MATHEMATICS

UNITS 3C AND 3D

FORMULA SHEET 2015

Number and algebra

Index laws:	For $a, b > 0$ and m, n real,			
	$a^m b^m = (a b)^m$	$a^m a^n = a^{m+n}$		$(a^m)^n = a^{mn}$
	$a^{-m} = \frac{1}{a^m}$	$\frac{a^m}{a^n}=a^{m-n}$		$a^0 = 1$
	For $a > 0$ and m an integer a	nd <i>n</i> a positiv	e integer, $a^{\frac{m}{n}} = \sqrt[n]{a}$	$\overline{a^m} = \left(\sqrt[n]{a}\right)^m$
Differentiation:	If $f(x) = y$ then $f'(x) = \frac{dy}{dx}$			
	If $f(x) = x^n$ then $f'(x) = nx^{n-1}$			
	If $f(x) = e^x$ then $f'(x) = e^x$			
Product rule:	If y = f(x) g(x)		If $y = uv$	
	then $y' = f'(x) g(x) + f(x) g'(x)$	or)	then $\frac{dy}{dx} = \frac{du}{dx}v$	$+ u \frac{dv}{dx}$
Quotient rule:	If $y = \frac{f(x)}{g(x)}$ then $y' = \frac{f'(x) g(x) - f(x) g'(x)}{(g(x))^2}$	x) Or	If $y = \frac{u}{v}$ then $\frac{dy}{dx} = \frac{\frac{du}{dx}}{\frac{dx}{dx}}$	$\frac{dv}{v^2} = \frac{dv}{dx}$
Chain rule:	If $y = f(g(x))$ then $y' = f'(g(x)) g'(x)$	or	If $y = f(u)$ and u then $\frac{dy}{dx} = -\frac{dy}{du}$	=g(x) $\times \frac{du}{dx}$
Integration:			un un	0
Powers:	$\int x^{n} dx = \frac{x^{n+1}}{n+1} + c, \ n \neq -1$			
Exponentials:	$\int e^{x} dx = e^{x} + c$			
Fundamental Theorem of Calculus:				
	$\frac{d}{dx}\left(\int_a^x f(t)dt\right) = f(x)$	and .	$\int_a^b f'(x) dx = f(b)$	-f(a)
Incremental formula:	$\delta y \simeq \frac{dy}{dx} \delta x$			

Exponential growth and decay:

If
$$\frac{dy}{dt} = ky$$
, then $y = Ae^{kt}$

See next page

Space and measurement

Circle:	$C = 2\pi r = \pi D$, where <i>C</i> is the circumference, <i>r</i> is the radius and <i>D</i> is the diameter $A = \pi r^2$, where <i>A</i> is the area
Triangle:	$A = \frac{1}{2}bh$, where <i>b</i> is the base and <i>h</i> is the perpendicular height
Parallelogram:	A = bh
Trapezium:	$A = \frac{1}{2}(a+b)h$, where <i>a</i> and <i>b</i> are the lengths of the parallel sides
Prism:	V = Ah, where V is the volume and A is the area of the base
Pyramid:	$V = \frac{1}{3} Ah$
Cylinder:	$S = 2\pi rh + 2\pi r^2$, where <i>S</i> is the total surface area $V = \pi r^2 h$
Cone:	$S = \pi r s + \pi r^2$, where <i>s</i> is the slant height $V = \frac{1}{3}\pi r^2 h$
Sphere:	$S = 4\pi r^2$ $V = \frac{4}{3}\pi r^3$

Volume of solids of revolution:

 $V = \int \pi y^2 dx \text{ rotated about the } x\text{-axis}$ $V = \int \pi x^2 dy \text{ rotated about the } y\text{-axis}$

Chance and data

Probability:	For any event A and its complement \overline{A} , and event B
	$P(A) + P(\bar{A}) = 1$
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	$P(A \cap B) = P(A) P(B A) = P(B) P(A B)$

In a binomial distribution:

Mean: $\mu = np$ and standard deviation: $\sigma = \sqrt{np(1-p)}$

A confidence interval for the mean of a population is:

$$\overline{x} - z \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z \frac{\sigma}{\sqrt{n}}$$

where μ is the population mean,

 σ is the population standard deviation,

 \overline{x} is the sample mean,

n is the sample size and

 \boldsymbol{z} is the cut-off value on the standard normal distribution corresponding to the confidence level.