CS188 Spring 2014 Section 6: Hidden Markov Models

1 Basic computations

Consider the following Hidden Markov Model.

X_1	$\Pr(X_1)$
0	0.3
1	0.7

X_t	X_{t+1}	$\Pr(X_{t+1} X_t)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

X_t	O_t	$\Pr(O_t X_t)$
0	A	0.9
0	B	0.1
1	A	0.5
1	B	0.5

Suppose that $O_1 = A$ and $O_2 = B$ is observed.

Use the Forward algorithm to compute the probability distribution $Pr(X_2, O_1 = A, O_2 = B)$. Show your work. You do not need to evaluate arithmetic expressions involving only numbers.

Use the Viterbi algorithm to compute the maximum probability sequence X_1, X_2 . Show your work.

True or false: Variable elimination is generally more accurate than the Forward algorithm. Explain your answer.

2 Tracking a Jabberwock

You have been put in charge of a Jabberwock for your friend Lewis. The Jabberwock is kept in a large tugley wood which is conveniently divided into an $N \times N$ grid. It wanders freely around the N^2 possible cells. At each time step $t=1,2,3,\ldots$, the Jabberwock is in some cell $X_t \in \{1,\ldots,N\}^2$, and it moves to cell X_{t+1} randomly as follows: with probability $1-\epsilon$, it chooses one of the (up to 4) valid neighboring cells uniformly at random; with probability ϵ , it uses its magical powers to teleport to a random cell uniformly at random among the N^2 possibilities (it might teleport to the same cell). Suppose $\epsilon = \frac{1}{2}$, N = 10 and that the Jabberwock always starts in $X_1 = (1,1)$.

1. Compute the probability that the Jabberwock will be in $X_2 = (2,1)$ at time step 2. What about $Pr(X_2 = (4,4))$?

$$\Pr(X_2 = (2,1)) =$$

$$\Pr(X_2 = (4,4)) =$$

At each time step t, you dont see X_t but see E_t , which is the row that the Jabberwock is in; that is, if $X_t = (r, c)$, then $E_t = r$. You still know that $X_1 = (1, 1)$.

2. Suppose we see that $E_1 = 1$, $E_2 = 2$, $E_3 = 10$. Fill in the following table with the distribution over X_t after each time step, taking into consideration the evidence. Your answer should be concise. *Hint*: you should not need to do any heavy calculations.

t	$\Pr(X_t, e_{1:t-1})$	$\Pr(X_t, e_{1:t})$
1		
2		