MATHEMATICS

UNITS 3C AND 3D

FORMULA SHEET
 2015

Number and algebra

Index laws:
For $a, b>0$ and m, n real,
$a^{m} b^{m}=(a b)^{m}$
$a^{m} a^{n}=a^{m+n}$
$\left(a^{m}\right)^{n}=a^{m n}$
$a^{-m}=\frac{1}{a^{m}}$
$\frac{a^{m}}{a^{n}}=a^{m-n}$
$a^{0}=1$

For $a>0$ and m an integer and n a positive integer, $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$

Differentiation: If $f(x)=y$ then $f^{\prime}(x)=\frac{d y}{d x}$
If $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{n-1}$

If $f(x)=e^{x}$ then $f^{\prime}(x)=e^{x}$

Product rule:
If $y=f(x) g(x)$

$$
\text { If } y=u v
$$

then $y^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
or then $\frac{d y}{d x}=\frac{d u}{d x} v+u \frac{d v}{d x}$

Quotient rule: \quad If $y=\frac{f(x)}{g(x)}$
If $y=\frac{u}{v}$
then $y^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$
or \quad then $\frac{d y}{d x}=\frac{\frac{d u}{d x} v-u \frac{d v}{d x}}{v^{2}}$

Chain rule:

$$
\begin{aligned}
& \text { If } y=f(g(x)) \\
& \text { then } y^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)
\end{aligned}
$$

or
If $y=f(u)$ and $u=g(x)$
then $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$
Integration:
Powers:
$\int x^{n} d x=\frac{x^{n+1}}{n+1}+c, n \neq-1$

Exponentials:
$\int e^{x} d x=e^{x}+c$

Fundamental Theorem of Calculus:

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x) \quad \text { and } \quad \int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)
$$

Incremental formula: $\quad \delta y \simeq \frac{d y}{d x} \delta x$

Exponential growth and decay:
If $\frac{d y}{d t}=k y$, then $y=A e^{k t}$

Space and measurement

Circle:
$C=2 \pi r=\pi D$, where C is the circumference, r is the radius and D is the diameter $A=\pi r^{2}$, where A is the area

Triangle:
$A=\frac{1}{2} b h$, where b is the base and h is the perpendicular height

Parallelogram: $\quad A=b h$

Trapezium: $\quad A=\frac{1}{2}(a+b) h$, where a and b are the lengths of the parallel sides

Prism: $\quad V=A h$, where V is the volume and A is the area of the base

Pyramid:

$$
V=\frac{1}{3} A h
$$

Cylinder: $\quad S=2 \pi r h+2 \pi r^{2}$, where S is the total surface area

$$
V=\pi r^{2} h
$$

Cone:
$S=\pi r s+\pi r^{2}$, where s is the slant height

$$
V=\frac{1}{3} \pi r^{2} h
$$

Sphere:
$S=4 \pi r^{2}$
$V=\frac{4}{3} \pi r^{3}$

Volume of solids of revolution:

$$
\begin{aligned}
& V=\int \pi y^{2} d x \text { rotated about the } x \text {-axis } \\
& V=\int \pi x^{2} d y \text { rotated about the } y \text {-axis }
\end{aligned}
$$

Probability: \quad For any event A and its complement \bar{A}, and event B $P(A)+P(\bar{A})=1$
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$P(A \cap B)=P(A) P(B \mid A)=P(B) P(A \mid B)$

In a binomial distribution:
Mean: $\mu=n p$ and standard deviation: $\sigma=\sqrt{n p(1-p)}$

A confidence interval for the mean of a population is:

$$
\bar{x}-z \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x}+z \frac{\sigma}{\sqrt{n}}
$$

where μ is the population mean, σ is the population standard deviation,
\bar{x} is the sample mean,
n is the sample size and
z is the cut-off value on the standard normal distribution corresponding to the confidence level.

