QUESTION (2015:1)

(a) Draw the Lewis structure for each of the following molecules.

Molecule	O_{2}	OCl_{2}	$\mathrm{CH}_{2} \mathrm{O}$
Lewis structure			

(b) Carbon atoms can bond with different atoms to form many different compounds. The following table shows the Lewis structure for two molecules containing carbon as the central atom, CCl_{4} and COCl_{2}. These molecules have different bond angles and shapes.

Molecule	CCl_{4}	COCl_{2}
Lewis structure		

Evaluate the Lewis structure of each molecule to determine why they have different bond angles and shapes. In your answer, you should include:

- the approximate bond angle in each molecule
- the shape of each molecule
- factors that determine the shape and bond angle for each molecule.

QUESTION (2014:1)

(a) Draw the Lewis structure for each of the following molecules.

Molecule	HCN	$\mathrm{CH}_{2} \mathrm{Br}_{2}$	AsH_{3}
Lewis structure			

(b) The Lewis structure for a molecule containing atoms of boron, oxygen, and hydrogen, is shown below.

(i) The following table describes the shapes around two of the atoms in the molecule above. Complete the table with the approximate bond angles x and y .

Central atom	Shape formed by bonds around the central atom	Approximate bond angle
B	Trigonal planar	$x=$
O	bent	$y=$

(ii) The bond angles x and y in the molecule above are different.

Elaborate on why the bond angles are different.
In your answer you should include:

- factors which determine the shape around the:
B atom for bond angle x
O atom for bond angle y
- reference to the arrangement of electrons around the B and O atoms.

QUESTION (2013:1)

(a) Draw the Lewis structure for each of the following molecules.

Molecule	CH_{4}	$\mathrm{H}_{2} \mathrm{O}$	N_{2}
Lewis structure			

(b) Boron and phosphorus both bond with three fluorine atoms to form BF_{3} and PF_{3}. However, the molecules have different shapes and bond angles.

The following table shows the Lewis structures for the molecules BF_{3} and PF_{3}.

Molecule	BF_{3}	PF_{3}
Lewis structure	$\begin{gathered} : \ddot{\mathrm{F}}-\underset{\mathrm{I}}{\mathrm{~B}}-\ddot{\mathrm{F}}: \\ : \underset{\mathrm{F}}{: .} \end{gathered}$	$\begin{gathered} : \ddot{\mathrm{F}}-\ddot{\mathrm{P}}-\ddot{\mathrm{F}}: \\ : \underset{\mathrm{F}}{:-} \end{gathered}$

Explain why these molecules have different shapes and bond angles.
In your answer include:

- the shapes of BF_{3} and PF_{3}
- factors that determine the shape of each molecule
- the approximate bond angle in BF_{3} and PF_{3}
- justification of your chosen bond angles for each molecule.

QUESTION (2012:1)

(a) Draw the Lewis structure (electron dot diagram) for each of the following molecules.

Molecule	PCl_{3}	CO_{2}	$\mathrm{H}_{2} \mathrm{~S}$
Lewis structure			

(b) The following table shows the Lewis structures and bond angles for the molecules SO2 and $\mathrm{H}_{2} \mathrm{CO}$.

Molecule	SO_{2}	$\mathrm{H}_{2} \mathrm{CO}$
Lewis structure	$\stackrel{\bullet}{\mathrm{O}}:: \ddot{\mathrm{S}}: \ddot{\mathrm{O}}:$	$\stackrel{+}{\mathrm{H}}: \mathrm{O}^{\mathrm{H}}$
Approximate bond angle around the central atom	120°	120°

Explain why these molecules have different shapes, but have the same approximate bond angle.

In your answer you should include:

- the shapes of SO_{2} and $\mathrm{H}_{2} \mathrm{CO}$
- factors which determine the shape of each molecule
- an explanation of why the approximate bond angle is the same by referring to the arrangement of electrons for each molecule.

QUESTION (2011:1)

(a) Draw the Lewis structure (electron dot diagram) for each of the following molecules.

Molecule	OCl_{2}	O_{2}	$\mathrm{CH}_{3} \mathrm{Br}$
Lewis structure			

- CHEMISTRY
(b) Lewis structures for two molecules are given below.

Molecule	HCN	COCl_{2}
Lewis structure	$\mathrm{H}: \mathrm{C}:: \mathrm{N}:$	$: \ddot{\mathrm{C}}: \underset{:}{\mathrm{C}}: \underset{\mathrm{O}}{\mathrm{C}}: \ddot{\mathrm{C}}:$

For each molecule, name the shape of the molecule and give a reason for your answer.
(i) HCN

Shape:
Reason:
(ii) COCl_{2} Shape:

Reason:

QUESTION (2010:1)

(a) Draw the Lewis structure (electron dot diagram) for each of the following molecules.

Molecule	Lewis Structure
O_{2}	
SO_{2}	
SiCl_{4}	

(b) Lewis structures for three molecules are given below. Complete the table by giving the name of the shape of each molecule.

Molecule	Lewis Structure	Name of shape
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$		
NCl_{3}	$: \ddot{C l}: \ddot{N}: \ddot{C l}:$: Cl :	
BF_{3}	$\begin{gathered} \therefore \ddot{F}_{\mathrm{B}} \ddot{F}: \\ \ddot{\mathrm{F}}: \end{gathered}$	

(c) The following table shows the Lewis structure and the shape of the molecules for NOCl and $\mathrm{H}_{2} \mathrm{~S}$.

	NOCl	$\mathrm{H}_{2} \mathrm{~S}$
Lewis Structure	$\bullet: \ddot{\mathrm{O}}: \ddot{\mathrm{Cl}}:$	$\mathrm{H}: \ddot{\mathrm{S}}: \mathrm{H}$
	$\bullet \cdot$	bent
Name of shape	bent	

The shape of both molecules can be described as bent. However, these molecules do not have the same bond angle.

Discuss why these molecules have different bond angles.
Your answer must include:

- factors which determine the shape of each molecule
- the approximate bond angle for each molecule.

QUESTION (2009:1)

(a) Complete the table below by:
(i) Drawing the Lewis structure (electron dot diagram) for each molecule.
(ii) Drawing a diagram to show the shape of the molecule.
(iii) Naming the shape of the molecule.

Molecule	Lewis Structure	Diagram of shape	Name of shape
$\mathrm{H}_{2} \mathrm{O}$			
CO_{2}			
$\mathrm{CH}_{2} \mathrm{Br}_{2}$			

(b) The Lewis structures of the molecules NCl_{3} and SO_{3} are given below.

Discuss the shapes and bond angles of these two molecules. For each molecule:

- name the shape
- determine the bond angle
- justify your answers.

QUESTION (2008:1)

(a) Draw a Lewis structure (electron dot diagram) for each of the following molecules :

Molecule	Lewis structure
$\mathrm{Cl}_{2} \mathrm{O}$	
CS_{2}	
HCN	

(b) Lewis structures for TWO molecules are given below. For each molecule :

- name the shape
- justify your answer.

(i)

Shape
Justification
(ii)

Shape
Justification

QUESTION (2008:3)

An element, X, has four valence electrons. Another element, Y, has six valence electrons. These elements both combine with oxygen. The molecules formed are XO_{2} and YO_{2}.
(a) Draw the Lewis structures of these two molecules. $\mathrm{XO}_{2} \& \mathrm{YO}_{2}$
(b) Determine the bond angle in each of these molecules using the Lewis structures from (a). Justify your answer.

QUESTION (2007:1)

(a) Complete the table below by:
(i) drawing the Lewis structure (electron dot diagram) for each molecule
(ii) naming the shape of the molecule.

Molecule	(i) Lewis diagram	(ii) Name of shape

- Lewis Structures \& shapes of molecules 2004-2015

$\mathrm{CH}_{3} \mathrm{Cl}$		
NCl_{3}		
$\mathrm{CH}_{2} \mathrm{O}$		

(b) For each of the molecules in the table, explain why it has the shape you have identified.
(i) $\mathrm{CH}_{3} \mathrm{Cl}$
(ii)
NCl_{3}
(iii) $\mathrm{CH}_{2} \mathrm{O}$

QUESTION (2006:1)

Complete the table below by:
(a) drawing a Lewis structure (electron dot diagram) for each molecule
(b) drawing a diagram to show the shape of the molecule
(c) naming the shape of the molecule.

Formula of molecule	Lewis structure	Diagram of shape	Name of shape
SF_{2}			
CO_{2}			
PBr_{3}			

QUESTION (2006:4)

Molecules of water ($\mathrm{H}_{2} \mathrm{O}$) and ozone $\left(\mathrm{O}_{3}\right)$ each contain 3 atoms and both the molecules are bent.
However, the bond angle in $\mathrm{H}_{2} \mathrm{O}$ is significantly smaller than the bond angle in O_{3}.
Using Lewis structures, discuss the reasons for the difference in bond angles of these two molecules.

QUESTION (2005:1)

The Lewis structure for chlorine, Cl_{2}, is

Complete the table below by:
(a) drawing a Lewis structure for each molecule,
(b) naming the shape of each molecule.

- CHEMISTRY
- Lewis Structures \& shapes of molecules 2004-2015

Molecule	Lewis structure	Name of shape
$\mathrm{H}_{2} \mathrm{~S}$		
PCl_{3}		
$\mathrm{CH}_{3} \mathrm{Br}$		
COCl_{2} Note C is central atom		

QUESTION (2004:1)

The Lewis structure for hydrogen chloride, HCl , is $\mathrm{H}: \ddot{\mathrm{C}} \mathrm{l}$: or $\mathrm{H}-\ddot{\mathrm{C}} \mathrm{l}$: Complete the table below by:
(a) drawing a Lewis structure for each molecule,

Molecule	Lewis structure
CO_{2}	
PH_{3}	
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	
$\mathrm{H}_{2} \mathrm{CO}$	
$\mathrm{F}_{2} \mathrm{O}$	

ANSWERS

QUESTION (2015:1)

(a) Draw the Lewis structure for each of the following molecules.

Molecule	O_{2}	OCl_{2}	$\mathrm{CH}_{2} \mathrm{O}$
Lewis structure	${ }^{\circ} 0=0$	$=\stackrel{\mathrm{Cl}}{\infty}-\mathrm{O}-\dot{\mathrm{Cl}}$	

(b) Carbon atoms can bond with different atoms to form many different compounds. The following table shows the Lewis structure for two molecules containing carbon as the central atom, CCl_{4} and COCl_{2}. These molecules have different bond angles and shapes.

Molecule	CCl_{4}	COCl_{2}
Lewis structure		

Evaluate the Lewis structure of each molecule to determine why they have different bond angles and shapes. In your answer, you should include:

- the approximate bond angle in each molecule
- the shape of each molecule
- factors that determine the shape and bond angle for each molecule.

In each CCl_{4} molecule, there are four negative / electron : densities / clouds / regions around the central C atom. These repel each other / are positioned as far away from each other as possible in a tetrahedral (base) arrangement, resulting in a 109.5° bond angle. All of these regions of electrons / electron densities are bonding, without any non-bonding regions, so the shape of the molecule is tetrahedral.

In each COCl_{2} molecule, there are three negative / electron : densities / clouds / regions around the central C atom. These repel / are positioned as far away from each other as possible in a triangular / trigonal planar (base) shape, resulting in a 120° bond angle. All of these regions of electrons / electron densities are bonding, without any non-bonding regions, so the shape of the molecule is trigonal planar.
(a) Draw the Lewis structure for each of the following molecules.

Molecule	HCN	$\mathrm{CH}_{2} \mathrm{Br}_{2}$	AsH_{3}
Lewis structure	$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$		

(b) The Lewis structure for a molecule containing atoms of boron, oxygen, and hydrogen, is shown below.

(i) The following table describes the shapes around two of the atoms in the molecule above. Complete the table with the approximate bond angles x and y .

Central atom	Shape formed by bonds around the central atom	Approximate bond angle
B	Trigonal planar	$x=120^{\circ}$
O	bent	$y=109.5^{\circ}$

(ii) The bond angles x and y in the molecule above are different.

Elaborate on why the bond angles are different.
In your answer you should include:

- factors which determine the shape around the:
B atom for bond angle x
O atom for bond angle y
- reference to the arrangement of electrons around the B and O atoms.

The B atom has three regions of electron density around $i t$. These are all bonding regions. The regions of electron density are arranged to minimise repulsion / are arranged as far apart as possible from each other. (This is why the bond angle is 120°.)

The O atom has four regions of electron density around it. The regions of electron density are arranged to minimise repulsion / are arranged as far apart as possible from each other in a tetrahedral arrangement / two of these are bonding (and two are non-bonding). This is why the bond angle is 109.5°.

QUESTION (2013:1)

(a) Draw the Lewis structure for each of the following molecules.

Molecule	CH_{4}	$\mathrm{H}_{2} \mathrm{O}$	N_{2}
Lewis structure		$\begin{gathered} \mathrm{H}: \ddot{\mathrm{O}}: \\ \ddot{\mathrm{H}} \end{gathered} \quad \text { or } \quad \mathrm{H}-\ddot{\mathrm{O}}: \underset{\mathrm{H}}{\mathrm{H}}:$	

(b) Boron and phosphorus both bond with three fluorine atoms to form BF_{3} and PF_{3}. However, the molecules have different shapes and bond angles.

The following table shows the Lewis structures for the molecules BF_{3} and PF_{3}.

Molecule	BF_{3}	PF_{3}
Lewis structure	$\begin{gathered} : \ddot{\mathrm{F}}-\underset{\mathrm{I}}{\mathrm{~B}}-\ddot{\mathrm{F}}: \\ : \underset{\mathrm{F}}{: .} \end{gathered}$	$\begin{gathered} : \ddot{\mathrm{F}}-\ddot{\mathrm{P}}-\ddot{\mathrm{F}}: \\ : \ddot{\mathrm{F}}: \\ \ddot{:} \end{gathered}$

Explain why these molecules have different shapes and bond angles.
In your answer include:

- the shapes of BF_{3} and PF_{3}
- factors that determine the shape of each molecule
- the approximate bond angle in BF_{3} and PF_{3}
- justification of your chosen bond angles for each molecule.
BF_{3} : trigonal planar: 120° bond angles
PF_{3} : trigonal pyramidal; $\quad \approx /<109.5^{\circ}\left(107^{\circ}\right)$ bond angle

Shape is determined by the number of regions of electron density / electron clouds and whether they are bonding / non-bonding.
BF_{3} has three regions of electron density / electron clouds around the central B atom. The regions of electrons are arranged as far apart as possible from each other / to minimise repulsion, which results in a trigonal planar arrangement with a bond angle of 120°. All three regions of electrons are bonding, so the overall shape is trigonal planar.
PF_{3} has four regions of electron density / electron clouds around the central P atom. The regions of electrons make a tetrahedral arrangement with a bond angle of 109.5°. Only three regions of electrons are bonding and one is non-bonding, so the overall shape is trigonal pyramidal.

The non-bonding electrons have increased repulsion, therefore decreasing the bond angle to < 109.5°

QUESTION (2012:1)

(a) Draw the Lewis structure (electron dot diagram) for each of the following molecules.

Molecule	PCl_{3}	CO_{2}	$\mathrm{H}_{2} \mathrm{~S}$
Lewis structure	$: \ddot{\mathrm{C}} \mathrm{l}: \ddot{\mathrm{P}}: \ddot{\mathrm{C}} \mid=$:Cl: or	$\begin{gathered} \ddot{O}=C=\ddot{O} \\ \quad \text { or } \\ \ddot{O}:: C:: \ddot{O} \end{gathered}$	$\begin{gathered} H: \ddot{S}: H \\ \text { or } \\ H-\ddot{S}-H \end{gathered}$

(b) The following table shows the Lewis structures and bond angles for the molecules SO2 and $\mathrm{H}_{2} \mathrm{CO}$.

Molecule	SO2	
Lewis structure	COO	
Approximate bond angle around the central atom	120°	120°

Explain why these molecules have different shapes, but have the same approximate bond angle.

In your answer you should include:

- the shapes of SO_{2} and $\mathrm{H}_{2} \mathrm{CO}$
- factors which determine the shape of each molecule
- an explanation of why the approximate bond angle is the same by referring to the arrangement of electrons for each molecule.

The central atom in SO_{2} has three regions of electron density/electron clouds around it. The regions of electrons are arranged as far apart as possible from each other (in order to minimise repulsion) making a trigonal planar shape. This gives a bond angle of 120°. Only two of these regions of electrons are bonding and one is non-bonding so the shape of the molecule is V -shaped (bent).
The central atom of $\mathrm{H}_{2} \mathrm{CO}$, has three regions of electron density around it. The regions of electrons making a trigonal planar shape, giving a bond angle of 120°. All three of these regions of electrons are bonding so the arrangement of the bonds/molecular shape is trigonal planar.

QUESTION (2011:1)

(c) Draw the Lewis structure (electron dot diagram) for each of the following molecules.

Molecule	OCl_{2}	O_{2}	$\mathrm{CH}_{3} \mathrm{Br}$
Lewis structure	$: \ddot{\mathrm{C}} \mid: \ddot{\mathrm{O}}: \ddot{\mathrm{C}}:$	$\stackrel{O}{\mathrm{O}}:=$	

(d) Lewis structures for two molecules are given below.

Molecule	HCN	COCl_{2}
Lewis structure	$\mathrm{H}: \mathrm{C}:: \mathrm{N}:$	

For each molecule, name the shape of the molecule and give a reason for your answer.
(i) HCN Shape: Linear

Reason: There are two regions of electron repulsion / bonding regions around the C atom. These are as far apart as possible, so the molecule is linear.
(ii) COCl_{2} Shape: Trigonal planar.

Reason: There are three regions of electron repulsion / bonding regions around the C atom. These are as far apart as possible, so the molecule is trigonal planar.
(b) Draw the Lewis structure (electron dot diagram) for each of the following molecules.

Molecule	Lewis Structure	
O_{2}	0	
SO_{2}	$\dot{0}: \ddot{s}: \ddot{O}: \quad \text { OR }$	$0 \mathrm{O}:: \ddot{\mathrm{S}}:: 0_{0}^{0}$
SiCl_{4}		

(b) Lewis structures for three molecules are given below. Complete the table by giving the name of the shape of each molecule.

Molecule	Lewis Structure	Name of shape
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$		Tetrahedral
NCl_{3}	$\begin{gathered} : \ddot{C l}: \ddot{\mathrm{N}}: \ddot{\mathrm{Cl}}: \\ : \ddot{\mathrm{Cl}}: \end{gathered}$	Trigonal pyramidal
BF_{3}	$\begin{gathered} \therefore \ddot{F} \cdot \stackrel{\bullet}{F}: \\ \ddot{F}: \end{gathered}$	Trigonal planar

(c) The following table shows the Lewis structure and the shape of the molecules for NOCl and $\mathrm{H}_{2} \mathrm{~S}$.

	NOCl	$\mathrm{H}_{2} \mathrm{~S}$
Lewis Structure	$\bullet \cdot: \ddot{\mathrm{O}}: \ddot{\mathrm{Cl}}:$	$\mathrm{H}: \ddot{\mathrm{S}}: \mathrm{H}$
Name of shape	bent	bent

The shape of both molecules can be described as bent. However, these molecules do not have the same bond angle.

Discuss why these molecules have different bond angles.
Your answer must include:

- factors which determine the shape of each molecule
- the approximate bond angle for each molecule.

The shape of a molecule is determined by the regions of negative charge surrounding the central atom and the number of bonding atoms.
NOCl: The bond angle is approximately 120°. There are three regions of negative charge around the central N atom which repel to give maximum separation. There are two bonding electrons / negative regions to the N atom and one lone pair of electrons, therefore the overall shape is bent. $\mathrm{H}_{2} \mathrm{~S}$: The bond angle is approximately 109°. There are four regions of negative charge around the central S atom which repel to give maximum separation. There are two bonding electrons / negative regions to the S atom and two lone pairs of electrons, therefore the overall shape is bent.

QUESTION (2009:1)

(a) Complete the table below by:
(i) Drawing the Lewis structure (electron dot diagram) for each molecule.
(ii) Drawing a diagram to show the shape of the molecule.
(iii) Naming the shape of the molecule.

Molecule	Lewis Structure	Diagram of Shape	Name of Shape
$\mathrm{H}_{2} \mathrm{O}$			bent/Vshape / angular
CO_{2}	$\because O=C=O$	$\mathrm{O}=\mathrm{C}=\mathrm{O}$	linear
$\mathrm{CH}_{2} \mathrm{Br}_{2}$			tetrahedral

(b) The Lewis structures of the molecules NCl_{3} and SO_{3} are given below.

Discuss the shapes and bond angles of these two molecules. For each molecule:

- name the shape
- determine the bond angle
- justify your answers.
NCl_{3} trigonal pyramid $109.5^{\circ}\left(105^{\circ}-110^{\circ}\right)$. The central atom has 4 areas of electron repulsion around it. Three of these are bonding and one is nonbonding. These 4 regions repel each other as far apart as possible (maximum separation to achieve minimum repulsion). The nonbonding pair contributes to the shape, but is not considered part of the shape; therefore the shape is trigonal pyramid. The four areas of electron repulsion give the molecule a tetrahedral shape so the bond angle is 109°.
SO_{3} trigonal planar 120°. There are three areas of electron repulsion around the central atom, all three are bonding sets. These 3 regions repel each other as far apart as possible, therefore giving a trigonal planar shape with a bond angle of 120°.

QUESTION (2008:1)

(b) Draw a Lewis structure (electron dot diagram) for each of the following molecules :

Molecule	Lewis structure
$\mathrm{Cl}_{2} \mathrm{O}$	$: \ddot{\mathrm{Cl}}-\ddot{\mathrm{O}}-\ddot{\mathrm{C}}$
CS_{2}	$\ddot{S}=C=\ddot{S}$
HCN	$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$

(b) Lewis structures for TWO molecules are given below. For each molecule :

- name the shape
- justify your answer.
(i)

Shape: Tetrahedral
Justification: The central atom has 4 areas of electron repulsion around it. These 4 regions repel each other as far as possible / maximum distance, (therefore giving a tetrahedral shape.)
(ii)

Shape: Trigonal pyramid
Justification: The central atom has 4 areas of electron repulsion around it. Three of these are bonding and one is non-bonding. These 4 regions repel each other as far as possible. The nonbonding pair contributes to the shape, but is not considered part of the shape, (therefore the shape is trigonal pyramid).

QUESTION (2008:3)

An element, X, has four valence electrons. Another element, Y, has six valence electrons. These elements both combine with oxygen. The molecules formed are XO_{2} and YO_{2}.
(a) Draw the Lewis structures of these two molecules. $\mathrm{XO}_{2} \& \mathrm{YO}_{2}$

$$
\ddot{\mathrm{O}}=x=\ddot{\mathrm{O}} \quad: \ddot{\mathrm{O}}-\ddot{\mathrm{Y}}=\ddot{\mathrm{O}}
$$

(b) Determine the bond angle in each of these molecules using the Lewis structures from (a). Justify your answer.
XO_{2} has 2 areas of electron repulsion / regions of electrons / negative centres about the central atom. This leads to a bond angle of linear shape, which has a bond angle of 180°. YO_{2} has three areas of electron repulsion / regions of electrons / negative centres about the central atom. This leads to a trigonal planar arrangement of electron clouds / bent shape, which has a bond angle of 120°.

QUESTION (2007:1)

(a) Complete the table below by:
(i) drawing the Lewis structure (electron dot diagram) for each molecule
(ii) naming the shape of the molecule.

Molecule	(i) Lewis diagram	(ii) Name of shape
$\mathrm{CH}_{3} \mathrm{Cl}$		Tetrahedral
NCl_{3}		Trigonal pyramid
$\mathrm{CH}_{2} \mathrm{O}$		Trigonal planar

(b) For each of the molecules in the table, explain why it has the shape you have identified.
(iv) $\mathrm{CH}_{3} \mathrm{Cl}$
(ii) $\quad \mathrm{NCl}_{3}$
(iii) $\mathrm{CH}_{2} \mathrm{O}$

There are 4 electron repulsions about the central C atom and no lone pairs on the C .
Therefore, the molecule is a tetrahedral shape.
There are 4 electron repulsions about the central N atom (tetrahedral) and one lone pair on the N . Therefore, the molecule is a trigonal pyramid shape.
There are 3 electron repulsions around the central C atom and no lone pairs on the C .
Therefore, the shape is trigonal planar.

QUESTION (2006:1)

Complete the table below by:
(a) drawing a Lewis structure (electron dot diagram) for each molecule
(b) drawing a diagram to show the shape of the molecule
(c) naming the shape of the molecule.

Formula of molecule	Lewis structure	Diagram of shape	Name of shape
SF_{2}	$: \ddot{F}-\ddot{S}-\ddot{F}:$		bent or v-shaped
CO_{2}	$\stackrel{\bullet}{\mathrm{O}}=\mathrm{C}=\stackrel{\bullet}{0}$	$\mathrm{O}-\mathrm{C}-\mathrm{O}$	linear or straight
PBr_{3}			trigonal or triangular pyramid

QUESTION (2006:4)

Molecules of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ and ozone $\left(\mathrm{O}_{3}\right)$ each contain 3 atoms and both the molecules are bent. However, the bond angle in $\mathrm{H}_{2} \mathrm{O}$ is significantly smaller than the bond angle in O_{3}.
Using Lewis structures, discuss the reasons for the difference in bond angles of these two molecules.

QUESTION (2005:1)

The Lewis structure for chlorine, Cl_{2}, is

Complete the table below by:
(a) drawing a Lewis structure for each molecule,
(b) naming the shape of each molecule.

Molecule	Lewis structure	Name of shape
$\mathrm{H}_{2} \mathrm{~S}$	$\mathrm{H}-\ddot{\mathrm{S}}-\mathrm{H}$	Bent / v-shape / angular
PCl_{3}		Trigonal / triangular pyramid

- Lewis Structures \& shapes of molecules 2004-2015

$\mathrm{CH}_{3} \mathrm{Br}$		Tetrahedral
COCl_{2} Note C is central atom		Trigonal planar

QUESTION (2004:1)

The Lewis structure for hydrogen chloride, HCl, is $\mathrm{H}: \ddot{\mathrm{Cl}}:$: or $\mathrm{H}-\ddot{\mathrm{C}}$:
Complete the table below by:
(a) drawing a Lewis structure for each molecule,

Molecule	Lewis structure
CO_{2}	$\because \mathrm{O}=\mathrm{C}=\mathrm{O}_{\bullet}^{\bullet} \quad \text { or } \quad \bullet \mathrm{O}: \cdot \mathrm{C}: \because \mathrm{O}_{\bullet}^{\bullet}$
PH_{3}	
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\begin{aligned} & \stackrel{H}{\bullet} \\ : \stackrel{\bullet}{\mathrm{C}} \mid & : \stackrel{\mathrm{C}}{\mathrm{C}}: \mathrm{H} \\ \bullet \bullet & : \bullet \\ & \bullet \bullet l \end{aligned}$
$\mathrm{H}_{2} \mathrm{CO}$	
$\mathrm{F}_{2} \mathrm{O}$	

