MATHEMATICS

UNITS 3A AND 3B

FORMULA SHEET
 2015

Index laws:
For $a, b>0$ and m, n real,
$a^{m} b^{m}=(a b)^{m}$
$a^{m} a^{n}=a^{m+n}$
$\left(a^{m}\right)^{n}=a^{m n}$
$\frac{1}{a^{m}}=a^{-m}$
$\frac{a^{m}}{a^{n}}=a^{m-n}$
$a^{0}=1$

For $a>0$ and m an integer and n a positive integer,
$a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$

Simple interest: $\quad I=\operatorname{Prt}$, where P is the principal, r is the rate per year and t is the time in years

Compound interest: $\quad A=P(1+r)^{t}$ compounded annually
$A=P\left(1+\frac{r}{n}\right)^{n t}$ compounded n times a year

Differentiation: If $f(x)=y$ then $f^{\prime}(x)=\frac{d y}{d x}$

Powers:
If $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{n-1}$
or
If $y=x^{n}$ then $\frac{d y}{d x}=n x^{\mathrm{n}-1}$

Product rule:
If $y=f(x) g(x)$
or If $y=u v$
then $y^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$

$$
\text { then } \frac{d y}{d x}=\frac{d u}{d x} v+u \frac{d v}{d x}
$$

Space and measurement

In any triangle $A B C$:
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
Area $=\frac{1}{2} a b \sin C$

Circle: $\quad C=2 \pi r=\pi D$, where C is the circumference, r is the radius and D is the diameter

$$
A=\pi r^{2}
$$

Triangle: $\quad A=\frac{1}{2} b h$, where b is the base and h is the perpendicular height

Parallelogram: $\quad A=b h$

Trapezium: $\quad A=\frac{1}{2}(a+b) h$, where a and b are the lengths of the parallel sides

Prism: $\quad V=A h$, where V is the volume and A is the area of the base

Pyramid: $\quad V=\frac{1}{3} \mathrm{Ah}$

Cylinder: $\quad S=2 \pi r h+2 \pi r^{2}$, where S is the total surface area
$V=\pi r^{2} h$

Cone:
$S=\pi r s+\pi r^{2}$, where s is the slant height
$V=\frac{1}{3} \pi r^{2} h$

Sphere:

$$
\begin{aligned}
& S=4 \pi r^{2} \\
& V=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

Chance and data

Probability: \quad For any event A and its complement \bar{A} $P(A)+P(\bar{A})=1$
In a normal distribution approximately:
68% of values lie within one standard deviation of the mean 95\% of values lie within two standard deviations of the mean 99.7% of values lie within three standard deviations of the mean.

Note: Any additional formulas identified by the examination panel as necessary will be included in the body of the particular question.

