CHEMISTRY

Demonstrate understanding of thermochemical principles and the properties of particles and substances

Explaining why atomic radii decrease (get smaller) going across a period

Across a period, the effective nuclear charge increases.

Example: Cl < Na

Example: K > Na

Explaining why molecules and ions have a particular shape

There are	2 3 4 5 electron pairs* • regions of -ve charge	around the central atom which repel to take	 linear trigonal planar tetrahedral trigonal bipyramidal 	rangement	 to minimise repulsion to get as far apart as possible
* double/t	6 triple bond = one region of negati	ive charge	octahedral		
There are	bonding electron pairs a	and lone pairs which results in a	 linear v-shaped trigonal planar trigonal pyramidal tetrahedral trigonal bipyramidal see-saw / distorted tetrahedron t- octahedral square pyramidal square planar 	shape	moleculeion

Explaining why a covalent molecule is polar or non-polar

The	bond(s) is/are	polarnonpolar	because of EN difference**	& molecule is	symmetricala symmetrical	so	•	the dipoles cancel out / don't cancel out centre of +ve and -ve charge coincide / don't coincide	& so the molecule is	polarnon-polar
-----	----------------	---	----------------------------	---------------	---	----	---	--	----------------------------	---

**(state __ is more electronegative than __ OR draw the δ + and δ - above a bond OR use +> to indicate)

E.g. Ca and Mn