Patrick

Regan

New Jersey Network
Public Television and
Radio

Scott

Hamilton
Computer

0018-9162/04/$20.00 © 2004 IEEE

NASA

COVER FEATURE

Like industrial development organizations, the US space agency struggles
with the challenge of creating reliable software. NASA’s deep space
community is attacking its software crisis via two complementary
approaches—one stressing the power of engineering discipline, the other
the potential of automated code generation and verification.

oth predictable and unpredictable hazards

await the spacecraft, robots, and scientific

instruments that humans dispatch to

explore our solar system. The toughest

hazard to harden a space probe, orbiter,
or rover against may be one of the most pre-
dictable: the known presence of unknown bugs in
even the most rigorously tested software.

As this article goes to press, spacecraft from
Europe, Japan, and the United States are converg-
ing on Mars, and some sophisticated software sys-
tems are approaching their ultimate test. With all
eyes turning toward the red planet, some observers
will recall the software-related failures of the Mars
Polar Lander and Mars Climate Orbiter missions in
1999—and pay special attention to the performance
of NASA’s Mars Exploration Rovers, twin robotic
science platforms about the size of a golf cart.

Meanwhile, far beyond Mars, the Cassini space-
craft cruises toward a rendezvous in March with
Saturn. The Voyagers launched in the 1970s report
back from the boundary region between our sun’s
sphere of influence and interstellar space. Orbiting
observatories take the measure of the universe. And
back in California, the next billion-dollar project
is already in development at Jet Propulsion Labora-
tory, managed for NASA by Caltech. Scheduled for
launch in 2009, the Mars Science Laboratory mis-

Published by the IEEE Computer Society

sion aims to land a rover as big as a car for a tour
lasting more than a year. Many more missions in the
$200 million range are in flight, in development, or
on the drawing boards.

HIGHER STAKES, GREATER RISKS

On increasingly frequent and ambitious missions,
these remote laboratories radio back pictures of
other worlds; measure radiation, particles, and
fields in the interplanetary environment; probe the
chemistry and dynamics of planetary bodies; and,
above all, equip scientists to test theories, answer-
ing long-standing questions and raising new ones.

NASA and other space agencies rely on ever
larger, more complex software systems to do more
challenging science. Because of the nature of their
missions and the distance from ground control—
with communications requiring from tens of min-
utes to hours of “round-trip light time”—spacecraft
and rover systems demand increasing autonomy
that introduces new dimensions of complexity.

This trend raises the stakes and increases the risks
that a problem older than the expression “software
engineering” poses: It’s not getting any easier to pro-
duce reliable software.

Within the earthbound labs responsible for
designing and flying NASA’s space missions, com-
puter scientists and software engineers have been

January 2004

Mars Exploration
Rover—artist’s
conception.
Courtesy NASA.

mobilized as never before to attack this problem.
It may be that the perpetual “software crisis,” first
declared at NATO’s 1968 conference on software
engineering, will humble NASA as it has other
organizations that have tried to address it. On the
other hand, the urgency and unique resources that
NASA brings to the problem might produce break-
through solutions.

Despite conspicuous and even tragic failures, the
US space agency has engineered the seemingly
impossible and made it look routine. If NASA can
solve its own software crisis, it may help boost soft-
ware engineering and commercial development to
a higher stage of maturity.

FROM GROUND CONTROL TO
AUTONOMOUS SYSTEMS

Traditional mission control and planning have
been done on the ground, with humans in the loop
generating a time-based command sequence that
tells the spacecraft what to do and when. Not-
withstanding the occasional surprise, this approach
has been quite successful; however, with the many
small missions on the books, traditional ground
operations costs have become prohibitive.

Past spacecraft systems included limited auton-
omy programs such as attitude control, fault pro-
tection, and orbit insertion, entry, and landing that
were tried and tested over decades and hardcoded
into the systems. However, new science mission
requirements and more frequent missions have
necessitated efforts to generalize autonomous
spacecraft control across multiple missions.

Traditional spacecraft control systems contain a
fault-protection subsystem that monitors the sys-
tem’s behavior and “safes” the spacecraft by point-
ing its solar panels toward the sun, reporting a
possible malfunction to ground control, shutting
down unnecessary systems, and waiting for instruc-

Computer

tions from Earth. Although such fault-protection
mechanisms have had a long history of success, saf-
ing a spacecraft at critical junctures such as orbit
insertion is obviously a recipe for disaster. Perhaps
more important, scientists have come to expect
exponentially more from these missions.

Safing a spacecraft or rover for minor faults that
do not put it at risk and waiting hours for instruc-
tions can greatly reduce the amount of scientific
data that can be obtained and sent back to Earth—
indeed, such behaviors could preclude opportunis-
tic science such as a comet fly-by.

Although it is a hostile environment for physical
hardware, deep space is a relatively benign envi-
ronment for mission control because extended peri-
ods of time are available to plan nonemergency
maneuvers. A rover on the Martian surface, how-
ever, needs extensive autonomy to accomplish com-
plex missions in which it may have only seconds to
avoid toppling into a ditch.

Autonomous control poses some of NASA’s
trickiest problems and stimulates some of its most
advanced research. Yet the agency has more mun-
dane issues to deal with as well.

SOFTWARE QUALITY INITIATIVE

During a career that began with semiconductor
engineering for Mariner missions to Mars and
Venus in the 1960s, Tom Gavin, the senior member
of the Jet Propulsion Laboratory’s flight commu-
nity, has seen software rise to prominence not only
as an enabling technology but also as a major risk
and cost factor. Gavin has made it his mission to
improve JPL’s software processes, better integrate
software production with systems engineering, and
encourage research that focuses on a bulging port-
folio of flight projects.

In the Mars Exploration Rover, entry, descent,
and landing are software-controlled. Gavin says,
“People see the mechanical system of this vehicle,
parachutes coming out, airbags coming out, and
bouncing on the ground. But that is a software-
driven system, and a lot of the project risk is in
how robust that software is.” Software accounts
for a large share of project cost too, in coding,
independent verification and validation, and test-
ing—four testbeds for the Mars Exploration Rover
alone, running 24 hours a day in three shifts,
with deadlines dictated by the movements of the
planets.

Missing a deadline that celestial mechanics
impose could trigger a long, costly delay—22
months for a mission to Mars, 19 to Venus, or 13
to Jupiter. Keeping such a deadline can exact a dif-

ferent kind of penalty. Gavin notes that the soft-
ware for PathFinder, which landed successfully on
Mars in 1997, was largely undocumented.

In an effort he says is still in its infancy, Gavin
has charged the JPL software community with
developing a kind of discipline long established—
and recently codified—on the hardware side. A few
years ago, engineers captured 40 years of hardware
experience in three books on flight project prac-
tices, design principles, and mission assurance.
Now the lab is investing $4 million a year in a soft-
ware quality initiative aimed at getting developers
to codify and buy into a similar set of software
practices. A survey currently under way will help
define the baseline for this effort and for forward-
looking research.

More effective matchmaking between practi-
tioners’ needs and applicable research is an integral
part of the software quality initiative. Gavin is opti-
mistic that the initiative will succeed by involving
the practitioners in documenting their practices.

RESEARCH GOES DEEP

Meanwhile, exploratory research—at NASA
facilities including Ames, Dryden, Glenn, Goddard,
Johnson, Langley, and Marshall as well as JPL—
aims at ensuring the reliability of software for
future missions. The unique challenges of deep
space have brought an infusion of funding to soft-
ware reliability research at JPL, with close ties to
affiliated groups at Ames. Researchers are apply-
ing advanced technology for both code synthesis
and code verification of software that runs the
gamut from artificial intelligence-based autonomy
software—which uses methods such as rapid
propositional deduction and adaptive neural nets to
uncover faults or execute plans—to large systems
with more conventional kinds of complexity.

JPL established a Laboratory for Reliable Soft-
ware in 2003, with model-checking guru Gerard
Holzmann as its founding member. Mission Data
System (MDS) is a bigger enterprise within JPLs
Interplanetary Network Directorate that has simi-
lar motivation.

In 1998, just as it was about to launch six inde-
pendently designed missions in the span of six
months, JPL became acutely aware of the need to
make more effective use of its software engineer-
ing resources and to reuse software common to
all missions. At that time, avionics engineer Robert
Rasmussen championed MDS as a multimission
architectural framework that could unify software
and systems engineering, from the conception of a
mission through development and flight.'

When NASA people use the term MDS,
they could be referring to the architecture,
the idea, the million lines of code that cur-
rently embody it, development of mission
software for the Mars Science Laboratory, a
set of development processes, or related
research. In any case, MDS offers a multi-
mission framework for building, testing, and
reusing software that will fly in spacecraft,
land in rovers, and operate here on Earth.
This is a striking departure from established prac-
tice, in which highly compartmentalized develop-
ment efforts have produced essentially one-off
software systems for each space mission.
Between them, Holzmann’s research and the
MDS project don’t begin to encompass all the
resources being brought to bear on ensuring that
NASA software will reliably do what needs to
be done. But they do represent the range of
approaches NASA is pursuing, and they illustrate
a philosophical tension that both polarizes and
helps to energize the whole endeavor.

TO ERR IS HUMAN

The basic observations underlying Holzmann’s
work are that programming is a human effort and
that people make mistakes. He cites estimates that
around 50 software defects remain in 1,000 lines
of newly written uncommented code, and around
10 remain in code that’s been thoroughly tested.
Extreme measures of additional testing can push
the number of residual defects per 1,000 lines
down toward one, but that still adds up to a lot of
bugs in a large system, and few products ever reach
that level.

Statistics for novice and experienced program-
mers are essentially the same. “An experienced pro-
grammer tends to make just as many mistakes,”
Holzmann says, “but they are much more complex,
they’re subtle, they require a lot of deep thought. If
he makes a mistake, it is usually much more diffi-
cult to find.”

Testers are human too, and following this line of
reasoning leads to the conclusion that human-dri-
ven testing processes are, like programming prac-
tices, inherently flawed. For Holzmann, this alone
makes automating alternative methods an impera-
tive. With a combination of optimism and patience,
Holzmann is determined to convince his colleagues
of the power of automated model checking tech-
niques as an alternative to the conventional ap-
proach to software testing.

Methods like model checking, static analysis, and
runtime analysis offer the ability to do exhaustive

Programming
isa
human effort,
and people
make mistakes.

January 2004

Mars Exploration
Rover at the JPL
spacecraft assembly
facility. Courtesy
NASA.

exploration of source code, testing even the most
unlikely scenarios. Conventional testing, a time-
consuming operation for which the allotment of
time tends to get squeezed as the delivery or launch
date approaches, may root out the most likely fail-
ure scenarios and more subtle vulnerabilities; how-
ever, it can never offer the possibility of finding
all the bugs.

Furthermore, testing methods lose ground all the
time. “We build systems more complex than we can
understand and more complex than we can check,”
Holzmann asserts. “Conventional testing processes,
which were designed for deterministic, sequentially
operating systems, haven’t really changed in 30
years. Yet systems now are multithreaded, which
makes them nondeterministic because of process
and thread scheduling—all the interleaving is dif-
ferent in every run, events occur at unpredictable
moments—and the test methods are simply not
designed to handle that.”

In contrast, he says, researchers are beginning to
win the battle of software analysis. Winning, in this
context, means that formerly unassailable prob-
lems show signs of yielding to improved algorithms
and the steady march of processing power. By
Holzmann’s calculation, a small, automated test he
devised in 1980 would have kept a computer busy
for seven days, if he’d had one powerful enough to
run it at all. In 2000, with a thousand times more
memory and processing speed readily available, the
same test could be done in seven seconds. Today, it
would take two seconds; in two more years, it
should take just one.

By the late 1970s, some believed formal meth-
ods could be automated and eventually scaled up.
By the late 1980s, Holzmann had developed Spin,
probably the best known and most widely used
model checker in the world.? In the late 1990s, he

Computer

and his colleagues at Bell Labs used Spin and asso-
ciated technology for the first time in the develop-
ment of a real product when they verified call-
processing code for an Internet Protocol-based tele-
phone switch.

Although the chunk of code they checked was
relatively small—10,000 lines out of roughly 25
million—it was functionally the heart of the system
and a nightmare of potentially fatal interactions
between concurrent processes. This application
proved a few important claims for the technology,
including that it could extract models from source
code automatically. The creation of a “test harness”
to extract models from C code was a one-time
investment, reusable throughout the development
process.

JPL researchers who were using Spin to verify
code for the Cassini mission drew Holzmann into
NASA’s orbit in the 1990s. Within weeks of his
move to California, he had helped to build a test
harness for verifying code already flying on the
Mars Exploration Rovers and was seeking ways to
contribute to the Mars Science Laboratory. At JPL,
Holzmann is working to build a core group of the-
orists, system builders, and “energizers” that will
interact with a virtual team of a few hundred to
show that these techniques work.

SPINNING IN SPACE

NASA researchers, including Ames’ Klaus
Havelund and Thomas Pressburger, were early and
insightful experimenters with the Spin model
checker. Together, they developed their own inno-
vative verification and testing technology, Java
PathFinder 1, which translated high-level source
code to Promela, Spin’s formal language.® Sub-
sequently, for Java PathFinder 2, Ames’ Willem
Visser and Havelund developed a new model
checker, in which a Java virtual machine interprets
the source code.* Work is under way to integrate
Java PathFinder 2’s model-checking technology
with Java PathExplorer, a separately developed tool
for runtime analysis and monitoring.’

This effort began with Deep Space 1, a technol-
ogy validation flight. Part of the mission called for
the Remote Agent software to take control of the
spacecraft for two days. Havelund and Ames’ John
Penix ran part of the Plan Runner, a critical Remote
Agent code component, through a Spin cycle as a
verification experiment. This check automatically
found five bugs, concurrency errors that were
corrected before flight.

Despite that check and 800 hours of preflight
testing, Remote Agent hit a deadlock six hours after

it was activated. A team assembled to analyze the
system’s 12,000 lines of Lisp found the bug within
five hours—the same kind of bug that Havelund
and Penix had found in their earlier work—in a
module that had been reworked after their verifi-
cation experiment. Interestingly, the team opted not
to fix this particular bug because the chances of its
occurring again were extremely small. The bug did
not recur—whereas a bug fix had a greater chance
of causing problems—again, showing how rare
these bugs are to begin with and why they are so
hard to find with conventional testing.

That episode highlighted both model checking’s
potential and its current limitations. “Particularly
for concurrent software where there is a lot of inter-
leaving,” says senior research scientist Michael
Lowry, “model checking can be much better than
testing.”

According to Lowry, the increasing number of
threads in some mission software is not the only
trend driving up the risk of concurrency errors.
Smaller numbers of complicated threads can have
the same effect. Beyond that, he says, “If you’re
interacting with an environment in complicated
ways, the whole system becomes concurrent. Think
about a rover on Mars. As you move away from
time-based sequencing, you have lots of different
interleavings between what the environment does
and what your software will do. That’s exactly
where you’re going to get a vehicle that’s capable of
dealing with a rich environment—Dboth for science
return and for its own survival—and that’s a situ-
ation where concurrency occurs even if the soft-
ware program has only one thread.”

Yet another trend highlights the challenge of scal-
ing model checking to deal with large programs.
Numbers that Lowry cites as rough guides to this
trend are the 30,000 lines of code developed in the
1980s for the Cassini mission, 120,000 lines of
code for the mid-1990s development of the Mars
PathFinder, and 428,000 lines of code for the
Mars Exploration Rover. Others suggest that the
software for the Mars Science Laboratory could
grow to several million lines of code.

FINDING ALTERNATE PATHS

When Havelund and Penix began hand-trans-
lating Deep Space 1 code for Spin to check, they
could analyze around 30 lines of code a day. Auto-
mating translation in Java PathFinder boosted
analysis to around 1,500 lines of code per day, lim-
ited mainly by memory. At that point, however, the
researchers felt constrained by Spin and Promela.
That’s when Visser and Havelund developed a

model checker that uses a Java virtual
machine. According to Visser, this model
checker could “analyze all the behaviors, all
the paths through the code, because we had
control of scheduling, so we could schedule
all the possible interleavings.” Visser says that
creating the first version took only three
months, but they have been working for four
years to perfect it.

The largest program they have analyzed
so far is 8,000 lines of prototype rover soft-
ware with six complicated threads, translated to
Java from the original C++. Like Spin, Java
PathFinder is expected to become more effective
simply by riding the hardware curve and benefit-
ing from improvements in automated translation.
Penix is writing a C++ to Java translator so that
Java PathFinder can be used on C++ code as well.

These researchers also aim to improve the effec-
tiveness of automated software analysis by coming
at it from another direction. Whereas Java Path-
Finder searches the space of paths through the code
to find one that has an error in it, Java Path-
Explorer focuses on detecting errors in a single
path. The key, Havelund says, is using more pow-
erful temporal logic “which can, for example, rea-
son about future and past time logic at the same
time, reason about real time, and reason about
values.”

Java PathExplorer runs the program once,
recording the system’s state throughout that exe-
cution. Working with an execution trace in which
all events of interest have been logged, the tool
employs one set of algorithms for exact analysis to
determine whether or not there is an error in that
particular trace. It uses another set of algorithms
to infer whether other possible permutations of the
trace could contain errors.

Recent enhancements include strengthening the
tool’s temporal logic and extending its capability
to high-level data races. An example of the latter
would be a problem in which one thread updates
x and y coordinates in a single operation, and
another thread reads them separately, one at a time.
Thus, if the first thread can update both coordi-
nates between the reading of x and y, a “correct”
operation of the program could yield the wrong
coordinate pair.

Havelund and Visser plan to use the underlying
Java PathFinder and Java PathExplorer technology
to generate tests automatically. They also have
combined these model checking and runtime analy-
sis tools in a testing environment for K9, a plane-
tary rover.

The software for
the Mars Science
Laboratory could
grow to several
million lines
of code.

January 2004

Mars Science
Laboratory—
artist’s conception.
Courtesy NASA.

COMPONENTS IN CONTEXT

In a complementary effort at Ames directed at
improving model checking scalability, Dimitra
Giannakopoulou and Corina Pasareanu focus on
modular or compositional verification. Their
approach decomposes the analysis of a program
into analysis of its components that might be eas-
ier to check than the whole, and it does this in a
way that guarantees the properties of the recon-
structed whole. These researchers also are experi-
menting with the K9 rover software.

Given an abstract model of a component’s behav-
ior and a required property, Giannakopoulou and
Pasareanu have developed techniques for formu-
lating assumptions, which encode the contexts or
environments in which the component will satisfy
the property. When the component’s environment
is available, it is checked against the assumption
to ensure correctness of the whole. “We split the
component behavior into behavior that is control-
lable and uncontrollable by the environment,” says
Giannakopoulou, “and get as a result how con-
trollable behavior affects the satisfaction of re-
quired properties.”

These researchers have developed a framework
based on the use of learning algorithms and model
checking for formulating assumptions incrementally.
When it’s not clear what the component’s environ-
ment will be, the fallback is a twist on runtime analy-
sis—generate a monitor based on the assumption,
instrument the program, monitor the environment
against the assumption during deployment, and trig-
ger recovery code when the assumption is violated.

Because a lack of design information blocks this
approach at the model level, Giannakopoulou and
Pasareanu are extending their approach to work
directly at the software level. Where design mod-
els of a system are not available, they want to apply
the same techniques to code—generating assump-
tions and performing the same kind of “modular
reasoning” on the source code. It’s an aspiration at
this point, but they have some ideas about how to
make it work and the collaborations needed to test
their ideas.

DYNAMICS OF STATIC ANALYSIS

Source code is in fact the starting point for static
analysis, another kind of tool being honed on
NASA software. Though formal, this method dif-

Computer

fers sharply from model checking, and it produces
different kinds of results. According to Guillaume
Brat, an Ames-based researcher, static analysis can
analyze code on the basis of program semantics
without constructing a model or running the pro-
gram. Brat and his collaborator, Arnaud Venet,
have been working to optimize static analysis for
NASA and to prove its practical potential in soft-
ware coding, unit testing, and integration.

Static analysis does not help much with concur-
rency, deadlocks, and data races. It can, however,
do a thorough job of rooting out errors in pro-
gramming style—such as uninitialized variables and
pointers, out-of-bounds array access, and invalid
arithmetic operations—that could corrupt data or
even crash a system at runtime. Almost by defini-
tion, such errors are common and plentiful, but sta-
tic analysis has the potential to weed them out.

This type of analysis produces a kind of mathe-
matical hologram—described as a computable
approximation to the set of values arising dynam-
ically at runtime when executing a program—that
researchers can view from various angles and probe
for details. The method’s scientific basis is abstract
interpretation, which expresses a program in terms
of equations, and lattice theory, which offers tech-
niques for solving the equations. The output essen-
tially is three sets of results: Errors the tool is sure
are errors, code that is surely correct, and appar-
ent problems that might be errors or might be
something else, such as dead code.

The objective is to compute numerical invariance
at every program point. The analysis must guess
what values an integer can take for any execution
of the program. For every concrete operation in the
program, such as addition, there is an abstract
operation based not on integers but on a finite rep-
resentation for those values such as an interval. An
interval is an abstraction that represents the values
of real variables in a program. For example, the
interval 1-7 represents integers 1, 3, 5, 7.

Brat and Venet launched their project by apply-
ing the state-of-the-art PolySpace static analysis
tool to real NASA code from the space station,
Deep Space 1, and Mars PathFinder. The tool
worked just well enough to set baseline measure-
ments for scalability and precision—that is, the pro-
portion of definite classifications to warnings of
possible problems in the code. Then they created a
specialized tool tailored for NASA software as they
knew it. They have begun testing their new tool—
the C Global Surveyor—on entry, descent, and
landing software for the Mars Exploration Rover
as well as on software for the rover itself. Along

with other researchers, they have begun exploring
ways in which MDS developers might make gains
in terms of automated verification by accepting
some restrictions on how they program in C++.

TO BE HUMAN IS TO ENGINEER

Kirk Reinholtz, one of the key collaborators work-
ing with Holzmann and other proponents of auto-
mated approaches, is an eloquent spokesman for a
different point of view. Reinholtz, who describes
himself as “a software engineer, born and raised,”
is the chief programmer on the Mars Science
Laboratory project.

In explaining how his team is building one million-
plus lines of Mission Data System code into a multi-
purpose system for the 2009 launch, Reinholtz shows
a firm faith in the power of human skills, judgment,
and processes: “The purpose of that software is essen-
tially to turn everything we’ve learned over decades
of doing embedded, extremely reliable software into
more of an engineering discipline than an art.”

According to Reinholtz, the genius of MDS lies
in “hoisting” issues that experience shows can be
real problems in actual missions to the architectural
level, “where we have fairly mature processes to
observe them, get plenty of eyes on it, do the veri-
fication, and so forth.” What a contemporary soft-
ware engineer might tend to hide, he says, MDS
makes explicit.

Down to the level of specifying a vocabulary for
discussing engineering goals, MDS aims to make it
easier for programmers to do the right thing and
harder for them to make mistakes.

The approaches that MDS and model checking
typify—one more confident in experience and inge-
nuity, the other more wary of human fallibility—
offer solutions that could contribute to the success
of the Mars Science Laboratory and other missions.
Both also may point toward a way out of what JPL
principal software architect Nicolas Rouquette calls
“the traditional divorce and death march,” in which
projects succeed because of the sacrifice of “heroes.”

DESIGNING NEXT-GENERATION SYSTEMS

Traditional design methods—including those
used at JPL in the past—involve a hierarchical
decomposition of a system into subsystems, with
each software engineering team providing its own
customized solutions and iteratively integrating
them at the system level.

Although subsystem decomposition works in
well-understood domains such as enterprise sys-
tems, it works less well in an environment such as
deep space where system resources such as power

or memory are limited and the system must inter-
act with an unpredictable physical environment. '~
These various subsystems must share these limited
resources, but the assumptions that one subsystem
design team makes might not hold across all sub-
systems. For example, it is virtually impossible to
abstract an idealized camera in this environment
because the physical camera draws power used by
other resources, consumes CPU cycles to process
data, and could be used as a navigation device to
track stars or celestial bodies. In the end, says
Daniel Dvorak, MDS deputy architect, using
object-oriented methodologies in such an environ-
ment leads to a hierarchical subsystem decompo-
sition that is difficult to verify, validate, or reuse.

Drawing on his vast experience with past JPL
missions, Robert Rasmussen defined in MDS an
abstract architecture for designing next-generation
deep-space systems. Such systems interact with the
physical world, reacting to and trying to control
physical state, and mission controllers on the ground
think in similar terms. Therefore, Rasmussen pro-
posed a state-based control architecture that mod-
els the interactions between physical states and
attempts to control state by applying goals and con-
straints on state rather than employing a time-based
sequence of commands, thus allowing varying
degrees of mission autonomy.

Unlike traditional object-oriented subsystem
decomposition, which hides or encapsulates system
interactions in local program variables, flags, coun-
ters, pointers, and if statements, MDS elevates state
variables to the top of the architectural hierarchy
where they can be seen, understood, and engi-
neered."® As such, systems engineering becomes
state analysis, with a precise and bounded vocabu-
lary for describing all interactions between the
elements the project comprises. This vocabulary
includes terms such as state variables, estimators,
controllers, state value histories, state effects models,
measurements, time and state constraints, resources,
commands, scenario fragments, and goals.

Just as important, this constrained vocabulary
translates to the software engineering domain, pro-
viding strictly defined input/output values that
either constrain or aid a system developer when
implementing that portion of the system: Either the
programmer has introduced unnecessary com-

Mars Science
Lahoratory—
artist’s conception.
Courtesy NASA.

January 2004

MDS provides a
domain-specific
framework for
a family of
applications and
their attendant
flight, ground,
and test platforms

plexity or a potential error, or the initial sys-
tems analysis was wrong. Moreover, all hard-
ware components, their attributes, and the
modeled transformations between them can
be captured in a state database and queried
by mission planners and systems engineers;
by software developers and their automated
tools; by simulators testing software against
undelivered hardware; and, perhaps more
important, by onboard software in the case of

. unexpected system behavior.

Covering the entire engineering discipline
and enforcing it from top to bottom, MDS
uses a shared vocabulary based on state

analysis for requirements capture. It applies this
vocabulary to a software development process engi-
neered down to the level of configuration manage-
ment, at the same time leaving room for new
technical approaches.

MDS combines a state-based systems architec-
ture and component-based software architecture
to provide a domain-specific framework for a fam-
ily of applications—whether they are multiple gen-
erations of satellites, landers, or rovers—and their
attendant flight, ground, and test platforms.' The
state-based architecture offers a structured process
for disciplined analysis that emphasizes model-
based design for estimation and control, makes
interactions explicit, and exposes complexity. The
component architecture provides frameworks and
adapter’s guides, reusable building blocks in object-
oriented design, guides for how to adapt it for con-
crete tasks, and examples of framework usage.

Flight software is largely embedded, whereas
ground software has extensive resources in the form
of servers, adequate power, and so forth. But
whether it is one millisecond or one day, a com-
munication delay closes the control loop from both
the architectural and customer viewpoints. For
example, mission controllers view the spacecraft as
a point in a two-dimensional plot, whereas the
spacecraft itself is an object in three-dimensional
space. Then the question becomes, where is it
pointing?

Both viewpoints use the same mathematical
equations but derive different results due to their
different degrees of freedom. In contrast, because
MDS focuses on the similarities rather than the dif-
ferences, developers can use the same mathemati-
cal and architectural framework to write both the
flight navigation and ground control software.
Unlike past missions, JPL will cost together the
flight and ground software for the Mars Science
Laboratory—a major cultural change.

Computer

STATE ANALYSIS

State analysis as embodied in MDS provides a
uniform, methodical, and rigorous approach to dis-
covering, characterizing, representing, and docu-
menting a system’s states, and modeling their behav-
ior and the relationships among them. Knowledge
of the system and its environment is represented
over time in state variables, which include such
things as

o dynamics—vehicle position and attitude, gim-
bal angles, wheel rotation;

o environment—ephemeris, light level, atmos-
pheric profiles, terrain;

e device status—configuration, temperature,
operating modes, failure modes;

® parameters—mass properties, scale factors,
biases, alignments, noise levels;

o resources—power and energy, propellant, data
storage, bandwidth;

® data product collections—science data, mea-
surement sets;

® data management and transport policies—
compression, deletion, transport priority; or

o externally controlled factors—spacelink sched-
ule and configuration.

MDS reports, stores, and transports information
about the system as histories of state, measure-
ments, and commands.

Systems engineers use state analysis to capture
mission objectives in detailed scenarios, keep track
of system constraints and operating rules, describe
the methods they will use to achieve objectives, and
record information about hardware interfaces and
operation. Throughout, the common framework
elements (vocabulary) unify all aspects of the design
process. For example, if the goal is to move a rover
to a rock, the state variable to be controlled is the
rover’s position relative to the rock. Measurements
provide evidence for that state—for example, wheel
rotations, sun sensor, or stereo camera. For a stereo
camera, measurement models indicate the distance
to terrain features, light level, camera power (on/
off), camera health, and so on.

Figure 1 shows the MDS goal-oriented state-
based architecture. Given a model of how things
work, estimators find “good” explanations for
measurement (sensor) and command (actuator)
data to estimate state. State variables hold state val-
ues, including the degree of uncertainty. To describe
state evolution, state timelines combine current and
past estimates with future predictions and plans.
Together, time-based state information and mod-

els of state behavior supply the information needed
to operate a system and assess performance.'

Operators express their intent in the form of
goals declaring what should happen—not how. The
operators and planners can elaborate the goals
recursively, and even conditionally, into lower-level
goals that are coordinated by a controller/sched-
uler that uses priority as the final arbiter to resolve
conflicts. MDS keeps state estimations and state
control completely separate to avoid the tempta-
tion to warp a state estimation to meet a control
objective or the risk of having multiple interpreta-
tions for the same data.’

Finally, MDS represents actual hardware com-
ponents in software as hardware adapters that facil-
itate the delineation of the abstract system model
(including time) by translating raw input/output
data and measurement and command models into
abstract declarations about state. In addition, soft-
ware-based hardware adapters can augment system
hardware with supplemental behaviors such as sam-
pling, I/O, sequencing and synchronization, time
and metadata tagging, data buffering and routing,
data format translation, error checking, and data
preprocessing and compression. More important
still, MDS isolates state frameworks from platform-
specific interfaces and supports real, simulated, or
abstract hardware in real or virtual time.

MISSION POSSIBLE?

Elevating state to a first-class entity and con-
trolling state through goals that constrain it over
time will guarantee an ambitious agenda for MDS.
Because MDS makes both state and the models
that describe it explicit, goals are self-checking by
nature, prescribing possible inputs and outputs.
Goals also provide hooks for model checkers, code
instrumentation, and verification and validation
tools to increase reliability.

A more intriguing possibility proposed by JPLs
Rouquette would use automatic code generation
for the vast majority of spacecraft system software.
Rouquette views current model checking tech-
niques as more suitable for niche problems, algo-
rithms, and carefully chosen pieces of code where
developers know what they’re looking for—
not for abstracted sections of code from large-scale
systems in which complexity arises from the inter-
actions between the different parts. Instead,
Rouquette is banking on code generation and
transformation techniques already used success-
fully in Deep Space 1.

Rouquette used the MathWorks’ Stateflow tool-
box and some homegrown tools to generate 90 per-

Telecommand '

State
variable

Estimate

Actions

estimator

ropagate

Hardware
adapter

Hardware

v

Sensor

Actuator

State

Controller

;

Measurements Commands

Goals

Elaborate

Coordinate

cent of the code for the DS1 fault-protection sub-
system from 60 or so state machines. Since build-
ing such models can take several months and they
can be revised 50 or more times, automatically gen-
erating efficient C code with a small code footprint
was a huge win—allowing talented engineers to
build the system via models, as in civil engineering,
rather than waiting for programmers to code, ver-
ify, and, more often than not, recode the particular
system repeatedly. However, this solves only half
the problem.

Over the past decade, code generators have indeed
become more clever, progressing from “dumb” pro-
gramming tools that do simple string manipulation
to something more akin to a compiler that can parse
a specification to gain a notion of valid input and
then perform internal processing to produce some
output. While these more sophisticated tools now
do a very good job on the input side, says Rouquette,
there is far less assurance on the output side, espe-
cially when producing output in languages whose
meager semantics are difficult to prove formally and
hard for model checkers to check.

With its state-based models, MDS offers a more
formal expression of valid input and output.
Smarter languages with higher levels of abstraction
will facilitate model checking and make it possible
to apply modern compiler technology and algo-
rithms such as pattern matching, tree recognition,
and algebraic formalisms for operations on trees
to code generators themselves.

Rouquette’s grand vision is to generate 95 per-
cent of the Mars Science Laboratory code auto-
matically, leaving only a small runtime that will be
coded manually and will require extensive model
checking and testing for validation. Space is a

Telemetry

Figure 1. MDS
architecture. A goal
is a constraint on
the value of a state
variable over a time
interval. State
variables hold state
values, including
degree of
uncertainty. Models
express mission-
specific relations
amonyg states,
commands, and
measurements.
Estimators interpret
measurement and
command evidence
to estimate state.
Controllers issue
commands, striving
to achieve goals.
Hardware proxies
provide access to
hardware buses,
devices, and
instruments.

January 2004

largely unknown environment, says Rouquette, and
the only way to ensure mission success is by having
the many bright people involved use their knowl-
edge, imagination, and time to engineer systems
instead of writing code. “Analyzing rocks on Mars
sets our expectations way too low, and there are
many other nice places to go. But we have to make
these things dirt cheap and a sure thing.”

to develop provably reliable software within

tough constraints, NASA has a chance to
deliver even more than the results of the scientific
probes it launches. “We’re the engineers,” Tom
Gavin says, “but we do this in the name of sci-
ence.” Whatever progress the space agency makes
in addressing its own software issues seems likely
to advance the state of the art, contributing to com-
puter science as well as software engineering. In
addition, any successful spin-off that improves reli-
ability while cutting development time and costs

B y exploring new technologies and approaches

SCHOLARSHIP
MONEY FOR
STUDENT
== |EADERS

Student members active in IEEE Computer
Society chapters are eligible for the Richard E.
Merwin Student Scholarship.

Up to four $3,000 scholarships are available.
Application deadline: 31 May

IEEE .3@

COMPUTER
SOCIETY

Investing in Students

www.computer.org/students/

Computer

could, in principle, generate savings for US indus-
try equal to the nation’s budget for space ex-
ploration.

Acknowledgments

We thank Erik Antonsson, Matthew Barry,
Guillaume Brat, Daniel Dvorak, Martin Feather,
Erann Gat, Tom Gavin, Dimitra Giannakopoulou,
Klaus Havelund, Gerard Holzmann, Michael
Lowry, Kenny Meyer, David Nichols, Tom Prince,
Kirk Reinholtz, Nicolas Rouquette, and Willem
Visser for their time. In addition, we owe a great
debt to Lisa Townsend at JPL and Michael
Mewhinney and John Bluck at Ames for arranging
the interviews with these researchers.

References

1. D. Dvorak et al., “Software Architecture Themes in
JPL’s Mission Data System,” Proc. AIAA Space Tech-
nology Conf. and Exposition, 1999; http://x2000.
jpl.nasa.gov/nonflash/publications/aiaa99_mds_final.
pdf.

2. G.Holzmann, The Spin Model Checker: Primer and
Reference Manual, Addison-Wesley, 2003.

3. K. Havelund and T. Pressburger, “Model Checking
Java Programs Using Java PathFinder,” Int’l]. Soft-
ware Tools for Technology Transfer, vol. 2, no. 4,
2000, pp. 366-381.

4. W. Visser et al., “Model Checking Programs,” J.
Automated Software Engineering, vol. 10,2002, pp.
203-232; http://ase.arc.nasa.gov/jpf/papers.html.

5. K. Havelund and G. Rosu, “Monitoring Java Pro-
grams with Java PathExplorer,” Proc. Workshop
Runtime Verification, Electronic Notes in Theoreti-
cal Computer Science, vol. 55, no. 2, 2001.

6. D. Dvorak, “Challenging Encapsulation in the Design
of High-Risk Control Systems,” presentation, Conf.
Object-Oriented Programming, Systems, Languages,
and Applications, Seattle, 2002.

Patrick Regan is senior correspondent for science
and technology at NJN News on New Jersey’s pub-
lic television and radio network. Contact him at
patrick.regan@ieee.org.

Scott Hamilton is Computer’s senior acquisitions
editor. Contact him at s.hamilton@computer.org.

