Definition	Definition	<u>Definition</u>	Definition
Addition of oxygen OR removal of hydrogen	Addition of hydrogen OR removal of oxygen	Loss of electrons OR increase in oxidation number	Gain of electrons OR decrease in oxidation number
oxidation	reduction	o×idation	reduction
I AM LEO	GER!!!!	Oxidation number of an element eg Zn, O ₂ , S ₈ or C is	Sum of the oxidation numbers in a "molecule" eg H ₂ O, CH ₄ , NaCl, is
Leo (loss of electrons - oxidation)	Ger (gain of electrons - reduction	zero	zero
Sum of oxidation numbers in a polyatomic ion, eg SO_4^{2-} , $Cr_2O_7^{2-}$, NH_4^+ , is	Oxidation number of a simple ion, eg S^{2-} , Cr^{3+} , Fe^{3+} , is	The oxidation number of O in compounds is	The oxidation number of H in compounds is
the charge on that ion	the charge on that ion	-2 (unless a peroxide, -1)	+1 (unless metal hydride, -1)
The oxidation number of F in compounds is	RIG(e)	OIL(e)	Balance atoms - that are not H or O Balance O - add water Balance H - add H [†] Balance charge - add e ⁻ to more positive side
-1	reduction is gain (of electrons)	oxidation is loss (of electrons)	balancing half equations

Oxidising agent Acidified orange dichromate H ⁺ /Cr ₂ O ₇ ²⁻ is reduced to	Oxidising agent Acidified purple permanganate H ⁺ / MnO ₄ ⁻ is reduced to	Oxidising agent Colourless hydrogen peroxide, H ₂ O ₂ is reduced to	Oxidising agent Very pale orange iron(III) ion Fe ³⁺ is reduced to
green chromium(III) ion <i>C</i> r ³⁺	"colourless" manganese ion, Mn ²⁺	colourless water, H₂O	very pale green iron(II) ion Fe ²⁺
Oxidising agent Pale greeny-yellow chlorine Cl ₂ is reduced to	Oxidising agent Orange brown iodine I2 is reduced to	Oxidising agent Oxygen gas, O2 is reduced to	Oxidising agent Hydrogen ion, H ⁺ , eg from acids like HCl or H ₂ SO ₄ is reduced to
colourless Cl ⁻ ion (& pungent smell disappears)	colourless I ion	oxide ion O ²⁻	colourless hydrogen gas, H ₂
Reducing agent Metals, eg Mg, Zn or Cu are oxidised to	Reducing agent Black carbon, C, is oxidised to	Reducing agent Colourless carbon monoxide gas, CO, is oxidised to	Reducing agent Colourless hydrogen gas, H2, is oxidised to
metal ions, Mg ²⁺ , Zn ²⁺ or Cu ²⁺	colourless CO2 gas	colourless CO2 gas	colourless H⁺ ion
Reducing agent Very pale green iron(II) ion Fe ²⁺ is oxidised to	Reducing agent Colourless bromide ion, Br ⁻ , is oxidised to	Reducing agent Colourless iodide ion, I ⁻ , is oxidised to	Reducing agent Colourless, pungent smelling sulfur dioxide gas, SO ₂ is oxidised to
very pale orange iron(III) ion Fe ³⁺	reddish brown bromine, Br ₂	orange-brown solution of iodine, I ₂ (or grey solid)	colourless sulfate, SO4 ²⁻

Reducing agent Colourless, hydrogen sulphite, HSO3 ⁻ is oxidised to	Increase in oxidation number is	Decrease in oxidation number is	No change in oxidation number eg $Cr_2O_7^{2-} \rightarrow CrO_4^{2-}$, ($Cr + 6$ in both) means that
colourless sulfate, SO ₄ ²⁻	oxidation	reduction	it is NOT a redox reaction
Redox reaction in which the same element is both oxidised and reduced is called	Oxidising agent is another name for an	Reducing agent is another name for a	Oxidising agents electrons and are in the process
disproportionation	o×idant	reductant	gain reduced
Reducing agents electrons and are in the process	To combine balanced half equations x by factors so that	Oxidation No. / state of N in N ₂ O ₄ is	Oxidises Cu to Cu ²⁺ and is reduced to a brown gas
lose oxidised	the electrons will cancel out	+4	Conc. HNO₃
Other colours to know copper(II) ion Cu ²⁺ is	Nitrogen dioxide gas, NO₂, is	Oxidation No. / state of N in NO3 ⁻ is	Oxidation No. / state of N in NH4 ⁺ is
blue	brown	+5	-3

Halogens as oxidants Reaction with halides Cl ₂ + Br ⁻ or I ⁻	Halogens as oxidants Reaction with halides Br ₂ + I	Halogens as oxidants Br2 is not a strong enough oxidising agent to oxidise	Halogens as oxidants I ₂ is not a strong enough oxidising agent to oxidise
produces Cl ⁻ & Br ₂ or I ₂	produces Br⁻ & I₂	chloride	chloride or bromide
Oxidising agents other species and in the process they become	Reducing agents other species and in the process they become	Colour change Mix H ⁺ / MnO ₄ ⁻ & Fe ²⁺	Colour change Mix H ⁺ / Cr ₂ O ₇ ²⁻ & Fe ²⁺
oxidise reduced	reduce oxidised	purple to colourless (slight pale orange)	orange to green
Formula for the reducing agent sulfite	Formula for the reducing agent hydrogen sulfite	Yellow solid formed when H₂S is oxidised	ClO ⁻ is reduced to
SO ₃ ²⁻	HSO₃⁻	sulfur	chloride, Cl ⁻
Hydrogen peroxide can be oxidised to	Hydrogen peroxide can be reduced to	IO3 is reduced to(colour)(species)	
water & oxygen	water	orange-brown Iodine, I ₂	