
An information system for the
coordination of program design

by L. BERNSTEIN a n d F. E. SLOJKOWSKI
Bell Telephone Laboratories, Inc.
Whippany, New Jersey

INTRODUCTION

The best tool for coordinating a large program design
project is the computer itself. The programmer is on
intimate terms with the computer. He uses it to create
his product, to test his product, and to change his
product. If he is one of many programmers, all working
on a single program system, his activities blend with the
activities of others at and within the computer. The very
nature of program design is such that an automated
management system, built within the object computer 1,
can be extremely beneficial in coordinating program
design.

The Program Management System (PMS) has been
designed with this thought in mind. The PMS is an
automated system specifically organized to meet the
design, coordination, and management information
needs of today's large program production projects.
Program designers enter actual design documentation
into the PMS as their design progresses and selectively
retrieve the documentation of others. The PMS is a tool
in-line with the program development process. The use
of the PMS today should help establish procedures
which will lead to more systematic approaches to
program development. This, in turn, will increase the
usefulness of the PMS itself.

We particularly have in mind large-scale program
development for which "program production" is a
better term. Typically, such a project has the following
characteristics: the end product is 100,000 machine
instructions for a real-time application2; 200,000 more
instructions are needed for support programs to aid
system design, test, and integration; the product is due
in three years, when one year of system integration
begins; the design organization consists of 100 program
designers, 30 engineering analysts, and 30 system
engineers; only general system requirements are known
at the beginning, and these have been prepared with
little thought of implementation.

The program production process

The literature suggests that the approach to such a

project is reasonably standard/,4,5,6 The procedure is
shown in Figure 1. System engineers prepare perform-
ance requirements which describe the operations of the
software subsystem in light of overall system require-
ments. Engineering analysts, working with lead pro-
grammers, translate these requirements into program
functional specifications. In this activity, they identify
major program blocks, describe their functions and
interrelationships, and impose the first structure on the
software subsystem. These same people, with the help
of more programmers, next prepare program design
specifications. Here, they structure the software subsys-
tem in much greater detail: they define components of
the major program functions, and specify equations,
algorithms, and data handling techniques.

Next, implementation begins. Programmers translate
the equations, algorithms, and data handling techniques
into program instructions and describe the impelmenta-
tion in a program design description. The first level of
testing then takes place as code is debugged and
completed blocks of code are tested to prove that the
blocks operate as described in their design specifica-
tions. As the several blocks which comprise a major
function are verified, they are integrated and tested as a
function. The success of this test is measured by
whether or not the blocks, taken together, properly
perform the operations described in the functional
specification.

Finally, functional integration takes place. The per-
formance requirements provide the criteria by which
proper operation of the integrated functions is judged.
Most likely, the major part of this level of integration
takes place at the site of the prototype system installa-
tion, where all of the major system components, hard-
ware and software alike, are brought together for the
first time.

Throughout this overall development process, it is
essential that each step produce thorough documen-
tation, z Basic system requirements can be constantly
changing during program development and such
changes can affect the smallest detail of code. Ob-

87

88 P r o c e e d i n g s - A.C.M. National Meeting, 1966

HARDWARE/SOFTWARE
SYSTEM REQUIREMENTS +

SYSTEM ENGINEERS
SPECIFY SOFTWARE

PERFORMANCE PROGRAM

.L- iJ PERFORMANCEt .- .
• - IREQUIREMENTSI ~ ~

ENGINEERING ANALYS ~
LEAD PROGRAMMERsT~ / ~ FUNCTIONAL INTEGRATION

SPECIFY MAJOR [. 11"~1~ AND SYSTEM
PROGRAM FUNCTIONS 1 t /~ i [T E S T S 31 I PROGRAM L.

/ d FUNCTIONAL [/ /
~" ~ F I ~ ' I ' () N S r - ~ ..z / / ,

ENGINEERING ANALYSTSJ / ' ~ ~ ~ ' - - - " / /..~1 BLOCK
PROGRAMMERS ~1~ • ~ / , / ~ INTEGRATION

SPECIFY PROGRAM i . / / ~ AND FUNCTION /
/ = I DESIGN I _ / / /

J / PROGRAM "1/,' --'''1
~1 DESIGN I / / & !

Figure 1 - - The program development process

viously, when program changes are required, they will
be accomplished much more quickly if complete and
up-to-date documentation is available. 6 More impor-
tantly, however, fewer changes will be required; for,
with adequate documentation available during specifica-
tion and implementation, better communication will
take place between designers. Potential problems will be
corrected before they can propagate.

The program development process can be plagued
with problems arising from several sources. One main
source is the large number of people involved in
program development. At the very least, this introduces
the problem of discovering and disseminating informa-
tion about what everyone is doing. At the worst, it
creates the problem of assuring that, when a new system
requirement is imposed or an old requirement changed,
all those whose design is affected are made aware of the

change and thoroughly understand it. This is particu-
larly critical in the design of today's real-time systems in
which the smallest blocks of code are highly special
purpose: a change in system requirements often re-
quires a change in each of five blocks rather than a
change in the way a single block uses five library
subroutines.

The number of different program development activi-
ties taking place at one time introduces further prob-
lems. Specification, testing, and integration of various
blocks of code often occur simultaneously. In one sense,
these activities are separate; if possible, the limited state
of development of one block must not prevent progress
on other blocks. In another sense, they are highly
interdependent; all blocks must eventually be complete
and operating together by some fixed date. Somehow,
information about these activities must be derived from

An Information System for the Coordination of Program Design 89

documentation and studied from both viewpoints.
Further problems occur when, fostered by the com-

plexity of the program production process, misunder-
standings arise between designers. The misunder-
standing may concern the smallest d e t a i l - the units,
scaling, or name of a variable, for e x a m p l e - but the
repercussions may be far-reaching. 6 Such misunder-
standings, however, are often symptoms of weaknesses
in man-to-man communication which must be fostered
among designers throughout the project.

Objectives of the program mana'gement system

The PMS is intended to provide solutions to these
problems in several ways. First of all, it allows the
major part of design coordination to be carried out by
the designers themselves. In the PMS, designers store
documentation on each program block they are con-
cerned with. In their documentation, they identify the
type of design activity they are currently involved i n -
specification, implementation, or testing. They also
identify, by name, every other block which, a) "uses"
their block as a sub-function, b) is "used by" their
block, c) "sends outputs to" their block, and d)
"receives inputs from" their block. The PMS automati-
cally creates internal references* between their docu-
ments and the documents describing any blocks in these
four categories.

In this way, designers impose a structure on the
information in the PMS. This structure reflects the
structure of the program production process actually
taking place. This structure evolves with time as new
requirements are imposed on the program system, as
new personnel are added t o t h e job, and as design
progresses. As a result, the PMS is more like a
generalized file system for related data than like an
automated library.

Once design documentation is stored in the PMS, it
can be relatively easily maintained using automated
editing. Moreover, each time a programmer approaches
the computer in his day-to-day work, he has at his finger
tips all the documents of other designers. Using indices
prepared by PMS, he may selectively retrieve any
information of interest to him.

But the PMS is to be an active contributor to the
coordination and management of program production
projects, not merely a passive storage and retrieval
device.

Since the information within the PMS reflects the
program production structure, the PMS can be an
especially powerful tool for aiding management and
coordination. Any automated operations performed in

*The term "internal references" is used to describe the connec-
tions between files containing documents within PMS. These
connections are implemented using list processing techniques.
The term "references" is used to indicate the relations between
the blocks being documented.

the information system are simultaneously carried out
across the product space, the functions and programs
being designed, and across the production activity
space, the designers and their various tasks. In other
words, "what is being done" and "how it is being done"
are intimately bound together in the information. The
PMS makes use of this fact in a variety of ways.

The PMS traces the references between documents to
find meaningful subsets of documentation. Traces along
the "uses" references locate documents within a nested
hierarchy of program blocks. Once these documents
have been found, they may be analyzed to obtain
answers to particular instances of the general question,
"Is the whole equal to the sum of the parts?" Such
questions might include, "Are the schedules of the
blocks compatible with the schedule of the block they
belong to?"; "Is the intended function of the major
block reflected in the combination of its component
blocks?"; "If I must change the major block, what
component blocks may require changes?"; etc.

Traces along the "inputs" and "outputs" references
locate documents along an operational p a t h - a chain
of blocks which transforms a given set of inputs into a
given set of outputs, thereby accomplishing one of many
operations which the overall system performs. These
documents may be analyzed to obtain answers to
specific instances of the general question, "Are there
any weak links in any operational chain?" Here, typical
questions might be, "If Block B receives inputs from
Block A, does the documentation on these two blocks
describe the variables identically?"; "If the outputs from
a block must be changed, who are the designers of all
the blocks which use that output and must therefore be
consulted on the change?"; "What level of development
has each block in a given operational chain achieved, so
I may know when the complete operation may be
tested?"; etc.

In addition to these features, the PMS also diagnoses
the information it contains. For example, it will com-
pare the description of a common interface as contained
in two or more documents. Any inconsistencies found
will be reported to the designers involved.

These reference-tracing and consistency-checking ca-
pabilities will also be extremely useful to managers of
program production. Even though the designers them-
selves impose the structure on the information, it is
management's job to assure that this structure matches
some desired objective. The PMS will, in some cases,
automatically aid in determining this and, in other
cases, will provide access to all the information needed
to discover problem areas.

Design requirements on the program
management system

The objectives of the PMS, therefore, impose three

90 Proceedings--A.C.M. National Meeting, 1966

basic requirements on its design: 1) an information
structure imposed by the users; 2) the binding together,
in the information structure, of information describing
the product and information describing the activities
producing the product; 3) the means for analyzing the
information ,o derive insight into the development
activity. Add to these the further requirement that the
system be physically configured so that the users may
make it a part of their daily routine. Together, these
form the basic design requirements on the PMS.

A big step toward the requirement of convenience
lies simply in the fact that the PMS is a computerized
system: program designers will find it easy to use and
easy to find, for it will be in the same computer for
which they are designing programs. It will be imbedded
in a time-sharing system which itself is being designed
especially for use in the program design, test, and

integration activities of large program production proj-
ects.

This time-sharing system, however, is not yet opera-
tional. Therefore, we have built a "simulated" PMS
operating in a batch mode on the IBM 7094. This sys-
tem is providing much-needed insight into both the
further design of the PMS and its relation to the user.
This "simulated" PMS, shown in Figure 2, is the system
which will be described in the remainder of this paper.
However, we ask the reader to adopt the same attitude
we had when we designed the system - - always keep in
mind the ultimate time-sharing environment in which
the PMS will operate.

Several criteria were important in the design of the
batch system. First of all, it was important that the
system be operational as quickly as possible. For this
reason, we made extensive use of various software

USER

I KEYWORD ~__[REFERENCE I ~
PROCESSOR r i PROCESSOR V

REPORT
GENERATOR

'1

INFORMATION PROCESSING SUBSYSTEM

~r

STORAGE
AND

"lb RETRIEVAL
MECHANISM

DISK

OUTPUT
--Ib ROUTINE

V

L
11'

LINE
BY

LINE
EDITOR

k

i
CONTEXT

EDITOR

f I

INFORMATION STORAGE
AND RETRIEVAL SUBSYSTEM

\

' HAl y COl

Figure 2 -- PMS block diagram

An Information System for the Coordination of Program Design 91

facilities developed elsewhere in the Bell Laboratories.
Expediency took precedence over final operational
efficiency.

Secondly, we wished to use this "simulated" PMS to
acclimate the users to the idea of using automated
methods of documentation maintenance and analysis
and to test user reaction. Therefore, the use and
operation of the batch system is supported by a rather
extensive staff operation. The staff personnel shield the
users from the sometimes tedious operations necessary
in translating information processing requests into actual
batch runs. These tedious aspects will disappear under
time-sharing and we do not wish to foster antagonism
before that time.

Documentation plan

The design of PMS included the specification of a
documentation plan which simplifies the process of
recording design information and storing it in PMS.
This plan identifies the minimum set of documents
needed for adequate documentation of a program
design effort as:

1. Functional Specifications
2. Design Specifications
3. Design Descriptions
4. Test and Evaluation Documents
5. Work Control Documents

Studies of the information that should be included in
each of these led to the realization that a single format
would accommodate most of the information needs of
the first four. Naturally, this format can be modified
where necessary; in fact, the plan is designed so that it
can evolve to satisfy new documentation requirements.

Before describing this single format we shall briefly
examine the requirements for each document, based on
the program production process described earlier in the
paper. More detailed descriptions can be found in the
literature.5. 6

Functional Specifications are prepared by systems
engineers. They contain a "black box" description of
what each program block will do. As the name denotes,
these specifications translate performance requirements
into the functions each program block will perform, and
contain a description of its interfaces.

The Design Specifications are prepared by system
program designers; they contain descriptions of how
each block is to perform its assigned function and
contain the equations or algorithms the block is to
execute.

The Design Descriptions are prepared by the pro-
grammers while they are writing their code. They
contain the detailed descriptions of calling sequences,
data scaling, error recovery provisions, etc., and a well-
commented program listing.

The Test and Evaluation documents are prepared by
system engineers responsible for test planning. They
contain descriptions of subsystem tests and acceptance
tests needed to verify and evaluate system performance.
These tests involve test programs and procedures which
themselves require essentially the same documentation
as program blocks.

The Work Control Documents needed for project
coordination are prepared from information extracted
from all of the above. They contain summary informa-
tion indicating the status of the overall design effort, as
well as a breakdown of the status of the individual
program blocks.

The single format document which can be used to
satisfy the needs of each of the first four documents
contains the following general items:

1. Title - - This is the name of the system block being
specified or described. It must be unique among all
system blocks. This requirement is imposed both
by system coordination and PMS design considera-
tions.

2. Heading m This item contains a variety of entries
identifying the person responsible for the design
and key descriptors of the block or document. One
such descriptor is the type of document which
would be either Functional Specification, Design
Specification or Design Description.

3. P u r p o s e - - A one or two sentence narrative
stating the purpose of the block within the system.

4. Descr ip t ion- -Approximate ly a 500 word dis-
course on the functions the block performs.

5. Inputs - - The data and /or control information the
block receives and the name of the block where it
originates.

6. Outputs - - The data and /or control information a
block provides and the name of the block where it
goes.

7. References m The connectivity information iden-
tifying the relation of this block to other blocks in
the system as well as references in the literature.
As indicated earlier, one set of references reflecting
the program production structure consists of
"uses" and "sends outputs to" and their inverses
"used by" and "receives inputs from."

8. D i a g r a m s - Block and /or flow diagrams describ-
ing the block operation.

9. Block Test Plan - - An account of how this block
will be or was tested as a separate unit. It would
include the test procedures and test results neces-
sary to verify the operation of the block.

To see how this single format can be applied to these
varied documents let us consider the Inputs item. In a
Functional Specification, this item would contain the

92 Proceedings--A.C.M. National Meeting, 1966

names of the other blocks sending data to the one being
documented. If the inputs are known explicitly to the
system engineer, he would list them along with the
accuracy, rate of data availability, etc. However, the
system engineer usually only identifies the class of data
being transferred between blocks, so this is what he
would list. The Design Specification would explicitly
identify each data and control variable along with its
source, precision, rate of availability, etc.

Then, the Design Description would contain the
detailed description of the variables including their
format, scaling, operand memory location and packing.
If this information is described in a data set description,
the Design Description for the program would identify
the data set and the variable name. Note that in this
case a Design Description would be written for the data
set as well as the program.

The total documentation of a program block can be
viewed as the combination of these three documents.
While they are usually prepared by three different
persons, it is useful to produce one single document
containing the information written by all three. As
shown in Figure 3, PMS provides the capability to
produce this single document.

To simplify the designer's task in originating informa-
tion, he is provided with an outline format, more
detailed than the one above, so that he can "fill in" the
appropriate items.

At a later date the information user can request PMS
to automatically extract specified items from all or some
subset of the documents. For example, the system
coordinator could request PMS to compile the heading
items from all documents to produce a single coordina-
tion document.

PMS
SINGLE FORMAT
DOCUMENTATION

FORM

SYSTEM
TEST

ENGINEER

I TEST 6 /
EVALUATION

SYSTEM
ENGINEER

_ ~ J FUNCTIONAL ~ . ~

I

PROGRAMMER _ ~] DESIGN ~ L

PMS
STORAGE,

PROCESSING
RETRIEVAL

COM PUTER

&

I WORK l
CONTROL l

SINGLE
COMBINED
DOCUMENT
FOR EACH
PROGRAM

Figure 3--PMS user interfaces

An Information System for the Coordination of Program Design 93

Functions of PMS

Once documents are prepared using the outline
format they can be processed by PMS. The functions
PMS will perform are:

1. To store and retrieve these documents.

2. To provide internal references between documents.

3. To process internal references and information to
answer questions about the design and implemen-
tation of the system as documented in PMS.

4. To format the answer to questions.

Since PMS is a user oriented system it is designed
according to the following criteria:

1. PMS must be devoted fully to needs of a user. He
should be able to modify and augment the system
as his needs dictate and have access to information
in a variety of ways.

2. PMS must be simple to use. There should be some
meaningful subset of the system which a user can
teach himself by reading a manual or operating a
user's console in an "instruction mode".** Natu-
rally, in order to use PMS in a more sophisticated
manner the user must have more sophisticated
knowledge of the system. Nevertheless, there must
be a simple method of using the system.

3. PMS must be evolutionary. When new features are
added to PMS, service should continue during the
installation phase. This implies that new features
should be designed within the framework of PMS
and in turn that this framework provide for an
open ended growth.

4. PMS must provide extensive default mechanisms
for all command options and make reasonable
decisions wherever possible.

Data organization

The documents are stored in the PMS information
pool. z,7,s This pool consists of files each containing a
document describing a program block. The name of the
file corresponds to the name of the block.

The file in turn is made up of subfiles and a set of
internal references to other files. Each subtile contains
an item of the document as described earlier.

A subtile is an information set which can contain text
descriptions, equations, graphical data (diagrams) or
tabular information. In general, a subtile will consist of
one of these types of information with the exception
that equations can be interleaved with text or graphical
data. Thus, a subtile can contain any kind of informa-

**Once the system enters its time-sharing mode of operation, the
use of a user's console in an instruction mode would permit the
computer to explain to the user via CRT or a typewriter, how
he can use the console and give him examples so that he can
"learn by doing."

tion in a specified format, and it can be as long as
desired, within the physical limitations of the storage
mechanism.

The internal references are stored as reference sets
for each file. They differ from the subfiles in that they
express the links between program blocks or files. A
reference consists of its type, the two file names
involved in the connection and some baggage carried
along as a modifier. The baggage facility permits the
user to define in more detail the relation between files.
For example, if the user considers such characteristics
as size of block or operating environment to be impor-
tant, he may specify these in the baggage and may later
modify the results of reference processing based on
these descriptors. The user designates references for his
block; PMS then automatically creates the inverse
internal references and checks to insure that the desig-
nated references are consistent with the internally stored
references.

File structure

Data is stored in PMS in a two-level file structure. 9
As we have seen, it is composed of a file with its
associated subfiles. A file only contains information in
the sense that its subfiles contain information. As
suggested by Nelson 1°, this file structure can be shaped
into various forms, changed from one arrangement to
another in accordance with the evolving program pro-
duction activities. This is accomplished by having the
subfiles and references be lists associated with the file
name. Thus, associated with the file is the file name, a
list of pointers to its subfiles and a list of pointers to
other files. 11, 12 Internal references between subfiles are
not permitted; however, there are as many two-way
internal references between files as reference types. The
user can augment the structure of the information pool
for his own need by defining a new internal reference
and applying it to existing files and newly created ones.

The references which reflect the program production
structure are of interest to the project as a whole. These
reference types appear on the. documentation form and
pointers are provided within each file for them.

A subtile can contain as much information as desired
and any number of subfiles can be defined for a file. The
information set can be stored in a subtile in either a free
format or a defined format mode.

The free format mode permits the storage of an
unlimited amount of text. The defined format mode can
be used to define a structure to the extent that the
subtile consists of several subitems, each with relatively
free format, or to the extent that each field in ~he subtile
is fixed. The more explicit the format definition the
more efficient the processing of the subtile will be. In
this sense the defined format mode provides a facility for
multi-level definition of the structure of a subtile.

94 P roceed ings - A.C.M. National Meeting, 1966

An example oJ PMS f i le organization

Figure 4 illustrates this data organization. Program T
consists of Routine 100 which in turn consists of the
subroutines A, B, C. A data flow diagram for Routine
100 is shown. This diagram would be encoded and
stored in the diagram subtile of the file named Routine
100.

The information pool would be organized as shown
on the upper right side of Figure 4. Each block
represents a PMS file. The references are shown explic-
itly as arrows and several subfiles for subroutine A are
shown.

Organization of simulated PMS
PMS is composed of two subsystems, the Information

Storage and Retrieval Subsystem and the Information
Processing Subsystem, as shown in Figure 2. These
subsystems perform the document handling and pro-
cessing functions listed earlier. A description of each
subsystem follows.

The maintenance, modification, storage and retrieval
of information in PMS is the concern of the Information
Storage and Retrieval Subsystem. This subsystem con-
sists of the directories used for disk storage, editing
program, and a documentation form input and output
routine.

SOFTWARE BLOCK FLOW DIAGRAM DOCUMENTATION AND
REFERENCES IN

COMPUTER STORAGE

PROGRAM T

ROUTINE I 0 0
CALL A(a, ,8) ~
CALL B (~ ,~ ')$
CALL C (~,~; 8)

/ I
/ I

/ I
• I

"\ I
\ I

M

CALL A

CALL B

CALL C

' f ,
I I i I

I ROUTINE I

FILE

INTERNAL REFERENCES

- - - - I b ' USES • USED BY

SENDS ~ RECEIVES
OUTPUTS INPUTS
TO FROM

Figure 4 - PMS data organization

An Information System for the Coordination of Program Design 95

A line-by-line editing facility is provided so that the
user can change any line containing any type of
information or insert lines in his subtile by specifying
the line number automatically provided by the system.

A context editing facility is also provided which
simplifies the process of modifying text descriptions,
since subfiles are primarily used for this type of informa-
tion. This program finds an arbitrary length character
string in the subtile and changes it, deletes it or adds
another string after it. This context editor also para-
graphs the information and permits editing of equations
imbedded in the text. Provisions are made for special
layouts; however, every option has a default mechanism
designed to follow "natural" conventions so that the
user need not be conscious of special conventions when
he is creating his information.

Currently, a general purpose output routine will
f0mat data for output on the Stromberg Carlson Mi-
crofilm Plotter or for a high speed printer. Data can also
be, written on a special tape and used as input to a
digital display device. Since the device is not electrically
connected to the IBM 7094 we cannot realize on-line
interaction with the information retrieval system. How-
ever this feature is essential to maximum effective use of
the system, and will be provided in the time-sharing
version of PMS.

A group of routines for processing the information
stored in PMS comprises the second PMS subsystem,
the Information Processing Subsystem. Each routine is
independent of the others, and can be used indepen-
dently or in conjunction with the others to derive a
result. The two classes of information processing are
subtile processing and reference processing.

The subtile processing routines extract information
from subfiles and manipulate it to either generate a
report or answer user questions.

These reference processing routines comprise the
reference processor which allows the user to operate on
the internal references and on sets of file names. The
operations permit the tracing of reference trees 9, 11, 18 as
well as correlating sets of tile names. This processor
consists of two sections. First it can find the image or
inverse image of a set of file names for a particular
relation. For example, it can find the set of all tile names
Y such that

Y = t YdY~=R(a) I

where R is a fixed relation and a is a file name. In the
example shown in Figure 4, the set Y which routine 100
"uses" consists of subroutines A, B, and C.

Secondly, a means of correlating two sets of file
names to produce a third is provided. The operators
available are the usual set o p e r a t o r s - union, intersec-
tion, difference, and symmetric differences. The ability

to compare two sets for equality, and to select individu-
al elements from a set is also provided.

To implement this processor, a dynamic storage
allocation facility 14 is required which permits the re-
questing and releasing of memory blocks as sets expand
and contract. This feature will even be more essential in
a time-sharing environment where several programs
reside in core simultaneously. Some limitations in the
current reference processor are the inability to specify
universes for set operations - - the universe is simplicitly
the set of all file n a m e s - and the inability to index
elements within the set. These limitations will be re-
moved during the next phase of the PMS design.

When PMS was applied to a large software system it
was found that the users needed a set of indices - - these
provide an index by document title (file name), an
author index, and a generation breakdown or "where
used" index. Therefore, a special purpose index pro-
gram was designed, the report generator, which would
operate on the desired information in the file to form
these indices. This program can also extract a common
subtile (or subfiles) from each file and list it along with
the sorted data. Thus, PMS is able to automatically
create a set of indices from a set of source documents
without manually extracting information from each file.
This index routine can also be applied to any selected
set of files resulting from a request made of the
reference processing routines.

Typical requests.
This section describes how the PMS responds to

some typical retrieval requests.
1. What is the purpose of all the subunits of routine

100 which are involved in storage allocation?
a. Locate the routine 100 file, using the Informa-
tion Storage and Retrieval Subsystem.
b. Find the set of file names which are "used by"
routine 100, using the reference processor. Y =
USED BY (Routine 100)
c. Locate the purpose subtile for each member of
Y, using the retrieval subsystem.
d. Search each puri~ose subtile for mention of
"storage" or "allocation." Separate from Y all
those that contain these words.
e. Output each file name found in d. and its
purpose, using the output routine.

2. What are the subunits of routine 100 which send
inputs to subroutine B? Alphabetize these files by
title and output the input subtile along with the
file name.
a. Locate the Routine 100 file, using the retrieval
subsystem.
b. Find Y = (USED BY (Routine 100) and
SENDING INPUTS TO (Subroutine B)} using
the reference processor.

96 P roceed ings - -A .C .M. National Meeting, 1966

c. Alphabetize the elements of Y, using the Report
Generator.
d. Find the input subtile for each member of Y,
using the retrieval subsystem.
e. Output Y with the input subtile, using the output
routine.

A compiler will be written to translate these requests
directly into PMS commands. For now, a request must
be manually translated into detailed PMS commands for
a result.

PMS environment

Since the application of PMS deals heavily with text
descriptions or equations, a string manipulation lan-
guage 15 and a set of string macros developed by
McIlroy TM has been used to operate on the information
stored in the subfiles. However, this does not prevent
the user from writing his own program to operate on
numeric information stored in the subtile. In the on-line
time-sharing mode of operation a string language,
having the capabilities of TRAC 17 will be available to
the user.

SUMMARY

As an information system PMS principally provides the
information supporting the various activities associated
with a complex program design project. The complexi-
ties of such a system have been explained and the
characteristics of an information system supporting such
an activity have been identified.

When a user approaches the PMS system he needs
help in finding the information he is interested i n - a
reference processing facility will assist him there. Once
he has found the information he wants, it is processed in
the way suited to his n e e d s - the information process-
ing facility will assist him here.

The storage and retrieval subsystem provides a
means for storage of descriptive information in subtiles,
and a means for linking files together in a variety of
ways to create reference trees.

The processing subsystem requires a means for
accepting stored information as data and processing it
according to user specified procedures written in a high
level language. Thus PMS provides statements which
will

1. Find the file or files containing information of
interest using references and detailed links.

2. Extract a subtile from a file.
3. Perform operations on the data.
4. Output the information after editing, sorting and

formatting the information as requested by the
user. In the case of editing the stored information
will be updated and the edited information will be
outputted to provide the user with the results of his
editing.

REFERENCES

1 .1 w PERRY A KENT
Documentation and in]ormation retrieval
Western Reserve University Press Cleveland Ohio 1957
chapter 6

2 w KEISTER R W KETCHEDOE H E VAUGHAN

No. 1 ESS system organization and abjectives
Bell System Technical Journal XLIII September 1964
pp 1831-1844

3 w H DESMONDE
Real-time data processing system introductory concepts
Prentice-Hall Inc. Englewood Cliffs N J 1964
pp. 137-147

4 R J COYLE J K STEWART

Design o/a 'real-time programming system'
Computers and Automation vol 12 no 9
September 1963 p. 31

5 R V HEAD

Real-time program specifications
Comm. ACM 6 July 1963 pp. 376-383

6 T A H O L D I M A N

Management techniques/or real-time Computer
programming
J ACM July 1962 pp. 387-404

7 T HARLOW

Research in in/ormation retrieval--An investigation of
the techniques and concepts of in/ormation retrieval
Technical Report 5400-TR-0096 AD 461099 July 1964

8 R P BARRETT

CIRC - - Centralized in/ormation retrieval and control
Proceedings of Workshop on Working with Semi-Automatic
Documentation Systems AD 620360 AFOSR 65-1699
May 1965

9 E H SUSSENGURTH

Use of tree structures/or processing files
Comm of ACM vol 6 no 5 May 1963 pp 272-279

10 T H N E L S O N

A file structure for the complex, the changing and
the indeterminate
Proc ACM August 1965 pp. 84-100

11. D T ROSS J E RODRIGUEZ

Theoretical/oundations]or the computer-aided
design system
Proc SJCC 1963 pp. 305-322

12 c w BACHMAN S B W I L L I A M

The integrated data store - - A general purpose
programming system/or random access memories
AFIPS Conference Proceedings 1964

13 J BECKON R M HAYES

In/ormation storage and retrieval: Tools, elements,
theories
John Wiley & Sons Ine New York 1963 Chapters 13-14

14 w s BROWN
An operating environment/or dynamic-recursive
computer programming systems
Comm ACM 8 June 1965 pp. 371-377

15 D .1 FARBER a E GRISWOLD I P POLONSKY

SNOBOL, A string manipulation language
J ACM ll January 1964 pp. 21-30

16 J D MC ILROY
A string manipulation]or FAP programs
Unpublished

17 C N MOOERS L P DEUTSCH

TRAC, A text handline language
Proc ACM August 1965 pp. 229-246

