THE VIEW FROM THE CUTTING EDGE

or
Things I Learned in the Great Software Wars
by Larry Bernstein

Introduction
On Project Success
A Road Map to Success
On Leadership
Jack Welch’s Six Rules
On Planning
Japan’s 1972 Plan
On Humanizing Computers
System/Software Usability Principles
On Testing

INTRODUCTION

I developed these observations developing software during 35 years at Bell
Laboratories. Many are not original nor are they unique to software, but they are
insightful.

The software development process differs little from that for any technically intensive
product. I’ve adopted ideas from many people and applied them to software. I’ve tried
to give credit where due but I have not always been successful, to those I slighted, I
apologize.

I offer these thoughts in the hope that you can apply them to management in general and
to software in particular, with the faith good practices are universal and, as Will Rogers
said, “Everything is funny as long as it is happening to someone else.”

ON PROJECT SUCCESS
Your objective is ‘not to get it to work, but to get it to work right.’
Jackson
First, make it work. Then make it work right. Then make it work better.
Vyssotsky

Fail small, succeed big.
Every project builds prototypes; it’s just that some don’t plan it that way.

“You may have noticed that the less I know about a subject, the more confidence I have,
and the more new light I throw on it.”



Twain

“I was gratified to be able to answer promptly, which I did. I said, ‘I didn’t know.’”
Twain

A Road Map to Success
1. Start with a small team with broad objectives and build a prototype.

2. Put the prototype into the field and use it. Estimate the size of the job. Use
function points and an estimation tool such as Checkpoint or Cocomo.

3. After an analysis of the prototype, enlarge the organization from a small team
to a large one. If necessary, write detailed requirements and control them.

4. Using top-down design, partition the project into modules, define and control
interfaces, and appoint module owners. Use modern software interface
conventions such as object classes, pipes, tag value data, etc.

5. Reduce complexity in the design with a formal “design minimization” effort.
Establish a target of 40% simplification by maximizing reuse, eliminating
redundancy and simplifying algorithms.

6. Implement designs, using structured programming techniques, only after they
have been inspected. Submit tested software and work practices through an
independent manufacturer (or builder) to the quality assurance and integration
organization.

7. Test incrementally. Create a simple working system and then add sets of
changes to gradually increase capability. Do regression tests on each new

increment using test cases developed for the previous increment.

8. Find a friendly operational site where the operators are willing to let
developers try out new features before they are formally released.

9. Have a soak site for new product releases.

10. Avoid developing a new application on new hardware and/or new operating
system software.

11. Have maintainers share some of the continuing development responsibility.

ON LEADERSHIP




When things are the very worst and nothing is working, the leader shows unwarranted
optimism.

To lead is to be in front.
A leader must be seen often by her people. Managers should go to their peoples’ work

stations periodically.

“Enthusiasm and optimism are contagious; so is idleness.”

Yuhas
“Be good, and you’ll be lonesome.”

Twain
“When in doubt, tell the truth.”

Twain

“We have to undo a 100 year old concept and convince our managers that their role is not
to control people and stay ‘on top’ of things, but rather to guide, energize and excite.”
Welch, CEO of General Electric

Jack Welch’s Six Rules

1. Face reality as it is, not as it was or as you wish it to be.
2. Be candid with everyone.
3. Don’t manage, lead.
4. Change before you have to.
5. If you don’t have a competitive advantage, don’t compete.
6. Control your own destiny, or someone else will.
ON PLANNING

“Management planning is not complicated but it is tedious — that’s why the temptation is
so strong to avoid it.”
Sloma

First define what is to be done and plan the order of doing it; then say who is to do it.

“Get your facts first, and then you can distort them as much as you please.”
Twain

Plan by using pert charts or schedule charts but track by schedule lists. For each
milestone keep two dates, one the “schedule” which you own, the other, a “current
estimate” which the developer owns.



Manage the tradeoff between control and stability on the one hand and rapid response
time and flexibility on the other. Your plan must acoomdate both.

Instead of imposing procedures to control projects, replace the managers. Procedural
controls are weak substitutes for competent managers.

Japan’s 1972 Plan
An approach to setting goals for computer technology was the Japanese “Plan for
Information Society — A National Goal toward Year 2000.” The “Plan,” proposed
in 1972, was an ambitious and detailed attempt at long-range planning involving
both business and government, with a proposed long-range budget of 65 billion
yen a year. The authors described it as presenting “a picture of Japan’s planned
information society which is scheduled to be established by 1985, and the means
of attaining this national goal and its schedule.”

The “Plan” was based on the assumption that industrial society will be succeeded
by an information society in which the goal of mass consumption of consumer
goods will be replaced by “a general flourishing state of human intellectual
creativity.” Some of the projects proposed include remote medical systems,
computer-oriented education, a data bank for government agencies, a pollution
prevention system, community-based information systems, a think tank center,
and a computer peace corps.

By 1996 they found their technology out-of-date and were lagging the industry
The Japanese see clearly that the key to designing the future is software. In
addition, they consider a period of “social information building” as a necessary
prerequisite. Besides realignment of institutions and education of the people, and
so on, this seems to be envisioned as a time for verification of information
concepts. The authors of the “Plan” believed that it is to Japan’s advantage that
“the nation and it culture are homogeneous.” While homogeneity provides secure
institutions, good communication, and common overall goals, innovation requires
a milieu in which variations may thrive.

Plans that change are useful; those that don’t should be abandoned. Planning for
the future is far from foolproof. The best of plans need built-in flexibility, and be
prepared changed quickly as the need arises. Yet, having a plan provides leverage
on the future.

ON HUMANIZING COMPUTERS

Keep human interactions simple and natural to minimize training and documentation.

Don’t try to correct poor software design with good documentation.
Gilb



Keep human interactions modular to permit the customer to organize jobs the way he sees

fit.

When the answer is always the same, don’t keep asking the question.

“The meanings of various lengths of elapsed time do not vary widely from one person to

another:

Less than 1/3 sec is ‘instantaneous’,
Less than I sec is ‘fast’
Less than 5 sec is a ‘pause’ and
Greater than 10 sec is a ‘wait’.
Time sharing interactions should be ‘instantaneous.” Transaction interactions should be

299

without ‘wait.

- Jones in For Principles of Main Computer Dialog Computer Aided Design, Vol.

10, No. 3, pg 197, May 1978

Here is a table from my new book, “ Basic Understanding of telecommuniucations
Networks: Cooper to Sand to Glass to Air.” ISBN 0-306-46237-0, Kluwer Academic

Publishing

System/Software Usability Principles

Principle

Explanation

Speak the users’ language.

Use words, data labels, and concepts familiar to the user.
Present information in a natural and logical order in the user’s

context.

Be consistent.

Indicate similar concepts through identical terminology and
graphics. Adhere to uniform conventions for layout, formatting,

typefaces, and labels.

Minimize the users’

memory load.

Rely on recognition, not recall. Do not force user to remember
information across documents. Rely on human factor
specialists to determine appropriate levels of memory demand

based on context and user skill.

Design for flexibility and

Accommodate a range of user sophistication and diverse user




efficiency. goals.

Design aesthetic and Create visually pleasing, efficient displays that capitalize on
minimalist graphics. known human capabilities in pattern recognition, color

differentiation, etc.

Recognize the power of The capacity of human short term memory is small, but can be
chunking. amplified by grouping subsets of information around keywords,
by completing single thoughts in one document, and by keeping

tasks short but information-rich.

Structure progressive Organize information hierarchically, with more general
levels of detail information appearing before more specific detail. Allow the

user to stop when sufficient information is received.

Facilitate navigation Allow user to determine current position in the program
through program structure. | structure. Make it easy to jump among related tasks. Make it

easy to return to an initial state.

ON TESTING

“Systems not tested do not work.”
Casulli

Test incrementally.

Test under no-load.

Test under medium-load.

Test under heavy-load.

Test under overload.

Test the error recovery code.

Tests that do not cause the system to fail are unsuccessful.

Have separate system integration and test groups to insure that the system works and,
even more importantly, that it can be delivered.




Three times the effort is needed to fix a bug found in the test lab than if it were found by
the original programmer. Ten times the effort is needed to fix a bug found in the field
than in the test lab.

Testing without data analysis is debugging; debugging is trouble shooting; trouble
shooting is time consuming. Data analysis requires an investment in data reduction and
in the software having self-diagnostic capability.

Expect that 50% of time and 20% of cost will be spent testing, unless you use regression
testing. Regression testing cuts testing costs in half.
Nowak, private conversation.

A 2% reduction in defects is usually accompanied by a 10% increase in productivity.
Lynas, Harvard Business Review, August, 1981

Stress testing is not complete until the points where the system breaks are found. Design
margins are the difference between the breaking point and the operating point.

When you do volume testing, make sure that someone checks the appearance and validity
of the output - people don’t always look at the output from stress tests.

Models are useful for test case development.
Spend more time testing stability and performance than features. Have a “friendly”

operational site at which developers might do some feature testing before the software is
released. Test the recovery system very well.



	On Humanizing Computers
	System/Software Usability Principles


