgpgate.
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Fig. 2.1.3 shows how NAND gates can be used toimlatay of the standard functions, using only
this single gate type.

NOT Function MO
a. Connecting the inputs of the NANL A % qzﬂ
gate together creates a NOT function. & ‘ED_ ':' l? 'T;
N
b. Alternatively the NOT function can b %‘1’
achieved by using only 1 input an F:ED;‘. IELE
connecting the other input permanently b. LOGIC 1 110
logic 1. EXERC]

AND Function

c. Adding the NOT function (an inverter c.
to the output of a NAND gate creates
AND function.

OR
Dlﬂ'l 119

OR Function d. ofi1([1]o]
d. Inverting the inputs to a NAND gat 1lojolily
creates an OR function. ij1jojols
~OR

NOR Function &, of1(1fef1]o
e. Using a NOT function to invert the 1lojol1li]o
output of an OR function creates a NO JEICICIERC
function. A XOR

f.
XOR function
f. Four NAND gates (a single IC
connected as shown creates an X(
function (and a Quad NAND IC is abot
15% cheaper than a Quad XOR IC). g.
XNOR Function
g. Inverting the output of the XOR
function creates an XNOR function. Fig 2.1.3 Creating any Logic

Function Using NAND Gates

Similar conversions can be achieved using NOR gatgisas NAND gates are generally the least

expensive ICs, the conversions shown in Fig. 2ateBmore frequently used. The reason for such
conversions is usually cost. This may not seem useful since none of the basic 74 series ICs are
expensive, but when several thousand units of #cphkar circuit are to be manufactured, the small

savings in cost and space on printed circuit bohydsiaximising the use of otherwise unused gates
in multi gate ICs can become very important.
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2.2 Combinational logic.

What youll learn in Module 2.2 Combinational logic. o _ o
Combining a number of basic logic gates in a lagyeuit

to produce more complex logical operations is dalle
combinational logic. Using such circuits, logical
operations can be performed on any number of inputs
* Using truth tables. whose logic state is either 1 or 0 and this teamiig the

« Using Boolean expressions. basis of all digital electronics.

After studying this section, you should
be able to:

Describe complex logic functions.

Understand the relationship betweent |  Combinational logic circuits can vary in complgxitom
tables and logic circuits. simple combinations of two or three standard gates,

* Analyse simple digital circuits circuits containing hundreds of thousands, or e#élions
using truth tables. of gates. It is this ability to combine just a fsimnple gate

* Formulate Boolean equations frc | circuits, which can be manufactured to microscopic
truth tables. dimensions, but in almost limitless combinationstth
-_Use_ttruth tables to simplify logic | makes digital electronics so powerful.

CIrcuits.

To understand the operation of a combinational clogi
circuit, and what logic state should be presentary
particular point in the circuit, it is necessaryaocurately analyse the operation of the circwt. F
this purpose, several methods can be used, degendirnthe complexity of the circuit. These
include truth tables, Boolean algebra, Karnaughswaaqa computer software methods.

Truth Tables.

A truth table can be used for analysing the opematf logic
circuits. A simple example of a combinational logiccuit is D

shown in Fig. 2.2.1. To analyse its operation thttable can be X
compiled as shown in the following tree steps.tiirs number B
of columns are written down which will describejngsones -

and zeros, all possible conditions that can octuhe inputs C E

and outputs of the circuit. For the circuit in RR.1, three

inputs A, B and C are used. Fig 2.2.1 Combinational Logic
Step 1

Three columns marked A, B and C are needed, filed a binary count from 000 to 111, i.e. a
decimal count from 0 to 7. These columns now con&lilL possible input conditions because
three inputs can have only geight) combinations of 1 and 0. More inputs woafdcourse have
more possible combinations, but as long as a bioamt is used with one column per input, all
possible input conditions are covered.

Step 2

Two more columns are
added next, for the
intermediate points D anc

Step 2
AsB  A«C

Step 3

Inputs Inputs A‘B AC D+E

. . . . A Cc A B Cc D E A B C D E X
_E in the circuit, showing 5 o | o 5lolol o 5 5100l o 5 o
in collumn D, the result of — 7T, o ol 1 0 0 olol 11 o 5 5
‘ANDing’ columns A and T 1, ol 110l o 0 ol1lol o | o | o
B, and in column E the[ 4 [ 1 [ 4 ol 1|1 0 0 ol11 1] o 0 0
results of ‘ANDIng | 1] o] o 11o0]lo] o 0 11o0]o] o 0 0
columns A and C. Eacl| 1 | 0 | 1 11011 0 1 1]o0l1] o 1 1
column is labelled with a| 1 | 1 | 0 1110 1 0 101]0] 1 0 1
Boolean expression foil 1 | 1 | 1 L O O 1 1l1]1] 0 1 1
that particular gate output. Table 2.2.1 Making a Truth Table
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Each cell in columns D and E is filled with the egriate 1 or O by working out the logic state that
would occur at that gate output for the given ispln this case each column follows the rule for an
AND gate, illustrated in Digital Electronics Modu?e Table 2.1.1.

Step 3

Then the final column X is completed by ‘ORing’ theermediate columns D and E. This final
column now shows all the logic states at the oupdbr any combination of logic states at the
inputs A, B and C. A truth table produced in thiaywis also very valuable in fault finding in
combinational logic circuits, as it shows the logtates at any point in the circuit for a given
combination of inputs. These may be checked agé#estctual operation of the circuit to reveal
faults.

Circuit Simplification Using Truth Tables -
Creating a circuit from a truth table reverseshi process =
described above, and looking at Table 2.2.1 it lwarseen B
that a logic 1 is produced at output X wheneverdieuit A EEAC X
inputs A, B and C are at logic 1. This can be dbedrby B © |
compiling an appropriate Boolean equation from théh o
table, which shows that X is 1 (is true) when A &ndre 1, .
or when A and C are 1, or when A and B and C arehis — F=AB.C
can be written as: X= (A.B)+(A.C)+(A.B.C)
X = (AeB) + (AsC) + (A*B+C) Fig. 2.2.2 Three Input

The circuit therefore provides a logic 1 outpuiXaor any Combinational Logic Circuit

input combination where the binary value of theuitspis greater than 19Q4,0). Building a circuit

to implement the Boolean equation would give thleilteshown in Fig. 2.2.2. Notice however, that
this circuit gives the same output as the origeiaduit in Fig 2.2.1 so could the simpler circuft o
Fig. 2.2.1 do the job just as well?

The Boolean equation derived from Table 2.2.1 ssiggihat a more complex circuit, as shown in
Fig 2.2.2 would be needed, which requires two 21irlND gates for columns D and E and a three
input AND gate for column F. These are then ‘OR®edether by a 3 input OR gate to provide the
single output X.

Compiling a truth table for Fig. 2.2.2 to check i
operation produces Table 2.2.2. The output columt
shows that the circuit in Fig. 2.2.2 does give shme
outputs as Fig. 2.2.1. However, although a loggt 1
X is produced on the bottom row, where all thr
inputs (A*B+C) are logic 1, the third row up froimet
bottom of the table where A«C (shaded cells) a
provides a logic 1 in column E and at output X.

Table 2.2.2
AB A-C A*B-C D+E+F
E X

Inputs
B

Therefore it doesn’t matter whether columns D, E0
in the bottom row are at logic 1 or not. With theuts
at 111 the logic 1s on inputs A and C will sti
produce a logic 1 at E and therefore logic 1 atailgput X. The bottom row for Columns D, E an F
can therefore be marked witkito indicate “Don’t Care”, it doesn’t matter whettibese cells are 1
or 0, column X will still be logic 1.

o lalaloolo|o Bl

c
0
1
0
1
0
1
0
1

= = (DO = = DD
= = = 0 O OO O

wlo|=alo|o|o|lo| o

This means that column F (and the three input ANEeare not needed, also the three input OR
gate can be replaced by a two input OR gate.

Although the circuit shown in Fig. 2.2.2, desigriezim a Boolean equation derived directly from a
truth table, does give the required output, thepfem(and cheaper) circuit shown in Fig. 2.2.1 does
the job just as well. Using a truth table in thigywill certainly give workable results and produce
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a working circuit, however it may not be the bastiat. In this case, the Boolean equation could be
reduced and simplified by getting rid of the redamidA«BC. The simplified circuit produced is
then adequately described by the shorter Booleaatiep:

X = (A*B) + (A*C)

This shows that although truth tables are an eswethethod for analysing the operation of a digital
circuit, they may not be the best design tool, whsed on their own, for arriving at the simplest
design. Simplifying circuit design using truth tebldoes require some practice in reading the truth
table, although possible simplifications are stilich easier to see in the truth table than bydryin
to visually analyse the circuit schematic diagrdtowever, with more complex circuits and more
than two or three inputs, simplification using kruables becomes a very laborious process, and
therefore more prone to errors. For circuits usipgto three or four inputs, better results can be
obtained by the direct manipulation of the Boolelgebra equations obtained from a truth table.
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Digital Electronics Module 2.1 showed that the epen of

What you’ll learmn in Module 2.3 a single gate could be described by using a Boolean
After studying this section, you should | €xpression. For example the operation of a sing® Ayate
be able to: with inputs A and B and an output X can be exprsse
Describe logic circuits using Boolean X = AeB
equations.

Note:

* Create Boolean expressions for
intermediate gate outputs. The symbol « represents a logical AND, but becabseuse

- Use complex Boolean equations | Of special symbols can be inconvenient in printeatemal,
describe complete logic circuits. the AND symbol is often omitted, as in AB or sepadaby a

Simplify Boolean equations using full stop as in A.B as used to indicate multiplioat in
Boolean laws. standard algebra. The multiplication symbelsand * can
« Commutative. also be seen in some texts, because the logical A8\D

similar to binary multiplication, (but_nothe same when

* Associative. . .
numbers having more than one-bit are used).

* Distributive. . ]
Module 2.2 showed the relationship between a ttatile
that describes the operation of a circuit, and al&m
equation that describes the logic of the circuit.

eldentity.
*Complement.

'R d t . . . . . . H
eduction A combinational logic circuit such as that showrFig 2.3.1

(arepeat of Fig 2.2.2) is described by a Boolepragon as:
X = (AeB) + (AsC) + (A*B<C).

*Duality.
*De Morgan’s Theorem.

Use De Morgan’s theorem to convert
multiple gate circuits to universal ga

D=AB

This could also be written (less clearly) as “Thepot X _D_
will be 1 when A and B or A and C or A and B ancv@ A X

) . , E=A.C
1, otherwise X will be 0”. B O
However Module 2.2 also showed that although c o
Boolean equation may give an accurate descriptioa ( . )—
logic process described by a truth table, it migdguire T F=AB.C
simplification before being interpreted as an actuauit. X= (A.B)+(A.C)+(AB.C)
The circuit shown in Fig 2.3.1 was simplified in tde Fig. 2.3.1 Three Input
2.2 by closely examining a truth table to find nedant Combinational Circuit with
gates. However, with anything but the simplest utsc Redundant Gates

this can be tedious and it is easy to make mistakes

This module therefore describes methods for siyiplif Boolean equations directly, using Boolean
algebra, rather than by the use of truth tables.

Circuit Simplification Using Boolean Algebra

The algebraic method used to simplify digital citsuapplies a number of Boolean laws to
successively simplify complex equations. Selectadsland rules are applied, step by step, to the
original equation, so as to eventually arrive atraplified version that can be implemented with a
smaller number of gates and therefore lead to plsmaircuit.
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Boolean Laws

The laws of Boolean algebra are similar in somesaaythose of standard algebra, but in some
cases Boolean laws are unique. This is because hgens applied to digital circuits, any variable
such as A can only have two values 1 or 0, wherestandard algebra A can have many values.

Commutative Laws
In a group of variables connected by operators ANDDR, the order of the variables does not
matter.

la. Boolean addition (OR): A+B = B+A
1b. Boolean multiplication (AND): A<B = BeA

Associative Laws
The order of calculation can be changed withoutaiiig the result (Change which terms are in
brackets, or remove brackets). Note: This is orfy90 long as all signs (+ or ¢) are the same.

2a. Boolean addition (OR): (A+B)+C = A+(B+C) = B+C
2b. Boolean Multiplication (AND): (A¢B)*C = A¢(BsC’= A*B+C = ABC

Distributive Laws
The same answer is arrived at when multiplying (ANJ) a variable by a group of bracketed
variables added (ORed) together, as when eachpiication (AND) is performed separately.

Law 3a is similar to factoring in normal algebrat baw 3b is unique to Boolean algebra because
unlike normal algebra, where A x AZAin Boolean algebra AsA = A

3a. A¢(B+C) = A*B+A«C
3b. A+(B<C) = (A+B) « (A+C)

Identity Elements AND OR
In rule 4a, when the variable A is ANDed with lodic(called the Identity m
Element for the AND operator). The variable ANDedhwl retains its [0/0]|0| |0/0]0
identity. Oj1|0| (0]1]1
Rule 4b, shows that the Identity Element for the @iRrator is 0, and an : {.‘i' ? 1 ? 1
variable (e.g. A) ORed with O it retains its idénti A1=A A+0=A
4a. Al = A
4b. A+0=A X
5a and 5b show how by ‘forcing the Identity Eleme(ibh B column of the |0]0|0| | 0[O0
truth tables) to the opposite states to those usdé and 4b, produces a|0|1({0| |0]1]1
output that is the same as the Identity Element. 1]0{0]| [1]0]1
_ 1)1 ] [1[1]1
5a. A«0=0 A0=0 A+1=1
5b. A+1 =1

6a and 6b show that ANDing or ORing two identicatiables, produces almAND mGR

output equal to a single variable, showing that omethe variables is ololol lololo
redundant, a useful rule when simplifying Boolegoations. ol1lol (ol 111
6a. Ac’A=A 11010 [1[0]1

- 111 [1]1]1

6b. A+tA=A A=A AAZA
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Complement Law

7a.A+A =1 Any variable ORed with its inverse is 1

7b.A<A =0 Any variable ANDed with its inverse is 0
Note:

A = A Double inversion (NOT NOT) returns the vai@lo its previous state.

Reduction
8a. When a single variable (A) is ANDed with its@IR a second variable (A+B), the result is equal
to the single variable.

8a A (A+B) = A

8b. When a single variable (A) is ORed wit
itself AND a second variable (A*B), the resu
is equal to the single variable.

8b A+ (A*B) = A

8c. When a single variable (A) is ORed wit
itself OR a second variable (A+B), the sing 8c
variable disappears. | Beee)) A AB_ A(AB)

0 0
8c A+ (A+B) = (A+B)

8d. When a single variable (A) is ANDed witl
itself AND a second variable (A*B), the singl
variable disappears.

8d A« (A*B) = (A+B)

Table 2.3.1 The Reduction Rules
8a
A+B  A«(A+B)
0

A+(AsB)

0

|k |O |O

=]
0
1
0
1

P |k |O o b2

R [k |~ o

0 0
1 1
1 1

= =N(=N >

=]
0
1
0
1

Pk |~ o

B
0 0
0 1
1 0
1 1

- (O |O |O

1 0
1 0
1 1

(

Duality Rules Table 2.3.2
It is possible to derive additional identities bitaining theDual of an Ty

identity. This involves changing the AND operatdcss OR and the OR < -1 = o

operators to AND. Additionally any Os are changedls and 1s to Os ag

shown in Table 2.3.2. A+1=1 A<0=0
A+A=A A*A=A
A+ A =1| A« A =0

Table 2.3.3
The duality rule can be used to change a logic esgmon C A+(B+C) A+(B+C)

containing both AND and OR elements to its equintldual 0 0 0
expression.

Table 2.3.3 shows that A+(B+C) is the same as AE]Be

>

B
0
0
1
1
0
0
1
1

||| |JO |0 |O |O

R o |k o+ o |-
R [ oo |o |o
Rk [ oo |o o
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Simplifying Boolean Equations

Minimising complex Boolean expressions to themn@iest form using Boolean laws and rules is a
matter of choosing the most appropriate law or taleeduce the expression step by step. If the
resulting minimisation is correct, the minimiseduation and the original equation should give
identical output columns when truth tables for dhiginal and minimised circuits are compared.

These Boolean algebraic methods would normally s& won logic circuits with just a few gates
and only two or three inputs, as this method of piication becomes more difficult and
cumbersome to use when more gates or inputs aoé/at

Which laws are applied to change an equation, and/hat order is a matter of practice and

intuition. This method involves looking at the ongl complex equation and selecting a law that
will simplify a particular part, so obtaining a ger equation, and then choosing another law that
will simplify the equation further, and so on urtike equation can no longer be made simpler.

There is no simple algorithm to specify the ordesteps to be taken and several routes may be
taken to reach the goal of a simplified and ideadlgimised circuit.

Whether the result is also the minimum possibleutircan only be judged by looking for any
possible further reduction using the Boolean laws.

In practice, small circuits with just two or threguts can very often be simplified just by looking
at the truth table and picking out any redundagiclacombinations, as shown in Table 2.2.2 in
Module 2.2 (Combinational Logic), but Boolean siifigation is useful for more complex circuits.

Boolean Simplification Examples

Example 1

Suppose the cash room at a store has accessteestaccertain employees, each of who has a key,
which produces a logic 1 at particular inputs taialocking circuit.

Only the store manager (M) can enter alone. Thistags manager (A)
and the cashier (C) also have access, but only \@beampanied b
each other, or by the store manager. Design a catnbnal logic

Table 2.3.4

circuit that will allow access by producing a logicwhen the above SIS SIS L))
conditions are met. 010100

0 0 1 0
Truth table ol 1ol 1 M
The conditions requiring a logic 1 output. can bmrax_ged asatuth o 11, MG
table (Table 2.3.4) and Boolean expressions cadeeed from the|— |, [,
truth table for each input combination that produadogic 1 output. 1l o1l aC
The five Boolean AND expressions can be separaye@m operators| 1 | 1 | o | 1 AeM
to form a complete Boolean equation. 11]1] 1] A-Ccem

X =M+ MeC + AeC + AeM + AsCM
This suggests a circuit like that shown in Fig.2.3vhich

would require four I.Cs: ?*_—-D\;

1x 74HCTO8 2 input AND (containing 4 gates). o

1x 74HCT10 3 input AND (containing 3 gates).

1x 74HCT32 2 input OR (containing 4 gates). ¢

1x 74HCT4075 3 input OR (containing 3 gates). ' - A A
However, by choosing appropriate laws and rulesfro K M Mo AN ACAAMC
those listed above, the circuit can be considerably __—ID_

simplified. AM-C

Fig. 2.3.2 Cash Room Access Circuit
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Starting with the equation derived from Table 2.3.4
X =M+ MeC + AeC + AM + AeCeM

SinceM + M«C = M (Reduction rule 8b)

X=M+ A-C
X =M +AsC + AsM + AsCeM . AC

And agVl + AsC+ AsM =M + AsM + A-C Fig. 2.3.3 Simplified Cash
(Commutative Law la)

X=M+ AeM + AsC + ACM

[a]®] g? }(I'J

Room Access Circuit

Table 2.3.5
And asM + AsM = M (Reduction rule 8b) A M ¢ X | m+ac
X =M + AeC + A:CeM ojlo|o]|o 0
And asM + AsC+ AsCeM = M + A=C-M + A-C(Commutative ololi1lo 0
Law la)
0 1 0 1 1

X =M+ AeCeM + AsC
And asM + A«CeM = M (Reduction rule 8b) Sl I M !

X =M + AC 1|/ 0|00 0
No further reduction possible. 10|11 1
The simplified circuit is shown in Fig 2.3.3, whiphovides exactlythe 1 | 1 | o | 1 1

same function as Fig. 2.3.2. This can be confirfagadomparing the
simplified equation X = M+ A«C with the original column X in Table
2.3.5.

The simplified circuit in Fig 2.3.3 still requiréso 1.Cs, (AND and OR) and it now only uses one
gate per chip. Unless the spare gates are to loealsewhere in another part of the circuit, this is
still wasteful.

A better option could be to replace the AND and DRctions a
with universal gates such as NOR or NAND. A ‘NANDIg

version of the simplified circuit is shown in F@3.4. This version M NAND 1) M X
uses three gates instead of two, but all the gakeshe same anc @3—0
NAND 2

C
can be accommodated within a single 7400 IC. Thgnad circuit 9
has therefore now been reduced from four ICs to one

NAND Circuit Operation M-C
NAND 1 has both its inputs connected together, Witienverts it -2 5] [12] [11] frol [o] [e]
to an inverter or NOT gate and therefore producest Ms output. ) @

NAND 2 works as an AND gate with its output invertand so @ @
produces an output of AsCThe Boolean expression for the T Ts] &ICE

circuit using NAND gates now becomes: Fig. 2.3.4 NAND only Cash
X=M+ AC Room Access Circuit

The inversion bars have now disappeared becaube alpplication of another very useful Boolean
algebra law, De Morgan’s Theorem. Before lookindgnaiv the theorem works, note the difference
in the use of the inversion bars in Boolean expoass This is an important feature in the
application of De Morgan’s Theorem:

A broken bar As B indicates that the inpufso an AND gate for example) are inverted, whalst

unbroken bar A e« Bindicates an inverted output
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De Morgan’s Theorem

Augustus De Morgan formulated an extension to Ge@gole’s Algebraic logic that has become

very important in digital logic. Not only is it uden the simplification of Boolean expressions but

can also be used to change the function of logiesgaso that NAND gates (or NOR gates) can
carry out any of the other standard logic functiohgates. The theorem comprises two laws that
describe how inverting the inputs to a gate, chautige gate’s function.

Law1. A+ B = AB Inverting the inputs to an OR gate changes itstfan to NAND.
Law2. A*B = A+B Inverting the inputs to an AND gate changes itgfion to NOR

Considering these two equalities the other way douA + B = "A*B De Morgan’s Theorem is

often described as “Break the bar and change gre”dleaning that by placing, or removing the
bar above the AND or OR operator (¢ or +) the ofmeres inverted. Therefore the complement of
the AND function is OR.

Applying De Morgan’s Theorem

These equalities, generally called De Morgan’s LAwend 2 are illustrated in Fig. 2.3.5 and Fig.
2.3.6 as they apply to AND, NOR, NAND and OR gateste however, that when De Morgan’s
theorem is applied to the XOR and XNOR gates tleen® change in the gate’s function.

Fig. 2.3.5 De Morgan’s Law 1 Fig. 2.3.6 De Morgan’s Law 2

The usefulness of De Morgan’s theorem when appbedircuits can be seen by comparing Fig.
2.3.3 and Fig. 2.3.4 where it was instrumentalhianging the functions of the AND and OR gates
in Fig.2.3.3 to all NAND gates in Fig. 2.3.4, se ttircuit can be made using one IC instead of two.

Inverting the Inputs

In Fig. 2.3.4 an additional gate NAND 1 appearsha circuit, and has its two inputs connected
together to act as a NOT gate (check this by laplihthe truth table for a NAND gate in Fig.
2.3.5), when both inputs are the same (row 1 anddathe output (X) is an inverted version of the
inputs (A<B).

This additional gate in Fig. 2.3.4 providg &t the top input to NAND 3 instead of the M apglie
to the top input of the OR gate in Fig 2.3.3.

NAND 2 in Fig. 2.3.4 replaces the AND gate in Fi$.3 so that the bottom input to NAND 3 is

now AeC instead of A«C.

Therefore inputs to NAND 3 are now Mnd MsC. Therefore both inputs to NAND 3 have been

inverted (without actually using any NOT gates)riake NAND 3 act, according to De Morgan’s
theorem, as an OR function, so giving the corregbat of X = M + AsC.

Summary

Boolean algebra gives a more compact way to desailcombinational logic circuit than truth
tables alone. It can also be used for simplificatd circuits, however this can also be cumbersome
and error prone. When circuits with more than twdhoee inputs are involved a better method of
circuit reduction that works well with circuits hag up to four or six inputs is the Karnaugh Map.
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What you’ll learn in Module 2.4

After studying this section, you should
be able to:

Understand the use of Karnaugh maps.
» Draw maps for Multi input circuits.
» Use Gray code notation.

* Derive Karnaugh maps from truth
tables.

Uses Karnaugh Maps.

Why Karnaugh Maps?

Karnaugh Maps offer a graphical method of reduang
digital circuit to its minimum number of gates. Timap is

a simple table containing 1s and Os that can eg@ésith
table or complex Boolean expression describing the
operation of a digital circuit. The map is thendise work

out the minimum number of gates needed, by graphica
means rather than by algebra. Karnaugh maps casduk

on small circuits having two or three inputs as an
alternative to Boolean algebra, and on more complex

circuits having up to 6 inputs, it can provide duaic and

» Group Karnaugh map cells. . LS
P J P simpler minimisation than Boolean algebra.

« Simplify logic circuits.

* Produce minimised Boolean Constructing Karnaugh Maps

equations. The shape and size o% AB
o . : the map is dependent ons\00_o1 S\00 01 11 10
Make choices in cell selection to achiev , 00 00
desired circuit result. t[he m_"mber _Of _bmary
_ inputs in the circuit to be °1 ot
* Cost reduction.
. analysed. The map needs (@) (b)
» Propagation delay. one cell for each AB
Understand manual and software based | possible binary word cDN\Q 01 11 10

00
01

Boolean minimisation.

applied to the inputs.
» Minimise a complex Boolean
equation using appropriate software| 1"
10

()
Fig. 2.4.1 Karnaugh Maps

Therefore:

2 input circuits with inputs A and B require mapishn2? = 4 cells
(Fig 2.4.1a).

3 input circuits with inputs A B and C require mayith 2° = 8 cells (Fig 2.4.1b).

4 input circuits with inputs A B C and D require psawith 2 = 16 cells (Fig 2.4.1c).

The input labels are written at the top left handher, divided by a diagonal line. The top and left
edges of the map then represent all the possiple kombinations for the inputs allocated to that
edge.

For example, in the 3 input map (b) in Fig. 2.4k top edge of the map represents the 4 possible
combinations for inputs A and B, so t
cells are labelled 00,01, 11, and 10 (S
*Important note).

*Important

Notice that this edge numbering does not follow
normal binary counting sequence, but uses a Gray
Code sequence where only one bit changes fron
one cell to the next. This is an important featfre
Karnaugh maps; get the sequence wrong and th
mep will not work!

Because example (b) in Fig. 2.4.1 is a
input map, input C on the left hand ed
only has two possible combinations, 0 a
1. This map is therefore rectangular rath
than square to cover the 8 possik
combinations available from 3 inputs.

11%
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Using the Karnaugh Map
The Karnaugh map can be populated with data fraéheea truth table
or a Boolean equation.

As an example, Table 2.4.1 shows the truth taliehfe 3 input ‘cash
room’ example, together with the Boolean expressidarived from
each input combination that results in a logic fpati This resultsing 0| 0 | 1 | ©
Boolean equation for the un-simplified circuit:

X=M + MeC+ AeC + AeM + AsMC
This table will serve to show the process of trangig the data from

Table 2.4.1 into the cells of the Karnaugh map. Phecess is shown * | © | 0 | ©
step by step in Fig. 2.4.2 1o 1|1 A+C

| Table 2.4.1
A M C X Boolean

0 0 0 0

1 1 0 1 A*M

1 1 1 1 AsM-C

Step (a)

From Table 2.4.1 row 3, inputs AMC have values 19,0Qproducing a logic 1 Vo0 01 11 10

at the output (X) and giving the Boolean expresdibim the Boolean column. =/ 1
Therefore 1 is placed in the map cell corresponding=0 and MC=10 as .
shown at (a) in Fig. 2.4.2. -

a
Step (b)
In Table 2.4.1 row 4, inputs AMC have values of Ofifoducing a logic 1 al o0 01 11 10
the output (X) and giving the Boolean expression M@he Boolean column. o T{1
Therefore 1 is placed in the map cell corresponding=0 and MC=11 as 1
shown at (b) in Fig. 2.4.2. (b)
Step (c)

In Table 2.4.1 row 5, output (X), is 0 so this r@angnored. However, in row “pmc
6, inputs AMC have values 101, producing a logiatlhe output (X) and
giving the Boolean expression AC in the Booleanugul. Therefore 1 is
placed in the map cell corresponding to A=1 and KICas shown at (c) ir
Fig. 2.4.2. (

Step (d) o 01 11 10
In Table 2.4.1 row 7, the inputs AMC have valueddd, producing a logic 1

at the output (X) and giving the Boolean expressfidvi in the Boolean

column. Therefore 1 is placed in the map cell gpomding to A=1 and
MC=10 as shown at (d) in Fig. 2.4.2. -

Step (e) C
Finally, in Table 2.4.1 row 8 the inputs AMC havaues of 111 producing ¢
logic 1 at the output (X) and giving the Boolearpession of AMC in the
Boolean column. Therefore 1 is placed in the madpcoeresponding to A=1
and MC=11 as shown at (e) in Fig. 2.4.2. ©

The completed map (f) C
All the truth table rows that produced a logic ¥éaow been entered into th
map and those lines that produced a logic O cagrimed, so the remaining
three cells are left blank. Later it will be shotrat these blank cells can k
useful when mapping larger circuits, but for nowe tmap is ready for
simplification.
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Simplifying Karnaugh Maps
Circuit simplification in any Karnaugh map is ached by combining the cells containing 1 to
make groups of cells. In grouping the cells ités@ssary to follow six rules.

How these rules are applied is illustrated usifgua input 16-cell map shown in Fig. 2.4.3.

Karnaugh Map Rules
1. Groups should contain as many ‘1’ cells (i.dlsceontaining a logic 1) as possible and no
blank cells.

2. Groups can only contain 1, 2, 4, 8, 16 or 32c. etlls (powers of 2).

3. A ‘1’ cell can only be grouped with adjacent @ells that are immediately above, below,
left or right of that cell; no diagonal grouping.

4. Groups of ‘1’ cells can overlap. This helps makaaller groups as large as possible, which
is an advantage in finding the simplest solution.

5. The top/bottom and left/right edges of the miagpansidered to be continuous, as shown in
Fig. 2.4.3, so larger groups can be made by groupatis across the top and bottom or left
and right edges of the map.

6. There should be as few groups as possible.

Map (a) follows rules 2, 3 and 4 and shows threeigs containing 8,
4 and 2 cells. This will simplify the circuit beimqgroduced, but it is
not optimum.

Map (b) shows an improvement, still with 3 groupd kthey now

contain 8, 4 and 4 cells. This map takes advaragdgae 5 by joining

the 2 cells ringed in green in Map (a) with the tap cells in the blue
group, see Map (b) to form a group of 4 (ringedyan) instead of a
group of 2. The map now conforms to all 6 rules.

Map (c) (for a different circuit) shows how a pdiatty single ‘1’cell
(second cell from the bottom in the right hand ouh) can be
grouped with two other cells in the blue group, ame cell in the

green group, to make a (cyan) group of 4. 0 DIPINK
Sometimes however there may be a single cell tmanat be joined | 5

with other groups, as shown in map (d). Rule 3 it diagonal |1} (1] Ro»
grouping so there is no alternative other thanetvé a group of 1. L4 ains Fa e
This is permissible, but in map (d), which repreésea four input @ (d)
circuit, the simplified Boolean equation will coimtaan un-simplified Fig. 2.4.3 Typical

expression relating to the single cell, which Wgive all four possible

Karnaugh Groups
terms e.g. A*B+C-D.

Example:
Using the Karnaugh map rules on the three input orepted from Table 2.4.1, there are just 2
possible groups, as shown in Fig. 2.4.4. The res# ts to simplify the original Boolean equation
for this circuit: )

X =M + MeC +AeC + AeM + AsM+C N ‘ﬁ

0

Converting the two groups in the Karnaugh map tool&an INaoD,
expressions is done by discovering which inputnguts (A, M or C) =
does NOT change within each group. Fig 2.4.4 Groups

Step 1 for Example 1
Taking the (blue) group of 4 first, notice thatgpans two rows
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vertically, and so contains rows A=0 and A=1, tfaem® A changes within the group so cannot
appear in the expression.

The blue group also spans two columns and so cenbdC=11 and MC=10. Here, C = both 1 and
0, but M=1 in both columns.

Therefore the only input that does not change énltlne group is M, so the Boolean expression for
the blue group is simply M.

Step 2
Looking at the (green) group of 2, A does not clealogt MC changes from 01 to 11. This indicates
that although M changes, C does not. Thereforeetasx two non-changing inputs in this group A
and C.

Putting the results of the simplification togethmwr ‘ANDIng’ any non-changing inputs within a
single group, and ‘ORIng’ the different groups, gwoes the simplified Boolean equation for the
whole circuit:

X=M+ AC

This result agrees with the simplification produeed/odule 2.3 using Boolean algebra. The main
advantage of using a Karnaugh map for circuit siiicption is that the Karnaugh method uses
fewer rules, and these rules can be applied systsiha rather than intuitively as with Boolean
algebra. Therefore with a little practice the Kamia system should produce more reliable
minimisation. Although Karnaugh mapping may havéy atight advantages over Boolean algebra
in simple circuits, the advantages become morerappavhen minimising more
complex circuits.

Karnaugh Minimisation of a 4 Input Circuit
With four-input circuits, Karnaugh maps become maseful, compared with
minimisation using Boolean algebra alone.

Table 2.4.2 shows an example of a truth table fBC® to 7 segment decoder,
the purpose of this circuit is to illuminate the & (or activate the LCD
segments) that make up typical numerical displays.

As shown in Fig. 2.4.5, a typical display consist¥ LEDs arranged in a figure Fig- 2.4.5 LED
of 8 formation. The LEDs (labelled a to g) must dmtivated independently t¢ 7 Segment
make up the numbers 0 to 9. Because 9 is the highesber that can be Display
displayed, the usual data driving each digit of display is in the form of ‘8421
Binary Coded Decimal’, which restricts the rang
of the binary data to between 0Q@thd 1001

The truth table for a BCD to 7 segment decode
shown in Table 2.4.2 and demonstrates
relationship between the four inputs ABC and
and each of the display LEDs.

Table 2.4.2

Decimal BCD Inputs 7 Segment Outputs
C B d e f

In columns a to g, an output of logic 1 lights o
particular segment of the display. Logic O turns
off. An X output is called a ‘Don’t Care’ as i
does not matter what the possible binary va
would be in the BCD input columns A to D &
they will not occur, (BCD will not produce value
higher than £ or 100%). The value of including
these ‘Don’'t Care’ outputs however, will be se
when working on the Karnaugh maps.

© (0[N | |0 |~ (W (N (- |O
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o
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w
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Notice that it is the convention to list the BCput columns A to D in reverse order, making A
represent the least significant digit and D, theshsignificant digit.

Designing a Decoder Circuit Ll 2o

The processes, and some of the choices to be maqiEuc BIRNUTUAL UL
when using Karnaugh maps to minimise the digital cC B
circuits derived from complex truth tables such as
Table 2.4.2 can be illustrated by creating a cirtui
decode the 4 bit input to drive a single segment
(segment ‘a’) of a 7 segment display. A similar
process could be used to design circuits for edch o
the other six outputs b to g.

o

o| o]
ol o]
o |o
> ,;|

Table 2.4.3 illustrates the Boolean expressions
derived from the BCD input columns that cause a
logic 1 output at ‘a’.

O |o|N|[loja|d|lw N[k |o
P O |r |O|F |O|F O o k]

ollo|[d |6 6
o| (o] |® |® o]
> |»|[> >

Segment ‘a’ must be illuminated when any of the
numbers 0,2,3,5,6,7,8 or 9 are present at the éeco
inputs as a BCD value. Therefore 8 Boolean
expressions are derived from Table 2.4.3, which w
cause the decoder circuit to output logic 1 fosthe
inputs.

-
o

=
[N

[
N

=
w

[N
N

X |[X[X|X|X|x|r |+ |o|o|o|o|o|o|o o K]
o |lojo|lo|lo|lofr |k |k |k |k |lo|r |~ |o |+

X [X|X|X[X|X|© |[©|Fr |k |k |k |O|O|O |O
X [X|X|X[X|X]|O |[©O|Fr |k [O|O|Fk [k |O

XX [ X[ X [X|X

-
(&)

The Boolean equation needed for the design of proppate circuit will therefore contain these 8
Boolean expressions, and so will be long and coxmiiés therefore essential that such an equation
is minimised, in order to make a practical circuit.

Decoder Minimisation Using Karnaugh Maps
The full Boolean formula for segment ‘a’ of the ey, derived from Table 2.4.3 is:

a=(DsCoBeA)+(D*CeBeA)+( D*CeBeA)+(D *Cs B sA)+(D *CeB* A )+( D ¢C¢BsA)+(D* C * B ¢ A )+(D* C * B *A)

Each of the individual AND expressions in the fotanare now used to populate a 16 cell (four
input) Karnaugh map with logic 1s, correspondinghwiine cell values for A B C and D around the
edges of the map, as shown in Fig. 2.4.6.

D-CBA_ D.CBeA
For example, the cell in the second row down, &editst aBEOD'GB'A -
column from the left contains a logic 1 that isdbéd D D-CB- o 11 /10 DCEA

Y
“'C+B * A corresponding to CD = 01 and AB = 00. Eacl AR

o1 1 1
logic 1 cell in the map is therefore equivalenbte of the
Boolean expressions derived from Table 2.4.3. The
. o 10 T
complete Boolean formula for output &lsquo;a&rsqiso; FAEEN L

(all
@
bl

o]

=)

. . A\
therefore contained in the Karnaugh map. D.CBA D-CBA DiCBA

Fig. 2.4.6 Karnaugh map
populated with Logic 1s
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The logic 1 cells in the Karnaugh map can thenroeiged as described in ‘Simplifying Karnaugh
Maps’ to produce minimal Boolean expressions asvaha Fig. 2.4.7.

In this example one group of four (in blue) hasrokeind, containing:

(D eCoeBe A)+(D *CeBeA)+(DeCeBeA)+( DeCeB+A)

AB
This group follows the Karnaugh Map Rule 5 ai cpN\00 01 11, 10
the cells that DON'T change are B «,Dso this . 00] ﬂb 1)
_ ABC . —
group simplifies tdB * D . }JI an B
, Boo A.C.D
There is also a Karnaugh Map Rule 5 group of t ~ -
(in red) containing: 10 Ty 1)
, :
(0T B R)+ 0 C BN 857
Fig. 2.4.7 Minimising
This group also follows the Karnaugh Map Rule 5 the Karnaugh Map

and the cells that DON'T change are D=8, SO
this group simplifies toB « C + D.

Two further groups of two (green) simplify:

And:

(D *CeBe*A)+(D+CeB*A) to A*Ce D

This produces a simplified Boolean equation fopouta’ of:

a=(B+D)+(BsC*D)+(A*BsC)+(A+C+D)

D
This equation could be implemented aSC>—|>D )3

circuit in a number of different ways, usin | —oupue
AND OR and NOT gates, but Fig. 2.4.< Do—o
shows a circuit for the ‘a’ output, produce
from the Karnaugh simplified equatiorg
using NOT gates and the universal gat

NAND and NOR. Because there are n I R -
more than four of either NAND or NOFA_ | a= (B-D)+ (B-C-D) +(A-B-C )+ (A-C-D)

gates used, and less than 6 NOT gates, sucn
a circuit would require one integrated
circuit of each type, 3 in total.

Fig. 2.4.8 Simplified Circuit for BCD to
7 segment decoder ‘a’ Output.

However, although this circuit has been producethfa simplified Boolean equation, this does not
automatically mean that the circuit is fully minsed, so may not yet be in its most economical
form.
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Using ‘Don’t Care’ Cells
The Karnaugh map in Fig. 2.4.7 used only logicdsnbke the simplified groups; if use is also
made of the ‘don’t care’ cells, larger groups camiade, resulting in shorter Boolean expressions.

Groups of one make 4 term expressions.
Groups of two make 3 term expressions.
Groups of four make 2 term expressions.
Groups of eight make 1 term expressions.

Including the ‘don’t care’ cells will not changeetttorrect ‘a’ output of the resulting circuit, as
although the input combinations creating thesesamuld (in pure binary) occur, in BCD, numbers
greater than 10Q1(9¢) can’t happen.

Fig. 2.4.9 shows the result of including the ‘dor
care’ cells in the groups. This allows two (red)
cell groups and two (blue) 4 cell groups to be ma
The cells containing O are still ignored, as they
not produce the required logic 1 outputs. The n
now results in a minimised, and therefore simp
Boolean equation than in Fig. 2.4.7. All releva
cells are now grouped using the maximum possi
sizes for the groups, which results in a Boolean Fig. 2.4.9 Karnaugh Map with
equation of: ‘Don’t Care’ Cells Included

a=B+D+(C*A)+(GA)

This produces the circuit shown in Fig. 2.4.1" B

using only six gates instead of the ten requil

for Fig 2.4.8. The circuit now requires onl ¢
o,

two ICs. Additionally, as each gate has a fin

propagation delay (the time from when tt | Z Output
ate input becomes valid to the time when{ © o
o ) e Bs

output becomes valid), so the fewer gal T_DD:D>I

there are between the circuit's input a6
output, the faster the data can be proces: a=B+D+(CA)+(CA

Notice that in Fig. 2.4.10 one of the NAND Fig 2.4.10 Minimised Circuit for BCD to 7

gates has one input connected permanently Segment decoder ‘a’ Output.

logic 1 to convert it to a NOT gate, as

described in Module 2.1. As there are four two ingates per chip, using a spare NAND gate in
this way saves the use of a NOT IC.

Minimisation Using Zeros
A further option in simplifying circuits using

Karnaugh maps is to produce a map group AB

zeros instead of ones. Using the Karnaugh n cp™00 01 11 10

produced from Table 2.4.3 again, if Zeros a ool 1111 @L-A-EE-E

‘Don’t Cares’ are both included, this product T x| x| 1

a map like that illustrated in Fig. 2.4.11. 01

The Boolean equation using zeros only, wol 11 @ X| X X

produce: 10 @ 11 111
a:(E.E.E.A)i‘(B'C'E'K) \E.E.c

Fig. 2.4.11 Grouping Zeros
and ‘Don’t Cares’
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but including the one available X (Don’t Care) puods a slightly simplified equation:

a=(C*B*A)+(D+C+B-A) D

However this produces logic 1 outputs whe :DD_
‘a’ was at logic 0 (for inputs 0001 and 0100 < D)—‘

Table 2.4.3). If this output is inverte 8
however, the correct ‘a’ output according ' o
the truth table for the decoder is produced.

circuit implementing this method is illustrate 31, -
in Fig. 2.4.12. This circuit uses the san

0 Output

0 a
X

X = (CeB+A) + (DC-B+A)

number of ICs as Fig. 2.4.10 but has a 5( J1: a=(CB-A) + (D-C-B-A)
longer propagation delay due to the extra Fig. 2.4.12 Inverting the Output
gates used.
AB
cDp™N00_01 11 10
A circuit with a shorter propagation delay can ool 11111 @hﬁ.-ﬁ.ﬁ-[—}

made, by using just the zeros in the Karnat

map as shown in Fig. 2.4.13. This map conta 0T X| X[ 1

only two 4-term groups but provides th M| X| X| X| X
opportunity to use two 4 input AND gates in tt 10

circuit illustrated in Fig. 2.4.14 @ i

This circuit again uses three ICs, a Hex inver '\A-EwC-D

(with 6 NOT gates), a Dual 4 input AND and a Fig 2.4.13 Two Expression
Quad 2 input OR. Karnaugh Map Using Zeros

Because only two expressions are used the ciguaibt minimised, but implemented as:

a=(D+sC+*B+A)+(D+C+*B-A)

D |:
In terms of propagation delay this circuit shoudd b c ‘ —D_ Output
the fastest version of those discussed in thisesgct o—r[>>_ o
but the cost (based on average prices for 74 serit :D—O
ICs) would be approximately 30% more expensiv & D

than the cheapest. [
e D

Cle_arly, in deS|gn|ng digital circuits there are 2 = (RBGD) + (ABED)
choices the designer must make. Cost, speed,

phyS|ca_I space gnd tlr_ne to design are just some vl Fig 2.4.14 Kamaugh Derived
the design considerations.

Faster Circuit Using Zeros.

Relatively few new designs of medium to large

systems will be implemented using 74 series ICayoNow, large and complex Programmable
Logic Devices will be used, where the actual Idgiections within an integrated circuit, as well as
the complex relationships between the functionsatdy computer software, but for small scale
and one-off designs, the low cost and reduced cexitglof the 74 series chips is still valued.

Minimisation using Boolean algebra will largely t@nfined to simple circuits having few inputs,
Karnaugh mapping being preferred as complexityeiases. However both of these manual systems
of circuit minimisation can be time consuming aneeprone. Although Karnaugh mapping can
theoretically handle circuits with up to six inputsuch work of this type can be better handled by
computer based systems.
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An excellent software tool for circuit simplificath that will produce a minimised circuit from
schematic diagrams, truth tables or Boolean exjmessis ‘Logic Friday’ from Sontrak. The
program can be downloaded free of charge finbim://www.sontrak.com/

The minimisation problems discussed in this mocduwdwe described the process for manually
arriving at a design that will activate just oneLBn a seven-segment display, but what about a
circuit for a complete (4 input, 7 output) BCD ddeoto drive the full display?

The screen grab shown in Fig. 2.4.15 was taken frogic Friday and shows the result of just a
few minutes work entering the truth table (simtlaTable 2.4.2) for the complete decoder logic.

The program has compiled the Boolean equationalfaseven outputs, minimised the equations
and drawn the complete circuit using a selectedotaation of NAND, NOR and NOT gates.

This does not mean that the whole process is atgointhere are still decisions to be made whilst
using the program, and many of these decisionsndepa knowledge of the manual operations
introduced in this module. An exploration of botlamoal and computer based methods is to be
recommended, together with an understanding oivilyelogic devices work, which is explained in
Digital Electronics Module 3 owww.learnabout-electronics.arg
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Fig. 2.4.15 Minimisation of the Complete Decoder Logic
for a BCD to 7 Segment Decoder In ‘Logic Friday’
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Try our quiz, based on the information you can findDigital Electronics Module 2 - Digital
Logic. Check your answers athttp://www.learnabout-electronics.org/Digital/diphp and see
how many you get right. If you get any answers wralust follow the hints to find the right answer
and learn about digital logic as you go.

1.
What is the device illustrated in Fig.2.5.1?

a. A two input AND gate. A
b. A two input NAND gate. B —
c. A two input OR gate. Fig. 2.5.1
d. A two input XNOR gate.

2.
Which of the following Boolean equations describlesaction of Fig. 2.5.2?

a.X=(A*B)+(B+C) A
b.X=(A*B)+(B+C) g[ X
c.X=(A*B)+(B+C) c

_ Fig. 2.5.2
d.X=(A*B)+C

3.
Which Boolean law is described by the equationBA€) = AsB+A+C?

a. Commutative law.
b. Associative law.
c. Distributive law.
d. Complement law.

4.
Which of the following logic functions is illustrad by Fig. 2.5.3?

a. XOR

b. NOR Aji::>—x
B

c. AND Fig.2.5.3
d. NAND

5.
Which of the following Boolean equations descritiestruth table in Fig. 2.5.4?m

a.xX=A+B oclo] o
b.X=As(A+B) T

ey 1 1 1
C.X=(A+B)+B Fig.2.5.4
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d.X=A+B

6.

What type of I.C does Fig. 2.5.5 represent?

a. 7400 1al izl fi2] (1] fid [a] (8]

b. 7402 D
C. 7404 @ @

d. 7408 2 &FI

Q@
ol
e

@
=H

7.
Which logic function does the circuit in Fig. 2.506rform?

a. NAND A
b. NOR X
c. XOR 8

d. XNOR Fig. 2.5.6

8.
What is the Boolean expression that can be obtdoretie Karnaugh map cell

indicated in Fig. 2.5.7?
AB

a._A-E-C-D cpNDO_01 11 10
. ool 1|11 ?
b. A«B e+ C D o1 1 1
o 1

c. A*BeCeD 10 1111
_ = — Fig. 2.5.7
d. A+B +C+D 9

9

Refer to Fig. 2.5.7:

What is the minimum number of cell groups that barobtained from the Karnaugh map using
logic 1 cells only?

a. Two groups.
b. Three groups.
c. Four groups.
d. Five groups.

10.
Which of the segments on a 7 segment LED dispdggrio be illuminated to display the decimal
number 4?

a. Segments a, f, b, ¢
b. Segmentsc, d, e, f
c. Segments a, d, e, g
d. Segments b, c, f, g
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