1

www.learnabout-electronics.org

Digital Electronics

1.0 Introduction to Number Systems

What you’ll learn in Module 1

Section 1.0 Number Systems.

* Recognise different number systems and theis.us
Section 1.1 Number Systems in Electronics.

* Decimal.
* Binary.
* Octal.
» Hexadecimal.
Section 1.2 Converting Number Systems

 Converting to decimal.

 Converting from decimal.

* Binary fractions.

* Binary and hexadecimal.
Section 1.3 Binary Arithmetic.

* Binary Addition.
* Binary Subtraction.
Section 1.4 Signed Binary.

* 8-bit signed binary arithmetic.
Section 1.5 Ones & Twos Complement.

« 8-bit Ones complement arithmetic.
« 8-bit Twos complement arithmetic.
* Flag Registers.

Section 1.6 Binary Coded Decimal.
* BCD codes.
» Convert between decimal and BGR.

Section 1.7 Number Systems Quiz.

Test your knowledge of humber systems.

0A04
110000 4o

1100109
FFFF
24 -

51
J

Why so many Number Systems?

Ask many people what the most commonly
used number system is, and they would
probably reply (after a bit of thought), the
decimal system. But actually many number
systems, and counting systems are used,
without the users thinking much about it. For
example clocks and compasses use the ancient
Babylonian number systefmased on 60 rather
than the decimal system based on 10. Why?
Because 60 is easier to divide into equal
segments, it can be evenly divided by
1,2,3,4,5,6,12,15, 20 and 30. This is much
better for applications such as time, or degrees
of angle than a base of 10, which can only be
divided into equal parts by 1, 2 and 5.

Many counting systems are ancient in origin
and are still in use because they are useful for
particular purposes.

DIGITAL ELECTRONICS 01.PDF

0 E. COATES 2007 -2013

www.learnabout-electronics.org Number Systems

Using the decimal system it is easy to count upetofingers, using the just the fingers on two
hands. In northern Britain farmers used an andaitic counting systepbased on 20 (also called
a score), to count their animals, and its use [s#itsisted even into the second half of the twéntie
century.

Another special number system is the binary systeed by digital electronic devices. Because
digital circuits work on an electrical ‘on or offivo state system, a number system based on 2 (i.e.
the binary counting system) is much easier fortedecc devices to use. However binary is not a
natural choice for human counting or calculation.

This module explains how the number systems useeictronics work, and how computers and
calculators use different forms of binary to cavuy calculations.

DIGITAL ELECTRONICS MODULE 01.PDF 2 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

1.1 Number Systems in Electronics

Number Systems

What you’ll learn in Module 1.1
After studying this section, you should | Most number systems follow a common pattern fotimgi
be able to: down the value of a number:

Know the base values of commonly used

number systems. A fixed number of values can be written with a $ng

numerical character, then a new column is usedotmic

) D_ec'mal how many times the highest value in the countingtesy

* Binary. has been reached. The number of numerical values th

* Octal. system uses is called the base of the system. Xaonpde,

« Hexadecimal. the decimal system has 10 numerical charactersarths
Understand methods for extending the a base of 10:
scope of number systems.

P Y 0123456789

» Exponents.

« Floating point notation. For writing numbers greater than 9 a second colusnn

e added to the left, and this column has 10 timesréthee of

e R g o the column immediately to its right.

stored in electronic systems Because number systems commonly used in digital

* Bits. electronics have different base values to the dacim
* Bytes. system, they look less familiar, but work in esgsiyt the

o \Words. same Wa.y

* Registers.

Decimal, (base 10)

Decimal has ten values 0 - 9. If larger values thane needed, extra columns are added to the left.
Each column value is ten times the value of theroal to its right. For example the decimal value
twelve is written 12 (1 ten + 2 ones).

Binary, (base 2)

Binary has only two values 0 — 1. If larger valtlesn 1 are needed, extra columns are added to the
left. Each column value is now twice the valuehd tolumn to its right. For example the decimal
value three is written 11 in binary (1 two + 1 ane)

Octal, (base 8)

Octal has eight values 0 — 7. If larger values thare needed, extra columns are added to the left.
Each column value is now 8 times the value of thieran to its right. For example the decimal
value eleven is written 13 in octal (1 eight + &en

Hexadecimal, (base 16)

Hexadecimal has sixteen values 0 — 15, but to ledethese values in a single column, the 16
values (0 to 15) are written as O to F, using #@teets A to F to represent numbers 10 to 15, so
avoiding the use of a second column. Again, if biglalues than 15 (F in hexadecimal) are needed,
extra columns to the left are used. Each columneva sixteen times that of the column to its right
For example the decimal value 20 is written 14erddecimal (1 sixteen + 4 ones).

DIGITAL ELECTRONICS MODULE 01.PDF 3 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

The reason for these differences is because eatdnsyas a different base, and the column values
in each system increase by multiples of the basgeuas columns are added to the left.

Table 1.1.1
Some column values of different number systems

Decimal 1000 100 10 1
Binary 8 4 2 1
Octal 512 64 8 1
Hexadecimal | 4096 256 16 1

Because this module describes several differentbeursystems, it is important to know which
system is being described. Therefore if there mesdoubt which system a number is in, the base of
the system, written as a subscript immediately #ifte value, is used to identify the number system.

For example:

10,0 represents the decimal value ten. (1 ten + O units
10, represents the binary value two. (1 two + 0 units)
10; represents the octal value eight. (1 eight + @sni

10,6 represents the hexadecimal value sixteen. (1esixte0 units)
The System Radix

The base of a system, more properly called the AR the number of different values that can
be expressed using a single digit. Therefore tlognd® system has a radix of 10, the octal system
has a radix of 8, hexadecimal is radix 16, andryiradix 2.

The range of number values in different numberesyst is shown in Table 1.1.2, Notice that
because the hexadecimal system must express I&suading only one column, it uses the letters A
B C D E & F to represent the numbers 10 to 15.

Table 1.1.2
Decimal Binary Octal Hexadecimal
(Radix 10) (Radix2) (Radix 8) (Radix 16)
0 0 0 0
1 1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8
9 9
A
B
C
D
E
F

DIGITAL ELECTRONICS MODULE 01.PDF 4 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

The Radix Point.

When writing a number, the digits used give itsuealbut the number is ‘scaled’ by its RADIX
POINT.

For example, 4562 is ten times bigger than 45 Galthough the digits are the same.

Notice also that when using multiple number systethe term ‘RADIX point’ instead of
‘DECIMAL point’ is used. When using decimal numbeasdecimal point is used, but if a different
system is used, it would be wrong to call the pardecimal point, it would need to be called
"Binary point" or "Octal point" etc. The simplestaw around this is to refer to the point in any
system (which will of course have its value laleNeth its radix) as the RADIX POINT.

Exponents

A decimal number such as 456,Z2an be considered as the sum of the values dfdigsidual
digits, where each digit has a value dependentsopasition within the number (the value of the
column):

Table 1.1.3

Col 2 Col 1 Col 0 Col -1

4 hundreds| +5tens +6units | + 2 tenths
(4x10%) | +(Bx10Y | +(6x10% | + (2 x 10.9)
400 +50 +6 +0.2

= 456.2[0

Each digit in the number is multiplied by the systeadix raised to a power depending on its
position relative to the radix point. This is cdllthe EXPONENT. The digit immediately to the
left of the radix point has the exponent O appliedts radix, and for each place to the left, the
exponent increases by one. The first place toigig of the radix point has the exponent -1 and so
on, positive exponents to the left of the radixnp@nd negative exponents to the right.

This method of writing numbers is widely used ieattonics with decimal numbers, but can be
used with any number system. Only the radix isedéft.

Hexadecimal exponents 982 (9 x 16) + (8 x 16) + (2 x 16"
Octal exponents 56;2 (5 x 8) + (6 x 8) + (2 x 8Y
Binary Exponents 10, (1 x 2) + (0 x 2) + (1 x 2

When using your calculator for the above examptesmay find that it does not like radix points in
anything other than decimal mode. This is commah wiany electronic calculators.
Floating Point Notation

If electronic calculators cannot use radix pointiseo than in decimal, this could be a problem.
Fortunately for every problem there is a solutibhe radix exponent can also be used to eliminate
the radix point, without altering the value of th@mber. In the example below, see how the value
remains the same while the radix point moves.dllisone by changing the radix exponent.

102.60=102.6 x 16=10.26 x 16=1.026 x 16=.1026 x 18

The radix point is moved one place to the leftimyréasing the exponent by one.

DIGITAL ELECTRONICS MODULE 01.PDF 5 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

It is also possible to move the radix point to tlght by decreasing the exponent. In this way the
radix point can be positioned wherever it is regdir in any number system, simply by changing
the exponent. This is called FLOATING POINT NOTAMOand it is how calculators handle
decimal points in calculations.

Normalised Form

By putting the radix point at the front of the nuenpand keeping it there by changing the exponent,
calculations become easier to do electronicallgny radix.

Electronic storage of numbers.

A number written (or stored) in this way, with tteglix point at the left of the most significant idig

is said to be in NORMALISED FORM. For example .119% 2 is the normalised form of the
binary number 110.%21Because numbers in electronic systems are stardanary digits, and a
binary digit can only be 1 or O, it is not possilie store the radix point within the number.
Therefore the number is stored in its normalisethfand the exponent is stored separately. The
exponent is then reused to restore the radix pwminits correct position when the number is
displayed.

In electronics systems a single binary digit idechl bit (short foBinary Dig'T), but as using a
single digit would seriously limit the maths thatutd be performed, binary bits are normally used
in groups.

4 bits = 1 nibble
8 bits = 1 byte

Multiple bytes, such as 16 bits, 32 bits, 64 brs asually called ‘words’, e.g. a 32 bit word. The
length of the word depends on how many bits caphysically handled or stored by the system at
one time.

4 Bit Binary Representation

Table 1.1.4

MSB 4BitBinary LSB
22=8 2°=4 2'=2 2°=1

Decimal

© ([0 |N o ||~]|wWw N | |O

Juny
o

[y
=

JEny
N

-
w

[N
N

||| [k ||| [O]O]|]O|O |O|O|OC |O

|k |k |k |[O]|]O|O |O|(F |F|F |k |JO|JO|O |O
|k |O |0 | |k |O |0 |(F |k |O|OC|F |+ |O |O
|| ||k |O | |O|(Fk |©O | |O|F |0 |+ |O

=
4]

DIGITAL ELECTRONICS MODULE 01.PDF 6 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

When a number is stored in an electronic systeims, stored in a memory location having a fixed
number of binary bits. Some of these memory locatiare used for general storage whilst others,
having some special function, are called registéfiserever a number is stored, it will be held in
some form of binary, and must always have a setheurof bits. Therefore a decimal number such
as 13, which can be expressed in four binary lstd1#02% becomes 0000119ivhen stored in an
eight-bit register. This is achieved by adding fol®N SIGNIFICANT ZEROS to the left of the
most significant digit.

Using this system, a binary register that is n witse can hold 2values.
Therefore an 8 bit register can hofthalues = 256 values (0 to 255)

A 4 bit register can hold*alues = 16 values (0 to 15)
HOW MANY VALUES CAN A 16 BIT REGISTER HOLD ?

Filling the register with non-significant zerosfise - if the number is smaller than the maximum

value the register will hold, but how about largeimbers? These must be dealt with by dividing

the number into groups of bits that can be stonednie (e.g. eight-bit) location, and using several
locations to hold the different parts of the tatalue. Just how the number is split up depends on
the design of the electronic system involved.

Summary:

* Electronic systems may use a variety of different number systems, (e.g. Decimal, Hexadecimal, Octal,
Binary).

» The number system in use can be identified by its radix (10, 16, 8, 2).
 The individual digits of a number are scaled by the Radix Point.

» The Exponent is the system radix raised to a power dependent on the column value of a particular digit
in the number.

« In Floating Point Notation the Radix Point can be moved to a new position without changing the value of
the number if the Exponent of the number is also changed.

 In Normalised Form the radix point is always placed to the left of the most significant digit.

* When numbers are stored electronically they are stored in a register holding a finite number of digits; if
the number stored has less digits than the register, non-significant zeros are added to fill spaces to the left
of the stored number. Numbers containing more digits than the register can hold are broken up into
register sized groups and stored in multiple locations.

DIGITAL ELECTRONICS MODULE 01.PDF 7 O E. COATES 2007-2014

www.learnabout-electronics.org

Number Systems

What you’ll learn in Module 1.2

After studying this section, you should be able
to:

» Decimal.

* Binary.

* Octal.

» Hexadecimal.

Understand the relationships between number
systems used in digital electronics.

» Decimal fractions

» Decimal & hexadecimal.

Conversion from any system to decimal.

It is often necessary to convert values writteorie

number system to another. The simplest way is to
reach for your calculator or use a conversion app.
from the web. That is fine, but converting a number

each number system works and how different
systems are related. The purpose of this modute is
explain just that, and to get you to carry out some
simple conversions so that you can not only convert
between number systems, but also understand how
the conversion process works. There are various
ways to tackle conversions without a calculator;
once the conversion methods are learned, the only
skills needed are the ability to multiply and diid

by two, and to add together a few numbers.

The number of values that can be expressed bygesiigit in any number system is called the
system radix, and any value can be expressednrstef its system radix.

For example the system radix of octal is 8, sinoed the 8 values from 0 to 7 can be written as a

single digit.

Using the values of each column, (which in an ortger are powers of 8) the octal value gl26

can also be written as:
Convert 126 to decimal.

(1x&) + (2x8) + (6 x &)

As (& = 64), (8) = 8 and (8=1), this gives a multiplier value for each column

Multiply the digit in each column by the column riplier value for that column to give:

1x64 = 64 2x8 =16 6x1 =6

Then simply add these results to give the decirakiles

64 + 16 + 6 = 8f
Therefore 126 = 86;.

The same method can be used to convert binary numbkecimal:

Convert 110% to decimal.
= (1x2)+(1x2)+(0x2Y)) +1x %)
=8+4+0+1

=130 Therefore 110% = 13,9

DIGITAL ELECTRONICS MODULE 01.PDF

O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

The same method can be used to convert any systdatimal.
Try these conversions to decimal WITHOUT YOUR CALCULATOR.
110,

678
AFCss

FC]_6
Converting from Decimal to any Radix

To convert a decimal integer number (a decimal remmb which any fractional part is ignored) to
any other radix, all that is needed is to contilyudivide the number by 2 and with each division,
write down the remainder, which will be either 10or

Decimal to Binary

For example, to convert the decimal numbeg 7 binary: 2)57 Remaind
emainder

Divide 57 by the system radix, which when converting to kyria g% '1}
2. This gives the answer 28, with a remainder of 1. 2) 7 0

2)3 1
Continue dividing the answer by 2 and writing dothie remainder 2h 1
until the answer = 0 2)0 1

Now simply write out the remainders, starting fréhe bottom, to Example 1.2.1 Decimal
give 1110021 to Binary Conversion

Therefore 570=11100%

Decimal to Octal 8)57 Remainder

The same process works to convert decimal to dotslthis time the g}_; ; '

system radix is 8: 1 0

Example 1.2.2 Decimal
to Octal Conversion

Therefore 579=71s

Decimal to Hexadecimal

It also works to convert decimal to hexadecimal, but now the radix is 16: 16)57 Remainder

16) 3 9 I
Therefore 579 = 396 16) 0 3
Example 1.2.3 Decimal to

Hexadecimal Conversion
Numbers with Fractions

It is very common in the decimal system to usetioas; that is any decimal number that contains a
decimal point, but how can decimal numbers, sucB4ad25,be convertetb binary fractions?

In electronics this is not normally done, as bindogs not work well with fractions. However as
fractions do exist, there has to be a way for lyinardeal with them. The method used is to get rid
of the radix (decimal) point by NORMALISING the dewl fraction using FLOATING POINT
arithmetic. As long as the binary system keepsktdcthe number of places the radix point was
moved during the normalisation process, it canes¢ored to its correct position when the result of
the binary calculation is converted back to decifoatisplay to the user.

DIGITAL ELECTRONICS MODULE 01.PDF 9 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

However, for the sake of completeness, here isthaddor converting decimal fractions to binary
fractions. By carefully selecting the fraction te bonverted, the system works, but with many
numbers the conversion introduces inaccuraciepaa geason for not using binary fractions in
electronic calculations.

Converting the Decimal Integer to Binary

The radix point splits the number into two partse part to the 2)34 Remainder
left of the radix point is called the INTEGER. Tpart to the right 2)17 0
of the radix point is the FRACTION. A number such3#.62510 2) 8 1
is therefore split into 3410 (the integer), andbB2 (the fraction). gﬁ g
To convert such a fractional decimal number to atier radix, 2)_; 2

the method described above is used to covert tegan
Example 1.2.4 Converting

S0 340 =10001Q the Integer to Binary
Converting the Decimal Fraction to Binary Fraction Carry 625
To convert the fraction, this must be MULTIPLIED bye radix x Radix _x2
(in this case 2 to convert to binary). Notice tiwith each RRES‘;‘_“ 1 252
multiplication a CARRY is generated from the thaolumn. The xReasJI: 0 %ﬂ
Carry will be either 1 or 0 and these are writt@wd at the left x Radix X2
hand side of the result. However when each resutuiltiplied the Result ' 1 000

carry is ignored (don’'t multiply the carry). Eactesult is
multiplied in this way until the result (ignoringé carry) is 000.
Conversion is now complete.

Example 1.2.5 Converting
the Fraction to Binary

For the converted value just read the carry colénom top to bottom.
S0 0.62% =.10%
Therefore the complete conversion shows that 34.64% 100010.101

However, with binary, there is a problem in usihgstmethod, .625 converted easily but many
fractions will not. For example if you try to cone626 using this method you would find that the
binary fraction produced goes on to many, manygdawithout a result of exactly 000 being
reached.

With some decimal fractions, using the above methitidproduce carries with a repeating pattern
of ones and zeros, indicating that the binary foactvill carry on infinitely. Many decimal fractien
can therefore only be converted to binary with fedi accuracy. The number of places after the
radix point must be limited, to produce as accuaat@pproximation as required.

DIGITAL ELECTRONICS MODULE 01.PDF 10 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

Converting Binary to Decimal

To convert from binary to decimal write down thedy number giving each column its correct
‘weighting’ i.e. the value of the columns, startiwgh a value of one for the right hand (least
significant column — or LEAST SIGNIFICANT BIT) colan. Giving each column twice the value
of the previous column as you move left.

Table 1.2.1

Bit 2’

Value (weighting) of each bit 128 64
8 Bit Binary 0 1 0 0 0 0 1 1

Example:

To convert the binary number 01000914 decimal, write down the binary number and assig
‘weighting’ to each bit as in Table 1.2.1

Now simply add up the values of each column comtgia 1 bit, ignoring any columns containing
0.

Applying the appropriate weighting to 01000011 giv&6 + 64 + 2 + 1 = 67
Therefore: 01000013 = 6719

Now try some conversions yourself. Use pencil amgep to practice the method, rather than just
finding the answer.

Convert:

344 to binary.
7710 to binary.
1234, to binary.
61325 to binary.

Check your answers by converting the binary badketmmal.
Convert:

110% to decimal.

10110% to decimal.

111110% to decimal.

100110 to decimal.

Check your answer by converting the decimal badirary.

Don’t use your calculator - you need to learn the mthod, not just the answer!

DIGITAL ELECTRONICS MODULE 01.PDF 11 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

Binary and Hexadecimal

Converting between binary and hexadecimal is a nsirapler process; hexadecimal is really just a
system for displaying binary in a more readablenfor

Binary is normally divided into Bytes (of 8 bits)i$ convenient for machines but quite difficult fo
humans to read accurately. Hexadecimal groups &&dhbyte into two 4-bit nibbles, and assigns a
value of between 0 and 15 to each nibble. Thisaeslthe eight 1 or O characters of binary into just
two characters.

For example:

1110100% is split into 2 nibbles 11%&Gnd 1001 then each nibble is assigned a hexadecimal value
between O and F.

Table 1.2.2

Decimal 0[|1|2|3|4|5|6|7|8|9(10|11(12(13|14(15
Hexadecimal |0 (1|2 |3|4|5(6|7|8|9|A|B|C|D|E|F

The bits in the most significant nibble (1218dd up to 8+4+2+0 = 14= E6

The bits in the least significant nibble (19Dadd up to 8+0+0+1 =9= 95
Therefore 11101001 = E9¢

DIGITAL ELECTRONICS MODULE 01.PDF 12 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

1.3 Binary Arithmetic

What you'll learn in Module 1.3 Binary Addition Rules

After studying this section, you should be able ArithmEtiC rules for bi_na_ry numbers are qUit_e
to: straightforward, and similar to those used in
decimal arithmetic. The rules for addition of

Understand the rules used in binary calculations. binary numbers are:

« Addition. . . .
non Notice that in Fig. 0+0= 0
* Subtraction. 131, 1+1 = (1)0 0+1= 1
requires a ‘carry’ of 1 1+0= 1
Use of carry, borrow & pay back. to the next column. 1+1=(1)0
Understand limitations in binary arithmetic. Remember j[hat binary Fig. 1.3.1 Rules for
« Word length. 10, = 230 decimal. Binary Addition
« Overflow.
Decimal Binary
Example: 2 10
. L . o : . 1+ 01+
Binary addition is carried out just like decimaly ladding up the Answer 3 1"
columns, starting at the right and working colunyncblumn towards) .
the left Fig. 1.3.2 Simple

Binary Addition
Just as in decimal addition, it is sometimes neogds use a ‘carry’,

and the carry is added to the next column. For @kann Fig. Decimal Binary

1.3.3 when two ones in the right-most column aeddthe result 3 0011

is 210 or 1Q. The least significant bit of the answer is therefO 1+ 0001+

and the 1 becomes the carry bit to be added td thehe next Carry _ 0110

column. 4 0100
Fig. 1.3.3 Binary

Binary subtraction rules Addition with Carry

The rules for binary subtraction are quite strdmfard except 0-0= 0

that when 1 is subtracted from 0, a borrow mustreated from 0-1= 1%

the next most significant column. This borrow igrihworth 2o 1

or 1 as a 1 bit in the next column to the left is alsvayorth “After 10, is borrowed

twice the value of the column on its right. from naxt column
on left.
Binary Subtraction Fig. 1.3.4 Rules for Binary

The rules for subtraction of binary numbers areiragamilar to Subtraction

decimal. When a large digit is to be subtractedhfeosmaller one, a ‘borrow’ is taken from the next
column to the left. In decimal subtractions theitdigorrowed in’ is worth ten, but in binary
subtractions the ‘borrowed in’ digit must be wo2ilg or binary 18.

After borrowing from the next column to the left)pay back’ must occur. The subtraction rules for
binary are quite simple even if the borrow and pagk system create some difficulty. Depending
where and when you learned subtraction at schaal, may have learned a different subtraction
method, other than ‘borrow and payback’, this isiseml by changing fashions in education.
However any method of basic subtraction will workkhwbinary subtraction but if you do not want

to use ‘borrow and payback’ you will need to apgdyr own subtraction method to the problem.

DIGITAL ELECTRONICS MODULE 01.PDF 13 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

Fig. 1.3.5 shows how binary subtraction works dytsacting
510 from 14, in both decimal and binary. Notice that in the
third column from the right & a borrow from the & column

Decimal Binary
Payback Borrow

is made and then paid back in the MSB (Dlumn. 11 J 011
5= 0'101-
Note: In Fig 1.3.5 a borrow is shown & and a payback is 6 0 110

shown as & Borrowing 1 from the next highest value columr -
to the left converts the 0 in th@@lumn into10, and paying Fig- 1-3.5 Binary Subtraction
back 1 from the Z&column to the 2adds 1 to that column,

converting the 0 to .

Once these basic ideas are understood, binaryastibtr is not difficult, but does require some
care. As the main concern in this module is witectbnic methods of performing arithmetic
however, it will not be necessary to carry out nmamsubtraction of binary numbers using this
method very often. This is because electronic nosthaf subtraction do not use borrow and pay
back, as it leads to over complex circuits and sloaperation. Computers therefore, use methods
that do not involve borrow. These methods will biyfexplained in Number Systems Modules 1.5
to 1.7.

Subtraction Exercise

Just to make sure you understand basic binary alins try the s s,
examples below on paper. Don't use your calculatiack the image == -
to download and print the exercise sheet. Be sarshbw your — = ey,
1.
1

working, including borrows and paybacks where appate. Using
the squared paper helps prevent errors by keepmg binary
columns in line. This way you will learn about thember systems,
not just the numbers.

Limitations of Binary Arithmetic i Q

Now back to ADDITION to illustrate 4.-bit Binary 8-bit Binary 1
a problem with binary arithmetic. In

Fig. 1.3.6 notice how the carry goeég .
right up to the most significant bit. =

12 27 56
3- 7- 31-

This is not a problem with this example as the ansi)1Q (10;0)
still fits within 4 bits, but what would happentlie total was greater

Binary
Y
than 150~ 0111

As shown in Fig 1.3.7 there are cases where a bdrig created that 0011 +
will not fit into the 4-bit binary word. When aritietic is carried out ~ “~#"¥ 11fY
by electronic circuits, storage locations calledisters are used tha 1010
can hold only a definite number of bits. If theisdgr can only hold

four bits, then this example would raise a problé&ime final carry bit Fig. 1.3.6 Limits of

is lost because it cannot be accommodated in thé& #egister, 4 Bit Arithmetic
therefore the answer will be wrong.
To handle larger numbers more bits must be usddpdumatter B;:'::Y
how many bits are used, sooner or later there roesa limit. 0001 +
How numbers are held in a computer system depemgdsly on 0

. . .) . Carry (1) 1110
the size of the registers available and the metfistioring data in (1) 0000

them, however any electronic system will have a waly]
overcoming this ‘overflow’ problem, but will alsoatle some Fig- 1-3.7 The Overflow
limit to the accuracy of its arithmetic. Problem

DIGITAL ELECTRONICS MODULE 01.PDF 14 O E. COATES 2007-2014

www.learnabout-electronics.org

Number Systems

Signed Binary Notation

What you’ll learn in Module 1.4

After studying this section, you should be
able to:

Recognise numbers using Signed Binary
Notation.

» |dentify positive binary numbers.

« Identify negative binary numbers.
Understand Signed Binary arithmetic

» Number representation.

« Advantages of Signed Binary for
arithmetic.

» Disadvantages of Signed Binary for
arithmetic.

For example:

+45,0in signed binary is (0)0101191
-455 in signed binary is (1)0101191

Note:

All the binary arithmetic problems looked at in
Module 1.3 used only POSITIVE numbers. The
reason for this is that it is not possible in PUbBtEary

to signify whether a number is positive or negative
This of course would present a problem in any bat t

simplest of arithmetic.

There are a number of ways in which binary numbers
can represent both positive and negative valudst 8
systems all use one bit of the byte to repres¢in¢ei

or — and the remaining 7 bits to give the valuee ©h
the simplest of these systems is SIGNED BINARY,
also often called 'Sign and Magnitude’, which exist
several similar versions, but is commonly an 8 bit
system that uses the most significant bit (msb) to
indicate a positive or a negative value. By conwemt

a 0 in this position indicates that the number gitsg

the remaining 7 bits is positive, and a most sigairft

bit of 1 indicates that the number is negative.

Table 1.4.1
Binary Decimal Signed Binary

11112111 255 -127
11111110[254 -126
11111101] 253 -125

11111100] 252 -124

The brackets around the msb (the sign bit) areudwd here for

clarity but brackets are not normally used. Becaudg 7 bits are
used for the actual number, the range of valuessistem can

10000011

131

represent is from —12¢or 11111113, to +127%,.

10000010

130

10000001

129

A comparison between signed binary, pure binary dedimal

10000000

128

numbers is shown in Table 1.4.1. Notice that in slgmed binary

01111111

127

representation of positive numbers betweer, add +127,, all the

01111111

126

positive values are just the same as in pure hildowever the pur

01111101

125

binary values equivalents of +1:380 +253 are now considered t(

)
01111100]

124

represent negative values -0 to —-127.

This also means thatfcan be represented by 00000908®hich is
also 0 in pure binary and in decimal) and by 10@09Qwhich is

00000011

+3

equivalent to 128 in pure binary and in decimal).

00000010

+2

00000001

+1

00000000

O | [N |W

+0

DIGITAL ELECTRONICS MODULE 01.PDF 15

O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

Signed Binary Arithmetic

Because the signed binary system now contains posiitive and negative values, calculation
performed with signed binary arithmetic should berenflexible. Subtraction now becomes
possible without the problems of borrow and paybdekcribed in Number Systems Module 1.3.
However there are still problems. Look at the twaraples illustrated in Fig. 1.4.1 and 1.4.2, using
signed binary notation.

Decimal Binary

In Fig. 1.4.1 two positive (msb = 0) numbers ardestl 7 00000111
and the correct answer is obtained. This is ready 5 00000101 +
different to adding two numbers in pure binary as e e
described Number Systems Module 1.3. Carry _ 00001110

12 00001100

Fig. 1.4.1 Adding Positive
Numbers in Signed Binary

In Fig. 1.4.2 however, the negative number -5 ideald Decimal Binary

to +7, the same action in fact as SUBTRACTING 5 7 00000111

from 7, which means that subtraction should beiptess -5+ 10000101 +

by merely adding a negative number to a positive — ey
number. Although this principle works in the decima Carry _ 00001110
version the result using signed binary is 10002160 2 10001100
—-12;0 which of course is wrong, the result of 7 - _. . o .
should be +2. Fig. 1.4.2 Adding Positive & Negative

Numbers in Signed Binary

Although signed binary can represent positive aaglative numbers, if it is used for calculations,
some special action would need to be taken, depgruh the sign of the numbers used, and how
the two values for O are handled, to obtain theembrresult. Whilst signed binary does solve the
problem of REPRESENTING positive and negative numlie binary, and to some extent carrying
out binary arithmetic, there are better sign angmitade systems for performing binary arithmetic.
These systems are the ONES COMPLEMENT and TWOS C@WHEENT systems, which are
described in Number Systems Module 1.5.

DIGITAL ELECTRONICS MODULE 01.PDF 16 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

1.5 Ones and Twos Complement

What you'll learn in Module 1.5 Ones Complement
After studying this section, you should be | The com_plement_ _(Or opposite) _Of +5 is -5. _When_
able to: representing positive and negative numbers in 8-bit

ones complement binary form, the positive numbers

UIne SHEEME) ees Com plemeEn melkEion, are the same as in signed binary notation desciibed

« Sign bit. Number Systems Module 1.4 i.e. the numbers 0 to
+127 are represented as 0000G0@6 01111111

* Value range. However, the complement of these numbers, that is

- Ones complement arithmetic. their negative counterparts from -128 to -1, are
represented by ‘complementing’ each 1 bit of the

* End around carry. positive binary number to 0 and each 0 to 1.

Understand ones complement notation. For example:

« Additive inverse +510is 000001041 and

 Twos complement addition. —510is 11111010

* Twos complement subtraction. Notice in the above example, that the most sigaific

bit (msb) in the negative numberg3s 1, just as in
signed binary. The remaining 7 bits of the negative
« Overflow situations. number however are not the same as in signed binary
notation. They are just the complement of the
remaining 7 bits, and these give the value or madai

of the number.

* Negative results

* Flag registers.

The problem with signed the binary arithmetic digsat in Number Systems Module 1.4 was that it
gave the wrong answer when adding positive and tivegaumbers. Does ones complement
notation give better results with negative numlteas signed binary?

Fig. 1.5.1 shows the result of adding -4 to +6ngsi

ones complement, this is the samesabtracting +4 Decimal Binary
from +6, so it is crucial to arithmetic. +6 00000110
-4+ 11111011+
The result, 0000000Q1s 1o instead of 2. Caﬂ,y_ {1}m
This is better than subtraction in signed binany,ibis +2 00000001

still not correct. The result should be;gBut the result
is +1 (notice that there has also been a carry timo
none existent 9th bit).

Fig. 1.5.1 Adding Positive & Negative
Numbers in Ones Complement

DIGITAL ELECTRONICS MODULE 01.PDF 17 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

Fig. 1.5.2 shows another example, this time adtirtg

negative numbers -4 and -3. Decimal Binary

-4 11111011

Because both numbers are negative, they are first -3+ 11111100+
converted to ones complement notation. Carry __ (1)11110000
-1 11110111

+445is 0000010Qin pure 8 bit binary, so

complementing gives 11111011. Fig. 1.5.2 Adding Two Negative

Numbers in Ones Complement

This is =40 in ones complement notation.
+3 is 0000001 in pure 8 bit binary, so complementing gives 111101
This is =30 in ones complement notation.

The result of 111101%1is in its complemented form so the 7 bits aftex $ign bit (1110111),

should be re-complemented and read as 0001000hwhies the value;8 As the most significant

bit (msb) of the result is 1 the result must beatieg, which is correct, but the remaining sevea bi
give the value of —8. This is still wrong by 1should be -7.

End Around Carry

There is a way to correct this however. Whenewveoties complement system handles negative
numbers, the result is 1 less than it should lge,leinstead of 2 and -8 instead of -7, but another
thing that happens in negative number ones complecadculations is that a carry is ‘left over’
after the most significant bits are added. Inste#gdst disregarding this carry bit, it can be aditie
the least significant bit of the result to corréat value. This process is called ‘end around tarry
and corrects for the result —1 effect of the or@amement system.

There are however, still problems with both onemglement and signed binary notation. The ones
complement system still has two ways of writing @0000009 = +0 and 111111%%E -0)).
Additionally there is a problem with the way positiand negative numbers are written. In any
number system, the positive and negative versibtiteeassame number should add to produce zero.
As can be seen from Table 1.5.1, adding +45 andr-dBcimal produces a result of zero, but this
is not the case in either signed binary or onesptement.

Table 1.5.1

Signed Ones
Binary Complement

Decimal

+45 00101101 00101101

-45 10101101 11010010
Binary Sum 11011010 11111111
Decimal Sum 010 —90y0 =127

This is not good enough, however there is a sysit@tovercomes this difficulty and allows correct
operation using both positive and negative numbéris is the Twos Complement system.

Twos Complement Notation
Twos complement notation solves the problem oféfetionship between positive and negative
numbers, and achieves accurate results in sulainacti

To perform binary subtraction the twos complemgsten uses the technique of complementing
the number to be subtracted. In the ones complesystgm this produced a result that was 1 less
than the correct answer, but this could be cordelojeusing the ‘end around carry’ system. This

DIGITAL ELECTRONICS MODULE 01.PDF 18 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

still left the problem that positive and negativersions of the same number did not produce zero
when added together.

The twos complement system overcomes both of geddems by simply adding one to the ones
complement version of the numbeafore addition takes place. The process of producing a
negative number in Twos Complement Notation istHated in Table 1.5.2.

Table 1.5.2
Producing a Twos Complement Negative Number

+5 in 8-bit binary (or 8-bit Signed Binary) is| 00000101

Complementing to produce the Ones Complement| 11111010
With 1 added 1
So -5 in Twos Complementis| 11111011

This version of -5 now, not only gives the corraoswer Twos
when used in subtractions but is also the additiverse of Complement
+5 i.e. when added to +5 produces the correcttresd@, as Decimal Binary
shown in Fig. 1.5.3 +5 00000101
-5+ 11111011 +
Note that in twos complement the (1) carry from thest Carry _ (1)11111110
significant bit is diskarded as there is no neadtlie ‘end 0 00000000

around carry’ fix.)) .
Fig. 1.5.3 Adding a Number to its

Twos Complement Produces Zero

With numbers electronically stored in their twosngement form, subtractions can be carried out
more easily (and faster) as the microprocessosinagly to add two numbers together using nearly
the same circuitry as is used for addition.

6 — 2 = 4is the same as (+6) + (-2) = 4

Twos Complement Examples

Note: When working with twos complement it is importaatwrite numbers in their full 8 I
form, since complementing will change any leadingt® into 1 bits, which will be included
any calculatia. Also during addition, carry bits can extend ifgading O bits or sign bits, a
this can affect the answer in unexpected v

Twos Complement Addition Twos
Complement
Decimal (Pure)Binary
12 00001100

Fig 1.5.4 shows an example of addition using 8 bit
twos complement notation. When adding two positive

numbers, their sign bits (msb) will both be 0, be t 7+ 00000111 +
numbers are written and added as a pure 8-bityoinar carry 00011000
addition. 19 00010011

Fig. 1.5.4 Adding Positive Numbers
in Twos Complement

DIGITAL ELECTRONICS MODULE 01.PDF 19 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

Twos Complement Subtraction

Fig.1.5.5 shows the simplest case of twos Decimal Twos
complement subtraction where one positive number 5 ngﬂzgﬂt Minuend
(the subtrahend) is subtracted from a larger pasiti 10 - 11110101 Subtrahend
number (the minuend). In this case the minuend is 1+ Plus 1
17,0 and the subtrahend is}0 (111100010 Carry

7 00000111 Answer

Because the minuend is a positive number its sign b

msb) is 0 and so it can be written as a pure 8 " _
E)inari/ number P Fig. 1.5.5 Subtracting a Positive Number

from a Larger Positive Number

Discarded

The subtrahend is to be subtracted from the minuend
and so needs to be complemented (simple ones coraptgand 1 added to the least significant bit
(Isb) to complete the twos complement and turn i@ -10.

When these three lines of digits, and any carryits are added, remembering that in twos
complement, any carry from the most significant ikitdiskarded. The answer (the difference
between 17 and 10) is 000002 710, which is correct. Therefore the twos complemesthad
has provided correct subtraction by using only @aldiand complementing, both operations that
can be simply accomplished by digital electronrcuits.

Subtraction with a negative result

Some subtractions will of course produce an answitr a . .imal Twos

negative value. In Fig. 1.5.6 the result of sulitngc17 from Complement

10 should be - but the twos complement answer ¢ 13 00001010 Minuend

11111003 certainly doesn't look like 46 However the sign =~ 11110110 Subtranend

bit is indicating correctly that the answer is riega so in 00011100 Carry

this case the 7 bits indicating the value of thgatiee answer 3 11111001 Negative

need to be 'twos complemented' once more to seantheer 011111 answer so:

in a recognisable form. Sign bit = Complement
negative 410000110 the 7 value

When the 7 value bits are complemented and 1 ischtiddthe 1+ bits & add 1

least significant bit however, like magic, the amswof 10000111 to confirm.

10000112 appears, which confirms that the original answ Answer was correct, 11111001 is

was in fact =7 in 8 bit twos complement form. -7 in 8 bit twos complement.

Fig. 1.5.6 Subtraction Producing

It seems then, that twos complement will get tijatranswer a Negative Result

in every situation?

Well guess what — it doesn’'t! There are some cagese even twos complement will give a wrong
answer. In fact there are four conditions where@ng answer may crop up:

1. When adding large positive numbers.
2. When adding large negative numbers.
3. When subtracting a large negative number frdange positive number.

4. When subtracting a large positive number froarge negative number.

DIGITAL ELECTRONICS MODULE 01.PDF 20 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

The problem seems to be with the word ‘large’. Wisatlarge
depends on the size of the digital word the miasopssor uses fo

Table 1.5.3

. 8-bit Twos
calculation. As shown in Table 1.5.3, if the micmgessor uses aliubalies e
8-bit word, the largest positive number that campeap in the| +127 01111111
problem OR THE RESULT is +12¢ and the largest negative +126 01111110
number will be -128. The range of positive values appears to be 1125 01111101
less than the negative range because 0 is a mostimber in twos
complement and has only one occurrence (00039@Q@he whole +
range of 25, values.

+2 00000010
With a 16-bit word length the largest positive aregdjative numbers | +1 00000001
will be +32767%, and -3276&, but there is still a limit to the larges 0 00000000
number that can appear in a single calculation. -1 11111111

-2 11111110
Overflow Problems. -
Steps can be taken to accommodate large numbetstebking a| 106 10000010
long binary word down into byte sized sections aadying out | -127 10000001
several separate calculations before assemblingfitlaé answer. | -128 10000000
However this doesn’t solve all the cases where®an occur.
A typical overflow problem that can happen everhwit Decimal Twos
single byte numbers is illustrated in Fig. 1.5.7. Complement

115 01110011

In this example, the two numbers to be added ,¢GlaBd _91+ 01011011 +
91,0) should give a sum of 2@6and converting 11001110 11100110 Carry

to decimal looks like the correct answer (26 but 208 11001110 Answer = -78

remember that in the 8 bit twos complement systeen

most significant bit is the sign of the number réfere the Sign bit
answer appears to be a negative value and readshghie Fig. 1.5.7 Carry Overflows
lower 7 bits gives 10011310or -78, Although twos into Sign Bit

complement negative answers are not easy to rhedjst
clearly wrong, as the result of adding two positienbers must give a positive answer.

According to the information in Fig 1.5.6, as tmswaer is negative, complementing the lower 7 bits
of 11001119 and adding 1 should reveal the value of the cbramswer, but carrying out the
complement+1 on these bits and leaving the msbangdd gives 10110040hich is =5Q,. This

is nothing like the correct answer of 2060 what has happened?

The 8 bit twos complement notation has not workeck tbecause adding 115 + 91 gives a total
greater than +127, the largest value that can laein@&-bit twos complement notation.

What has happened is that an overflow has occdreglfo a 1 being carried from bit 6 to bit 7 (the
most significant bit, which is of course the sigit),bthis changes the sign of the answer.
Additionally it changes the value of the answerlBg, because that would be the value of the msb
in pure binary. So the original answer of;y8as ‘lost’ 128, to the sign bitThe addition would
have been correct if the sign bit had been pathefvalue, however the calculation was done in
twos complement notation and the sign bit is not pithe value.

Of course in real electronic calculations, a sirmite overflow situation does not usually cause a
problem; computers and calculators can fortunate8t with larger numbers than 127They
achieve this because the microprocessors usedagemmmed to carry out the calculation in a
number of steps, and although each step musbstihrried out in a register having a set word

DIGITAL ELECTRONICS MODULE 01.PDF 21 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

length, e.g. 8 bits, 16 bits etc. corrective actian also be taken if an overflow situation is detée
at any stage.

Microprocessors deal with this problem by usingpacsal register called a status register, flag
register or conditions code register, which autacady flags up any problem such as an overflow
or a change of sign that occurs. It also provideeroinformation useful to the programmer, so that
whatever problem occurs; corrective action canaken by software, or in many cases by firmware
permanently embedded within the microprocessoetd with a range of math problems.

Whatever word length the microprocessor is desigoeldandle however, there must always be a
limit to the word length, and so the programmer trhes aware of the danger of errors similar to
that described in Fig. 1.5.7.

A typical flag register is illustrated in Fig. 185and
consists of a single 8-bit storage register loca NIVIXIB|D|I || &
within the microprocessor, in whichsome bits M~ & | 5 | 4 | 3 1 21 1 | 0
be set by software to control the actions of tF~_)))
microprocessor, and some bits are set automatice Fi9- 1-5-8 Typical 8-bit Flag Register
by the results of arithmetic operations within thieroprocessor.

Typical flags for an 8-bit microprocessor are listed below:
Bit 0 (C) (set by arithmetic result) = 1 Carry heeen created from result msb.

Bit 1 (Z2) (set by arithmetic result) = 1 Calculaticesulted in 0.

Bit 2 (1) (set by software) 1 = Interrupt disabRr¢vents software interrupts).

Bit 3 (D) (set by software) 1 = Decimal mode (Cé#dtions are in BCD).

Bit 4 (B) (set by software) 1 = Break (Stops softevaxecution).

Bit 5 (X) Not used on this particular microprocasso

Bit 6 (V) (set by arithmetic result) = 1 Overflovatoccurred (result too big for 8 bits).

Bit 7 (N) (set by arithmetic result) = 1 Negatiesult (msb of result is 1).

It seems therefore, that the only math that miaogssors can do is to add together two numbers of
a limited value, and to complement binary numb¥fsll at a basic level this is true, however there
are some additional tricks they can perform, suglstafting all the bits in a binary word left or
right, as a partial aid to multiplication or divasi. However anything more complex must be done
by software.

Subtraction and Division

Subtraction can be achieved by adding positive @eghative numbers as described above, and
multiplication in its simplest form can be achieu®dadding a number to itself a number of times,
for example, starting with a total of O, if 5 isd&dl to the total three times the new total will be
fifteen (or 5 x 3). Division can also be accompdidhby repeatedly subtracting (using add) the
divisor from the number to be divided until the sender is zero, or less than the divisor. Counting
the number of subtractions then gives the resolt, exkample if 3 (the divisor) is repeatedly
subtracted from 15, after 5 subtractions the redwairwill be zero and the count will be 5,
indicating that 15 divided by 3 is exactly 5.

There are more efficient methods for carrying auiteaction and division using software, or extra
features within some microprocessors and/or theofisembedded maths firmware.

DIGITAL ELECTRONICS MODULE 01.PDF 22 O E. COATES 2007-2014

www.learnabout-electronics.org

Number Systems

What you’ll learn in Module 1.6

Understand binary coded decimal.

* 4 bit BCD codes.

« Converting between binary and BCD.

» Converting between BCD and decimal.

» Compare BCD codes with different weighting.
Understand Gray Code.

» Composition of Gray Code.

 Gray Coded Disks.

After studying this section, you should be able to:

Representing Decimal Numbers

When calculations are carried out electronically
they will usually be in binary or twos
complement notation, but the result will very
probably need to be displayed in decimal form.
A binary number with its bits representing
values of 1, 2, 4, 8, 16 etc. presents problems.
It would be better if a particular number of
binary bits could represent the numbers 0 to 9,
but this doesn’t happen in pure binary, a 3 bit
binary number represents the values 0 to 7 and
4 bit represents 0 to 15. What is needed is a
system where a group of binary digits can
represent the decimal numbers 0-9, or ten times
those values, 10-90 etc.

To make this possible, binary codes are used thse hen values, but where each value is
represented by the 1s and Os of a binary code.eTé@acial ‘half way' codes are called BINARY

CODED DECIMAL or BCD. There are several differenCB codes, but they have a basic
similarity. Each of the ten decimal digits O toSQQrepresented by a group of 4 binary bits, but in
codes the binary equivalents of the 10 decimal raemmlmlo not necessarily need to be in a
consecutive order. Any group of 4 bits can repreaey decimal value, so long as the relationship

for that particular code is known.

In fact any ten of the 16 available four bit condtions could be used to represent 10 decimal
numbers, and this is where different BCD codes.vBngre can be advantages in some specialist
applications in using some particular variatioB@fD. For example it may be useful to have a
BCD code that can be used for calculations, whielams having positive and negative values,
similar to the twos complement system, but BCD saale most often used for the display of
decimal digits. The most commonly encountered wversi BCD binary code is the BGE; code.
In this version the numbers 0 to 9 are represdmydteir pure binary equivalents, 4 bits per
decimal number, in consecutive order.

BCD Codes
BCDsg421 cOde is so called because each of the four bgivéen a Table 1.6.1
‘weighting’ according to its column value in thenhry system. BCDsn

The least significant bit (Isb) has the weight alue 1, the next
bit, going left, the value 2. The next bit has ¥hdue 4, and the
most significant bit (msb) the value 8, as showmable 1.6.1.

Decimal

o

So the 8424.p code for the decimal numbeyyés 011Q451.
Check this in Table 1.6.1.

olofr |k |~ |- |o|o|o|o [ES
oo [~ |lo|lo|r |~ |o|o N
R o o] |o|r |o|- |o B

© |00 N | [0~ W (N (-

DIGITAL ELECTRONICS MODULE 01.PDF 23 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

For numbers greater than 9 the system is extengladibg a second block of 4 bits to represent
tens and a third block to represent hundreds etc.

2410 in 8 bit binary would be 00011000 but in B&R is 0010 0100.
9925 in 16 bit binary would be 0000001111100900t in BCDy421is 1001 1001 0010.

Therefore BCD acts as a half way stage betweembaral true decimal representation, often
preparing the result of a pure binary calculatimndisplay on a decimal numerical display.
Although BCD can be used in calculation, the valresnot the same as pure binary and must be
treated differently if correct results are to béaiired. The facility to make calculations in BCD is
included in some microprocessors.

One of the main drawbacks of BCD is that, becaixdeen values are available from four bits, but
only ten are used, there are several redundanesvaihichever BCD system is used. This is
wasteful in terms of circuitry, as the fourth ih€ 8s column) is under used.

Convert:

32130 to BCDsa21

2331010 BCDsa21

47860 to BCDs421

65231 to BCDs421

Check your answers by converting B&ER back to decimal.
10010001 BClIgy; to decimal.

10000011 BClguz; to decimal.

001101110110 BCH,; to decimal.

001100101100011 BGd; to decimal.

Check your answers by converting decimal back tDBg;.

For your working out use the squared paper downl@rachember to line up all the rows and
columns neatly so they can be easily read).

DIGITAL ELECTRONICS MODULE 01.PDF 24 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

Display Decoder/Drivers

Depending on the type of display some further coaleversion may also
be needed. One popular type of decimal displajpes? segment display
used in LED and LCD numerical displays, where apgimal digit is
made up of 7 segments arranged as a figure 8,amitkxtra LED or LCD
dot that can be used as a decimal point, as shawkig 1.6.1. These
displays therefore require 7 inputs, one to eackthefLEDs a to g (the
decimal point is usually driven separately). Therefthe 4 bit output in
BCD must be converted to supply the correct 7 bitgon of outputs to
drive the display.

Fig. 1.6.1 Seven

Segment Display

The four BCD bits are usually converted (decodedprovide the
correct logic for driving the 7 inputs of the diaplby integrated {(29— 4
circuits such as thelEF4511BBCD to 7 segment decoder/drive 2(2")— 4511 b
from NXP_Semiconductorsand the 7466 BCD to 7 segmel BCD to ¢
decoder. 4(2*)—17 Segment d
Questi 8(28)— Decoder €

uestion f
BCD to 7 segment decoders implement a logic traibhetsuch as A-bit 9
the one illustrated in Table 1.6.2. There are ckffié types of Bir_'.al 7 Segment
display implemented by different types of decodetice in table vy Outputs
1.6.2 that some of the output digits* may be either O (depending Fig. 1.6.2 Driving a
on the IC used). Why would this be, and what effemtld it have 7 Segment Display

on the display?

Table 1.6.2

BCD Input 7 Segment Output Display

2 22 2 b ¢ d e

g
0 0 0 0 1 1|1 1 1 1 0 0
0 0 0 1 0 1|1 0 0 0 0 1
0 0 1 0 1 11|10 1 1 0 1 2
0 0 1 1 1 111 1 0 0 1 3
0 1 0 0 0 1|1 0 0 1 1 4
0 1 0 1 1 0|1 1 0 1 1 5
0 1 1 0 0* 0|1 1 1 1 1 6
0 1 1 1 1 1|1 0 0| O 0 7
1 0 0 0 1 111 1 1 1 1 8
1 0 0 1 1 1|1 0 | 0 1 1 9
1 0 1 0 0 0|0 0 0 0 0 Blank
1 0 1 1 0 0|0 0 0 0 0 Blank
1 1 0 0 0 0[O 0 0 0 0 Blank
1 1 0 1 0 0O 0 0 0 0 Blank
1 1 1 0 0 0|0 0 0 0 0 Blank
1 1 1 1 0 0|0 0 0 0 0 Blank

Notice that the 4 bit input to the decoder illustthin Table 1.6.2 can, in this case, be in either
BCDg421 Or in 4 bit binary as any binary number over 9 vabult in a blank display.

DIGITAL ELECTRONICS MODULE 01.PDF 25 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

Alternative BCD Codes

Although BCDy421 is the most commonly used version of BCD, a nunolb@ther codes exist using
other values of weighting. Some of the more comramations are shown below. The weighting
values in these codes are not randomly choseredualit has particular merits for specific
applications. Some codes are more useful for disgladecimal results with fractions, as with
financial data. With others it is easier to asggsitive and negative values to numbers. For
example with Excess 3 codap8& added to the original BCD value and this makescode
‘reflexive’, that is the top half of the code israrror image and the complement of the bottom half.
Other codes are designed to improve error deteatispecific systems. Some of these less
common BCD codes are shown in Table 1.6.3.

Table 1.6.3
Decimal 7421 | 5421 5211 2421 Excess 3
0 0000 | 0000 | 0000 | 0000 0011
1 0001 | 0001 | 0001 | OOO1 0001
2 0010 | 0010 | 0OO10 | 0010 0101
3 0011 | 0011 | 0101 | 0011 0110
4 0100 | 0100 | 0111 | 0100 0111
5 0101 | 1000 | 1000 | O101 1000
6 0110 | 0110 | 1001 | O110 1001
7 1000 | 0111 | 1011 | 0111 1010
8 1001 | 1011 | 1101 | 1110 1100
9 1010 | 1100 | 1111 | 1111 1100

Gray Code

Binary codes are not only used for
data output. Another special binary

code that is extensively used fol
reading positional information on
mechanical devices such a¢ ggig
rotating shafts is Gray Code. This /
is a 4 bit code that uses all 1¢€ 0110}
values, and as the values chanc -‘
through 0-1% the code’s binary gy
values change only 1 bit at a time
(see Table 1.6.4). The binary 0101 ™
values are encoded onto a rotatin
disk (Fig. 1.6.3) and as it rotate<
the light and dark areas are read Fig. 1.6.3 Four Bit Gray Code Disk
optical sensors.

Table 1.6.4

Decimal Gray Code

0 0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010

O lo |N|o|lo|s|w]|N |-

ey
o

=
[N

ey
N

As only one sensor sees a change at any one tiseagetluces errors that may
be created as the sensors pass from light to @datk () or back again. The 1011
problem with this kind of sensing is that if two miore sensors are allowed to 1001
change simultaneously, it cannot be guaranteedtiigatiata from the sensofs 5 1000
would change at exactly the same time. If this leapp there would be a brief

time when a wrong binary code may be generatedjestigng that the disk is in a different position

to its actual position. The one bit at a time featof Gray Code effectively eliminates such errors.
Notice also that the sequence of binary values ed$éates continually, with the code for 15

changing back to 0 with only 1 bit changing. With &it coded disk as illustrated in Fig. 1.6.3, the
position is read every 22.5° but with more bitgager accuracy can be achieved.

=
w

=
i

DIGITAL ELECTRONICS MODULE 01.PDF 26 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

Try our quiz, based on the information you can fm@digital Electronics Module 1 — Number
Systems. Check your answerskhdtp://www.learnabout-electronics.org/Digital/digphpand see
how many you get right. If you get any answers wgralust follow the hints to find the right answer
and learn about the number systems used in dejéatronics as you go.

1.
The number .126 x f@vritten in normalised form represents the number:

a) 1260Q,
b) 12.60

c) 10.260
d) 1111119

2.
What is the highest decimal number that can be inedah 8-bit binary register?

a) 127

b) 256

C) 65536

d) 255

3.

What is the decimal equivalent of the numbegg2A

a) 58

b) 39

c) 310

d) 49

4. _ _ _ 0#0= 0 0+0= 0

Refer to Flg. 1.7.1.Which of the tables correctygctibes the rules o+1= 1 0+1= 1

of binary addition? 1+0= 1 1+0= 1
1+1=(1)1 1+1=(1)0

a) a) b)

b) 0+0= 0 0+0= 1
0+1= 1 0+1= 1

C) 1+0= 1 1+0= 1
1+1= 1 1+1=(1)0

d) ¢) d)

5 Fig. 1.7.1

V\./hat is the 8 bit binary result of &6~ 310?
a) 00011001
b) 00010101
c) 00110001
d) 00001101

DIGITAL ELECTRONICS MODULE 01.PDF 27 O E. COATES 2007-2014

www.learnabout-electronics.org Number Systems

6.
What would be the result of adding, and —4, using 8 bit signed binary notation?

a) 10000011

b) 00001011

c) 10001011

d) 00000011

7.

What is the widest range of decimal numbers thateawritten in 8 bit signed binary notation?
a) —127 to +127

b) -0 to +256

c) —128 to +128

d) -256to -1

8.

End around carry is used to correct the resultditeons in which of the following number
systems?

a) 8 bit Signed Binary.

b) 8 bit Ones Complement.

c) 8 bit Twos Complement.

d) Excess 3cp

9.

Which of the following 4 bit Excess 3 numbers isiieglent to 5¢?
a) 110%caxs3

b) 001Qcaxs3

C) 100Qcxs3

d) 101Qcaxs3

10.
Which of the following Twos Complement binary nunmbes equivalent to —45?

a) 11001011
b) 01001100
c) 11001100
d) 10110101

DIGITAL ELECTRONICS MODULE 01.PDF 28 O E. COATES 2007-2014

