QUANTITATIVE ANALYSIS HELP SHEET

Titrations calculations made simple

1: 1 mole ratio: e.g. $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$ Aim: To find the concentration of the NaOH .

	HCl	NaOH
ratio	1	1
n		
c	$0.145 \mathrm{~mol} \mathrm{~L}^{-1}$	
V	0.01740 L	0.0200 L

	HCl	NaOH
ratio	1	1
n	$\boldsymbol{1} 0.002523 \mathrm{~mol}$	$\boldsymbol{\Omega} 0.002523 \mathrm{~mol}$
C	$0.145 \mathrm{~mol} \mathrm{~L}^{-1}$	$\boldsymbol{3} 0.126 \mathrm{~mol} \mathrm{~L}^{-1}$
V	0.01740 L	0.0200 L

It's as easy as n....n....c..... ©
(1) $\mathrm{n}(\mathrm{HCl}) \mathrm{n}=\mathrm{cV} \mathrm{n}(\mathrm{HCl})=0.145 \times 0.01740=0.002523 \mathrm{~mol}$ (keep all the figures in your calculator!) You can write this as $2.523 \times 10^{-3} \mathrm{~mol}$, if you prefer.
(2) $\mathrm{n}(\mathrm{NaOH}) \mathrm{HCl}$ and NaOH react in a 1:1 ratio, so $\mathrm{n}(\mathrm{NaOH})=0.002523 \mathrm{~mol}$ (AND YES, still keep all the figures in your calculator!)
(3) $\mathrm{c}(\mathrm{NaOH}) \mathrm{c}=\mathrm{n} / \mathrm{V}$ so $\mathrm{c}(\mathrm{NaOH})=0.002523 / 0.0200=0.12615 \mathrm{~mol} \mathrm{~L}^{-1}$. You know you are right if n was already (still) in your calculator.

Now write your final answer to 3 s.f. $c(N a O H)=0.126 \mathrm{~mol} \mathrm{~L}^{-1}$.

2:1 mole ratio: e.g. $2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ Aim: To find the concentration of the $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

You MUST convert mL to L by dividing by 1000!
(1) $\mathrm{n}(\mathrm{HCl})=\mathrm{cV} \quad \mathrm{n}(\mathrm{HCl})=0.155 \times 0.01920=0.002976$ mol
(2) $\mathrm{n}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=0.002976 / 2^{*}=0.001488 \mathrm{~mol}$
$3 \mathrm{c}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=0.001488 / 0.0250=0.05952 \mathrm{~mol} \mathrm{~L}^{-1}$. $\mathrm{c}\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=0.0595 \mathrm{~mol} \mathrm{~L}^{-1}(3 \mathrm{~s} . \mathrm{f}$.

We find the " 2 thing" ($\mathbf{1} \mathrm{HCl}$) and want the " 1 thing" (2 $\mathrm{Na}_{2} \mathrm{CO}_{3}$), the smaller "thing", so we DIVIDE by 2. :)

1:2 mole ratio: e.g. $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
This isn't difficult either. Remember n,n,c $)$

	$\mathrm{H}_{2} \mathrm{SO}_{4}$	NaOH
ratio	1	2
n	$0.00625 \mathrm{~mol}^{2}$	$0.0125 \mathrm{~mol}^{-1}$
C	$0.125 \mathrm{~mol} \mathrm{~L}^{-1}$	$0.553 \mathrm{~mol} \mathrm{~L}^{-1}$
V	0.0250 L	0.02260 L

25.0 mL of $0.125 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H}_{2} \mathrm{SO}_{4}$ was neutralised by 22.60 mL of NaOH solution. What was the concentration of the NaOH solution?

Start with the substance you know 2 things about - the c and V - and find its n ; find n of the other using the mol ratio, Then n / V will give you the c that you are after. Don't forget to give final answer to 3 s.f. And make sure numbers have units... mL or L , mol and $\mathrm{mol} \mathrm{L}^{-1}$.

