
SOFTWARE MANUFACTURING

L. Bernstein
C. M. Yuhas*

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper suggests a unique method of organizing and
staffing for the production of deliverable computer-
based systems which takes advantage of assembly-line
techniques. Although these production activities are
common to most projects, Software Manufacturing is de-
fined here as an inline, rather than support, function
requiring special skills. A system development cycle
is described, detailing the Software Manufacturing
tasks with considerations for introducing this
functions into existing development efforts. This
organizational approach is concluded to lead to system-
atizing the production of software, to opening career
opportunities for technician and production level
people, and to better managed product development.

properly named, nor is it formatted for subsequent up-
date and inclusion in a data system. Since a computer
program is not deliverable software by itself, it
therefore cannot be adequately handled by clerks alone.
We would suggest that the missing link which satisfies
"package-deliver-keep it working" parts of the objective
is the function of Software Manufacturing. We would
also suggest that this function requires disciplines and
organization alien to both the innovative designer and
the traditional clerk. It is in the direct line of
delivering the product and is not a support function.
Given certain piece parts, the Software Manufacturing
function produces a tangible product. The piece
parts are as follows:

Introduction

When we consider the functions that must be performed
in creating and delivering a large-scale computer-based
system, the issue is fraught with difficulty. Struc-
tured programming, top-down design and other fashionable
buzz-words immediately spring to mind. The problem is
confounded by the bias of creative designers and
managers, which was neatly put by Bertrand Russell when
he said:

"Work is of two kinds: first, altering the
position of matter at or near the earth's surface
relative to other such matter; second, telling
other people to do so. The first kind is
unpleasant and ill paid; the second is pleasant
and highly paid."

Those very necessary functions of documentation, change
control, and actual software production tend to be
viewed by designers and managers as falling into the
first category of work. Therefore, these functions are
often relegated to clerks who are ill-suited to perform
them, or they are done haphazardly at the expense of
the design work and the customer, or they are not done
at all.

This paper will address only those functions which get
the product out the door and keep it working. That
doing these functions efficiently requires an unique
organization and a different "mental set" from the
design processes will be discussed. We offer no rigid
formulations, simply a viewpoint that has evolved from
the experience of working with computer systems.

What Is Computer Software Manufacturing?

Our objective is to create a computer-based system,
package it, deliver it to one or more customer sites,
and keep it working. Organizing software development
along the lines of using a chief programmer with the
aid of librarians and assistant programmers is a notion
calculated to improve innovation and productivity with-
in the present concept of programming as an art. This
is well and good for the "create" part of the objective,
but who shall handle the remainder? Clerks are tradi-
tionally concerned with keeping established information
orderly. The key word is "established." Figure 1 shows
a program which could compute the largest value of 3
numbers in some language, on some machine. This is not
a piece of "established" software because it is not

*Former Bell Laboratories Employee

- initial code (programs, data descriptions, cataglogue
procedures)

- initial documentation (design and user documentation)
- updates or changes to the initial code and

dccumentation
- trouble reports
- configuration definitions.

The product is the deliverable software for each site,
properly named and structured for configuration manage-
ment purposes. The deliverable software is comprised
of the following:

- computer programs
- data base descriptions
- Job control language statements
- inventory listings
- user documentation.

What Skills Does It Take To Do Software Manufacturing?

Before we can intelligently discuss the skills we would
like in a Software Manufacturing organization, we need
to examine the tasks which must be done in getting from
the piece parts to the assembled product. Though other
tasks can be identified, the following are probably the
minimum that must be done to get from here to there:

- accept individual components from designers
- update source code
- perform quality control on software format standards
- assemble object or executable code
- maintain listings
- build system for use by test team
- install on target machine
- check that documents and program releases exist

together where needed
- keep track of troubles
- keep track of changes
- identify configuration of each system build and note

changes
- prepare software for shipment
- reproduce software for each site
- ship software to sites with inventory lists.

Concurrently, someone must worry about purchasing
computer time, issuing management reports, and all the
other activities that keep the production wheels oiled.

Even a cursory glance at these tasks suggests that
these activities can impede the actual design function
if not done properly, yet they are too complex for
traditional clerical levels. The process of building

455

software and controlling it demands a technician with
some software training. Skills in Job Control
Languages, data base control and machine scheduling
are needed. Additionally, to develop tracking, testing
and report production subsystems, system analysis skills
are necessary.

Finally, volume production and quality control demand
an assembly-line, product-oriented frame of reference,
with emphasis on scrupulous adherence to procedures
and inventory control.

How May The Software Manufacturin5 Function Be Organized?

A system development cycle is shown in Figure 2,with the
Software Manufacturing tasks introduced at two points.
Between the programming group, doing the coding and
module testing, and the system test group, doing the
integration of modules, we find the block of Software
Manufacturing tasks concerned with controlling and
building a system for use by the test team. At the
completion of integration and test are the Software
Manufacturing tasks concerned with preparing and
shipping the system. Top down design and structured
programming technology may be applied during the
definition, design and implementation phases of this
cycle. Figure 3 shows a schematic of the manufacturing
cycle. A "new unit" is anything we can label and keep
track of as it is added to the system: new programs,
new documents. The "update report" contains the change
to either code or documents. A labelling convention
identifies the location of the change. New units are
placed in a data base. If programs, these units are
assembled or compiled to produce object code. Listings
are maintained and executable files (e.g. load tapes)
are created based on configuration specifications. If
the new units are user documentation, the master copies
are updated. Then the system is installed on the target
machine for designers to test.

This manufacturing cycle is best done on the develop-
ment machine used by designers to create the software
which will be executed on the target machine. These
two machines may or may not share the same physical
hardware. The facilities and operating systems used for
the development of the software may be different from
those used for the execution of the software as a
product. The development machine should be optimized
for increasing development productivity and software
manufacturing. The target machine should be optimized
for executing the product.

Notice that once a designer has turned over a new unit
or update, Software Manufacturing owns it. From this
point, the designer works from a copy and Software
Manufacturing maintains the only recognized, official
copy. 0nly Software Manufacturing may give systems to
the test group for testing and later ship systems to
sites. Programmers may not insert quick fixes in the
official copy even under the threat of a schedule slip
unless they are expedited through the Software Manufac-
turing mechanism. There are intermediate, measurable
milestones, such as turnover to the Software Manufac-
turing group, integration and system test. Further-
more, by these functions being separated out,
development groups are relieved of many of the
mechanical aspects of the software developing process
and management now has a way of managing by exception
rather than monitoring each element of the job.

The tasks concerning quality control, common standards,
and change control are related in that they require that
an identification system exist. To go back to our
first simple example in Figure l, Figure 4 shows how
that program can be identified as a piece of software.

It now contains a name on the Pident line, where the
Pident is the Product Identifier which names the soft-
ware and identifies its version including a software
change level. The change level in this case is AI.
The date indicates when this software was last changed.
Each line in this software unit is numbered sequentially
and each time that line changes, the change level on
the line is changed. All lines changed at that time are
are identified as AI. The program is also titled and
the programmer's name appears. The particular structure
shown in Figure 4 is just one of many that can be used
to format a computer program into a piece of software.
Other formats are equally valid. The point is that this
software now can be talked about as part of a larger
entity and can be identified as to what its present
configuration is, what its present state of change is,
and who the author and the presently responsible pro-
grammer are. Figure 5 is an example of what might be
standard requirements for program documentation and
commenting.

Now that Software Manufacturing has a firm grip on its
raw materials, let's look at what this group can do to
help with testing. Testers can select from this data
base according to their test schedules and be supplied
with test data, system tapes, configurations, and
listings. The software used to produce the test data
may be under control of the software manufacturers and
operated by them. The testers ability to be selective
for system builds frees the design programmers from
being tied to a test schedule. Since Software Manufac-
turing tracks and releases each unit and update,
designers may turn over whatever they have available
whenever they have it, regardless of test order, thereby
avoiding that insidious disease, drawer rot. The
Software Manufacturing group can maintain and run
regression tests after each major milestone.

It might help to consider the organization of Software
Manufacturing in the familiar schema of hardware
manufacturing, where there are line functions for day
to day production and staff functions for monitoring
the general well-being of the product. The Software
Manufacturing line functions can now be recognized as
those tasks we had earlier identified as necessary in
getting from the raw materials to the product.

After the software manufacturers are in place, they can
take on added tasks of building tapes containing test
data, running regression tests and, if management's
tastes run to it, using specially designed software
which checks compliance with coding conventions and
program quality to process the source code.

The Software Manufacturing staff functions support both
the line functions and the larger project management:

- produce reports for project management
concerning the size of the Job, outstanding
problems, cleared problems, lines of code
updated, etc.

- maintain hardware and software production

facilities
- improve production techniques
- maintain project archives
- test conversions to various changes to the

development machine (e.g., using new data base
improvement systems, language processors, tapes).

To carry the analogy with hardware further, we can talk
in terms of a software factory. The business of this
factory which operates inside the larger project is to
assemble piece parts into a system according to certain
specifications. The softwareutilities needed in the
factory depend on the deg2ee of automation desired.
The notion is the same whether this factory receives

decks of cards as raw materials and ultimately ships

456

500 ibs. of materials for a 300,000 instruction real-
time program (as was done in the '60s) or uses the
sophisticated tools of a UNIX system and Programmers
Workbench (DOL 76A, RITA 74A).

Figure 6 shows an automated software factory. Programs
are used to automate the update, assembly, trouble
reporting and listing maintenance processes. The
Software Manufacturing people maintain data bases on
disk, and write utilities and Job control code to
permit the combination of steps in the manual process.
Designers do not submit card decks, but rather inform
the Software Manufacturing people of files in their
private libraries which are ready to be transferred to
Software Manufacturing's disk library.

Implied in Figure 6 is an approval boundary between
designer and software manufacturer. Approval levels
usually change during the project life, increasing in
order to put more impedance in the way of changes and
thereby stabilize the product. This is the prerogative
of the project management, but the Software Manufactur-
ing factory provides a natural point to impose control
and have the people necessary to process the inevitible
paperwork. It also serves as a check point from which
deviations may be reported to management.

Figure 7 shows an implementation of this factory on the
UNIX/Programmers Workbench (ibid) and the application
computer. In this case, assemblers and loaders (driven
by Software Manufacturing tools on the UNIX computer)
operate on the same computer as the application but
under a different operating system. The Programmers
Workbench concept and the software facilities mentioned
in Figure 7 were presented by T. A. Dolotta and others
at the Second International Conference on Software
Engineering (ibid) in October 1976. Here the soft-
ware factory is combined within the development machine
so that the program designers move with virtually no
new training from the tools they use for design and
implementation to those used by Software Manufacturing.
In fact, the software manufacturers provide a service
to the program developers by operating and maintaining
their development machine. This leads to the mutual
respect crucial to the programmers' acceptance of
someone between them and the customer.

We have listed among the staff functions in Software
Manufacturing the item of testing conversions of
computers, operating systems and language processors.
The factory organization is uniquely suited for such
work. Conversions impede project development when
designers are diverted to insure upward compatibility.
In the worst case, upward compatibility is not exhaust-
ively checked and updates become inconsistent with what
is in the field. The automated Software Manufacturing
factory can reassemble each program and compare the
object code with that produced in the previous
environment. Then only the differences can be reported
to the design organization for resolution. Major
projects have been unwittingly sabotaged by uncontrol-
led upgrading because the motivation of a good
designer is to design the product, not test the new
development tools. Software Manufacturing is in a
good position to schedule upgrades, assess the impact,
and do conversion certification.

Obviously this concept of Software Manufacturing
requires a certain minimum starting environment and a
project of large enough scale to make it economically
feasible. We'll discuss how to get started in the next
section. A practical indication as to whether projects
should embark on this scheme would be to ask these
questions:

*UNIX is a trademark of Bell Laboratories.

Is the project or group of projects at least
large enough to require the full attention of
one second level project manager, i.e., approx-
imately 20 designers and programmers?

- Will future enhancements be made to the software
by building on the established, working base?

Will the project be delivered to one or more
sites distant from the development site, but be
maintained from the development site?

- Will the customer's employees be primarily
responsible for running the system?

We suggest that if the answer to these questions is yes,
there is sufficient work to constitute a full-time job
for at least 2 software manufacturers. We say "full-
time job" because, as we have argued, it is not feasible
to split one person's job between this function and
design work or clerical work because a different
orientation and unique skills are needed. Additionally,
it is probably wise to have at least 2 people engaged
in this activity to cover contingencies, since this
function is in the critical path for system testing
and releases.

If, despite affirmative answers to these questions and
the experience of losing control of software develop-
ment, it is decided not to make the investment in
Software Manufacturing, it would be better to let the
designers be free to devise their own ways of getting
the software out the door. Ingenuity and pride in this
case will probably produce better results than imposing
controls and expecting first line managers to enforce
them.

How Could The Software Manufacturin~ Function Be
Introduced Into An Existin~ Development Effort?

Any change requires that the project management have
delicate sensibilities regarding designers' pride of
authorship and natural reluctance to let anyone else
tamper with their creations. The project management
might begin by asking the following questions. If
these cannot all be answered affirmatively, it would be
wise to establish this minimum before proceeding further.

Is the design modularized?
Is there an existing build mechanism?

- Does an identification scheme exist or could one
be established for each product element?
Is someone responsible for each product element?
Is each change related to an update report (or
any other name: Action Request, Maintenance
Request, Design Request, Enhancement)?

- Does the change mechanism require agreement by
the people responsible for each product element
affected, i.e., all related modules, all affected
user documentation?

The emphasis on a change mechanism apparent in these
questions is vital in maintaining order when software
leaves the designer's hands. In some cases, it is only
by management fiat, demanding that all changes be
related to an update can be squelched. We observe,
however, that given adequate tools, with a good notation
scheme, the programmer designer who has project insight
will act responsibly to determine modules can be altered
and whether ~ ~ix is lo~ical and consistent. The
notation scheme simply relieves the designer of the
mechanical effort of chan~e and Drevents surprises when
other designers submit their work.

The project management must now make Software Manufactur-
ing an honest profession by committing a respectable
amount of resources and attention to the activity. It

457

would be well to ease the transition by capitalizing on
the present innovations of the designers and use what-
ever they have developed to improve edits, builds, etc.
Software Manufacturing must have priority in computer
time or they will bottleneck testing. This requires
an initially high tolerance on the project management's
part for the designers' cries of pain.
Organizationally, the Software Manufacturing supervisor
must be equal to the design supervisors. At the
beginning, the people working with that supervisor
could be design programmers who are rotated through the
organization. One can progressively reduce the educa-
tion levels required for Software Manufacturing as
those functions are streamlined - eventually to high
school level, except for the person responsible for
the continued improvement of the techniques.

The beginning activities for Software Manufacturing
would be to produce a current listing of today's system
with all fixes built in. Software Manufacturing would
follow a daily build sheet from the design or test
groups who set priorities based on project knowledge.
From this beginning, other functions can be gradually
added as the Software Manufacturing group demonstrates
its capability.

Advantages of Software Manufacturing

The concept of Software Manufacturing frees programmers
from production problems and knowledge of production
environments. Coordination and communication through
the organization is required which mitigates, to some
degree, the indispensable person syndrome. It frees
design management from the problems associated with i.
managing production people and the production process.
Production managers with a good understanding of how
software is produced, but not necessarily a detailed
understanding of how software is designed, can be used
very successfully in these areas. 2.

Software Manufacturing provides job opportunities for
less educated and skilled people than those who are in
a design organization. Technician and production level
people would be given job opportunities in the software
industry, giving growth paths to people now called
librarians, clerks, software secretaries, computer
operators. As this function takes on its own identity,
it provides an independent line organization. By using
people with appropriate skills to do the manufacturing,
it can be accomplished more efficiently, at less expense.

Software Manufacturing permits management by exception
by having a manufacturing group keep track of the
development process and identify where things are going
astray. By enforcing project standards and insuring
that standards are carried across projects, several
projects can use one Software Manufacturing entity.

The use of Software Manufacturing permits the introduc-
tion of assembly line techniques to make the problems of
producing systems more automated. Programmers who are
needed to automate the manufacturing process are
industrial programmers, similar to the industrial engi-
neers whose function it is to improve the methodology of
producing a hardware product.

Disadvantages of Software Manufacturin5

Software Manufacturing requires the introduction of a
new organizational structure, which is difficult in an
existing development effort. The subtle points of
control and separation of control from the programmer
can be traumatic and lead to the demise of a project if
not done carefully. Therefore, to introduce this into
an ongoing project, the steps must be gradual.

There is initial investment in setting up a new group
and in identifying and training people for this
function.

However, these costs are usually incurred by a project
anyway and become very expensive in the long run, even
if these functions do not show in initial budget esti-
mates.

Probably the most serious disadvantage is that there
are few people skilled in this kind of work in the
computer industry. Those people who are so skilled
do not want to give up the glamorous, well-paid task
of designing the application computer programs. Yet
to do the complete job as stated in our first objective
without having manufacturing people identified, highly
skilled and expensive people find themselves doing
production functions for which they are unsuited.

Conclusions

Software Manufacturing as described here provides an
organizational approach which is generic to a software
development effort. Its introduction leads to system-
atizing the production of software, making software
development people more productive, and therefore to
better managed software efforts. This approach differs
significantly from a cottage industry approach which
relies on designers to perform all functions equally
well.

REFERENCES

Doc 76A Dolotta, T. A. and Mashey, J. A. "An
Introduction to the Programmers Workbench",
Proceedings of Second International Conference on
Software Engineering.

RITA 74A Ritchie, D. M. and Thompson, K. The UNIX
Time Sharing System Comm ACM 17, 7 (July 1974)
365-75.

458

*THE INTENT OF THIS PROGRAM IS SOLELY TO
*FIND THE MAXIMUM OF A SET NOT IDENTIFY ITS LARGEST ME~ER

DECLARE A,B,C, LARGE FLOAT
INPUT: A,B,C
IF A •B THEN LARGE = A ELSE LARGE = B
IF LARGE < C THEN LARGE = C
PERFORM OUTPUT (LARGE)
END

OUTPUT (X): PRINT, X
"THIS IS THE LARGEST VALUE, OF THREE NUMBERS ANY OR ALL OF THE THREE MAY EQUAL IT."

FIGURE 1

DEVELOPMENT CYCLE WITH SOFTWARE MANUFACTURING

I H 1"'4 JSITE PECULIAR TESTSIsYSTEM t L I I DESIGN I ICOOEANO~,,'I I SOFTWm I I]] I
OEF"f LJ 'ROO"AM' ' : " - ' MANUFADTU'E'-' "~G"ATIO" J I' TESTS J J l REQUIREMENTS ['-] DATA BASE & u nz,,z,,,a. ,AMO ~ CONTI~gL AHO ~ TESTS

IL USER DOC. mouuu:~ i [BUILDS I I

F_! H - , H u,, I SYSTEM SITE 1 SOFTWARE OPERATION OPERATION
I SOFTWARE I . . .
I MANUFACTURE

VERIFY LIVE
INSTALL SYSTEM OPERATION SITE N SOFTWARE OPERATION i

FIGURE 2

UPOATE RB'Om"
I

I
NEW UNIT

~I UPOATE H DATA BASE
- I

MANUFACTURING CYCLE

ASSEMBLE
UNITS

FIGURE 3

CONFIGURATION
SPECiRCATION

l CRi~ INSTALL ~.OT.E H SYSTEM I

MA,.T. I _ I S.S~. I
LISTINGS

~ MAINTAiN USER I _1 USER [
DOCUMENTATION

459

*PIDENT LARGEST.@VERSION01 CHANGE.LEVEL A1

*SARAH JONES 11 NOV 74
*JANE SMITH 6 SEPT 76
*TITLE - LARGEST.VALUE.IS.A.SET.OF.THREE
DECLARE A,B,C,LARGE FLOAT
INPUT A,B,C
PERFORM CHECK (A,B,C)
IF A • B THEN LARGE = A ELSE LARGE = B
IF LARGE < C THEN LARGE = C
PERFORM OUTPUT (LARGE)
END
OUTPUT (X): PRINT, X ("LARGEST OF A SET OF THREE")
END
CHECK (A,B,C): IF (A,B OR C = NUMERIC) END ELSE PRINT "ERROR",

"INPUT A = "A, "B =, "B, "C = "

END

00100AI
O0200AO
O0300AO
O0400AI
O0500AO
O0600AO
O0700AO
09701A1
O0800AO
01000AO
01100A0
91200A0
01201A1
01300A0
01400AI
01500A1
01600A1

FIGURE 4

FIGURE 5

~.;'.:~,': ... :.:::::::..

• (, . " l l f ~ 4 ~ 14~EP?I

l i t e r ' s . T°AH AT[O(mUT(AN t~ OECIARE SUBRrtUT|NE (TDVOSOTI)

% T J
p 'PC'~, t " - r+,F PUQOn~F OF t H I S ~U~ROIlTINF [S TO TEST TRAN C(IOE

• ~#,~q~ INvm(.v [~ ;c tlF~ t ~ E SXAtE~F~XC~. p~;EUOO_rlps AND ATTRIRUTES.

PFSCRI~T InN - THIS ~ I R P ~ t l T I N ~ WII. L ~H~CK T ~ PROPER OPEra t iON
~ n F SLk , /gAN PS~UOr~ PP ~TATEMENTS U T I I | Z I N G THE FOLLt'IWING

• F I ~ r~l S] C.~4ED r~L wn SITE UPON
e r L q ~ r tlN%I GNFO SNG_WO O | $ p

. i rHF ~ S 1 ¢ TFSr P~OCE~U~E IS KnRF TO CORF COMPARES* HOWEVER, COne
CENERAT/~N (r o q PSEUnn_Dps CAUSING DATA TO fie GENERATEI3) AND
~ O r) , F ~ rWErKlN~. I F n : THE (~PL_Wf~ ATTRIRUTE) |S ALSO EMPLOYED TO
OETFg*4|NF IF IMP (IPEgATIO~4 IS SUCCFSSFUL.

WHEN & t r S T 1S PFPFOg~En ANY OFVIATIONS WILL S~T A FL=G IN
tnV /Q~n (; ~,Nrt CAIlSF A CGPnFTRnNI~ING ERROR HESSAGE TN BE p R I N T E ~ .
e, cnMoLC1rtO'w KOpF IS SEt TH~(~U~,HOUT THE SUBROUTIN~ TO INOICATF
P R ~ F g FWECUTION ANn IS PASSED TO THE MAIN CALLING ROUTJNF.

THF CALLING SCC~ITNCF IS: CALL %URI,(COUNTER)
WHFgF: $13n1 IS A SIMPLC NA~F OF TH~ Tovr IsOT| SUOROUTINE = O~OOnAO

I N P l I T ~ - THr INoUrS CONSIST [IF ~ , t l ~F THE CONSTANTS &NO ATTRIf l lJTF e, t O]3000AO
• .,..4~ n B t ~ l ~ E n FRO~ roviz~¢Tz. THERF CONSTANTS A~F USED TO VEPIFY | O%~,O00AO
~ n~FR~TI (tN OF .TR~N CpD~. ~ O)SOOnAO

m 016000A0
a PaI&WFTF~ NA~Fn 'CnUNTFR' I ' ; P&~SFD t n THE C~LLFD ROUTINF. • 03}'00040
THF ~D~"FSS PORTION OF THC paRAMeteR CONTAINS IklE NUMBER ~F THE | O~eOOOAO
F l P ~ t FRnnR leST THF SUBQOLITIN~ I $ TO pFRF~RM. IH~ I~CR~H~NT I O)gOOOAO
~) R T I r l N Cf lNTAIN~ T~E Tt-OUFNCE OF THE C6LLED PROGRAM, /I 060000AO

I O~lOOOAO
~JUTPUT% - T~F SUn~r~UTINF SETS A TERI~S nF f r r n R FLAGS, LOCATIONS I O~O0~AO

04~O00AO
• ~I~'INC,,W~.,~c*f~ E INFPRMt~TION AT ENl~ OF L I S T I N G . # O4S~OAO

• O~,t, OOOAO
• MIS'~ - THIS r .U~t~UTT~F C~IPSES FOU~ *U e FLAGS Tn 8F GENERATE rJ f lue TO # Ot*7OOOAO
I / ~ l ~ THE TVPF ~Jr r rsT% REI~G PFPFPo~Fn. I f fFSF FLA~S SHOULD BE PRFSENT# O6eOOOAO
jf 1 ~ /,~,'~ ,'Jr NAT INOICe, t'F A PROGPAM F~ROR. FI<TENS|VE USE 0F SNX0 CnnF le O~.,~0OOA0
l IS I I ~¢~ FOg TEST oUnmn%FS IH~(~UGHOI~r THIS SIJEROGtlNE TO ENSURE e OSOOOOAO
THF F O M p A I I q I L [T I ~FIWEFN %NX &NO " .TPAN* I o ~ | o o o i o

~ os~.ooo *o

OOlnOnAn
O0~nnnAn
O0~O00Ao
oo~nonAo
O0~O00An
OO600nAn
OOtOOOAO
oo~ooo~o
oogoooAo
OlO000AO
OItOOOAO
OL~OOOAO
OI~OOOAO
Ol~O00AO
OISO00AO
O~6000&O
O[7000AO
o l e n o o A o
019o00A0
O~oonoAo
ozloooAo
ozToooAo
oz3oooAo
O~4000AO
nZSOOOAO
O?6000AO
OZTOOOAn
oTeoooAo
O~9000AO
o3oo00Ad
O~lOnOAO

460

VI,~!~RE 5 L:ot~tJnu,'d~

DESCRIPTZON 3F CONTENTS

The follow~nc describe what is to b e
included under each of the numbered
items.

UNIT IDENTIFICATION SECTION

I. Comment Indicator - a comment indicator consistent with
the lansuage must be used.

2. PIDENT - the identifier used as the name of the Program
Unit. (Note that the word "PIDENT" ls required at the
beginning of the card as shown.)

3. Chan~e Level - the designation used to identify a partic-
ular assembly of s program.

~. Dat____ee - the original assembly or compilation change level
date of the Program Unit. The date is recorded in the
following format: DayMonthYear (06SepTl)

5. Classification - the degree of privacy desired enter -
Unclassified, Company Proprietary, Trade Secret.

6. DPS Humber - the Generation Breakdown Number Of the
Program Unit

7. Language - the compiler or assembler which is to be
used for the Program Unit, e.g., TRAM.

8. Person Responsible - the name of the person currently
responsible for the Program Unit and the date respon-
sibility was acquired. The card indicating the change
of res~onsibillty shall be included with the next
scheduled revision. (When a transfer of responsibility
takes place, each card indicating the previous person
responsible will be maintained in the deck in reverse
chronological order.)

9. Title - the Program Unit title that gives some indication
as to what function the program performs. This will be
treated as the official name of the p r o g r a m .

UNIT DESCRIPTION SECTION

10. Purpose - a brief statement describing the function of
the Program Unit.

] ! . -[: ' . : c I ' h ' 1 Ion . - :I C , ' n e : ' : l l d , ' .~o! ' I~ ~ ! , 11 oC :~I~. P~', 'F,r: im H h ; :
: n , ' i U d t t l ~ t. he .':11 l I l~ .~ s ~ q u e l : , ' e , t z ; f ov l : : ' : : ! o h , ' , ~ n c , , r ~ l [n ~
~::Jch o n : , r 7 F c .] : ~ , i l : l . t I n l J : : a : I ~ , n ~ ' c q u i : ~ $ v r l t J , a r id Tn
C : l s c n who, re ~ i :e pr0~'.~,:lm i:~ c , , m p l i c a l o d , :t b r i e f d~:~c~,~$, -
t~011 o f it, S or~:3n~..~., '~t lor l b y . ~ t t b f ~ t l l O t [o : : ~ .

12. Inputs - all informacLon supplled to, and used by, the
Prod, ram U n i t v i a r e g l z t e r s , d a t a se ts , .':rid t h e s t a c k .
All variables read from a da~a set must be listed here
unless the entire data set Is read, In :d~ieh case it
should b e So stated.

13. Outputs - all informntion th.~t this Pro~.=ram Unit passe~
to another program via ~egisters, data sets, or the
stack. All variables written in a data set must be
listed here unless the entire data set is wrltten, '~n
which case it must be so stated.

14. Sizin~ - currently, the size of the program in appropris~e
units is automatically printed at the end of the listing,
i.e., 6~-blt words for TRAN and bytes f~r PL/I, FORTRA~,
and BAL.

NOTE

A future revision to the language
processor for TRAN will automatically
print size information within the Preface~

15. Miscellaneous - any information that either the group's
~upervisor or the programmer feels would aid in using,
understanding, or debugging the Program Unit.

461

DESIGNERS

[

THE SOFTWARE FACTORY

I-USER 0~

W ~ - J '°~" H'=',';' H ,;°='~ I:=-[
~ , . t t

SYSTEM BUILO UTILr]IES " "
I

FIGURE 6

TROUBLE
REPBNTR

i MODiFICATtON REQUEST
CONTROL SYSTEM

REMOTE JOB
~ , Y co..,Nos'-~,~

I JCL~.ENEN~TRN !

THE SOFTWARE FACTORY IMPLEMENTED
WITH UNIX/PROGRAMMERS WORKBENCH

TEST

SOURCE COOE
CONTROL SYSTEM

,SOURCE COOE
JCL

DOCUMENTATION
q TEST DATA

TEST SCRIPTS

OOCUMEHTSYSTEMS I

OOCUMBnl
REPOtrrS

APPL~A11ON
11HUalNALS

FIGURE 7

462

