
PROTOTYPING VS. SPECIFYING: A MULTI-PROJECT EXPERIMENT

Barry W. Boehm*, Terence E. Gray, and Thomas Seewaldt**

University of California, Los Angeles
Computer Science Department

*also with TRW Defense Systems Group **present affiliation: Universitaet Kaiserslautern

ABSTRACT

In this experiment, seven software teams developed versions
of the same small-size (2000.4000 source instruction) applica-
tion software product. Four teams used the Specifying ap-
proach. Three teams used the Prototyping approach.

The main results of the experiment were:

Prototyping yielded products with roughly
equivalent performance, but with about 40%
less code and 45% less effort.

The prototyped products rated somewhat
lower on functionality and robustness, but
higher on ease of use and ease of learning.

Specifying produced more coherent designs
and software that was easier to integrate.

The paper presents the experimental data supporting these
and a number of additional conclusions.

1. I N T R O D U C T I O N

1.1 Motivat ion

Should the current specification-driven approach to software
development be dropped in favor of an approach based on
prototyping! There have been several recent proposals of
this nature, and a great deal of discussion of the relative
merits of the two alternative approaches.

Prototyping offers a number of attractive advantages, such
as the early resolution of high-risk issues, and the flexibility
to adapt to changing environmental characteristics or per-
ceptions of users' needs. To date, however, there is not
much information on whether the prototyping approach re-
tains all of the advantages of the specification-driven ap-
proach, such as visibility and control of the software
development process, and the ability to manage integration
of many small programs into a large product. Nor is there
much information on how the nature of a software product
developed via prototyping compares with the nature of a
product developed via the specification-driven approach.

In order to illuminate these and related issues, we undertook
the experiment described in this paper. We had seven teams
develop the same software product (a user-interactive
software cost estimation model, comprising roughly 3,000
Pascal source instructions); four teams used a specification-
driven approach, and three used a prototyping approach.
The resulting data on the teams' experiences and products
provide at least a start toward understanding the relative
strengths and weaknesses of the prototyping and specifying
approaches, and toward understanding how they may best
fit into a next-generation software development methodolo-
gy.

1.2 Background

At the beginning of every software project, the project
manager is faced with a critical choice of approach. The pri-
mary choices are:

Building and Fixing. Proceed to build the
full system with minimal or no specifications.
Rework the resulting product as necessary un-
til it satisfies its users.

Specifying. Develop a requirements
specification for the product. Develop a
design specification to implement the require-
ments. Develop the code to implement the
design. Again, rework the resulting product
as necessary.

P ro to typ lng . Build prototype versions of
parts of the product. Exercise the prototype
parts to determine how best to implement the
operational product. Proceed to build the
operational product, and again rework it as
necessary.

There are a number of variations on these three basic ap-
proaches, of course, but their essential distinctions are
identified reasonably well in the above three options.

Approach 1, Building and Fixing, has been shown to work
poorly on most projects of any reasonable size. This is large-
ly because of the highly increased cost of fixing a software
product once it is completed and operational [1]. The Speci-

0270-5257/84/0000/0473501.00© 1984 IEEE
473

fying approach evolved to avoid the problems encountered in
Building and Fixing [2,3,4] and led to the familiar "water-
fall" model of software development most frequently seen to-
day.

The Specifying approach has been highly successful in many
application areas [5,0]. However, it encounters difficulties in
application areas in which it is hard to specify requirements
in advance. This happens most frequently in human-
machine interface systems, in which the requirements analyst
often has to deal with user responses of the form, "I 'm really
not sure what I want, but I'll know it when 1 see it."

In such situations, the Prototyping approach appears attrac-
tive. A number of papers have proposed refinements of the
waterfall model of the software life-cycle to incorporate pro-
totyping options [7,8,9]. Some authors have gone so far as to
suggest that prototyping options make all current life-cycle
models completely obsolete and even harmful [10].

1.3 Open Queations

At this stage, however, not enough is known about the rela-
tive merits of specifying and prototyping to summarily reject
either approach in favor of the other. The results of recent
workshops such as the ACM-IEEE-NBS Workshop on Rapid
Prototyping [11] indicate that a number of significant open
questions still exist, such as:

What characterizes application areas in which
prototyping is likely to be more successful
than specifying?

What effect does prototyping have on a
software project's effort distribution, schedule
distribution, and productivity; and on the
product's size, quality, maintainability, etc.?

How does prototyping change the mix of skills
needed on a software project?

Is there need to adopt a mixed strategy using
both specifying and prototyping.~ If so, when
and how?

Clearly, such questions need to be further illuminated via
analysis or experimentation before we can formulate
definitive recommendations on the critical issue of specifying
vs. prototyping.

1.4 T h e E x p e r i m e n t

The experiment described here was designed to investigate
such questions. It involved having seven teams develop their
own versions of the same product, four teams using the
specifying approach and three teams using the prototyping
approach.

The product to be developed was an interactive version of
the COCOMO model for software cost estimation [12]. The
tables and equations in the model were the same for all pro-
jects, and provided an overall definition of the product's re-
quirements. However, each team was to determine and
create its own user interface to the model. A previous exper-

iment [13] indicated that the interactive COCOMO model
would be a suitable product for such an experiment. It is a
reasonably sized job for an experiment, and the user inter-
face constitutes the dominant portion of the product.

The experiment took place in early 1982 as part of a one-
quarter first year graduate course in software engineering at
UCLA. The four Specifying teams produced a requirements
specification, a design specification, and an end product con-
sisting of operational code, a user's manual, and a mainte-
nance manual. The three Prototyping teams produced the
same end products, but were required to produce and exer-
cise a prototype by the midpoint of the course, rather than
to develop specifications. All of the projects were instru-
mented to collect data relevant to the open questions above.

1.5 Outline of Paper

Section 2 of this paper describes the experimental project in
more detail. Section 3 presents the experimental results.
Section 4 presents the resulting conclusions.

2. T H E E X P E R I M E N T A L P R O J E C T

This Section discusses the key aspects of the experiment: the
product developed; the project schedule and work environ-
ment; the organization into teams; the experimental data
collection procedures; and some of the experimental limita-
tions caused by the course schedule and teaching objectives.

2.1 T h e P r o d u c t

Each team was to develop an interactive version of the
COCOMO model for estimating the costs of a software pro-
duct. The model accepts descriptions of the components of
the future product in terms of their size, and their ratings
with respect to l0 cost-driver attributes (e.g., hardware con-
straints, data base size, personnel experience, use of tools
and modern programming practices). It uses these to calcu-
late the amount of time and effort (and resulting dollar cost)
required to develop each component and the overall system,
and provides a breakdown of the effort into the major
development phases and activities.

The model algorithms and tables were provided in [12]; each
team was to develop its own file system and user interface
The user interface for such a product is considerably more
extensive than the cost model algorithms. The user interface
software must support the selective creation, addition,
modification, query, and deletion of the cost-driver parame-
ters describing each component of the software product
whose costs are to be estimated. It must support the
specification, generation, formatting, and dispatching of
desired outputs: overall cost, effort, and schedule estimates,
and their breakdown by component, by phase, and by activi-
ty. It must detect and provide messages fur erroneous in-
puts, and provide some level of on-line help. There are also
a wide variety of further optious which may be included, and
many alternative ways to accommodate inputs (menus, com-
mands, tables, forms), display outputs, and support user
control. Thus, there are a good many issues to be addressed
via prototying or specifying which have a significant
influence on the nature of the project and its resulting pro-
duct.

474

2.2 Project Schedule

The major milestones for each type of team were:

Week Specifying Teams

3 Requirements

5

6 Design Spec
Draft User Manual

10

Prototyping Teams

Prototype Demo

Acceptance Test Acceptance Test
User Manual User Manual
Maintenance Manual Maintenance Manual

11 Project Critique Project Critique
Maintenance Vote Maintenance Vote

The requirements and design specifications were subjected to
a thorough review by the instructors. This resulted in a set
of Problem Reports returned to the project teams and dis-
cussed in a set of Requirements Reviews and Design Reviews.
The prototypes were exercised by the instructors, who pro-
vided similar feedback on errors, suggested modifications,
missing capabilities, etc.

The acceptance test consisted of the instructors' exercising
each program to determine whether it performed all of the
required capabilities, whether it handled error conditions
with useful responses, and whether it exhibited a high degree
of user-friendliness. Subsequently, the authors of this paper
exercised each product in more detail, and each author rated
it on a scale of 0 to 10 with respect to four particular cri-
teria:

F u n c t i o n a l i t y : the relative utility of the
various computational, user interface, output,
and file management functions provided by
the product.

Robustness: the degree to which the user
was protected from aborts, crashes, loss of
working files, etc.

E a s e o f Use (or, lack of frustration): the de-
gree of user convenience in performing desired
functions, and the avoidance of overcon-
strained or unexpected program behavior.

E a s e o f L e a r n i n g : the ease with which new
users could master the product's workings
and get it to do what they wished. This rat-
ing covered not only program prompts, help
messages, and error messages, but also the
user manual and associated job aids or "crib
sheets" provided by the teams.

The project critiques were ten-page essays written by each
student, addressing the question, "if we were to do the pro-
ject over again, how could we do it better." These critiques
were analyzed for the degree of consensus among the partici-
pants of the most important factors influencing the project
results.

The maintenance ballots asked each student to rate each of
the other teams' products in the order in which they would
prefer to have the product as their product to maintain.
The average rating for each product was then calculated as
an index of its maintainability. 20% of each person's course
grade was based on his product's maintainability rating.

2.3 D e v e l o p m e n t E n v i r o n m e n t

The products were developed in UCB Pascal, using a UCLA
VAX 11/780 running the Unix (TM: Bell Labs) operating
system. The Unix environment provided excellent support
for both documentation and code development functions.
Some difliculties were the overload on the VAX at the end of
the quarter combined with poor documentation of the
separate compilation facilities in UCB Pascal, which made
product integration and test much more complex and time-
consuming than expected.

2.4 T e a m O r g a n i z a t i o n and Staff ing

At the beginning of the course, the students were given a
description of the project, and a form to indicate their level
of experience with Pascal, with Unix, and with programming;
their grade point average; and their preference for which ap-
proach to use on the project. The instructors then selected
teams based on the students' preferences and on experimen-
tal balance.

The 11 students expressing a preference for specifying were
divided into four teams (SI-$4). The 7 students expressing a
preference for prototyping were divided into three teams
(P1-P3). The resulting team characteristics are given in
Table 1 below.

Table 1. Experimental Team Characteristics

Specifying Prototyping
Team S1 $2 $3 $4 Avg. P1 P2 P3 Avg.
No. of people 3 3 2 3 2.75 2 3 2 2.33
Avg. programming 25 47 42 30 36 54 46 60 53

experience (ran)
Avg. Pascal exp.(too) 1 17 7 3 7 30 16 9 18
Avg. Unix exp.(too) 0 1 12 5 4.5 3 4 0 2.3
Avg. grade point 3.1 3.6 3.6 3.3 3.37 3.4 3.0 3.3 3.27

average

Each team was given the freedom to organize in whatever
way the members found most appropriate. Most teams used
a highly democratic consensus-based organization,with all
members performing some design, some programming, some
documentation, and some integration and test. Some teams
had a single individual develop certain documents, such as
the user's manual.

475

2.5 Experimental Limitations

The teaching objectives of the course introduced several ex-
perimental limitations which somewhat reduced the sharp-
ness and representativeness of the results.

Technical Leveling. A pure experiment would have isolated
the teams to minimize any cross-fertilization of ideas or
technical leveling between projects. Here, our teaching ob-
jectives caused us to hold every requirements review, design
review, and prototype exercise in front of the entire class.
Thus, prototypers got some added insights from the
specifiers' reviews, and vice versa. However, our impression
is that the students did not significantly change their ap-
proaches as a result of this information.

Nonrcpresentativc reviewing. In order to provide thorough
feedback on specifications, and to show the value of early
verification and validation, the instructors performed more
thorough reviews of specifications than are performed on the
typical project. The prototype exercises were also somewhat
nonrepresentative in being one-shot exercises by expert users
rather than sustained usage by non-expert users.

Choice of Approach. The Specifying teams were staffed en-
tirely with students who had expressed a preference for the
Specifying approach, and similarly for the Prototyping
teams. This is largely nonrepresentative of actual projects -
although some students' critiques indicated that they would
prefer taking the opposite approach if they were to do a
similar project again.

Data collection procedures. The instructors explained to the
students that their grade had nothing to do with the
timesheet data they turned in, so there was no reason to lab
sify data. However, students occasionally exhibit procrasti-
nation and lapses in discipline. Thus, it was not too surpris-
ing that some of the timesheets were turned in late, with the
attendant possibility that some of the data provided was
created "from memory".

As stated above, these factors tend to reduce the sharpness
and representativeness of the results. However, the net im-
pression from the project critiques is that none of these fac-
tors played a critical role in the outcome of the experiment.
Thus, the experimental results described below appear to
transcend these acknowledged limitations. As a further
point of perspective, it is worth noting that many conclu-
sions reached in the software engineering field are still based
on sample sizes of one project. Thus, a sample of seven rea-
sonably comparable, moderately representative projects is
not too bad.

3. E X P E R I M E N T A L R E S U L T S

3.1 Prototyplng vs. Specifying

Product Size and Development Effort

The comparisons of the relative sizes of the products and the
relative effort required to develop them produced a striking
result: the prototyping teams' products were 40% smaller,
on the average, and required 45% less effort to develop.

The products of the prototyping groups had an average size
of 2064 delivered source instructions (DSI), while the pro-
ducts of the specifying groups had an average of 3391 DSI.
The average development effort of the prototyping groups
was 325 man hours (MH), and for the specifying groups, 584
/vlH. Figure 1 shows the relative results for each project and
the averages by type of group.

SIZE.
DSI

Figure 1. Prototyping vs. Specifying:

Size and Effort Comparisons

5000, / - - ~ % . % ~ ' 6 OSl/ItlH ! I I I " I I I t I

/%, ,, /

- k / ' , ,
~ / o i \%

- 'V.2 \

/ / I s~c~4,..
/ - I PROJECTS

I P3 •
| e J

1000 FROTOTYPlNG

Delivered So~ee Inntructions

°o ," ," g ,h ~ " ,'oo '.o ~ ,,o.
DEVELOPMENT
EFFORT. MANHOURS

Both differences might be partly due to the smaller average
team size of the prototyping groups (2.33 persons vs. 2.75),
but comments in the project critiques indicate that the
group type most significantly influenced these results.
Specifically, the specifying people indicated that it was very
easy to overpromise in their specifications. For example,
when confronted with a review comment such as, "Some
users would like to enter data by rows as well as columns,"
the specifiers would tend to say, "Sure, that 's just another
sentence in the spec." When confronted with this sort of
comment in their prototype review, prototypers had a better
feel for the programming implications, and tended to
say,"We'll put that in if we have time."

The range of product sizes was from 1514 DSI to 4006 DSI
(Table 5 provides data on each project). The second largest
product was 3391 DSI, so we consider the 4606 DS1 product
somewhat anomalous. Even so, the 3:1 range in product
sizes in remarkable, considering that each team was develop-
ing essentially the same product. This range, and the com-
parable 3.4:1 range in project effort, tend to corroborate the
ranges in [12, Chapter 21] on the relative accuracy of early
software sizing and costing efforts.

OveraUProductivity

One of our hypotheses was that the prototyping projects
would have higher "productivity" in terms of Delivered
Source Instructions per Man-Hour (DSI/MH), primarily be-
cause the prototyping teams did not have to expend the ex-

476

TEAM SIZE

SI

3

Table 5. Summary of Project Results

Specifyin~ Tezms

$2 $3 $4

3 2 3

AVG. PI

2.75 2

Prototyping Te~ms

P2 P3

3 2

AVG.

2.33

ANOVA Significance

Spec/Proto Te=m Sise

PROGRAM SIZE
(Deliv. Source Inst.)

File 64 622 246 714 411 45 356 204 201
User Intedzce 1462 1910 2830 1064 1817 1123 1.505 815 1148
Compute 143 62 648 195 262 84 178 70 111
Output 931 264 267 405 467 349 513 293 385
Other 385 306 615 331 434 351 174 132 219

TOTAL
Omitting $3 dzta

2985 3164 4606 2809 3391
2086

1952 2726 1514 2064 0.0674* 0.7891
2064 0.0668* 0.0030'*

DOCUMENTATION
(Pages)

Rqts. Spec.
Design Spec.
User Manual

TOTAL

19
38
32

165

13
123
45

231

11
50
73

181

11
83
3,5

170

14
76
46

189

38

58

37

40

30

56

35

54 0.0001"* 0.3743

MANHOURS

thru Rqts.
thru Design
thru Prototype

Rea~ling
Planning
Designing
Programming
Documenting
Testing
Reviewing
Fixing
Meeting
M I S C .

TOTAL

PERFORMANCE

Functionality
Robustness
F_~se of Use
F~se of Lezrning

MAINT. SCORE
(low is good)

PRODUCTIVITY
(DSI/MH)

OverMI
Coding

83
225

29
44
81

276
48
45

2
27
30

7

589

6.33
4.67
2.33
3.67

45.5

5.1
10.8

44
160

33
7

46
162
82
49

3
42
49
26

498

7
5.5
4
3.5

57

6.4
10.5

44
144

40
30
50

135
53
55

6
19
24
40

459

5
6
2.67
4

59.5

10
34.1

70
242

72
41
82

289
92
29
2O
48
80
37

789

6
4.33
4
3.67

50

3.6
9.7

60
198
102

43
30
67

216
69
44

8
34
46
28

584

6.08
5.13
3.25
3.71

55

5.8
15.7

°

129

21
22
16

109
54
27
10
83
19
3

323

5.33
4.33
6
5.67

21

6
25

84

24
15
13

147
50
75

3
39
44
13

422

5
4.33
5.33
5.33

27.5

6.5
18.5

105

43
15
12
39
33
46

5
27
11
2

232

4
3
2.67
3.67

45.5

6.5
38.8

29
17
13
98
46
49

9
33
25

6

325

4.78
3.89
4.67
4.89

81

6.3
21

0.0471'* 0.0817"

0.0700* 0.0799*
0.0875* 0.7535
0.2144 0.0133
0.0771* 0.6022

0.0217** 0.6968

0.0727 0,1737

477

tra effort to develop requirements and design specifications.
This hypothesis was not borne out by the experimental
results: both the prototyping and specifying groups aver-
aged roughly 6 DSI/MH, where the number of man-hours in-
cludes effort expended for all phases of the project, not just
coding. The prototyping groups had an average productivity
of 6.3 DSI/MH; the specifying groups, 5.8 DSI/MH.

The range in overall productivity for prototyping groups was
from 6 to 6.5 DSI/MH; for specifying groups it was from 3.0
to 10, but with only one group (the same one that produced
the largest product) exceeding 6.4 DSI/MH. As shown in
Fig. 1, the development effort is generally proportional to the
size of the developed product.

Note that the large variation in product size does not invali-
date the DSI/MH productivity measure as an indicator of
eificiency in producing code. Rather, it illustrates the need
for further research into why ostensibly similar products can
differ so dramatically in size, and therefore, development
cost.

Coding Productivity

An unexpectedly large variation in coding productivity
(DSI/programming MH) was observed. The low was 9.7 and
the high was 38.8 DSI/MH. While the average for specifying
teams (15.7) was 25% lower than that of prototyping teams
(21), much of this difference is attributable to the pro-
nounced team-size effect discussed in section 3.2.

Product Performance

Since the products of the prototyping groups were smaller
and developed with less effort, one might think that they
would rate correspondingly lower on performance. However,
their overall performance was the same as the performance
of the specifying groups (Fig. 2). The prototyped products
were rated lower in overall functionality and in their toler-
ance of erroneous input, but correspondingly higher in their
ease of learning and ease of use (i.e., the frustration caused
by overconstrained or unexpected program behavior was less
for the products of the prototyping groups). There was not

Figure 2. Specifying vs. Prototyping:

Performance Comparisons

8

4 -

3 --

2

1

0

F U N C T I O N A L I T Y ROBUST-
NESS

1
EASE OF

USE

I ~ SPECIFYING 1
k \ \ \ \ ~ 1 PROTOTYPING

EASE OF A V E R A G E
L E A R N I N G

a uniform dominance of prototyping or specifying projects on
any of the performance ratings. Practically all the ratings
were in the range of 3 through 7 (a "5" rating corresponded
to an "acceptable" product), but there was considerable vari-
ation in ratings within the range in each group.

Maintainability Ratings

At the end of the quarter, students indicated which products
they would prefer to maintain and ranked the products ac-
cordingly. The maintainability of the prototype group pro-
ducts was rated remarkably higher than the maintainability
of the specifying group products. Therefore, the student's
subjective evaluations did not confirm the hypothesis that
the specifying approach leads to lower maintenance costs.
Somewhat paradoxically, however, the products of the proto-
type groups were judged worse as a basis for planning add-
o n s .

5000

4O00

N

g

lOOO

° o
~ BETTER

Figure 3. Maintainability Rating vs. Size
i l i I I i i

/ .
/ $3~,,

DSI - - Delivered Source Instructions

' ' ' 20 '0 ' . ;0 10 20 30
MAINTAINABILITY SCONE

In exploring which factors influenced the maintainability rat-
ing, we compared the rating to the size of the products (Fig.
3). At first glance, it appears as if the students preferred to
maintain smaller products. However, when asked in the
follow-up questionnaire what the main criteria for their
maintenance rating were, the students ranked the size of the
products only third, and size was mentioned only as one fac-
tor besides design, programming style and documentation,
and performance (see Table 2).

Table 2.

Ranking of Maintenance Rating Criteria

Factor ~t Students
Citing: Factor

design 8
programming style 5
size of the product 4
documentation 3
product perfor- 2
mance at

acceptance test

478

Effort Distribution

During the development process, the groups had to meet
different deadlines. The specifying groups had to hand in a
requirements specification in the third week and a require-
ments and design specification in the sixth week. The proto-
type groups had to present their prototype for a prototype
exercise in the fifth week. For both groups, the acceptance
test took place in the tenth week after project start. Figures
4 and 5 show the average effort distribution by phase and
activity for both group types. While the "deadline effect" ob-
served in [13], with major peaks of the total effort before the
deadlines, is fairly distinct in the effort distribution of the
specifying groups, the effort distribution by phase for the
prototyping groups is much smoother. Especially at the end
of the quarter, the programming, testing, and fixing effort of
the prototyping groups did not peak, as it did for the speci-
fying groups. Instead, the effort-peak for the prototyping
groups at the end was mostly due to documentation effort.

Figure 4. Effort Distribution by Phase and Activity:

Specifying Groups

20@ e ~ ! I j I I I]

J • • • • • • . DO CUM EHIAIION I TO IAL
I " - - TES.,.. I A

/ I

, ,o / 1
l ie EW

g

[" SOF,WA.E / ~ / / I
IM REOUIREMENlrS I ~ / / --J

i 4 S l 1 e ii l0

W~K

Figure 5. Effort Distribution by Phase and Activity:

Prototyping Groups

160

120

1
i,,.
n:

f I I I

,,
I I I !

I~ HO I OT'rPE IO IAL

XERiISE

,
I l 3 4 6 8 Y 8 II 10

WEEK

Fig. 0 shows the effort distribution by activity in percent of
the total effort for both group types. Proportionately, the
prototype groups spent less time for designing and program-
ming, more for testing, reviewing, and fixing. The higher
effort needed to integrate the prototype products was
confirmed by comments in the project critiques.

Figure 6. Distribution of project effort by activity

[~ IP|ClFYINII

I ::>:~-\" I pROIOIYPIN Q

i i mM
nF.~D~G PLAHNJHO O[TdQNINQ pROORAHMINQ I~IINC I IqEVlEWlU(I FIXjNO MIEIIN 0

DOCUMENTING

Going through the whole design process before coding
seemed to simplify the integration by forcing developers "to
think before coding". On the other hand, building a proto-
type had the advantage of "always having something that
works".

Documentation Productivity

As mentioned already, no difference between the two groups
in the overall productivity (DSI/MH) could be observed.
However, there appeared to be a significant difference in the
documentation productivity. The specifying groups pro-
duced, on the average, 2.8 pages per documentation MH, the
prototype groups only 1.2 (Table 3). An explanation for this
effect might be that the members of the specifying groups
were more motivated to write documents, for they chose
their group type knowing that a lot of documents would
have to be produced. In addition, the specifying groups had
3 deadlines where documents were to be presented, the pro-
totype groups only 1. Therefore, the "deadline effect" might
have influenced the documentation productivity of the speci-
fying groups more than the documentation productivity of
the prototyping groups. Another explanation may be that a
good deal of documentation was produced in the process of
design; if the design man-hours are added to the documen-
tation man-hours, the difference in pages/MH is reduced to
1.2 vs 0.9.

Table 3. Comparative Documentation Productivity

specifying groups prototyping groups
pages of documentation 161 54
MH for documentation 69 46
MH for design 67 13

2.8 1.2 productivity (page/MH)
pages/(design + doe. MH) 1.2 0.9

479

Retrospective Comment8

In the follow-up questionnaire, the students were asked how
their project outcome would have differed, if they would
have belonged to a different group type. The answers of the
students of the specifying groups were not uniform. Some
would have expected a better product, some a worse pro-
duct, if they had been in a prototyping group. On the other
hand, the students of the prototyping groups mostly indicat-
ed that specifying would have increased the performance of
their product and would have resulted in a faster develop-
ment process. It is interesting that the data of the experi-
ment generally did not confirm this expectation.

Analysis of Variance

An analysis of variance (ANOVA) was performed to deter-
mine the relative levels of statistical significance of the
results above. The results are shown in the "Spec/Proto"
column of Table 5.

In general, a difference between treatment groups is con-
sidered significant if its significance score is less than 0.05
(indicated by two asterisks in Table 5). A score between
0.05 and 0.10 is considered reasonably significant (indicated
by one asterisk in Table 5).

Table 5 thus summarizes the following conclusions about the
significance of the differences between the specifying and pro-
totyping groups:

The differences" in documentation size, total
manhours, and maintenance score are
significant;

The differences in program size, functionality,
robustness, and ease of learning are reason-
ably significant;

The differences in productivity were not
significant.

3.2 Smaller vs. Larger Teams

A second analysis of the data was conducted, investigating
the influence of the group size on the product and the
development process, independent of the type of team.

Although the smaller teams of both types needed 41% less
effort to develop their product (338 vs. 575 MH), the average
size of their products was only 8% smaller than the average
size of the products of the larger teams (2690 vs. 2921 DS1).
Therefore, the productivity, as a measure of delivered source
instructions per man hour, was higher for the smaller teams
than for the larger teams (7.5 vs. 5.4 DSI/MH).

However, the almost equal average product size and the
higher productivity might perhaps be due to one exceptional

project: One of the two-person teams ($3) developed a pro-
duct which was significantly larger than the products of all
the other groups (4606 DSI vs. 3164 DSI for the second larg-
est product). The productivity of this group was also by far
the highest (10 DSI/MH), due to one extremely prolific pro-
grammer. Removing this anomalous case brings the average
productivity of smaller teams from 7.5 DSI/MH down to 6.25
DSI/MH and reveals a significant relationship between team
size and product size.

The performance of the products of the smaller teams (again,
independent of team type) was rated somewhat lower, main-
ly due to a lower functionality score, it seems that the
smaller teams were not that much concerned about provid-
ing "fancy" functions, hut more about getting their work
done. (This may also have been because two of the three
smaller teams were prototyping teams.) Due probably also to
the lower manpower available, their products were less de-
bugged than the products of the larger teams. On all the
other factors -- ease of use, ease of learning, and tolerance of
erroneous input, the team size had only little correlation.

Comparing the effort the teams spent for different activities,
for both prototyping and specifying teams, the smaller teams
needed proportionally less time for programming than the
larger teams (27% of total effort vs. 38%). As expected, they
needed also less time for meetings (5% vs. 9%). Comments
in the project critiques and follow-up questionnaires confirm
that the larger teams had more communication problems and
communication overhead than the smaller teams.

Asked how the product outcome would have changed if they
would have been a group of the other group size, people of
the larger groups indicated that reducing their team size by
one person would have reduced the performance of their pro-
ducts. On the other hand, people of the small teams did not
expect an increase in team size to lead to an increase in pro-
duct performance.

The analysis of variance results comparing the 2-person and
3-person teams are shown in the "Team Size" column of
Table 5. Most of the team size differences are not statistical-
ly significant; total manhours and product functionality rat-
ing achieve a reasonably-significant level. In the other
evaluation categories team size does not appear to be a pri-
mary driver of the experimental results. However, as noted
above, removing the anomalous data of team $3 yields a sta-
tistically significant (s ~ 0.0039) difference in product size
across the groups with different team size. Thus, if we drop
project $3, team size appears to influence product size more
than development style.

3.3 Charac te r l s t i c s o f the Development Process

As shown already in Fig. 6, the dominant activity in the
development process of both group types was programming.
The specifying groups spent 37% of their total effort for pro-
gramming, the prototyping groups 30%. No other activity
took more than 20%. This result conflicts with one of the
results of the earlier experiment reported in [13], in which
the percentages of effort for programming (12-17%) and do-
cumentation {27%-32%} were reversed. The main reasons

480

were most likely the requirements for more documents (pro-
ject plans, test plans) and for updating documents, and the
larger team sizes in the earlier experiment; and the improved
documentation aids provided by Unix in the later experi-
ment.

In the current experiment, due to the tight schedule (only 10
weeks were available for the project), the development docu-
ments (requirements specification and design specification)
were only written once. After the software requirements re-
view and product design review, they were not corrected to
incorporate modifications due to problem reports. Also, they
were not updated when changes were made during the
development process. Since the team size was relatively small
and, therefore, the communication within the groups was
good, the lack of up-to-date documents was not critical.
However, if up-to-date documents had been required for oth-
er reasons, the proportional effort spent for documentation
would have increased and, probably, at least reached the
programming effort.

In order to investigate whether the COCOMO model can be
applied to this kind of class project, the data of the different
products were entered in one of the products and a predic-
tion was calculated. The results are shown in Table 4. Even
allowing for the 30-40% difference due to non-project activi-
ties explained in [12], a significant discrepancy remains.
Several factors might have influenced this discrepancy. First,
as mentioned above, no final version of the requirements and
design specification was written and the documents were not
updated. In addition, the fact that 7 groups were working
on the same kind of project simultaneously and the grade in
the course was mostly based on the project outcome might
have produced a much more competitive situation than is
found in a normal program development environment. Also,
the fixed schedule with no possibility for prolongation, im-
posed by the duration of the quarter, might have contribut-
ed to this effect.

Table 4. COCOMO Estimates vs. Project Actuals

Man-Months Actual /
Team actual predicted Predicted
specifying 3.8 12 0.32
prototyping 2.1 6.G 0.32

Note that the COCOMO prediction offset was independent
of the development style. For both specifying and prototyp-
ing groups, the model predicted the same percentage of the
real effort. The mismatch between model estimates and pro-
ject actuals is not overly surprising; in general, algorithmic
cost models have a difficult time with small projects.

3.4 Charaeterkt |ca o f ProductG

Although all groups were given the same task, the product
architectures differed significantly. They frequently seemed
to be a reflection of the developer personalities (elaborate vs.
simple displays, terse vs. verbose messages, free-form vs.
directed sequential inputs, etc.).

Most of the groups (6 of 7) developed a menu driven system.
Screen oriented interaction was preferred to line-oriented in-
teraction. The man-machine interface and the flexibility of
the dialogue was very product- and architecture-dependent.
In addition, competition stimulated man-machine interface
frills.

The distribution of source code by function for products of
both group types was almost the same (Figure 7). Although
the main purpose of the product was to calculate a cost,
effort, and schedule estimation, the portion of code devoted
to this purpose was very small (5% - 8%). The user interface
turned out to be the most important part of the system. It
took over 50% of the code. These results are consistent with
the earlier results in [13].

Figure 7. Distribution of source code by function

00

n-

O
O

$:o
z
-1

0
FiLE MANAGEMENT

~ SPECIFYING [
PROTOTYPING

ISER MODEL OUTPUT MISCELLANEOUS
INIERFACE COMPUTATIONS

The portion of code devoted to the file management system
differs heavily between the products. It comprises anywhere
between 5% and 40% of the code. Its size depends mostly on
the provided capabilities and on how much file management
functions of the operating system were used vs. implement-
ing a new file management system for the product. (The ori-
ginal directions to the terms said simply "develop a single-
user file system for input data.")

In the number of delivered source instructions per person
there was only little variation. With one exception (2303 for
team $3), they were all in the range of 757 - 1055
DSl/person. The same is true for the overall performance of
the products. With one exception (13.3 points), all products
were rated between 17 and 21.3 points.

3.5 Some Other Observatlons

The organization of the team was left to the individual team
members. Since no group leader was explicitly determined,
every group followed more or less a democratic approach.
Yet, the preferred organization was highly people-dependent.
Four students mentioned in their critiques that the demo-
cratic approach worked well, while three students would
have preferred to have a team leader.

481

The prototyping strategies were quite consistent over the
prototyping groups. After building the prototype, no group
started new to build the final product. Rather, 67 - 95% of
the prototype code was used in the final product. The size of
the prototypes was between 40 - 60% the size of the final
product. An overall summary of project results is given in
Table 5.

4. C O N C L U S I O N S

The results of this experiment provide some useful quantita-
tive and qualitative information on the relative effects of the
specifying and prototyping approaches on the development
of a small applications software product. However, as indi-
cated at several points earlier, initial experiments of this na-
ture are not likely to provide definitive conclusions applica-
ble to all project situations. The experimental results can be
sensitive to exceptional individuals' performance or to experi-
mental boundary conditions, or the results may depend on
the size and nature of the software application. Therefore,
the conclusions below should be considered suggestive rather
than definitive. The conclusions are thus presented in
project-specific rather than general terms.

4.1 Conc lus ions on Spec i fy ing vs. Prototyplng

Prototyping tended to produce a smaller product, with roughly
equivalent performance, using less effort. The prototyped
products averaged about 40% smaller than the specified pro-
ducts, and required about 45% less effort. In performance,
they rated somewhat lower on functionality and robustness,
but somewhat higher on ease of learning and ease of use.
Statistically, these differences were at least reasonably
significant.

The main reason for this effect appeared to be that prototyp-
ing fostered a higher threshold for incorporating marginally
useful features into a software product. The process of pro-
totyping gave software developers a more realistic feel for
the amount of effort required to add features to a project,
and the lack of a definitive specification meant that proto-
typers were less locked into a set of promises to deliver capa-
bilities than were the specifiers. In the somewhat rueful
words of one of the specifiers, remarking on his team's efforts
to fulfill the promises in their ambitious specification,
"Words are cheap."

Prototyping did not tend to produce higher "productivity" if
"productivity" is measured in delivered source instructions
per man-hour. However, if "productivity" is measured in
equivalent user satisfaction per man-hour, prototyping did
tend to be superior. This conclusion reinforces the desire for
a better productivity metric than the number of source in-
structions developed.

Again, this conclusion does not necessarily apply to every
project situation. The value-of-information decision guide-
lines for software projects in [12, Chapter 20] identify a
number of situations in which the information value of a
prototype will not be worth the investment in it. Even for
projects similar to the one in this experiment, the Specifying
approach may be able to produce similarly concise products
if the specification reviews are strongly focussed on elimina-
tion of marginally useful product features.

Prototyping did tend to provide • number of benefits fre-
quently ascribed to it. These included:

• Products with better human-machine inter-
faces;

• Always having something that works (at least
for "build-upon" if not for throwaway proto-
types);

• A reduced deadline effect at the end of the
project.

Prototyping led to better maintainability ratings, but the
effect was unclear. At the same time, participants' critiques
indicated that specifications led to more coherent designs
and that prototyping made it harder to plan additions.

Prototyping tended to create several negative effects. These
included:

• Proportionally less effort planning and design-
ing, and proportionally more testing and
fixing;

s More difficult integration due to lack of inter-
face specifications;

• A less coherent design.

These effects become particularly critical on larger products.
This suggests that, especially for larger products, prototyp-
ing should be followed by a reasonable level of specification
of the product and its internal interfaces.

4.2 Conclusions on Team-Size Effects

Smaller teams produced smaller products with less effort and
a higher "productivity" in DSl/Man-hour. This conclusion is
only statistically significant if the anomalous data for team
$3 is removed from the analysis. The two-person teams
spent smaller percentages of their effort in programming and
meeting. Their products were rated somewhat lower on
functionality, but about the same on ease of use, ease of
learning, and robustness.

Some of this team-size effect may have accounted for some of
the differences between the Specifying and Prototyping
results, since the average size of the Prototyping teams was
somewhat smaller (2.33 persons vs. 2.75). However, the cor-
roborative evidence from the project critiques indicates that
the projects' results were strongly influenced by whether
they used a specifying or a prototyping approach.

4.3 Conc lus ions on O t h e r S o f t w a r e Engineering
Effects

The "deadline effect" observed on a previous project [18] was
corroborated. Also, this experiment corroborated the previ-
ous observation that most of a product's code is devoted to
largely application-independent "housekeeping" functions.

482

The previous conclusion in [18] that "documentation is the
dominant activity during software development" was not cor-
roborated by this ezperiment. In fact, programming was the
dominant activity during this experiment, due most likely to
differences in project groundrules and team sizes. This result
emphasizes the need for follow-up experiments to eonfirm
eonelusions reached during software engineering experiments.

The most effective software project organization in strongly
dependent on the nature of the people on the project. Some

people's critiques emphasized the need for a strong leader, as
in the Chief Programmer Team approach. A larger number
of people felt that a more democratic team approach was
more effective.

The COCOMO model strongly overestimated the amount of
effort required to develop the ezperimcntal products. The
overestimates were typically by a factor of about 2.5, much
larger than could be explained by not counting the typical
30-40% of the workday devoted to non-project activities.
Most likely, the extra productivity was a result of exception-
al motivation of the people involved, both from the
competitive-team aspects and from a Hawthorne effect.

Nothing succeeds like motivation. This was the major cause
of both the high team productivity and the very high level of
maintainability of their products. The software field in gen-
eral needs a maintainability motivator similar in power to
that of telling students, "20% of your course grade will
depend on how much others want to maintain your pro-
duct."

4.4 Fu tu re Reaeareh

It is clear that the large number of variables in the present
experiment made it impossible to draw unambiguous conclu-
sions. We believe it is equally clear that experiments such as
this can make a significant contribution, particularly as oth-
ers repeat them and thereby increase the sample size.

Subsequent experiments of this type should attempt to
reduce the number of variables by:

• Making all of the teams the same size (prohi-
bit prime numbers of students per class!)

More precisely defining the user-interface re-
quirements, so that everyone implements close
to the same functionality.

Several different directions for investigation were also sug-
gested by this work:

Further examination of the effect of team size
on programmer productivity and product size.
Use the same development approach and en-
vironment, and a precisely defined product
definition.

• Further examination of prototyping vs. speci-
fying approaches applied to different phases of

a development project: definition of functional
requirements, design decisions, and implemen-
tation decisions. In other words, how does
the development approach affect the nature of
the product, as distinct from the cost of
development?

Examination of the effect of implementation
language choice on programmer productivity
and product size. A series of class projects
should be an excellent way to investigate this
question. Of particular interest: comparison
of interpreted and compiled languages.

Examination of factors that influence the
style of user-interface chosen by a particular
designer, e.g. available development tools, as-
sumptions about user environment, and per-
sonality traits of the designer.

Investigation of the effect of turn-around time
on programmer productivity, ls the effect
linear or non-linear? To what extent does it
depend upon the programmer's expectations
and previous experience?

Examination of the "user-manual first" ap-
proach on product size, quality, and effort ex-
pended.

Investigation of how accurately developers can
predict final product size from requirements
definitions. Also, how much does the ex-
istence of design specs improve accuracy of
product size predictions?

• Further investigation of the effect of proto-
typing vs. specifying on maintenance and
enhancement costs.

s Further examination of the wide variations
observed in coding productivity, with respect
to both team size and development approach.

4.5 S u m m a r y

The results of this experiment indicate that both prototyping
and specifying have valuable advantages that complement
each other. For most large projects, and many small ones, a
mix of prototyping and specifying will be preferable to the
exclusive use of either by itself. In particular, the results in-
dicate that:

1. The current specification-oriented model
should not be completely scrapped, particularly
on large projects. The pmtotypers' experi-
ence indicated that interface and design
specifications were still particularly valuable
in supporting integration and change imple-
mentation.

483

2.

3.

4.

The current model needs to be reoriented to
accommodate prototyping, and such related
techniques as incremental development. This
involves establishing such new life-cycle mile-
stones as a User Design Review (UDR) to
achieve user validation of a prototyped user
interface.

Contracting for software acquisition needs to
reflect the reoriented model. This involves
the use of competitive front-end prototyping
and "fly-offs," and the organization of the
development into a series of stabilized incre-
ments of functional capability.

The bottom-line driver on selection of the
specific mix of prototyping and specifying
should be risk management. Prototyping is
not necessary on familiar projects where there
is little risk of getting the wrong user inter-
face, requirements, or design. Elaborate
specifications are not necessary on smaller
projects with good user-developer rapport,
where there is little risk of botching the in-
tegration process or having an altercation
over contract deliverables. Risk management
considerations also drive most of the other
key management decisions over the software
life-cycle (how much to invest in analysis,
simulation, new technology, testing, quality
assurance, configuration management, etc.),
leading to a final implication:

Software projects should develop, maintain, and follow
a Risk Management Plan, which identifies potential
high-risk issues, establishes plans for resolving them,
and highlights risk-item resolution in project status
reviews.

As a final note, it is worth re-emphasizing the conclusion
that the prototyping approach resulted in products that
were easier to learn and use. For a field which is searching
for ways to make its products more humane, this experiment
indicated that the prototyping approach clearly has a great
deal to offer.

131

[4]

[51

[01

[8]

[91

[1ol

[111

i12]

[131

W. A. Hosier, "Pitfalls and Safeguards in
Real-Time Systems with Emphasis on Pro-
gramming", IRE Transactions on Engineering
Management, pp. 99-115, June 1961.

W. W. Royce, "Managing the Development of
Large Software Systems: Concepts and Tech-
niques", Proceedings, WESCON, August 1970.

R. D. Williams, "Managing the Development of
Large-Scale Reliable Software", Proceedings,
1975 International Conference on Reliable
Software, IEEE/ACM, April 1975, pp. 3-8.

R. L. Glass, Modern Programming Practices:
A Report From Industry, Prentice-Hall, 1982.

M. M. Lehman, "Programs, Life Cycles, and
Laws of Program Evolution", IEEE Spectrum,
Sept. 1980.

P. Kerola and P. Freeman, "A Comparison of
Lifecycle Models," Proceedings, Fifth Interna-
tional Conference on Software Engineering,
IEEE/ACM, March 1981, pp. 90-99.

B. W. Boehm, "Software Design and Structur-
ing", in E. Horowitz (ed), Practical Strategies
for Developing Large Software Systems,
Addison-Wesley, 1975.

D. D. McCrarken and M. A. Jackson, "Life Cy-
cle Concept Considered Harmful", ACM SIG-
SOFT Software Engineering Notes, pp. 29-32,
April 1982.

M. Zelkowitz and M. Bramstad, Proceedings,
A CAt SIGSOFT Rapid Prototyping Symposium,
Columbia, MD, April 1982.

Boehm, B. W., Software Engineering Econom-
ics, Prentice-Hall, 1981.

B. W. Boehm, "An Experiment in Small-Scale
Application Software Engineering," IEEE
Transactions on Software Engineering, pp.
482-493, September 1981.

REFERENCES

[1]

[2]

B.W. Boehm, "Software Engineering," IEEE
Transactions on Computers, pp. 1226-1241,
Dec. 1976.

H. D. Benington, "Production of Large Com-
puter Programs," in Proceedings, Symposium
on Advanced Programming Methods for Digital
Computers, ONR, Washington, D. C., June
1956, pp.15-27

484

