

DIGITAL ELECTRONICS 02.PDF 1  E. COATES 2007 -2014

Digital Electronics

2.0 Digital Logic

Introduction.
Digital logic is the foundation, not only of computing but also
many other electronic devices and control systems found in
almost every part of modern life.

This module introduces the basics of digital logic and shows
how the whole of digital electronics depends on just seven
types of logic gates, connected together with a minimum of
additional components. Combinations of logic gates then
form circuits that can perform specific tasks within larger
circuits or systems. The process of producing complex
circuits using combinations of basic devices is called
Combinational Logic.

There are many ways that a number of logic gates can be
combined to perform a specific task. They may all work, but

some combinations will perform the task that better than others. For example, a circuit designer
may want to design a combinational logic circuit that uses the minimum number of gates, or
performs the required task in the least time, or at the minimum cost.

This module also introduces the way digital logic gates work and teaches you key methods by
which a basic digital logic circuit design may be minimised, made more efficient and/or cheaper.

www.learnabout-electronics.org

Module

2

What you’ll learn in Module 2

Section 2.0 Introduction.

Section 2.1 Logic Gates.

• 74 Series standard logic gates.

• Standard logic functions.

AND, OR, NAND, NOR,
XOR, XNOR, NOT.

• Truth tables for standard logic
functions.

 Section 2.2 Combinational Logic

• Combining logic gates.

• Truth tables.

• Boolean equations.

Section 2.3 Boolean Algebra.

• Simplifying Boolean equations

• Boolean laws and rules

• De Morgan’s theorem

Section 2.4 Karnaugh Maps.

• Constructing Karnaugh maps

• Minimising Karnaugh maps

• Software for Boolean
simplification

Section 2.5 Digital Logic Quiz.

•Test your knowledge of Digital
Logic.

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 2  E. COATES 2007-2014

2.1 Logic Gates
Seven Basic Logic Gates
Digital electronics relies on the actions of just seven types
of logic gates, called AND, OR, NAND (Not AND), NOR
(Not OR), XOR (Exclusive OR) XNOR (Exclusive NOR)
and NOT.

Because, in binary logic there are only two states, 1 and 0
or ‘on and off,’ NOT in the world of binary logic therefore
means ‘the opposite of’. If something is not 1 it must be 0,
if it is not on, it must be off. So NAND (not AND) simply
means that a NAND gate performs the opposite function to
an AND gate.

A logic gate is a small transistor circuit, basically a type of
amplifier, which is implemented in different forms within
an integrated circuit. Each type of gate has one or more
(most often two) inputs and one output.

The principle of operation is that the circuit operates on just two voltage levels, called logic 0 and
logic 1. When either of these voltage levels is applied to the inputs, the output of the gate responds
by assuming a 1 or a 0 level, depending on the particular logic of the gate. The logic rules for each
type of gate can be described in different ways, by a written description of the action, by a truth
table, which is a table showing all the possible logic states at the inputs and output of the gate, or by
a Boolean algebra statement.

Boolean statements use letters from the beginning of the alphabet, such as A, B, C etc. to indicate
inputs, and letters from the second half of the alphabet, very commonly X or Y and sometimes Q or
P to label an output. The letters have no meaning in themselves, other than just to label the various
points in the circuit. The letters are then linked by a symbol indicating the logical action of the gate.

The • symbol indicates AND although in many cases the • may be omitted. (A•B may also be
written as AB or A.B)

+ indicates OR

⊕ indicates XOR (Exclusive OR)

Although the symbols • and + are the same as those used in normal algebra to indicate product
(multiplication) and sum (addition) respectively, in binary logic the + symbol does not exactly
correspond to sum. In digital logic 1 + (OR) 1 = 1, but the binary sum of 1 + (plus) 1 = 102,
therefore in digital logic + must always be considered as OR.

Three further types of logic gate give an output that is an inverted version of the three basic gate
functions listed above, and these are indicated by a bar drawn above a statement using the AND,
OR, or XOR symbols to indicate NAND, NOR and XNOR.

A•B means A AND B but A•B means A NAND B

For example:

An AND gate gives an output of logic 1 when input A AND input B are at logic 1, but a NAND
gate would give a logic 0 output for the same input conditions. Also where the AND gate gives a
logic zero for a particular input combination, the NAND gate would give a logic 1. The ‘N’ in the
gate’s name, or the bar above the Boolean expression therefore indicates that the output logic is
‘inverted’. In digital logic NAND is ‘NOT’ AND or the opposite of AND. Similarly NOR is ‘NOT’
OR and XNOR is ‘NOT’ XOR.

What you’ll learn in Module 2.1

After studying this section, you should
be able to:

Describe the action of logic gates.

• AND, OR, NAND, NOR, NOT,
XOR and XNOR

• Using Boolean expressions.

• Using truth tables.

Understand the use of universal gates.

• NAND

• NOR

Recognise common 74 series ICs
containing standard logic gates.

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 3  E. COATES 2007-2014

The final gate type, the NOT gate or inverter is a single input gate that has an output having the
opposite logic state, or the inverse of the input.

Table 2.1.1 shows each of the seven basic logic gates, which may be illustrated by either the
traditional "Distinctive Shape" ANSI symbol or the newer rectangular IEC symbol, and a written
description of its logic function compared with its Boolean equation.

Logic ICs
Fig. 2.1.1 illustrates a selection of the basic gates logic gates that are available from a number of
manufacturers in standard families of integrated circuits. Each logic family is designed so that gates
and other logic ICs within that family (and other related families) can be easily combined, and built
into larger logic circuits to carry out complex functions with the minimum of additional
components.

Typically, standard logic gates are available in 14 pin or 16 pin DIL (dual in line) chips. The
number of gates per IC varies depending on the number of inputs per gate. Two-input gates are
common, but if only a single input is required, such as in the 7404 NOT (or inverter) gates, a 14 pin
IC can accommodate 6 (or Hex) gates. The greatest number of inputs on a single gate is on the
74133 13 input NAND gate, which is accommodated in a 16 pin package.

Fig. 2.1.1 Logic Gates From the 74 series TTL IC Family

74133 Single 13 input
NAND Gate

7432 Quad 2 input
OR Gates

7408 Quad 2 input
AND Gates

7400 Quad 2 input
NAND Gates

7402 Quad 2 input
NOR Gates

7486 Quad 2 input
XOR Gates

74266 Quad 2 input
XNOR Gates

7404 Hex NOT Gates
(Inverters)

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 4  E. COATES 2007-2014

 Logic Functions

Logic Functions
Fig 2.1.2 shows how the seven basic logic functions can also be
described using a ‘truth table’ to show the relationship between
the output (X) and all possible input combinations for inputs A
and B, shown as a four value binary count from 00 to 11. Each
diagram shows the input and output conditions for one of the
seven logic functions in its two input form. Some types of gate
however, are also available with more (e.g. 3 to 13) inputs. For
these gates the truth tables would need to be extended to include
all possible input conditions.

Universal Gates
Because gates are manufactured in IC form, typically containing two to six gates of the same type,
it is often uneconomical to use a complete IC of six gates to perform a particular logic function. A
better solution may be to use just a single type of gate to perform any of the logic operations
required. Two types of gate, NAND and NOR are often used to perform the functions of any of the
other standard gates, by connecting a number of either of these ‘universal’ gates in a combinational
circuit. Although it may not seem efficient to use several universal gates to perform the function of
a single gate, if there are a number of unused gates in one or more NAND and NOR ICs, these can
be used to perform other functions such as AND or OR rather than using extra ICs to perform that
function. This technique is especially useful in the design of complex ICs where whole circuits
within the IC can be fabricated using a single type of gate.

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 5  E. COATES 2007-2014

Fig. 2.1.3 shows how NAND gates can be used to obtain any of the standard functions, using only
this single gate type.

NOT Function

a. Connecting the inputs of the NAND
gate together creates a NOT function.

b. Alternatively the NOT function can be
achieved by using only 1 input and
connecting the other input permanently to
logic 1.

AND Function

c. Adding the NOT function (an inverter)
to the output of a NAND gate creates an
AND function.

OR Function

d. Inverting the inputs to a NAND gate
creates an OR function.

NOR Function

e. Using a NOT function to invert the
output of an OR function creates a NOR
function.

XOR function

f. Four NAND gates (a single IC)
connected as shown creates an XOR
function (and a Quad NAND IC is about
15% cheaper than a Quad XOR IC).

XNOR Function

g. Inverting the output of the XOR
function creates an XNOR function.

Similar conversions can be achieved using NOR gates, but as NAND gates are generally the least
expensive ICs, the conversions shown in Fig. 2.1.3 are more frequently used. The reason for such
conversions is usually cost. This may not seem very useful since none of the basic 74 series ICs are
expensive, but when several thousand units of a particular circuit are to be manufactured, the small
savings in cost and space on printed circuit boards by maximising the use of otherwise unused gates
in multi gate ICs can become very important.

Fig 2.1.3 Creating any Logic

Function Using NAND Gates

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 6  E. COATES 2007-2014

2.2 Combinational logic.

Combinational logic.
Combining a number of basic logic gates in a larger circuit
to produce more complex logical operations is called
combinational logic. Using such circuits, logical
operations can be performed on any number of inputs
whose logic state is either 1 or 0 and this technique is the
basis of all digital electronics.

 Combinational logic circuits can vary in complexity from
simple combinations of two or three standard gates, to
circuits containing hundreds of thousands, or even millions
of gates. It is this ability to combine just a few simple gate
circuits, which can be manufactured to microscopic
dimensions, but in almost limitless combinations that
makes digital electronics so powerful.

To understand the operation of a combinational logic
circuit, and what logic state should be present at any

particular point in the circuit, it is necessary to accurately analyse the operation of the circuit. For
this purpose, several methods can be used, depending on the complexity of the circuit. These
include truth tables, Boolean algebra, Karnaugh maps and computer software methods.

Truth Tables.
A truth table can be used for analysing the operation of logic
circuits. A simple example of a combinational logic circuit is
shown in Fig. 2.2.1. To analyse its operation a truth table can be
compiled as shown in the following tree steps. Firstly a number
of columns are written down which will describe, using ones
and zeros, all possible conditions that can occur at the inputs
and outputs of the circuit. For the circuit in Fig 2.2.1, three
inputs A, B and C are used.

 Step 1
Three columns marked A, B and C are needed, filled with a binary count from 000 to 111, i.e. a
decimal count from 0 to 7. These columns now contain ALL possible input conditions because
three inputs can have only 23 (eight) combinations of 1 and 0. More inputs would of course have
more possible combinations, but as long as a binary count is used with one column per input, all
possible input conditions are covered.

Step 2
Two more columns are
added next, for the
intermediate points D and
E in the circuit, showing
in column D, the result of
‘ANDing’ columns A and
B, and in column E the
results of ‘ANDing’
columns A and C. Each
column is labelled with a
Boolean expression for
that particular gate output.

What you’ll learn in Module 2.2

After studying this section, you should
be able to:

Describe complex logic functions.

• Using truth tables.

• Using Boolean expressions.

Understand the relationship between truth
tables and logic circuits.

• Analyse simple digital circuits
using truth tables.

• Formulate Boolean equations from
truth tables.

• Use truth tables to simplify logic
circuits.

Fig. 2.2.1 Combinational Logic
Fig 2.2.1 Combinational Logic

Table 2.2.1 Making a Truth Table

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 7  E. COATES 2007-2014

Each cell in columns D and E is filled with the appropriate 1 or 0 by working out the logic state that
would occur at that gate output for the given inputs. In this case each column follows the rule for an
AND gate, illustrated in Digital Electronics Module 2, Table 2.1.1.

Step 3
Then the final column X is completed by ‘ORing’ the intermediate columns D and E. This final
column now shows all the logic states at the output X for any combination of logic states at the
inputs A, B and C. A truth table produced in this way is also very valuable in fault finding in
combinational logic circuits, as it shows the logic states at any point in the circuit for a given
combination of inputs. These may be checked against the actual operation of the circuit to reveal
faults.

Circuit Simplification Using Truth Tables
Creating a circuit from a truth table reverses to the process
described above, and looking at Table 2.2.1 it can be seen
that a logic 1 is produced at output X whenever the circuit
inputs A, B and C are at logic 1. This can be described by
compiling an appropriate Boolean equation from the truth
table, which shows that X is 1 (is true) when A and B are 1,
or when A and C are 1, or when A and B and C are 1. This
can be written as:

X = (A•B) + (A•C) + (A•B•C)

The circuit therefore provides a logic 1 output at X for any
input combination where the binary value of the inputs is greater than 1002 (410). Building a circuit
to implement the Boolean equation would give the result shown in Fig. 2.2.2. Notice however, that
this circuit gives the same output as the original circuit in Fig 2.2.1 so could the simpler circuit of
Fig. 2.2.1 do the job just as well?

The Boolean equation derived from Table 2.2.1 suggests that a more complex circuit, as shown in
Fig 2.2.2 would be needed, which requires two 2 input AND gates for columns D and E and a three
input AND gate for column F. These are then ‘ORed’ together by a 3 input OR gate to provide the
single output X.

Compiling a truth table for Fig. 2.2.2 to check its
operation produces Table 2.2.2. The output column X
shows that the circuit in Fig. 2.2.2 does give the same
outputs as Fig. 2.2.1. However, although a logic 1 at
X is produced on the bottom row, where all three
inputs (A•B•C) are logic 1, the third row up from the
bottom of the table where A•C (shaded cells) also
provides a logic 1 in column E and at output X.

Therefore it doesn’t matter whether columns D, E or F
in the bottom row are at logic 1 or not. With the inputs
at 111 the logic 1s on inputs A and C will still
produce a logic 1 at E and therefore logic 1 at the output X. The bottom row for Columns D, E an F
can therefore be marked with ✗ to indicate “Don’t Care”, it doesn’t matter whether these cells are 1
or 0, column X will still be logic 1.

This means that column F (and the three input AND gate) are not needed, also the three input OR
gate can be replaced by a two input OR gate.

Although the circuit shown in Fig. 2.2.2, designed from a Boolean equation derived directly from a
truth table, does give the required output, the simpler (and cheaper) circuit shown in Fig. 2.2.1 does
the job just as well. Using a truth table in this way will certainly give workable results and produce

Fig. 2.2.2 Three Input

Combinational Logic Circuit

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 8  E. COATES 2007-2014

a working circuit, however it may not be the best circuit. In this case, the Boolean equation could be
reduced and simplified by getting rid of the redundant A•B•C. The simplified circuit produced is
then adequately described by the shorter Boolean equation:

X = (A•B) + (A•C)

This shows that although truth tables are an excellent method for analysing the operation of a digital
circuit, they may not be the best design tool, when used on their own, for arriving at the simplest
design. Simplifying circuit design using truth tables does require some practice in reading the truth
table, although possible simplifications are still much easier to see in the truth table than by trying
to visually analyse the circuit schematic diagram. However, with more complex circuits and more
than two or three inputs, simplification using truth tables becomes a very laborious process, and
therefore more prone to errors. For circuits using up to three or four inputs, better results can be
obtained by the direct manipulation of the Boolean algebra equations obtained from a truth table.

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 9  E. COATES 2007-2014

2.3 Boolean Algebra.
Digital Electronics Module 2.1 showed that the operation of
a single gate could be described by using a Boolean
expression. For example the operation of a single AND gate
with inputs A and B and an output X can be expressed as:

X = A•B

Note:

The symbol • represents a logical AND, but because the use
of special symbols can be inconvenient in printed material,
the AND symbol is often omitted, as in AB or separated by a
full stop as in A.B as used to indicate multiplication in
standard algebra. The multiplication symbols x and * can
also be seen in some texts, because the logical AND is
similar to binary multiplication, (but not the same when
numbers having more than one-bit are used).

Module 2.2 showed the relationship between a truth table
that describes the operation of a circuit, and a Boolean
equation that describes the logic of the circuit.

A combinational logic circuit such as that shown in Fig 2.3.1
(a repeat of Fig 2.2.2) is described by a Boolean equation as:

X = (A•B) + (A•C) + (A•B•C).

This could also be written (less clearly) as “The output X
will be 1 when A and B or A and C or A and B and C are
1, otherwise X will be 0”.

 However Module 2.2 also showed that although a
Boolean equation may give an accurate description of a
logic process described by a truth table, it might require
simplification before being interpreted as an actual circuit.
The circuit shown in Fig 2.3.1 was simplified in Module
2.2 by closely examining a truth table to find redundant
gates. However, with anything but the simplest circuits
this can be tedious and it is easy to make mistakes.

This module therefore describes methods for simplifying Boolean equations directly, using Boolean
algebra, rather than by the use of truth tables.

Circuit Simplification Using Boolean Algebra
The algebraic method used to simplify digital circuits applies a number of Boolean laws to
successively simplify complex equations. Selected laws and rules are applied, step by step, to the
original equation, so as to eventually arrive at a simplified version that can be implemented with a
smaller number of gates and therefore lead to a simpler circuit.

Fig. 2.3.1 Three Input

Combinational Circuit with

Redundant Gates

What you’ll learn in Module 2.3

After studying this section, you should
be able to:

Describe logic circuits using Boolean
equations.

• Create Boolean expressions for
intermediate gate outputs.

• Use complex Boolean equations to
describe complete logic circuits.

Simplify Boolean equations using
Boolean laws.

• Commutative.

• Associative.

• Distributive.

•Identity.

•Complement.

•Reduction.

•Duality.

•De Morgan’s Theorem.

Use De Morgan’s theorem to convert
multiple gate circuits to universal gates.

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 10  E. COATES 2007-2014

Boolean Laws
The laws of Boolean algebra are similar in some ways to those of standard algebra, but in some
cases Boolean laws are unique. This is because when logic is applied to digital circuits, any variable
such as A can only have two values 1 or 0, whereas in standard algebra A can have many values.

Commutative Laws

In a group of variables connected by operators AND or OR, the order of the variables does not
matter.

1a. Boolean addition (OR): A+B = B+A

1b. Boolean multiplication (AND): A•B = B•A

Associative Laws

The order of calculation can be changed without affecting the result (Change which terms are in
brackets, or remove brackets). Note: This is only OK so long as all signs (+ or •) are the same.

2a. Boolean addition (OR): (A+B)+C = A+(B+C) = A+B+C

2b. Boolean Multiplication (AND): (A•B)•C = A•(B•C) = A•B•C = ABC

Distributive Laws

The same answer is arrived at when multiplying (ANDing) a variable by a group of bracketed
variables added (ORed) together, as when each multiplication (AND) is performed separately.

Law 3a is similar to factoring in normal algebra, but law 3b is unique to Boolean algebra because
unlike normal algebra, where A x A=A2, in Boolean algebra A•A = A

3a. A•(B+C) = A•B+A•C

3b. A+(B•C) = (A+B) • (A+C)

Identity Elements

In rule 4a, when the variable A is ANDed with logic 1 (called the Identity
Element for the AND operator). The variable ANDed with 1 retains its
identity.

Rule 4b, shows that the Identity Element for the OR operator is 0, and any
variable (e.g. A) ORed with 0 it retains its identity.

4a. A•1 = A

4b. A+0 = A

5a and 5b show how by ‘forcing the Identity Element’, (in B column of the
truth tables) to the opposite states to those used in 4a and 4b, produces an
output that is the same as the Identity Element.

5a. A•0 = 0

5b. A+1 = 1

6a and 6b show that ANDing or ORing two identical variables, produces an
output equal to a single variable, showing that one of the variables is
redundant, a useful rule when simplifying Boolean equations.

6a. A•A = A

6b. A+A = A

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 11  E. COATES 2007-2014

Complement Law

7a. A + A = 1 Any variable ORed with its inverse is 1

7b. A • A = 0 Any variable ANDed with its inverse is 0

Reduction

8a. When a single variable (A) is ANDed with itself OR a second variable (A+B), the result is equal
to the single variable.

8a A• (A+B) = A

8b. When a single variable (A) is ORed with
itself AND a second variable (A•B), the result
is equal to the single variable.

8b A+ (A•B) = A

8c. When a single variable (A) is ORed with
itself OR a second variable (A+B), the single
variable disappears.

8c A+ (A+B) = (A+B)

8d. When a single variable (A) is ANDed with
itself AND a second variable (A•B), the single
variable disappears.

8d A• (A•B) = (A•B)

 Duality Rules

It is possible to derive additional identities by obtaining the Dual of an
identity. This involves changing the AND operators to OR and the OR
operators to AND. Additionally any 0s are changed to 1s and 1s to 0s as
shown in Table 2.3.2.

The duality rule can be used to change a logic expression
containing both AND and OR elements to its equivalent dual
expression.

Table 2.3.3 shows that A•(B+C) is the same as A+(B•C).

Table 2.3.1 The Reduction Rules

8a 8b

A B A+B A•(A+B) A B A•B A+(A•B)

0 0 0 0 0 0 0 0

0 1 1 0 0 1 0 0

1 0 1 1 1 0 0 1

1 1 1 1 1 1 1 1

8c 8d

A B A+B A+(A+B) A B A•B A•(A•B)

0 0 0 0 0 0 0 0

0 1 1 1 0 1 0 0

1 0 1 1 1 0 0 0

1 1 1 1

1 1 1 1

Table 2.3.2

Identity Dual

0 = 1 1 = 0

A + 1 = 1 A • 0 = 0

A + A = A A • A = A

A + A = 1 A • A = 0

Table 2.3.3

A B C A•(B+C) A+(B•C)

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 0 0

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

A = A Double inversion (NOT NOT) returns the variable to its previous state.

Note:

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 12  E. COATES 2007-2014

Simplifying Boolean Equations
 Minimising complex Boolean expressions to their simplest form using Boolean laws and rules is a
matter of choosing the most appropriate law or rule to reduce the expression step by step. If the
resulting minimisation is correct, the minimised equation and the original equation should give
identical output columns when truth tables for the original and minimised circuits are compared.

These Boolean algebraic methods would normally be used on logic circuits with just a few gates
and only two or three inputs, as this method of simplification becomes more difficult and
cumbersome to use when more gates or inputs are involved.

Which laws are applied to change an equation, and in what order is a matter of practice and
intuition. This method involves looking at the original complex equation and selecting a law that
will simplify a particular part, so obtaining a simpler equation, and then choosing another law that
will simplify the equation further, and so on until the equation can no longer be made simpler.

There is no simple algorithm to specify the order of steps to be taken and several routes may be
taken to reach the goal of a simplified and ideally minimised circuit.

Whether the result is also the minimum possible circuit can only be judged by looking for any
possible further reduction using the Boolean laws.

In practice, small circuits with just two or three inputs can very often be simplified just by looking
at the truth table and picking out any redundant logic combinations, as shown in Table 2.2.2 in
Module 2.2 (Combinational Logic), but Boolean simplification is useful for more complex circuits.

Boolean Simplification Examples
Example 1

Suppose the cash room at a store has access restricted to certain employees, each of who has a key,
which produces a logic 1 at particular inputs to an unlocking circuit.

Only the store manager (M) can enter alone. The assistant manager (A)
and the cashier (C) also have access, but only when accompanied by
each other, or by the store manager. Design a combinational logic
circuit that will allow access by producing a logic 1 when the above
conditions are met.

 Truth table

The conditions requiring a logic 1 output can be arranged as a truth
table (Table 2.3.4) and Boolean expressions can be derived from the
truth table for each input combination that produces a logic 1 output.

The five Boolean AND expressions can be separated by OR operators
to form a complete Boolean equation.

X = M + M•C + A•C + A•M + A•C•M

This suggests a circuit like that shown in Fig. 2.3.2, which
would require four I.Cs:

1x 74HCT08 2 input AND (containing 4 gates).

1x 74HCT10 3 input AND (containing 3 gates).

1x 74HCT32 2 input OR (containing 4 gates).

1x 74HCT4075 3 input OR (containing 3 gates).

However, by choosing appropriate laws and rules from
those listed above, the circuit can be considerably
simplified.

Table 2.3.4

A M C X Boolean

0 0 0 0

0 0 1 0

0 1 0 1 M

0 1 1 1 M • C

1 0 0 0

1 0 1 1 A • C

1 1 0 1 A • M

1 1 1 1 A • C • M

Fig. 2.3.2 Cash Room Access Circuit

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 13  E. COATES 2007-2014

Starting with the equation derived from Table 2.3.4:

 X = M + M•C + A•C + A•M + A•C•M

 Since M + M•C = M (Reduction rule 8b)

X = M + A•C + A•M + A•C•M

 And as M + A•C + A•M = M + A•M + A•C
(Commutative Law 1a)

X = M + A•M + A•C + A•C•M

 And as M + A•M = M (Reduction rule 8b)

X = M + A•C + A•C•M

 And as M + A•C + A•C•M = M + A•C•M + A•C (Commutative
Law 1a)

X = M + A•C•M + A•C

And as M + A•C•M = M (Reduction rule 8b)

X = M + A•C

No further reduction possible.

The simplified circuit is shown in Fig 2.3.3, which provides exactly the
same function as Fig. 2.3.2. This can be confirmed by comparing the
simplified equation X = M + A•C with the original column X in Table
2.3.5.

The simplified circuit in Fig 2.3.3 still requires two I.Cs, (AND and OR) and it now only uses one
gate per chip. Unless the spare gates are to be used elsewhere in another part of the circuit, this is
still wasteful.

A better option could be to replace the AND and OR functions
with universal gates such as NOR or NAND. A ‘NAND only’
version of the simplified circuit is shown in Fig. 2.3.4. This version
uses three gates instead of two, but all the gates are the same and
can be accommodated within a single 7400 IC. The original circuit
has therefore now been reduced from four ICs to one.

NAND Circuit Operation
NAND 1 has both its inputs connected together, which converts it

to an inverter or NOT gate and therefore produces Mat its output.

NAND 2 works as an AND gate with its output inverted and so

produces an output of A•C. The Boolean expression for the

circuit using NAND gates now becomes:

X = M + A•C

The inversion bars have now disappeared because of the application of another very useful Boolean
algebra law, De Morgan’s Theorem. Before looking at how the theorem works, note the difference
in the use of the inversion bars in Boolean expressions. This is an important feature in the
application of De Morgan’s Theorem:

A broken bar A• B indicates that the inputs (to an AND gate for example) are inverted, whilst an

unbroken bar A • B indicates an inverted output.

Table 2.3.5

A M C X M + A•C

0 0 0 0 0

0 0 1 0 0

0 1 0 1 1

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Fig. 2.3.3 Simplified Cash

Room Access Circuit

Fig. 2.3.4 NAND only Cash

Room Access Circuit

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 14  E. COATES 2007-2014

De Morgan’s Theorem
Augustus De Morgan formulated an extension to George Boole’s Algebraic logic that has become
very important in digital logic. Not only is it used in the simplification of Boolean expressions but
can also be used to change the function of logic gates, so that NAND gates (or NOR gates) can
carry out any of the other standard logic functions of gates. The theorem comprises two laws that
describe how inverting the inputs to a gate, changes the gate’s function.

Law 1. A + B = A • B Inverting the inputs to an OR gate changes its function to NAND.

Law 2. A • B = A + B Inverting the inputs to an AND gate changes its function to NOR

Considering these two equalities the other way round, A + B = A • B De Morgan’s Theorem is

often described as “Break the bar and change the sign.” Meaning that by placing, or removing the
bar above the AND or OR operator (• or +) the operator is inverted. Therefore the complement of
the AND function is OR.

Applying De Morgan’s Theorem

These equalities, generally called De Morgan’s Laws 1 and 2 are illustrated in Fig. 2.3.5 and Fig.
2.3.6 as they apply to AND, NOR, NAND and OR gates. Note however, that when De Morgan’s
theorem is applied to the XOR and XNOR gates there is no change in the gate’s function.

The usefulness of De Morgan’s theorem when applied to circuits can be seen by comparing Fig.
2.3.3 and Fig. 2.3.4 where it was instrumental in changing the functions of the AND and OR gates
in Fig.2.3.3 to all NAND gates in Fig. 2.3.4, so the circuit can be made using one IC instead of two.

Inverting the Inputs

In Fig. 2.3.4 an additional gate NAND 1 appears in the circuit, and has its two inputs connected
together to act as a NOT gate (check this by looking at the truth table for a NAND gate in Fig.
2.3.5), when both inputs are the same (row 1 and row 4) the output (X) is an inverted version of the
inputs (A•B).

This additional gate in Fig. 2.3.4 provides M at the top input to NAND 3 instead of the M applied

to the top input of the OR gate in Fig 2.3.3.

NAND 2 in Fig. 2.3.4 replaces the AND gate in Fig 2.3.3 so that the bottom input to NAND 3 is

now A•C instead of A•C.

Therefore inputs to NAND 3 are now M and M•C. Therefore both inputs to NAND 3 have been

inverted (without actually using any NOT gates) to make NAND 3 act, according to De Morgan’s
theorem, as an OR function, so giving the correct output of X = M + A•C.

 Summary

Boolean algebra gives a more compact way to describe a combinational logic circuit than truth
tables alone. It can also be used for simplification of circuits, however this can also be cumbersome
and error prone. When circuits with more than two or three inputs are involved a better method of
circuit reduction that works well with circuits having up to four or six inputs is the Karnaugh Map.

Fig. 2.3.5 De Morgan’s Law 1 Fig. 2.3.6 De Morgan’s Law 2

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 15  E. COATES 2007-2014

Fig. 2.4.1 Karnaugh Maps

2.4 Karnaugh Maps

Why Karnaugh Maps?
Karnaugh Maps offer a graphical method of reducing a
digital circuit to its minimum number of gates. The map is
a simple table containing 1s and 0s that can express a truth
table or complex Boolean expression describing the
operation of a digital circuit. The map is then used to work
out the minimum number of gates needed, by graphical
means rather than by algebra. Karnaugh maps can be used
on small circuits having two or three inputs as an
alternative to Boolean algebra, and on more complex
circuits having up to 6 inputs, it can provide quicker and
simpler minimisation than Boolean algebra.

Constructing Karnaugh Maps
 The shape and size of
the map is dependent on
the number of binary
inputs in the circuit to be
analysed. The map needs
one cell for each
possible binary word
applied to the inputs.

Therefore:

2 input circuits with inputs A and B require maps with 22 = 4 cells
(Fig 2.4.1a).

3 input circuits with inputs A B and C require maps with 23 = 8 cells (Fig 2.4.1b).

4 input circuits with inputs A B C and D require maps with 24 = 16 cells (Fig 2.4.1c).

The input labels are written at the top left hand corner, divided by a diagonal line. The top and left
edges of the map then represent all the possible input combinations for the inputs allocated to that
edge.

For example, in the 3 input map (b) in Fig. 2.4.1, the top edge of the map represents the 4 possible
combinations for inputs A and B, so the
cells are labelled 00,01, 11, and 10 (See
*Important note).

Because example (b) in Fig. 2.4.1 is a 3
input map, input C on the left hand edge
only has two possible combinations, 0 and
1. This map is therefore rectangular rather
than square to cover the 8 possible
combinations available from 3 inputs.

*Important

Notice that this edge numbering does not follow the
normal binary counting sequence, but uses a Gray
Code sequence where only one bit changes from
one cell to the next. This is an important feature of
Karnaugh maps; get the sequence wrong and the
map will not work!

What you’ll learn in Module 2.4

After studying this section, you should
be able to:

Understand the use of Karnaugh maps.

• Draw maps for Multi input circuits.

• Use Gray code notation.

• Derive Karnaugh maps from truth
tables.

Uses Karnaugh Maps.

• Group Karnaugh map cells.

• Simplify logic circuits.

• Produce minimised Boolean
equations.

Make choices in cell selection to achieve a
desired circuit result.

• Cost reduction.

• Propagation delay.

Understand manual and software based
Boolean minimisation.

• Minimise a complex Boolean
equation using appropriate software.

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 16  E. COATES 2007-2014

Using the Karnaugh Map
The Karnaugh map can be populated with data from either a truth table
or a Boolean equation.

As an example, Table 2.4.1 shows the truth table for the 3 input ‘cash
room’ example, together with the Boolean expressions derived from
each input combination that results in a logic 1 output. This results in a
Boolean equation for the un-simplified circuit:

X = M + M•C + A•C + A•M + A•M•C

This table will serve to show the process of transferring the data from
Table 2.4.1 into the cells of the Karnaugh map. The Process is shown
step by step in Fig. 2.4.2

Step (a)

From Table 2.4.1 row 3, inputs AMC have values of 010, producing a logic 1
at the output (X) and giving the Boolean expression M in the Boolean column.
Therefore 1 is placed in the map cell corresponding to A=0 and MC=10 as
shown at (a) in Fig. 2.4.2.

Step (b)

In Table 2.4.1 row 4, inputs AMC have values of 011, producing a logic 1 at
the output (X) and giving the Boolean expression MC in the Boolean column.
Therefore 1 is placed in the map cell corresponding to A=0 and MC=11 as
shown at (b) in Fig. 2.4.2.

Step (c)

In Table 2.4.1 row 5, output (X), is 0 so this row is ignored. However, in row
6, inputs AMC have values 101, producing a logic 1 at the output (X) and
giving the Boolean expression AC in the Boolean column. Therefore 1 is
placed in the map cell corresponding to A=1 and MC=01 as shown at (c) in
Fig. 2.4.2.

Step (d)

In Table 2.4.1 row 7, the inputs AMC have values of 110, producing a logic 1
at the output (X) and giving the Boolean expression AM in the Boolean
column. Therefore 1 is placed in the map cell corresponding to A=1 and
MC=10 as shown at (d) in Fig. 2.4.2.

Step (e)

Finally, in Table 2.4.1 row 8 the inputs AMC have values of 111 producing a
logic 1 at the output (X) and giving the Boolean expression of AMC in the
Boolean column. Therefore 1 is placed in the map cell corresponding to A=1
and MC=11 as shown at (e) in Fig. 2.4.2.

The completed map (f)

All the truth table rows that produced a logic 1 have now been entered into the
map and those lines that produced a logic 0 can be ignored, so the remaining
three cells are left blank. Later it will be shown that these blank cells can be
useful when mapping larger circuits, but for now the map is ready for
simplification.

Table 2.4.1

A M C X Boolean

0 0 0 0

0 0 1 0

0 1 0 1 M

0 1 1 1 M • C

1 0 0 0

1 0 1 1 A • C

1 1 0 1 A • M

1 1 1 1 A • M • C

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 17  E. COATES 2007-2014

 Simplifying Karnaugh Maps
Circuit simplification in any Karnaugh map is achieved by combining the cells containing 1 to
make groups of cells. In grouping the cells it is necessary to follow six rules.

How these rules are applied is illustrated using a four input 16-cell map shown in Fig. 2.4.3.

Karnaugh Map Rules
1. Groups should contain as many ‘1’ cells (i.e. cells containing a logic 1) as possible and no

blank cells.

2. Groups can only contain 1, 2, 4, 8, 16 or 32… etc. cells (powers of 2).

3. A ‘1’ cell can only be grouped with adjacent ‘1’ cells that are immediately above, below,
left or right of that cell; no diagonal grouping.

4. Groups of ‘1’ cells can overlap. This helps make smaller groups as large as possible, which
is an advantage in finding the simplest solution.

5. The top/bottom and left/right edges of the map are considered to be continuous, as shown in
Fig. 2.4.3, so larger groups can be made by grouping cells across the top and bottom or left
and right edges of the map.

6. There should be as few groups as possible.

Map (a) follows rules 2, 3 and 4 and shows three groups containing 8,
4 and 2 cells. This will simplify the circuit being produced, but it is
not optimum.

Map (b) shows an improvement, still with 3 groups but they now
contain 8, 4 and 4 cells. This map takes advantage of rule 5 by joining
the 2 cells ringed in green in Map (a) with the top two cells in the blue
group, see Map (b) to form a group of 4 (ringed in cyan) instead of a
group of 2. The map now conforms to all 6 rules.

Map (c) (for a different circuit) shows how a potentially single ‘1’cell
(second cell from the bottom in the right hand column) can be
grouped with two other cells in the blue group, and one cell in the
green group, to make a (cyan) group of 4.

Sometimes however there may be a single cell that cannot be joined
with other groups, as shown in map (d). Rule 3 prohibits diagonal
grouping so there is no alternative other than to leave a group of 1.
This is permissible, but in map (d), which represents a four input
circuit, the simplified Boolean equation will contain an un-simplified
expression relating to the single cell, which will have all four possible
terms e.g. A•B•C•D.

Example:

Using the Karnaugh map rules on the three input map created from Table 2.4.1, there are just 2
possible groups, as shown in Fig. 2.4.4. The next task is to simplify the original Boolean equation
for this circuit:

X = M + M•C + A•C + A•M + A•M•C

Converting the two groups in the Karnaugh map to Boolean
expressions is done by discovering which input or inputs (A, M or C)
does NOT change within each group.

Step 1

Taking the (blue) group of 4 first, notice that it spans two rows

Fig 2.4.4 Groups

for Example 1

Fig. 2.4.3 Typical

Karnaugh Groups

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 18  E. COATES 2007-2014

vertically, and so contains rows A=0 and A=1, therefore A changes within the group so cannot
appear in the expression.

The blue group also spans two columns and so contains MC=11 and MC=10. Here, C = both 1 and
0, but M=1 in both columns.

Therefore the only input that does not change in the blue group is M, so the Boolean expression for
the blue group is simply M.

Step 2

Looking at the (green) group of 2, A does not change but MC changes from 01 to 11. This indicates
that although M changes, C does not. Therefore there are two non-changing inputs in this group A
and C.

Putting the results of the simplification together by ‘ANDing’ any non-changing inputs within a
single group, and ‘ORing’ the different groups, produces the simplified Boolean equation for the
whole circuit:

X = M + A•C

This result agrees with the simplification produced in Module 2.3 using Boolean algebra. The main
advantage of using a Karnaugh map for circuit simplification is that the Karnaugh method uses
fewer rules, and these rules can be applied systematically rather than intuitively as with Boolean
algebra. Therefore with a little practice the Karnaugh system should produce more reliable
minimisation. Although Karnaugh mapping may have only slight advantages over Boolean algebra
in simple circuits, the advantages become more apparent when minimising more
complex circuits.

Karnaugh Minimisation of a 4 Input Circuit
With four-input circuits, Karnaugh maps become more useful, compared with
minimisation using Boolean algebra alone.

Table 2.4.2 shows an example of a truth table for a BCD to 7 segment decoder,
the purpose of this circuit is to illuminate the LEDs (or activate the LCD
segments) that make up typical numerical displays.

As shown in Fig. 2.4.5, a typical display consists of 7 LEDs arranged in a figure
of 8 formation. The LEDs (labelled a to g) must be activated independently to
make up the numbers 0 to 9. Because 9 is the highest number that can be
displayed, the usual data driving each digit of the display is in the form of ‘8421
Binary Coded Decimal’, which restricts the range
of the binary data to between 00002 and 10012.

The truth table for a BCD to 7 segment decoder is
shown in Table 2.4.2 and demonstrates the
relationship between the four inputs ABC and D,
and each of the display LEDs.

In columns a to g, an output of logic 1 lights one
particular segment of the display. Logic 0 turns it
off. An X output is called a ‘Don’t Care’ as it
does not matter what the possible binary value
would be in the BCD input columns A to D as
they will not occur, (BCD will not produce values
higher than 910 or 10012). The value of including
these ‘Don’t Care’ outputs however, will be seen
when working on the Karnaugh maps.

Table 2.4.2

Decimal BCD Inputs 7 Segment Outputs

 D C B A a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 1 0 1 1

10 X X X X 0 0 0 0 0 0 0

11 X X X X 0 0 0 0 0 0 0

12 X X X X 0 0 0 0 0 0 0

13 X X X X 0 0 0 0 0 0 0

14 X X X X 0 0 0 0 0 0 0

15 X X X X 0 0 0 0 0 0 0

Fig. 2.4.5 LED

7 Segment

Display

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 19  E. COATES 2007-2014

Notice that it is the convention to list the BCD input columns A to D in reverse order, making A
represent the least significant digit and D, the most significant digit.

Designing a Decoder Circuit

The processes, and some of the choices to be made
when using Karnaugh maps to minimise the digital
circuits derived from complex truth tables such as
Table 2.4.2 can be illustrated by creating a circuit to
decode the 4 bit input to drive a single segment
(segment ‘a’) of a 7 segment display. A similar
process could be used to design circuits for each of
the other six outputs b to g.

Table 2.4.3 illustrates the Boolean expressions
derived from the BCD input columns that cause a
logic 1 output at ‘a’.

Segment ‘a’ must be illuminated when any of the
numbers 0,2,3,5,6,7,8 or 9 are present at the decoder
inputs as a BCD value. Therefore 8 Boolean
expressions are derived from Table 2.4.3, which will
cause the decoder circuit to output logic 1 for these
inputs.

The Boolean equation needed for the design of an appropriate circuit will therefore contain these 8
Boolean expressions, and so will be long and complex. It is therefore essential that such an equation
is minimised, in order to make a practical circuit.

Decoder Minimisation Using Karnaugh Maps
The full Boolean formula for segment ‘a’ of the display, derived from Table 2.4.3 is:

a = (D • C • B • A) + (D • C • B • A) + (D • C • B • A) + (D • C • B • A) + (D • C • B • A) + (D • C • B • A) + (D • C • B • A) + (D • C • B • A)

Each of the individual AND expressions in the formula are now used to populate a 16 cell (four
input) Karnaugh map with logic 1s, corresponding with the cell values for A B C and D around the
edges of the map, as shown in Fig. 2.4.6.

For example, the cell in the second row down, and the first
column from the left contains a logic 1 that is labelled D

• C • B • A corresponding to CD = 01 and AB = 00. Each

logic 1 cell in the map is therefore equivalent to one of the
Boolean expressions derived from Table 2.4.3. The
complete Boolean formula for output ‘a’ is
therefore contained in the Karnaugh map.

Table 2.4.3

Decimal BCD Inputs

 D C B A a Boolean

0 0 0 0 0 1 D • C • B • A

1 0 0 0 1 0

2 0 0 1 0 1 D • C • B • A

3 0 0 1 1 1 D • C • B • A

4 0 1 0 0 0

5 0 1 0 1 1 D • C • B • A

6 0 1 1 0 1 D • C • B • A

7 0 1 1 1 1 D • C • B • A

8 1 0 0 0 1 D • C • B • A

9 1 0 0 1 1 D • C • B • A

10 X X X X 0

11 X X X X 0

12 X X X X 0

13 X X X X 0

14 X X X X 0

15 X X X X 0

Fig. 2.4.6 Karnaugh map

populated with Logic 1s

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 20  E. COATES 2007-2014

The logic 1 cells in the Karnaugh map can then be grouped as described in ‘Simplifying Karnaugh
Maps’ to produce minimal Boolean expressions as shown in Fig. 2.4.7.

In this example one group of four (in blue) has been found, containing:

(D • C • B • A) + (D • C • B • A) + (D • C • B • A) + (D • C • B • A)

This group follows the Karnaugh Map Rule 5 and

the cells that DON’T change are B • D, so this

group simplifies to B • D .

There is also a Karnaugh Map Rule 5 group of two
(in red) containing:

(D • C • B • A) + (D • C • B • A)

This group also follows the Karnaugh Map Rule 5

and the cells that DON’T change are D• C• B , so

this group simplifies to B • C • D.

Two further groups of two (green) simplify:

(D • C • B • A) + (D • C • B • A) to A • B • C

And:

(D • C • B • A) + (D • C • B • A) to A • C • D

This produces a simplified Boolean equation for output ‘a’ of:

a = (B • D) + (B • C • D) + (A • B • C) + (A • C • D)

This equation could be implemented as a
circuit in a number of different ways, using
AND OR and NOT gates, but Fig. 2.4.8
shows a circuit for the ‘a’ output, produced
from the Karnaugh simplified equation,
using NOT gates and the universal gates,
NAND and NOR. Because there are not
more than four of either NAND or NOR
gates used, and less than 6 NOT gates, such
a circuit would require one integrated
circuit of each type, 3 in total.

However, although this circuit has been produced from a simplified Boolean equation, this does not
automatically mean that the circuit is fully minimised, so may not yet be in its most economical
form.

Fig. 2.4.7 Minimising

the Karnaugh Map

Fig. 2.4.8 Simplified Circuit for BCD to

7 segment decoder ‘a’ Output.

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 21  E. COATES 2007-2014

Using ‘Don’t Care’ Cells
The Karnaugh map in Fig. 2.4.7 used only logic 1s to make the simplified groups; if use is also
made of the ‘don’t care’ cells, larger groups can be made, resulting in shorter Boolean expressions.

Groups of one make 4 term expressions.

Groups of two make 3 term expressions.

Groups of four make 2 term expressions.

Groups of eight make 1 term expressions.

Including the ‘don’t care’ cells will not change the correct ‘a’ output of the resulting circuit, as
although the input combinations creating these cells could (in pure binary) occur, in BCD, numbers
greater than 10012 (910) can’t happen.

Fig. 2.4.9 shows the result of including the ‘don’t
care’ cells in the groups. This allows two (red) 8
cell groups and two (blue) 4 cell groups to be made.
The cells containing 0 are still ignored, as they do
not produce the required logic 1 outputs. The map
now results in a minimised, and therefore simpler
Boolean equation than in Fig. 2.4.7. All relevant
cells are now grouped using the maximum possible
sizes for the groups, which results in a Boolean
equation of:

a = B + D + (C • A) + (C• A)

This produces the circuit shown in Fig. 2.4.10,
using only six gates instead of the ten required
for Fig 2.4.8. The circuit now requires only
two ICs. Additionally, as each gate has a finite
propagation delay (the time from when the
gate input becomes valid to the time when the
output becomes valid), so the fewer gates
there are between the circuit’s input and
output, the faster the data can be processed.
Notice that in Fig. 2.4.10 one of the NAND
gates has one input connected permanently to
logic 1 to convert it to a NOT gate, as
described in Module 2.1. As there are four two input gates per chip, using a spare NAND gate in
this way saves the use of a NOT IC.

Minimisation Using Zeros
A further option in simplifying circuits using
Karnaugh maps is to produce a map grouping
zeros instead of ones. Using the Karnaugh map
produced from Table 2.4.3 again, if Zeros and
‘Don’t Cares’ are both included, this produces
a map like that illustrated in Fig. 2.4.11.

The Boolean equation using zeros only, would
produce:

a = (D • C • B • A) + (D • C • B • A)

Fig. 2.4.9 Karnaugh Map with

‘Don’t Care’ Cells Included

Fig 2.4.10 Minimised Circuit for BCD to 7

Segment decoder ‘a’ Output.

Fig. 2.4.11 Grouping Zeros

and ‘Don’t Cares’

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 22  E. COATES 2007-2014

but including the one available X (Don’t Care) produces a slightly simplified equation:

a = (C • B • A) + (D • C • B • A)

However this produces logic 1 outputs where
‘a’ was at logic 0 (for inputs 0001 and 0100 in
Table 2.4.3). If this output is inverted
however, the correct ‘a’ output according to
the truth table for the decoder is produced. A
circuit implementing this method is illustrated
in Fig. 2.4.12. This circuit uses the same
number of ICs as Fig. 2.4.10 but has a 50%
longer propagation delay due to the extra
gates used.

A circuit with a shorter propagation delay can be
made, by using just the zeros in the Karnaugh
map as shown in Fig. 2.4.13. This map contains
only two 4-term groups but provides the
opportunity to use two 4 input AND gates in the
circuit illustrated in Fig. 2.4.14

This circuit again uses three ICs, a Hex inverter
(with 6 NOT gates), a Dual 4 input AND and a
Quad 2 input OR.

Because only two expressions are used the circuit is not minimised, but implemented as:

a = (D • C • B • A) + (D • C • B • A)

In terms of propagation delay this circuit should be
the fastest version of those discussed in this section,
but the cost (based on average prices for 74 series
ICs) would be approximately 30% more expensive
than the cheapest.

 Clearly, in designing digital circuits there are
choices the designer must make. Cost, speed,
physical space and time to design are just some of
the design considerations.

Relatively few new designs of medium to large
systems will be implemented using 74 series ICs today. Now, large and complex Programmable
Logic Devices will be used, where the actual logic functions within an integrated circuit, as well as
the complex relationships between the functions are set by computer software, but for small scale
and one-off designs, the low cost and reduced complexity of the 74 series chips is still valued.

Minimisation using Boolean algebra will largely be confined to simple circuits having few inputs,
Karnaugh mapping being preferred as complexity increases. However both of these manual systems
of circuit minimisation can be time consuming and error prone. Although Karnaugh mapping can
theoretically handle circuits with up to six inputs, much work of this type can be better handled by
computer based systems.

Fig. 2.4.12 Inverting the Output

of a Circuit Using Zeros

Fig 2.4.13 Two Expression

Karnaugh Map Using Zeros

Fig 2.4.14 Karnaugh Derived

Faster Circuit Using Zeros.

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 23  E. COATES 2007-2014

An excellent software tool for circuit simplification that will produce a minimised circuit from
schematic diagrams, truth tables or Boolean expressions is ‘Logic Friday’ from Sontrak. The
program can be downloaded free of charge from http://www.sontrak.com/.

The minimisation problems discussed in this module have described the process for manually
arriving at a design that will activate just one LED on a seven-segment display, but what about a
circuit for a complete (4 input, 7 output) BCD decoder to drive the full display?

The screen grab shown in Fig. 2.4.15 was taken from Logic Friday and shows the result of just a
few minutes work entering the truth table (similar to Table 2.4.2) for the complete decoder logic.

The program has compiled the Boolean equations for all seven outputs, minimised the equations
and drawn the complete circuit using a selected combination of NAND, NOR and NOT gates.

This does not mean that the whole process is automated, there are still decisions to be made whilst
using the program, and many of these decisions depend on knowledge of the manual operations
introduced in this module. An exploration of both manual and computer based methods is to be
recommended, together with an understanding of the way logic devices work, which is explained in
Digital Electronics Module 3 on www.learnabout-electronics.org.

Fig. 2.4.15 Minimisation of the Complete Decoder Logic

for a BCD to 7 Segment Decoder In ‘Logic Friday’

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 24  E. COATES 2007-2014

2.5 Digital Logic Quiz
Try our quiz, based on the information you can find in Digital Electronics Module 2 − Digital
Logic. Check your answers at http://www.learnabout-electronics.org/Digital/dig25.php and see
how many you get right. If you get any answers wrong. Just follow the hints to find the right answer
and learn about digital logic as you go.

1.

What is the device illustrated in Fig.2.5.1?

a. A two input AND gate.

b. A two input NAND gate.

c. A two input OR gate.

d. A two input XNOR gate.

2.

Which of the following Boolean equations describes the action of Fig. 2.5.2?

a. X = (A • B) + (B • C)

b. X = (A • B) • (B + C)

c. X =(A • B) + (B • C)

d. X = (A • B) + C

3.

Which Boolean law is described by the equation A•(B+C) = A•B+A•C?

a. Commutative law.

b. Associative law.

c. Distributive law.

d. Complement law.

4.

Which of the following logic functions is illustrated by Fig. 2.5.3?

a. XOR

b. NOR

c. AND

d. NAND

5.

Which of the following Boolean equations describes the truth table in Fig. 2.5.4?

a. X = A + B

b. X = A • (A + B)

c. X = (A • B) + B

www.learnabout-electronics.org Digital Logic

DIGITAL ELECTRONICS MODULE 02.PDF 25  E. COATES 2007-2014

d. X = A + B

6.

What type of I.C does Fig. 2.5.5 represent?

a. 7400

b. 7402

c. 7404

d. 7408

7.

Which logic function does the circuit in Fig. 2.5.6 perform?

a. NAND

b. NOR

c. XOR

d. XNOR

8.

What is the Boolean expression that can be obtained for the Karnaugh map cell

indicated in Fig. 2.5.7?

a. A • B • C • D

b. A • B • C • D

c. A • B • C • D

d.. A • B • C • D

9.

Refer to Fig. 2.5.7:

What is the minimum number of cell groups that can be obtained from the Karnaugh map using
logic 1 cells only?

a. Two groups.

b. Three groups.

c. Four groups.

d. Five groups.

10.

Which of the segments on a 7 segment LED display need to be illuminated to display the decimal
number 4?

a. Segments a, f, b, c

b. Segments c, d, e, f

c. Segments a, d, e, g

d. Segments b, c, f, g

