Mathematics Applications Units 1 and 2 Formula Sheet

Measurement

Pythagoras' theorem
$a^{2}+b^{2}=c^{2}$
Circumference of circle, radius r
$C=2 \pi r$
Arc length of circle, central angle θ
$l=\frac{\theta}{360} 2 \pi r$
Area of circle
$A=\pi r^{2}$
Area of sector

$$
A=\frac{\theta}{360} \pi r^{2}
$$

Area of triangle, base b and height h

$$
A=\frac{1}{2} b h
$$

Area of parallelogram
$A=b h$
Area of trapezium, parallel sides a and b
$A=\frac{1}{2}(a+b) h$
Volume of prism, base area A
$V=A h$
Volume of pyramid
$V=\frac{1}{3} A h$
Surface area of cylinder

$$
S=2 \pi r h+2 \pi r^{2}
$$

Volume of cylinder
$V=\pi r^{2} h$
Surface area of cone, slant height s

$$
S=\pi r^{2}+\pi r s
$$

Volume of cone
$V=\frac{1}{3} \pi r^{2} h$
Surface area of sphere
$S=4 \pi r^{2}$
Volume of sphere
$V=\frac{4}{3} \pi r^{3}$

Trigonometry

Sine rule
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area
$A=\frac{1}{2} a b \sin C$
$A=\sqrt{s(s-a)(s-b)(s-c)}$ where $s=\frac{a+b+c}{2}$

Consumer arithmetic

P is the principal, A is the final balance, I is the interest, r is the annual rate of interest as a decimal, n is the number of compounding periods and t is the time in years.

Simple interest
$I=P r t$
Compound interest
$A=P\left(1+\frac{r}{n}\right)^{n t}$
Price-to-earnings ratio
$P E=\frac{\text { Market value per share }}{\text { Earnings per share }}$

Univariate data analysis

Standard score, for normally distributed data set with mean \bar{x} and standard deviation s_{x} $z=\frac{x-\bar{x}}{s_{x}}$
In a normal distribution, approximately 68% of values lie within one, 95% of values lie within two and 99.7% of values lie within three, standard deviations of the mean.

In a data set with lower quartile Q_{1}, upper quartile Q_{3} and interquartile range $I Q R$, possible outliers lie below $Q_{1}-1.5 I Q R$ or above $Q_{3}+1.5 I Q R$.

Linear equations

Gradient
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Equation
$y=m x+c$

