
CS188 Spring 2014 Section 1: Search

1 Search and Heuristics
Imagine a car-like agent wishes to exit a maze like the one shown below:

The agent is directional and at all times faces some direction d ∈ (N,S,E,W ). With a single action, the agent
can either move forward at an adjustable velocity v or turn. The turning actions are left and right, which change
the agent’s direction by 90 degrees. Turning is only permitted when the velocity is zero (and leaves it at zero).
The moving actions are fast and slow. Fast increments the velocity by 1 and slow decrements the velocity by 1;
in both cases the agent then moves a number of squares equal to its NEW adjusted velocity. Any action that
would result in a collision with a wall crashes the agent and is illegal. Any action that would reduce v below 0
or above a maximum speed Vmax is also illegal. The agent’s goal is to find a plan which parks it (stationary)
on the exit square using as few actions (time steps) as possible.

As an example: if the agent shown were initially stationary, it might first turn to the east using (right), then
move one square east using fast, then two more squares east using fast again. The agent will of course have to
slow to turn.

1. If the grid is M by N , what is the size of the state space? Justify your answer. You should assume that
all configurations are reachable from the start state.

The size of the state space is 4MN(Vmax + 1). The state representation is (direction facing, x, y, speed).
Note that the speed can take any value in {0, ..., Vmax}.

2. What is the maximum branching factor of this problem? You may assume that illegal actions are simply
not returned by the successor function. Briefly justify your answer.

The maximum branching factor is 3, and this happens when the agent is stationary. While stationary it
can take the following 3 actions - fast, left, right.

1



3. Is the Manhattan distance from the agent’s location to the exit’s location admissible? Why or why not?

No, Manhattan distance is not an admissible heuristic. The agent can move at an average speed of greater
than 1 (by first speeding up to Vmax and then slowing down to 0 as it reaches the goal), and so can reach
the goal in less time steps than there are squares between it and the goal. A specific example: the target
is 6 squares away, and the agent’s velocity is already 4. By taking only 4 slow actions, it reaches the goal
with a velocity of 0.

4. State and justify a non-trivial admissible heuristic for this problem which is not the Manhattan distance
to the exit.

There are many answers to this question. Here are a few, in order of weakest to strongest:

(a) The number of turns required for the agent to face the goal.

(b) Consider a relaxation of the problem where there are no walls, the agent can turn and change speed
arbitrarily. In this relaxed problem, the agent would move with Vmax, and then suddenly stop at the
goal, thus taking dmanhattan/Vmax time.

(c) We can improve the above relaxation by accounting for the deceleration dynamics. In this case the
agent will have to slow down to 0 when it is about to reach the goal. Note that this heuristic will
always return a greater value than the previous one, but is still not an overestimate of the true cost
to reach the goal. We can say that this heuristic dominates the previous one.

5. If we used an inadmissible heuristic in A* tree search, could it change the completeness of the search?

No! If the heuristic function is bounded, then A* tree search would visit all the nodes eventually, and
would find a path to the goal state if there exists one.

6. If we used an inadmissible heuristic in A* tree search, could it change the optimality of the search?

Yes! It can make the good optimal goal look as though it is very far off, and take you to a suboptimal
goal.

7. Give a general advantage that an inadmissible heuristic might have over an admissible one.

The time to solve an A* tree search problem is a function of two factors: the number of nodes expanded,
and the time spent per node.

An inadmissible heuristic may be faster to compute, leading to a solution that is obtained faster due to
less time spent per node. It can also be a closer estimate to the actual cost function (even though at times
it will overestimate!), thus expanding less nodes.

We lose the guarantee of optimality by using an inadmissible heuristic. But sometimes we may be okay
with finding a suboptimal solution to a search problem.

2



2 Expanded Nodes
Consider tree search (i.e. no closed set) on an arbitrary search problem with max branching factor b. Each
search node n has a backward (cumulative) cost of g(n), an admissible heuristic of h(n), and a depth of d(n).
Let c be a minimum-cost goal node, and let s be a shallowest goal node.

For each of the following, you will give an expression that characterizes the set of nodes that are expanded
before the search terminates. For instance, if we asked for the set of nodes with positive heuristic value, you
could say h(n) ≥ 0. Don’t worry about ties (so you won’t need to worry about > versus ≥). If there are no
nodes for which the expression is true, you must write “none.”

1. Give an expression (i.e. an inequality in terms of the above quantities) for which nodes n will be expanded
in a breadth-first tree search.

d(n) ≤ d(s): BFS expands all nodes which are shallower than the shallowest goal. Recall that our search
performs the goal− test after popping nodes from the fringe, so we typically expand some nodes at depth
s, before we expand the optimal goal node.

2. Give an expression for which nodes n will be expanded in a uniform cost search.

g(n) ≤ g(c): Uniform cost search expands all nodes that are closer than the closest goal node. Recall that
our search performs the goal − test after popping nodes from the fringe (this ensures optimality!), so we
might expand some nodes of cost g(c), before we expand the optimal goal node.

3. Give an expression for which nodes n will be expanded in an A∗ tree search with heuristic h(n).

g(n) + h(n) ≤ g(c): All nodes with a total cost of less than g(c), get expanded before the goal node is
expanded. This can be proved by induction on the cost g(n) + h(n). Consider a node n1 which satisfies
this property. Note that its parent n0, will also satisfy this inequality, and by the induction hypothesis,
n0 will be expanded before the goal is expanded, which means that it will put n1 on the fringe, which will
get expanded before the goal node is expanded.

4. Let h1 and h2 be two admissible heuristics such that ∀n, h1(n) ≥ h2(n). Give an expression for the nodes
which will be expanded in an A∗ tree search using h1 but not when using h2.

Let S, be the set of all the nodes. Using the above part, set of nodes expanded by h1 is N1 = {n :
g(n) + h1(n) ≤ g(c)}, and, set of nodes expanded by h2 is N2 = {n : g(n) + h2(n) ≤ g(c)}. The
set of nodes expanded using h1 but not using h2, is N1 ∩ (S −N2). Since, h1 ≥ h2, N1 ⊆ N2, hence
N1 ∩ (S −N2) = φ.

5. Give an expression for the nodes which will be expanded in an A∗ tree search using h2 but not when using
h1.

As above, set of nodes expanded using h2 but not using h1, is N2 ∩ (S −N1) = {n : g(n) + h2(n) ≤
g(c) and g(c) ≤ g(n) + h1(n)}.

3


