QUESTION (2012:2)

Phosphorus pentachloride gas, $PCI_5(g)$, decomposes to form phosphorus trichloride gas, $PCI_3(g)$, and chlorine gas, $CI_2(g)$. The equilibrium can be represented as:

$$PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$$

- (a) Complete the equilibrium constant expression for this reaction. Kc =
- (b) The table below shows the value of the equilibrium constant, *K*c at two different temperatures.

Temperature / °C	Value of Kc
200	8.00×10^{-3}
350	0.612

(i) Circle the species that will be in the highest concentration at 200°C.

 $PCl_5(g)$ $PCl_3(g)$

- (ii) Explain your answer.
- (iii) Calculate the concentration of PCI_5 at equilibrium at 350°C, if the concentrations of PCI_3 and CI_2 are both 0.352 mol L⁻¹.
- (c) For each of the following changes applied to this system:
 - (i) State if the amount of chlorine gas, $Cl_2(g)$, would increase or decrease.
 - (ii) Justify your answers using equilibrium principles.

PCl₃(g) is removed. Amount of Cl₂(g) Reason:

The pressure is decreased. Amount of Cl₂(g) Reason:

When the temperature of the equilibrium system is increased from 200°C to 350°C (at constant pressure), the value of Kc increases, as shown in the table above (in (b)).
Use this information to determine whether the decomposition of PCl₅ is endothermic or exothermic. Justify your reasoning using equilibrium principles.

QUESTION (2009:3)

(a) Nitrogen monoxide gas reacts with oxygen gas to form nitrogen dioxide gas. The equilibrium reaction can be represented by:

 $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$ colourless colourless brown

At 230°C the equilibrium constant for this reaction has a value of 6.44×10^5 .

- (i) Complete the equilibrium constant expression for this reaction. K_{C} =
- (ii) State which gas will be in the highest concentration at 230°C.

(b) The following equilibrium system is formed when hydrogen gas is mixed with iodine gas.

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

colourless purple colourless

The reaction has a negative value for $\Delta_r H$.

For each of the following changes applied to this system:

- (i) describe the expected observation
- (ii) use equilibrium principles to discuss the reason for this observation.

HI(g) is added.

The reaction mixture is cooled

The pressure is increased.

QUESTION (2008:2)

Complete the equilibrium constant expressions for the following equations.

 $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ $2O_3(g) \rightleftharpoons 3O_2(g)$

QUESTION (2008:6)

One step in the production of sulfuric acid involves forming sulfur trioxide from sulfur dioxide.

The equilibrium reaction can be represented by

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \Delta_r H = -196 \text{ kJ mol}^{-1}$

(a) (i) Explain why a low temperature favours the formation of $SO_3(g)$.

(ii) The temperature that is actually used is approximately 450°C. However, this is not considered to be a low temperature. Discuss why this temperature is used.

(b) (i) Describe another way of increasing the amount of SO₃(g) present at equilibrium without adding any more reactants.

(ii) Explain why this will increase the amount of $SO_3(g)$ present at equilibrium.

QUESTION (2008:7)

Carbon dioxide is added to drinks to make them fizzy. The following equilibria are involved:

$CO_2(g) \rightleftharpoons CO_2(aq)$	Equation One
$CO_2(aq) + 2H_2O(I) \rightleftharpoons H_3O^+(aq) + HCO_3^-(aq)$	Equation Two

The drink is fizzy when there is dissolved carbon dioxide, $CO_2(aq)$. The drink stops being fizzy when the carbon dioxide escapes from the drink as a gas.

Using equilibrium principles, discuss the changes that occur as a bottle containing fizzy drink is opened.

Your answer must include reference to:

- equilibrium shift in Equation One and Equation Two
- changes in the fizziness of the drink
- any change in pH.

QUESTION (2007:5)

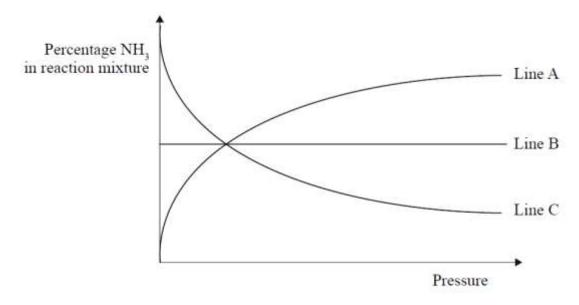
The following equilibrium system is formed when potassium thiocyanate solution is added to a solution of iron(III) nitrate.

 $Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons FeSCN^{2+}(aq)$

orange colourless dark red

The reaction has a positive value for $\Delta_r H$. For each of the following changes applied to this system:

- (i) describe the expected observation
- (ii) use equilibrium principles to discuss the reason for this observation.
- (a) The reaction mixture is cooled.
- (b) Solid sodium fluoride is added to the reaction mixture. The fluoride ions react with Fe³⁺ ions.
- (c) Solid iron(III) chloride is added to the reaction mixture.


QUESTION (2006:5)

An equilibrium system is shown below.

$$3H_2(g) + N_2(g) \rightleftharpoons 2NH_3(g)$$

(a) Complete the equilibrium constant expression for this reaction. K_{C} =

The pressure of the system is increased, while maintaining a constant temperature. The percentage of NH_3 in the reaction mixture is recorded and graphed.

(b) On the above graph, identify the line that shows the correct relationship between the percentage of NH₃ in the reaction mixture, and increasing pressure.

Circle the correct answer below.

Line A Line B Line C

Explain your answer by applying knowledge of equilibrium principles.

QUESTION (2006:6)

An equilibrium system involving different species of cobalt(II) is shown in the equation below.

$$[\text{CoCl}_4]^{2-}(\text{aq}) + 6\text{H}_2\text{O}(\text{I}) \rightleftharpoons [\text{Co}(\text{H}_2\text{O})_6]^{2+}(\text{aq}) + 4\text{Cl}^-(\text{aq})$$

 $[CoCl_4]^{2-}$ (aq) is blue and $[Co(H_2O)_6]^{2+}$ (aq) is pink.

At room temperature (25°C) the equilibrium mixture is pink.

- (a) Describe the expected observation when solid sodium chloride (NaCl) is added to the equilibrium mixture. Explain your answer.
- (b) The enthalpy change ($\Delta_r H$) for this reaction as written above, has a negative value. Circle the ion that would be present in the higher concentration when the equilibrium mixture is heated.

$$[CoCl_4]^{2-}(aq) [Co(H_2O)_6]^{2+}(aq)$$

Explain your answer.

QUESTION (2005:2)

- (a) Complete the equilibrium constant expression for the following reaction.
 - (i) $Ag^{+}(aq) + 2NH_{3}(aq) \Rightarrow Ag(NH_{3})^{2+}(aq)$. K_C=
 - (ii) At 25°C the value of *Kc* is 1.70 x 107. Circle the species that would be present in the higher concentration in the equilibrium mixture at this temperature.

 $Ag^{+}(aq)$ or $Ag(NH_3)^{2+}(aq)$ Justify your choice.

- (b) Complete the equilibrium constant expression for the following reaction.
 - (i) $2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g) K_C =$
 - (ii) At 200°C the value of Kc is $1.10 \times 10-5$. Circle the species that would be present in the higher concentration in the equilibrium mixture at this temperature.

 $NO_2(g)$ or NO(g)

Justify your choice.

QUESTION (2005:4)

The following reaction is exothermic: $2N_2O_5(g) \rightleftharpoons 4NO_2(g) + O_2(g)$ Both N_2O_5 and O_2 are colourless gases and NO_2 is a brown gas. A mixture of these gases exists at equilibrium and is observed as a brown colour.

- (a) Complete the equilibrium constant expression for the reaction. K_{C} =
- (b) For each of the following changes applied to the equilibrium system, describe the expected observation and explain why this occurs.
 - (i) The mixture of gases is heated (at constant pressure).

Expected observation:.

Explanation:

(ii) The pressure is increased, by decreasing the volume of the container. Expected observation:

Explanation:

QUESTION (2004:4)

(a) The following equilibrium system is established when thiocyanate ions (SCN-) are added to iron (III) ions (Fe3+). The resulting aqueous solution is a dark red colour. The equation representing the equilibrium system and the colours of each species involved are given below.

 $Fe^{3+}(aq) + SCN^{-}(aq) \rightleftharpoons FeSCN^{2+}(aq)$

pale orange colourless dark red

- (i) Complete the equilibrium constant expression for the above reaction. K_C =
- (ii) When iron (III) ions (Fe³⁺) are removed from the equilibrium mixture (by adding sodium fluoride), a colour change is observed. Describe the colour change you would expect to see and explain why it occurs.
- (b) Ammonia is produced industrially according to the Haber Process as shown below:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

(i) Complete the equilibrium constant expression for the above reaction. Kc =

- (ii) The pressure of the system at equilibrium is increased (by decreasing the total volume of the system). Describe the effect of this change on the amount of NH₃ in the system. Explain your answer.
- (iii) The percentage of NH₃ present in equilibrium mixtures at different temperatures and at constant pressure is shown in the table below.

Temperature (°C)	Percentage NH₃ present in equilibrium mixture
200	63.6
300	27.4
400	8.7
500	2.9

Justify whether the reaction in which NH_3 is formed, is endothermic or exothermic.