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Transport Phenomena for Chemical Reactor Design

New Ideas and Corrections by Chapter (Errata and Corrigenda)

Preface
Page xxii 3 lines up from the bottom, remove the comma after Damköhler number

Part 1
Elementary Topics in Chemical Reactor Design

(1) Multiple Chemical Reactions in PFR's & CSTR's

Page#4 2nd sentence of the 2nd paragraph; Which of the following alternatives is more
desirable when the inlet molar flowrate of ammonia is 1 g-mol/min; a
stoichiometric (1:1) feed of ethylene oxide and ammonia enters the reactor, or
a 3:1 molar ratio of ethylene oxide to ammonia enters the reactor?  Consider
economics qualitatively.  Provide support for your answer by calculating …

Page#7 Equation (1-15) needs script R-sub-j; use old English font for R in (1-15)
Page#10 2 lines above Table 1-1; insert the following paragraph and graphical solution

It is much more desirable to use an excess of ethylene oxide in the feed stream because
ethylene oxide participates in all three chemical reactions.  An excess of NH3 will deplete
ethylene oxide in the first reaction.  This is counter-productive because there will not be a
significant amount of ethylene oxide remaining, which is required to generate the desired
product in the third reaction.  At 325K, 5 atmospheres total pressure, and a 3:1 feed ratio
of ethylene oxide to ammonia, a total reactor volume of 75 Litres will yield a desired product
(i.e., tri-ethanolamine) molar flowrate of approximately 0.75 g-mol per minute as
summarized quantitatively in Table 1-1 and the accompanying figure.  For comparison to
illustrate the effect of total pressure on reaction kinetics at 325K, an decrease in total
pressure from 5 atm. to 3 atm. together with a 3:1 feed ratio of ethylene oxide to ammonia
yields the same outlet molar flowrate of tri-ethanolamine when the total reactor volume is
200 Litres.  Since the overall chemical reaction can be described as 3 moles of ethylene
oxide and 1 mole of ammonia producing one mole of tri-ethanolamine, the 3:1 feed ratio of
ethylene oxide to ammonia yields an equilibrium outlet molar flowrate of 1 g-mol/minute for
tri-ethanolamine when reactor volume is exceedingly large.
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Page#10 caption to Table 1-1; gas-phase PFR operating at 325K and 5 atmospheres total
pressure a

Page#12 add the word “then” after “other reactions, then” 2 lines above equation (1-26)
Page#12 bottom line; j is not required, then the extent of reaction ξ is analogous to …
Page#13 first component on the left side of reaction (1-32) should be C6H4Cl2
Page#18 middle of the page; reactive intermediate C, then it is possible to verify the

molar density ratio, C/A, which is given in the problem statement.
Page#19 bottom line of text; irreversible, then the generic form of each rate law is
Page#25 near the bottom of the page, after CSTR design strategy#2

Numerical verification of this strategy is summarized graphically for third-order
irreversible chemical kinetics, when the rate law depends on the molar densities
of reactants A and B.  The appropriate objective statement and system of
equations required to prove this design strategy are outlined below;

Objective statement
Consider the generic liquid-phase chemical reaction where one mole of key limiting reactant
A and two moles of reactant B combine to form products;

€ 

A+ 2B ⇒
k3, forward ,C (T )

products

The reaction is elementary and irreversible, and the feed stream to a liquid-phase isothermal
CSTR is stoichiometric in reactants A and B (i.e., 1:2).  The time constant for convective
mass transfer through the reactor is τ = VCSTR/q, and λ is the time constant for 3rd-order
irreversible chemical reaction [i.e.,  λ = (CA,inlet)1-n/kn,forward,C, with n=3].
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Generate numerical results that support the important reactor design strategy
which can be stated as follows; "under conditions of a liquid phase volumetric
flow rate that is the same for both examples, the reactor volume required to
achieve a specified final conversion of reactant A in the exit stream of one CSTR
is larger and economically less attractive than the overall reactor volume
required to achieve the same final conversion in the exit stream of the last
CSTR in a series configuration of 3 equi-sized reactors".  Demonstrate that the
initial (i.e., capital) cost for the train of 3 CSTRs is 10-fold less expensive than
the initial cost for 1 CSTR when τ/λ for the 1-CSTR-problem is on the order of
1000.  Produce one graph of log(τ/λ) for both configurations vs. conversion
χA,final in the exit stream of the last reactor that proves this important strategy.

Verification of this reactor design strategy
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Calculate the conversion of reactant A in the exit stream of one liquid-phase CSTR.  The
elementary irreversible chemical reaction is described above.  Conversion of reactant A is
determined from the cubic CSTR design equation.  The kinetics are first-order with respect
to reactant A, and second-order with respect to reactant B.

{τ1CSTR/λ}(1–χ1CSTR)(ΘB+υBχ1CSTR)2–χ1CSTR=0 mass balance for one CSTR
ΘB=2 inlet feed ratio parameter for reactant B
υB=–2 stoichiometric coefficient for reactant B
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Now, consider a train of 3 equi-sized CSTRs operating at the same temperature and feed
conditions such that the chemical reaction time constant λ for each reactor in series is the
same as λ for the one-reactor configuration.  The overall objective is to demonstrate that
τ1+τ2+τ3=τ3CSTRs<τ1CSTR when conversion of reactant A in the exit stream of the third CSTR, χ3,
is the same as χ1CSTR and τ1=τ2=τ3=τ3CSTRs/3.  Three sequential CSTR design equations are
required to analyze the performance of the train.

{τ3CSTRs/3λ}(1–χ1)(ΘB+υBχ1)2–(χ1–0)=0 mass balance for the 1st CSTR in the train
{τ3CSTRs/3λ}(1–χ2)(ΘB+υBχ2)2–(χ2–χ1)=0 mass balance for the 2nd CSTR in the train
{τ3CSTRs/3λ}(1–χ3)(ΘB+υBχ3)2–(χ3–χ2)=0 mass balance for the 3rd CSTR in the train

final conversion is the same for both configurations
χ3=χ1CSTR

Page#25 bottom of the page after CSTR design strategy#4.
Analytical verification of strategy#4 for first-order irreversible
chemical reaction. This problem can be analyzed as restricted optimization if
the total reactor volume is limited.  Hence, τ1+τ2 = τtotal = constant.  Construct
the steady state mass balance on species i in the kth-CSTR.  The important mass
transfer rate processes are convection and chemical reaction, where the rate
law is first-order and depends only on the molar density of reactant A.  Hence, if
the kth-reactor operates at temperature Tk, then;

€ 

dNi,k

dt
= qCi,k−1 − qCi,k +υik1 Tk( )CA,kVk thCSTR = 0

Application of the stoichiometric relation for constant-density systems, with
residence time τk = Vk/q and characteristic time constant for 1st-order
irreversible chemical reaction λk = {k1(Tk)}-1, yields the following recurrence
formula;

€ 

Ci,k =CA0 Θi +υiχk{ }

Ci,k−1 −Ci,k =υiCA0 χk−1 − χk{ } = −υi
τ k
λk
CA0 1− χk{ }

χk−1 − χk{ } = 1− χk{ }− 1− χk−1{ } = −
τ k
λk

1− χk{ }

1− χk =
λk

λk + τ k
1− χk−1{ }
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Now, apply the recurrence formula for two CSTRs in series with first-order
irreversible chemical kinetics;

€ 

1− χ1 =
λ1

λ1 + τ1
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Maximize χ2 by minimizing 1–χ2 with respect to τ1 at constant τtotal, T1, and T2.
Since the chemical reaction time constants are truly constants when the
temperature in each CSTR does not change;

€ 

∂
∂τ1

1− χ2 τ1( ){ } =
λ2

λ2 + τ total −τ1
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1
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−
1

λ1 + τ1
= 0

τ1 =
1
2
τ total +λ2 −λ1{ }

The following reactor design strategy will maximize the conversion of reactant A
in the exit stream of the second CSTR in series.  If both reactors operate at the
same temperature, then T1=T2 and both chemical reaction time constants
should be the same.  Under these conditions, the residence time for each CSTR
should be 50% of the total residence time.  Hence, τ1=τ2.  This theorem applies
only when the kinetics are first-order and irreversible.  If the first CSTR operates
at higher temperature, then T1>T2 and λ1<λ2, because chemical reaction time
constants decrease at higher temperature.  Now, τ1>τ2, which suggests that the
first CSTR should be larger.  If the second CSTR operates at higher temperature,
then T1<T2 and λ1>λ2.  Now, τ1 should be less than τ2.  In general, the reactor
that operates at higher temperature should have a longer residence time, and
this theorem is applicable to any type of nth-order kinetic rate law when n>0.

Page#26 Answer to Problem#1:
Combine the first and fourth strategies outlined above.
The smaller reactor that operates at 300C should be first in the train.
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The larger reactor that operates at 700C should be last in the train.
Numerical verification of this combination of strategies is illustrated graphically
below, via the solution of coupled nonlinear algebraic equations.

τ1R1–CA,inlet(χ1–χ0)=0 design equation for the first CSTR
τ2R2–CA,inlet(χ2–χ1)=0 design equation for the second CSTR
R1=kforward(T1){CA,inlet(1–χ1)}n nth-order kinetics in the first CSTR at T1

R2=kforward(T2){CA,inlet(1–χ2)}n nth-order kinetics in the second CSTR at T2

τ1+τ2=50 minutes restricted optimization
kforward(T1)=0.1 (L/mol)n-1/min reaction time constant is 10 min. at T1

kforward(T2)=0.5 (L/mol)n-1/min reaction time constant is 2 min. at T2 > T1

χ0=0 no conversion in the inlet stream to 1st CSTR
CA,inlet=1 g-mol/Litre molar density of reactant A; inlet to 1st CSTR
n=3 third-order kinetics, where R = f(CA) = kn(CA)n
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If the kinetics are first-order and irreversible (i.e., n=1), such that R = k1CA, then the
residence time should be longer for the reactor that operates at higher temperature, but it
does not matter whether the hotter or colder reactor is first in the train.
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Page#29 Problem 1-7; pre-exponential (i.e., 6 lines up from the bottom of the page)
Page#30 Answer to Problem 1-7;
The following sequence of coupled nonlinear algebraic equations must be solved to address
this restricted optimization problem with one degree of freedom (i.e., either τ1 or τ2);
τ1R1–CA,inlet(χ1–χ0)=0 CSTR mass balance in the 1st CSTR w/ one chemical reaction
τ2R2–CA,inlet(χ2–χ1)=0 CSTR mass balance in the 2nd CSTR w/ one chemical reaction
R1=kr1{(CA1)n–(CB1)n/KEq#1} reversible rate law for nth-order kinetics in the 1st CSTR
R2=kr2{(CA2)n–(CB2)n/KEq#2} reversible rate law for nth-order kinetics in the 2nd CSTR
CA1=CA,inlet(1–χ1) molar density of reactant A in the exit stream of 1st CSTR
CA2=CA,inlet(1–χ2) molar density of reactant A in the exit stream of 2nd CSTR
CB1=CA,inlet(ΘB+υBχ1) molar density of product B in the exit stream of 1st CSTR
CB2=CA,inlet(ΘB+υBχ2) molar density of product B in the exit stream of 2nd CSTR
KEq#1=exp(A+B/T1) thermodynamic equilibrium constant in the first reactor
KEq#2=exp(A+B/T2) thermodynamic equilibrium constant in the second reactor
A≈ΔS0

Rx,298K/Rgas standard state entropy change for reaction at 298K
B≈–ΔH0

Rx,298K/Rgas standard state enthalpy change for reaction at 298K
kr1=k∞exp{–EActivation/(RgasT1)} Arrhenius kinetic rate constant in the first reactor
kr2=k∞exp{–EActivation/(RgasT2)} Arrhenius kinetic rate constant in the second reactor
T1=350K to 370K temperature in the first reactor
T2=350K to 370K temperature in the second reactor
χ0=0 conversion of reactant A in the inlet stream to the 1st CSTR
τ1+τ2=1000 minutes restricted optimization; total residence time is limited
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CA,inlet=0.4 mol/Litre molar density of reactant A in the inlet stream; 1st CSTR
ΘB=0 inlet molar density ratio; product B/reactant A; 1st CSTR
υB=+0.5 stoichiometric coefficient of product B, when υA = –1
k∞=1x109 (L/mol)n-1/min. pre-exponential factor for the Arrhenius kinetic rate constant
EActivation=17 kcal/mol Arrhenius activation energy for the forward reaction
ΔH0

Rx,298K = –9 kcal/mol standard state enthalpy change for reaction at 298K
ΔS0

Rx,298K = –15 cal/mol standard state entropy change for reaction at 298K
(2 moles of reactant A produce 1 mole of product B)

Rgas=1.987 cal/mol-K universal gas constant
n=3 3rd-order forward and backward chemical kinetics
Operate both CSTRs at the highest possible temperature; 370K
τ1 ≈ 400 minutes; τ2 ≈ 600 minutes
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Page#31 Answer to Problem 1-8;
The following sequence of coupled linear and nonlinear algebraic equations is required to
address these CSTR optimization problems with multiple chemical reactions and one degree
of freedom (i.e., reactor temperature T);

ξ1 = τR1 CSTR design equation for the first reaction
ξ2 = τR2 CSTR design equation for the second reaction
CA = CA,inlet – ξ1  molar density of reactant A, mol/Litre
CB = CB,inlet + ξ1 – ξ2 molar density of intermediate product B, mol/Litre
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CC = CC,inlet + ξ2 molar density of final product C, mol/Litre
R1 = k1(T){CA}n kinetic rate law for the first chemical reaction
R2 = k2(T){CB}n kinetic rate law for the second chemical reaction
k1(T) = k1∞exp{–EActivation#1/(RgasT)} Arrhenius kinetic rate constant; 1st reaction
k2(T) = k2∞exp{–EActivation#2/(RgasT)} Arrhenius kinetic rate constant; 2nd reaction
k1∞ = 1x107 (Litre/mol)n-1/sec. Arrhenius pre-exponential factor; 1st reaction
k2∞ = 4x106 (Litre/mol)n-1/sec. Arrhenius pre-exponential factor; 2nd reaction
EActivation#1 = 15 kcal/mol Arrhenius activation energy; 1st reaction
EActivation#2 = 12 kcal/mol Arrhenius activation energy; 2nd reaction
Rgas = 1.987 cal/mol-Kelvin universal gas constant
VolumeCSTR = 100 Litres reactor volume
FlowRate = 0.250 kg/sec. mass flowrate through the CSTR
q = FlowRate/ρ volumetric flowrate, Litres/sec.
ρ = 1 kg/Litre overall density of the reactive mixture
τ = VolumeCSTR / q average residence time for the CSTR, seconds
CA,inlet = 1 or 2 mol/Litre inlet molar density of reactant A
CB,inlet = 0 intermediate B is not present in the feed
CC,inlet = 0 final product C is not present in the feed
λRx#1 = {CA,inlet}1-n [k1(T)]-1 time constant for the first chemical reaction
λRx#2 = {CA,inlet}1-n [k2(T)]-1 time constant for the second chemical reaction
n = 1 or 2 order of both irreversible chemical reactions
SB/C = CB / CC selectivity of intermediate B vs. product C
YieldB = {CB–CB,inlet}/CA,inlet yield of intermediate B wrt feed of reactant A

Answer to Problem 1-8 (a1);
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Answer to Problem 1-8 (a2);
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Answer to Problem 1-8 (b1 and b2);
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Answer to Problem 1-8 (c);
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Second-Order Kinetics; Consecutive Rxs.

(2d) Why is the optimum reactor temperature the same for (2a1) and (2a2),
but the optimum reactor temperature for (2b1) is higher than that for
(2b2)?

Answer:
In all four simulations under consideration, the CSTR residence time is 400 seconds (i.e.,
VCSTR = 100 Litres, q = 0.25 Litre/sec.).  The yield of intermediate product B is optimized at
temperatures where the time constant for the first reaction λ1 is longer than residence time
τ, so that the system dwells on producing B via the first reaction instead of depleting B via
the second reaction.  The second reaction proceeds slowly when intermediate B is not very
abundant.  For first-order kinetics, the characteristic molar density of reactant A in the feed
stream does not affect chemical reaction time constants.  Optimum conditions occur when
λ1 ≈ 1200 seconds at 325-326K in example (2a1) and (2a2).  When the kinetics are second-
order, reaction time constants scale inversely with the characteristic molar density of
reactant A in the feed stream.  Now, the optimum conditions occur when λ1 ≈ 700 seconds.
Hence, at higher feed concentrations of reactant A (i.e., now λ1 decreases), it is necessary
to operate at lower temperature (i.e., 323K in 2b2 vs. 333K in 2b1) to decrease kinetic rate
constants and counterbalance the increase in CA,inlet such that λ1 ≈ 700 seconds.  In part (2c)
where the flowrate decreases and the residence time increases to τ = 1000 seconds with
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second-order kinetics, optimum CSTR operation occurs at lower temperature (i.e., 320K) to
achieve a chemical reaction time constant for the first reaction (i.e., λ1 > 1700 seconds)
that is significantly longer than τ.

(2) Start-up Behaviour of a CSTR Train

Page#46 Problem 2-2
Startup behaviour of a CSTR train with multiple chemical reactions
How many coupled ordinary differential equations must be solved to analyze the complete
transient response of a train of 2 CSTRs in series when 5 components participate in 3
independent chemical reactions in the 1st tank and 4 independent chemical reactions in the
2nd tank?  A catalyst in the 2nd tank is responsible for the fact that an additional reaction
occurs in the 2nd tank, but this catalyst is not present in the 1st tank.

(3) Non-Isothermal Adiabatic Plug Flow Tubular Reactors

Page#62 Problem 3-1; just below the chemical reaction illustrating the hydrogenation
of benzene; … replace and a catalyst is not required, by “over a supported-
nickel catalyst (i.e., 58% Ni).  The appropriate gas-phase thermodynamic data
are provided …

Page#64 Problem 3-3.
Analyze the production of methanol from a stoichiometric feed of carbon
monoxide and hydrogen in an adiabatic gas phase tubular reactor when the
specific heat of the 3-component mixture exhibits dependence on temperature
and conversion.  Do not average the specific heat of each component over a
reasonable range of operating temperatures, as illustrated on pages 48-49, and
do not neglect the dependence of CP,mixture on the conversion of CO, as discussed
on pages 50-51.  Include flexibility for reactor performance at various pressures
and inlet temperatures, as well as the use of an inert gas such as argon in the
feed stream.  In the absence of argon, demonstrate that an inlet feed
temperature of 350K and an operating pressure of 2 atmospheres yield slightly
higher CO conversion in an adiabatic tubular reactor that is at least 10-fold
smaller than the simulations suggest in Figure 3-1 on page#61.  Hint:  Do not
assume that non-equilibrium reactor temperature and CO conversion exhibit
linear relations given by equations (3-41) and (3-42).  Coupled heat and mass
transfer in adiabatic gas phase tubular reactors are described by equations (3-
38) and (3-39).  Based on your more accurate simulations in the solution to this
problem, are the approximations invoked in Chapter#3 justified?
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(4) Coupled Heat and Mass Transfer in Non-Isothermal Liquid Phase
Tubular Reactors with Strongly Exothermic Chemical Reaction;
Thermal Runaway, Parametric Sensitivity & Multiple Stationary
States

Page#91 illustrative problems at the top of the page
(a) Describe qualitatively why thermal runaway occurs when the flowrate of the

cocurrent endothermic cooling fluid is too FAST.  In other words, thermal runaway
occurs when Ψ > 0.65 (see Figures 4-8 and 4-9).

Answer:
If the cooling fluid flowrate is too fast and its residence time is too short relative to the time
constant for endothermic chemical reaction in the cooling fluid, then the conditions are not
appropriate to remove much thermal energy from the reactive fluid in the inner tube.  The
cooling fluid does not remain in the double-pipe heat exchanger long enough to function as a
sink of thermal energy via endothermic chemical reaction.  Hence, thermal runaway occurs in
the reactive fluid within the inner tube.

(b) Describe qualitatively why thermal runaway occurs when the flowrate of the
cocurrent endothermic cooling fluid is too SLOW.  In other words, thermal runaway
occurs when Ψ < 0.15 (see Figures 4-10 and 4-11).

Answer:
If the cooling fluid flowrate is too slow and its residence time is much longer than the time
constant for endothermic chemical reaction in the cooling fluid, then near-equilibrium
conditions occur in the cooling fluid before it exits the double-pipe heat exchanger.  Hence,
thermal runaway occurs in the reactive fluid near the tube outlet because the cooling fluid
has "equilibrated" and it is not available to remove much thermal energy from the reactive
fluid when τRx is between 25 sec and 30 sec.

Page#104 Problem#4-3
Analyze the performance of an exothermic plug-flow tubular reactor with
countercurrent cooling in a concentric double-pipe configuration that is not
insulated from the surroundings.  Three coupled ordinary differential equations,
split boundary conditions, and numerical values for all of the important
parameters are summarized in Table#4-7 on page#98.  Consider the specific
situations where the outlet temperature of the cooling fluid is 310 K, the
flowrate ratio parameter ψ = 3, and the time constant for heat transfer to the
surroundings across the outer wall of the configuration is 10 seconds instead of
2500 seconds.  Radius ratios of the double-pipe configurations (i.e., κ =
RInside/ROutside) range from 0.50 to 0.75.  Interestingly enough, reactive and
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cooling fluid temperature profiles in these double-pipe reactors are physically
disallowed in the absence of chemical reaction when the outer wall is
adiabatically insulated from the surroundings.  If κ = 0.5, then does the same
behaviour occur (i) when the average velocity of both fluids is the same, such
that ψ = 1 and values for τRx on the horizontal axis (i.e., 0 ≤ τRx ≤ 15 sec)
represent the same axial position z in the double-pipe reactor for each fluid, and
(ii) when no chemical reaction occurs within the inner tube?  Explain why the
temperature profiles change drastically in the presence of chemical reaction,
with ψ = 3 when the radius ratio κ = 0.78, relative to the previous values of κ
that were investigated above.  Note: These anomalous effects that are revealed
by computer simulations for countercurrent flow are not predicted when the
cooling fluid flows cocurrently with respect to the reactive fluid.

Page#104 Problem#4-4
Repeat the formalism in Section 4-1.3 for the Thermodynamics of multicomponent
mixtures and obtain Equation (4-31) for the total differential of specific enthalpy h of an
N-component mixture in the presence of multiple chemical reactions;

€ 

dh = Cp,mixture dT +
1
ρ
1−αT( )dp+

dVPFR
ρq

Rj υij Hi
i=1

N

∑
jRx 's
∑

In this case, start from the extensive enthalpy H which, in agreement with the phase rule for
single phase behaviour of simple systems where all chemical reactions have not equilibrated
(i.e., there are N+1 degrees of freedom), depends on the following N+2 independent
variables; T, p, M1, M2, …, MN, where T represents temperature, p is pressure, and Mi

corresponds to the mass of species i in this reactive mixture.  The stipulation of simple
systems implies that there are no strong external fields, like electric and magnetic fields,
which introduce addition degrees of freedom to characterize the field strength.

Answer:
Since extensive enthalpy H exhibits dependence on total system mass, Mtotal = Σ1≤i≤N Mi, the
problem statement suggests the following functional dependence of H on N+2 independent
variables, which yields it total differential as;

€ 

H T , p,M1,M2 ,M 3,...,MN( )

dH =
∂H
∂T
 
 
 

 
 
 p,composition

dT +
∂H
∂p

 
 
 

 
 
 T ,composition

dp+
∂H
∂Mi

 
 
 

 
 
 T ,p,all _M j j≠i[ ]

dMi
i=1

N

∑
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Expressing H in terms of temperature T and pressure p guarantees that (i) the total
differential of H contains temperature changes (i.e., dT) as required to generate
temperature profiles via the differential thermal energy balance in plug-flow tubular reactors,
and (ii) the temperature coefficient of H at constant pressure and composition yields an
extensive heat capacity of the mixture, defined by;

€ 

Cp,Extensive =
∂H
∂T

 
 
 

 
 
 p,composition

The gymnastics of differential thermodynamic relations, including one Maxwell relation from
the Gibbs free energy based on the fact that reversing the order of second-mixed partial
differentiation of thermodynamic state functions (i.e., exact differentials) does not affect
the final result, yields an expression for the pressure coefficient of H at constant
temperature and composition;

€ 

dH =TdS+Vdp+ composition − dependent − terms i.e., µidNi
i=1

N

∑
 
 
 

 
 
 

∂H
∂p

 
 
 

 
 
 T ,composition

=T ∂S
∂p
 
 
 

 
 
 T ,composition

+V

∂S
∂p
 
 
 

 
 
 T ,composition

= −
∂V
∂T
 
 
 

 
 
 p,composition

= −Vα

The “chemical reaction contribution” to the total differential of extensive enthalpy is
embedded in the species concentration dependence of H at constant temperature, pressure,
and composition of all other species in the reactive mixture.  This is expressed using partial
molar enthalpies, or partial specific enthalpies, which are defined as follows;

€ 

∂H
∂Mi

 
 
 

 
 
 T ,p,all _M j j≠i[ ]

=
∂H
∂Ni

 
 
 

 
 
 T ,p,all _ N j j≠i[ ]

∂Ni

∂Mi

 
 
 

 
 
 T ,p,all _M j j≠i[ ]

=
Hi

MWi

where mole numbers for species i are represented by Ni, MW is molecular weight, and the
overbar identifies a partial molar property.  The next step in this development relates
extensive enthalpy H to specific enthalpy h via division of dH by total system mass, Mtotal,
which remains constant at steady state.  Hence, it is justified to divide by Mtotal inside the
differential operators, particularly for dH and dMi.  Division of system volume V = VPFR by
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Mtotal yields specific volume, or the inverse of the overall density of the mixture ρ, and
division of Mi by Mtotal identifies the mass fraction of species i, ωi.  One obtains the following
expression for the total differential of specific enthalpy in multicomponent mixtures with
multiple chemical reactions;

€ 

1
Mtotal

dH = dh =Cp,int ensivedT +
1
ρ
1−αT( )dp+

Hi

MWi

dωi
i=1

N

∑

This analysis of the thermodynamics of multicomponent mixtures is employed in the plug-
flow thermal energy balance to generate temperature profiles for tubular reactors that
operate nonisothermally due to the endothermic or exothermic nature of the chemical
reactions.  The coupling between heat and mass transfer is invoked to introduce an
expression for the differential change of species mass fraction dωi via the plug-flow mass
balance for flow reactors with multiple chemical reactions.  This is accomplished via a simple
relation between mass fraction ωi and molar flowrate Fi for species i that includes the total
mass flowrate ρq which remains constant at steady state with one inlet stream and one
outlet stream.  Hence, if no material escapes from the tubular reactor across the
impermeable boundary at the tube wall (i.e., r=RPFR), then (i) the plug-flow mass balance for
ideal PFRs with multiple chemical reactions, and (ii) the relation between ωI and Fi are;

€ 

dFi
dVPFR

= υijRj
jRx 's
∑

ωi =
MWiFi
ρq

dωi =
MWi

ρq
dFi =

MWidVPFR
ρq

υijRj
jRx 's
∑

The chemical reaction contribution to the total differential of specific enthalpy is
manipulated as follows when multiple chemical reactions occur.  It is straightforward to
include only the first term in the summation (i.e., over index j) for one chemical reaction;

€ 

Hi

MWi

dωi
i=1

N

∑ =
dVPFR
ρq

Hi
i=1

N

∑ υijRj
jRx 's
∑ =

dVPFR
ρq

Rj
jRx 's
∑ υij Hi

i=1

N

∑

The stoichiometric-coefficient-weighted sum of partial molar enthalpies for all species that
participate in the jth-chemical reaction, given by the last summation on the extreme right
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side of the previous equation, is an exact expression for the molar enthalpy change ΔHRx,j

that considers nonideal effects, such as heats of mixing and possible ionic interactions, in
addition to the making and breaking of chemical bonds.  Hence, thermodynamic formalism
for the specific enthalpy h of mixtures of N-components that participate in several chemical
reactions reveals that the chemical reaction contribution to thermal energy effects requires
a sum of products of kinetic rate laws and the corresponding molar enthalpy change for
each reaction.  If the intensive heat capacity of the mixture, Cp,Extensive/Mtotal, is averaged over
the complete temperature range of operation, then the final expression for dh in the steady
state plug-flow thermal energy balance and the first law of thermodynamics for open
systems reduces to;

€ 

dh = Cp,mixure dT +
1
ρ
1−αT( )dp+

dVPFR
ρq

Rj
jRx 's
∑ ΔHRx, j

Page#104 Problem#4-5
Use the final result from Problem#4-4 together with the first law of thermodynamics for
open systems to obtain an ODE that is useful for steady state analysis of temperature
profiles in ideal plug-flow tubular reactors with multiple chemical reactions that is the same
as Equation (4-33).

Answer:
Define the system as an N-component reactive mixture within differential control volume,
πR2dz.  There is one inlet stream at position z and one outlet stream at z+dz.  The reactor
wall at r=R is impermeable to mass, but it is not impermeable to radial conduction of thermal
energy.  The rate of thermal energy transfer into the system across the diathermal wall is
described by {dQ/dt}input.  The rate at which the surroundings perform mechanical work on
the system via moving solid surfaces is given by {dW/dt}moving, which does not include pV-
work across the inlet and outlet planes.  If U represents extensive internal energy, then the
first law for open systems, with dimensions of energy per time, can be stated as;

€ 

dU
dt

=
dQ
dt

 
 
 

 
 
 input

+
dW
dt

 
 
 

 
 
 moving

+ h dm
dt

 
 
 

 
 
 input@z

− h dm
dt

 
 
 

 
 
 output@z+dz

Specific enthalpy h in the previous equation conveniently accounts for the convective flux of
internal energy and pV-work acting across the inlet and outlet planes.  There are two
important consequences of steady state operation in ideal PFRs with one inlet and one
outlet stream; (1) the left side of the previous equation vanishes, (2) the total mass
flowrates (i.e., ρq) across the inlet and outlet planes, at positions z and z+dz respectively,
are equivalent via the overall macroscopic mass balance.  Since there are no moving solid
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surfaces that perform mechanical work on the system, the first law for open systems
reduces to;

€ 

ρq houtput@z+dz − hinput@z{ } = ρq dh{ } =
dQ
dt

 
 
 

 
 
 input

Now, one combines this simplified version of the first law with the final result from Problem
4-4 for the total differential of specific enthalpy in multicomponent reactive systems to
obtain the following ODE that is useful to predict plug-flow temperature profiles in ideal
reactors;

€ 

ρq dh{ } = ρq Cp,mixure dT + q 1−αT( )dp+ Rj
jRx 's
∑ ΔHRx, j

 
 
 

  

 
 
 

  
dVPFR =

dQ
dt

 
 
 

 
 
 input

(5) Multiple Stationary States in CSTR's

Page#110 15 lines down from the top; Tlower = 301K, χ = 0.14% (reduce χ by factor of 10)
Page#117 Problem 5-2: second line of the problem statement

at 440K under steady state conditions, with assistance from a PID controller
(i.e., proportional, integral, and differential control) because the mid-range
operating point is intrinsically unstable.

Page#120 Problem 5-2(c);
(c1) Design the length of the 1.5-cm-diameter cooling coil to accomplish this task.
(c2) How much conversion of reactants to products occurs in this CSTR?
(c3) Predict the outlet temperature of the cooling fluid in the exit stream of the cooling

coil.

Answers:
(c1) LCoolingCoil = 412 cm
(c2) 59% final conversion of reactants to products is achieved in this CSTR
(c3) Use Equation 5-26 on page#109 of Transport Phenomena for Chemical Reactor

Design, with z = LCoolingCoil = 412 cm. and T = TCSTR = 440K, to predict the outlet
temperature of the cooling fluid;

€ 

Tcool,outlet =TCSTR − TCSTR −Tcool,inlet( )exp −CoolFactor{ } = 366K

CoolFactor =
πDCoolingCoilUOverallLCoolingCoil

ρCoolqCool Cp,cool
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(6) Coupled Heat & Mass Transfer in Batch Reactors

Page#130 next to last sentence should include, “then PFRs yield higher conversion than
CSTRs when the kinetics are nth-order and irreversible, with n>0.  Equation (6-
36) …”

Page#138 Problem#6.2(b)
… whereas thermodynamic data are sufficient to calculate ΔTadiabatic if only one
reaction occurs and that reaction achieves equilibrium conversion.

Page#138 Problem#6-3
Conversion vs. time for variable-pressure batch reactors that produce
methanol in the gas phase at constant T and V

Problem statement: A stoichiometric feed (i.e., 1:2) of carbon monoxide (C≡O) and
hydrogen (H2) in an inert carrier gas (i.e., Argon) is injected into a cylindrical stainless steel
batch reactor (i.e., diameter = 25 cm; height = 50 cm) to an initial operating pressure of
200 torr.  A cooling coil within the reactor counterbalances the thermal energy generated
from this exothermic reaction such that isothermal operation at 300K is guaranteed.  The
molar ratio of argon to C≡O in the feed is 4 (i.e., ΘArgon = 4).  How much time is required
to achieve 60% conversion of carbon monoxide?
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Answer: ≈17 minutes.  Use the isothermal aspects of the methodology outlined in Section
6-4 and integrate the unsteady state constant-volume batch reactor mass balance.  The
graphical simulations illustrated above and below summarize the transient behaviour of CO
conversion and total reactor pressure for three different inert (i.e., Argon) fractions in the
feed.
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Page#138 Problem#6-4
Part (a):  The following irreversible chemical reaction, A+2B ⇒ 3D, is carried out in a liquid-

phase batch reactor at constant temperature, using a stoichiometric feed of A
and B.  The objective is to produce an average of 500 grams per hour of product
D.  Hence, the average mass of product D that is generated in the batch reactor
on a per unit time basis is designated by βD.

€ 

βD =
1

t final − tinitial
dmD

dt
 
 
 

 
 
 tinitial

t final

∫ dt =
mD t final( )−mD tinitial( )

t final − tinitial
= 500grams /hr

Use the integral form of the constant-volume batch reactor design equation for
tfinal during each cycle of operation and obtain an expression for the required
volume of the batch reactor to produce 500 grams per hour of product D.  Your
answer should contain the homogeneous kinetic rate law R and the final
conversion χA,final of reactant A that is achieved during each cycle of operation.

Answer:
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Relate the molar densities of reactant A and product D via stoichiometry and the conversion
of reactant A in constant-volume systems;

€ 

1
υD

CD t( )−CD t = 0( ){ } =
1
υA

CA t( )−CA t = 0( ){ } ⇒
υA =−1

χACA t = 0( )

Now, convert the molar density of product D into the mass of product D that is generated by
the reaction when the reactor operates for time tfinal, yielding χA,final, as follows;

€ 

βD t final − tinitial{ } = mD t final( )−mD tinitial( )

= CD t final( )−CD tinitial( ){ }MWDVBatch
Reactor

=υDχA, finalCA t = 0( )MWDVBatch
Reactor

Use the integral form of the classic batch reactor design equation for tfinal and rearrange the
previous expression to evaluate the required reactor volume;

€ 

t final − tinitial =CA t = 0( ) dχA

R T ,χA( )0

χ A , final

∫

VBatch
Reactor

=
βD t final − tinitial{ }

υDχA, finalCA t = 0( )MWD

=
βD

3χA, finalMWD

dχA

R T ,χA( )0

χ A , final

∫

Part (b):  If reactant B is present in excess and; A+2B ⇒ 3D, represents an elementary
step, then evaluate the previous expression for the batch reactor volume
required to produce an average of 500 grams per hour of product D.

Answer:
For third-order irreversible chemical kinetics with an excess of reactant B, one writes the
rate law in terms of the conversion of reactant A as follows;

€ 

A+ 2B ⇒
k3 T( )

3D

R T ,χA( ) = k3 T( )CACB
2 ≈ k3 T( ) CB t = 0( ){ }

2
CA t = 0( ) 1− χA t( ){ }

Substitution of this kinetic rate expression into the final answer for VBatchReactor from part (a)
yields the desired result;
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€ 

VBatch
Reactor

=
βD

3χA, finalMWD

dχA

R T ,χA( )0

χ A , final

∫ =
βD

dχA

1− χA0

χA , final

∫

3χA, finalMWDk3 T( ) CB t = 0( ){ }
2CA t = 0( )

=
βD − ln 1− χA, final( )[ ]

3χA, finalMWDk3 T( ) CB t = 0( ){ }
2CA t = 0( )

Page#138 Problem#6-5

Consecutive gas-phase reactions in constant-volume batch reactors;
optimizing the production of di-ethanolamine

Consecutive reactions that involve ethylene oxide are carried out in a constant-volume
batch reactor under isothermal conditions at 325K.  Three possible reactions can occur, and
the overall objective of this exercise is to maximize the production of
diethanolamine, which is generated in the second reaction. The reaction scheme is
described below.  All reactions are elementary, irreversible, and occur in the gas phase.  In
the 1st reaction, cyclic ethylene oxide and ammonia combine to form mono-ethanolamine via
a ring-opening mechanism;

€ 

CH2CH 2O+ NH 3 ⇒
k1 325K( )=0.05 Litre

mol−min
HOCH2CH2NH 2

At 325K, the kinetic rate constant for the 1st reaction is 0.05 Litre per gram-mole per
minute.  In the 2nd reaction, ethylene oxide and mono-ethanolamine combine to form the
desired product, di-ethanolamine, via another ring-opening reaction;

€ 

CH2CH 2O+HOCH2CH 2NH2 ⇒
k2 325K( )=0.1 Litre

mol−min
HOCH2CH2( )2NH

At 325K, the kinetic rate constant for the 2nd reaction is 0.10 Litre per gram-mole per
minute.  In the 3rd reaction, ethylene oxide reacts with the desired product, di-ethanolamine,
to generate tri-ethanolamine via the third ring-opening reaction;

€ 

CH2CH 2O+ HOCH2CH 2( )2NH ⇒
k3 325K( )=0.07 Litre

mol−min
N CH2CH 2OH( )3
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At 325K, the kinetic rate constant for the 3rd reaction is 0.07 Litre per gram-mole per
minute.  The constant-volume batch reactor is initially charged with a 1:1 molar ratio of
ethylene oxide and ammonia. Provide graphs and/or data tables to support your answers to
the following questions.

(1) If the initial molar density of ethylene oxide is 1 mole per Litre, how long should the
reaction mixture remain in the batch reactor to maximize the production of di-
ethanolamine?  After this length of time, the contents of the reactor are quenched,
the desired product is recovered via a sequence of separation processes, and the
batch reactor is re-charged with fresh reactants (ethylene oxide and ammonia) to
produce more di-ethanolamine.
Hint: Qualitatively consider economics to help you identify the operating
point for the batch reactor.

Answer:
30-50 minutes, no maximum is observed for the molar density of di-
ethanolamine vs. time (see graph below).

(2) Is it advantageous to use an excess of ethylene oxide, or an excess of ammonia?
Remember, that the overall goal is to produce larger amounts of di-ethanolamine as
quickly as possible.

Answer:
An excess of ethylene oxide is advantageous (i.e., 10:1 is better than 5:1, see
graph below) because ethylene oxide participates in all three chemical
reactions.  An excess of NH3 will deplete ethylene oxide in the first reaction.
This is counter-productive because there will not be a significant amount of
ethylene oxide remaining, which is required to generate the desired product in
the second reaction.

(3) When the feed is stoichiometric (i.e., 1:1) and the initial molar density of ethylene
oxide is 1 mole per Litre, your task is to design a fixed-volume batch reactor that
produces di-ethanolamine "continuously" at an average rate of 500 grams per hour.
At the end of the production cycles in the batch reactor, 25 pounds of this
intermediate product, di-ethanolamine, should be recovered via a sequence of unit
operations.  Identify the operating point of the batch reactor by considering,
qualitatively, the initial and operating costs associated with reactor volume and the
total number of cycles.
Hint: If di-ethanolamine is species D in the 5-component mixture, then the
appropriate design equations are;
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€ 

m
•

D =
1

t final − tinitial
dmD

dt
 
 
 

 
 
 
dt =

mD t final( )−mD tinitial( )
t final − tinitial

= 500grams /hr
tinitial

t final

∫

m
•

D t final − tinitial{ } = CD t final( )−CD tinitial( ){ }MWDVBatchReactor

Do you know how to out-smart ODE solvers and force them to “divide by zero”?

One possible answer to produce 25 pounds of di-ethanolamine is:
tfinal ≈ 50 minutes
VBatchReactor ≈ 20 Litres
27 cycles

Graphical answer to part (1);
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Graphical answer to part (2);
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Page#138 Problem#6-6
Parallel the developments in Sections 6-1 and 6-3, respectively, to obtain the
equations that describe isothermal and adiabatic operation of a semi-batch
reactor with feed in the presence of one strongly exothermic chemical reaction.

(7) Total Pressure Method of Reaction Rate Data Analysis

Page#145 just below equation (7-34b); value of the intercept c, then the linear least-
Page#147 In 3 places, add a space between the left parenthesis of the bond energy and

N2, H-H, and N-H; 9 lines up from the bottom of the page
Page#148 6 lines from the top; If the gas mixture does not behave ideally at this high

pressure, then it might seem reasonable to replace partial pressures by
fugacities in the kinetic rate law.

Page#152 Problem#7-13
Reactant A is consumed by two parallel reactions in a constant-volume batch reactor.  The
kinetic rate laws depend only on the molar density of reactant A.  For example, species A is
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consumed by first-order irreversible chemical kinetics in the presence of an excess of
reactant B;

€ 

A+ B⇒
k1
Products

Rate1 = k1CA

Species A is also consumed by nth-order irreversible chemical kinetics (i.e., n > 1) in the
presence of an excess of reactant D;

€ 

A+D⇒
kn
Products

Raten = knCA
n

The unsteady state constant-volume batch reactor mass balance on the moles of species A
can be written in terms of NA (= moles of A) or CA (= molar density of A = NA/VBatchReactor).
Hence;

€ 

dNA

dt
= −VBatchReactor Rate1 + Raten{ }

dCA

dt
= −k1CA − knCA

n

The analytical laboratory has provided N discrete data points for the time dependence of CA

(i.e., CA vs. time t) in the constant volume batch reactor.  Devise a linear least squares
procedure to determine the reaction order n and both kinetic rate constants (i.e., k1 and kn)
via the Differential Method of Reaction Rate Data Analysis.
Helpful hints: Divide the previous equation by CA and take its time derivative.
It is not possible to take the logarithm of a negative number.

Solution
Begin with the unsteady state constant volume batch reactor mass balance in terms of the
molar density of reactant A, and divide the equation by CA;

€ 

−
1
CA

dCA

dt
= −

d lnCA

dt
= k1 + knCA

n−1

Take the time derivative of the previous equation, assuming that both kinetic rate constants
are time-independent;
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€ 

−
d2 lnCA

dt 2
= n −1( )knCA

n−2 dCA

dt

Now, take the logarithm (i.e., Log) of the previous equation and rearrange terms such that it
is possible to identify the dependent and independent variables of a first-order polynomial;

€ 

Log d2 lnCA

dt 2
 
 
 

 
 
 
− Log −

dCA

dt
 
 
 

 
 
 

= Log n −1( ) + Log kn( ) + n − 2( )Log CA{ }

The polynomial model is; y(x) = a0 + a1 x

The dependent variable y is;

€ 

y = Log d2 lnCA

dt 2
 
 
 

 
 
 
− Log −

dCA

dt
 
 
 

 
 
 

The independent variable is; x = Log{CA}.  One obtains the reaction order n from the first-
order coefficient a1, or the slope;

a1 = n – 2
n = a1 + 2

One obtains the nth-order kinetic rate constant kn from the zeroth-order coefficient, a0, or
the intercept;

a0 = Log(n–1) + Log(kn)

Log(kn) = a0 – Log(a1+1)

It is necessary to reformulate this analysis if the first-order coefficient a1 = –1, which yields
n = 1.  In this case, both rate laws are first-order with respect to the molar density of
reactant A, and one should not take the time derivative of the unsteady state constant
volume batch reactor mass balance after division by CA.  If the kinetics of one of the
reactions is not first-order, then the previous linear least squares analysis provides an
estimate of the reaction order n and the corresponding kinetic rate constant kn for the
process that is not first-order.  Then, the following rearrangement of the mass balance
yields a prediction of the kinetic rate constant k1 for the first-order irreversible chemical
reaction using a zeroth-order polynomial model [i.e., y(x) = b0, with zero slope];
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€ 

−
d lnCA

dt
− knCA

n−1 = k1

Once the reaction order n and kinetic rate constant kn have been determined, the dependent
variable y is;

€ 

y = −
d lnCA

dt
− knCA

n−1

If there are N data pairs, then the linear least squares prediction of the best intercept,
b0, is given by;

€ 

b0 = k1 =
1
N

yi
i=1

N

∑ =
1
N

−
d lnCA

dt
− knCA

n−1 
 
 

 
 
 @tii=1

N

∑
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Part 2
Transport Phenomena: Fundamentals & Applications

(8) Applications of the Equations of Change in Fluid Dynamics

Page#162 3 lines above the matrix representation of ρvv (8-6); change is to are.
Page#163 5 lines above equation (8-7); matrix (8-6), then the three entries …
Page#174 just below equation (8-47); where dr is a differential position vector that is

tangential to closed path C in the direction of integration, and n is a unit normal
vector that emanates from surface S in region R, directed in the right-handed
screw sense obtained by following closed path C along the integration contour.
There are many closed paths in region R …

Page#223 just below expression (b); The balance on overall fluid mass is obtained by
equating expressions (a) and (b) …

Page#236 just above part (c) of problem 8-16; The ΘΘ-component of τ reduces to µA.
Page#239

Part (e); Solution
The symmetry condition on vz at r=0 represents the fourth boundary condition
required to determine all four integration constants, A, B, C, and D.  The fact
that viscous shear stress vanishes and vz achieves its maximum value, via
Newton’s law of viscosity, at the centerline of the tube is reasonable because
r=0 is the symmetry axis.  Telescoping cylindrical shells of infinitesimally small
radii near the centerline of the tube do not slide by each other and create
frictional forces due to viscous shear, because vz is maximum with zero slope at
the symmetry axis.
Part (f); Solution
Rigorously, it is only necessary that integration constant A vanishes (i.e., A=0),
to insure that the stream function ψ vanishes at r=0, because r2lnr tends toward
zero as r approaches zero via l’Hopital’s rule.  Hence;

€ 

ψ r( ) = Br2 +Cr2 ln r +Dr 4

Now, one should obtain the velocity profile from the previous expression for the
stream function and invoke symmetry at the centerline of the tube (i.e., r=0).
For example;
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€ 

vz r( ) =
1
r
dψ
dr

= 2B+C + 2C ln r + 4Dr2

dvz
dr

 
 
 

 
 
 r=0

= 2C 1
r

+ 8Dr
 
 
 

 
 
 r=0

= 0

Either of these expressions reveals that integration constant C=0 because both
vz and τrz must be well-behaved functions with no singularities at r=0.  Even
though there is no rigorous boundary condition on the stream function itself
which suggests that integration constant C must vanish, because r2lnr is
presumably well-behaved at r=0, the singularity in lnr at the symmetry axis
becomes apparent when one evaluates vz and τrz at r=0.

Page#250 Need a closing parenthesis at the end of problem statement 8-31; <vz>).

(9) Derivation of the Mass Transfer Equation

(10) Dimensional Analysis of the Mass Transfer Equation

(11) Laminar Boundary Layer Mass Transfer Around Solid Spheres, Gas
Bubbles and Other Submerged Objects

Page#313 Change solid-liquid to gas-liquid, 2 lines and 10 lines below Section 11-7.
Page#360 just above part (c) and last line on the page; change “scales at” to “scales as”

(12) Dimensional Analysis of the Equations of Change for Fluid Dynamics
within the Mass Transfer Boundary Layer

(13) Diffusion & Chemical Reaction Across Spherical Gas-Liquid Interfaces

Page#371 The sentence above equation (13-10) should be modified because the equation
is not truly dimensionless.  Hence, remove the word “dimensionless” above
equation (13-10) so that the sentence is; “Now, the mass transfer equation for
ΨA(η) exhibits constant coefficients”.

Part 3
Kinetics and Elementary Surface Science
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(14) Kinetic Mechanisms and Rate Expressions for Heterogeneous
Surface-Catalyzed Chemical Reactions

Include this reference for the volume of activation;
Activation and reaction volumes in solution. 3
Drljaca A, Hubbard CD, van Eldik R, Asano T, Basilevsky MV, le Noble WJ
Chemical Reviews, 98 (6), 2167-2289 (1998)

Page#392 2 lines above equation (14-35); Ki, with units of inverse atmospheres.  This
equilibrium constant for species i in a mixture is the same as that for pure gas i
exposed to the same high-surface-area catalyst.  Identification of the same
adsorption/desorption equilibrium constant for pure gas i and species i in a
mixture is analogous to the fact that the equilibrium constant for a chemical
reaction, constructed from the stoichiometric difference between free energies
of formation of products and reactants in their standard states, is not affected
by the number of chemical reactions that occur.  The net rate of adsorption for
component i …

Add the following reference on page 392:

Myers, AL; & Prausnitz, JM; Thermodynamics of Mixed-Gas Adsorption, AIChE
Journal, 11 (1), 121 (1965).

Page#395 add examples (4) and (5) for dual-site adsorption below the second and third
examples near the top of the page (i.e., below line 12);

(4) When NO adsorbs on ruthenium, dissociation occurs preferentially at edge
dislocations.  Rates of dissociative adsorption can be several orders of
magnitude higher in the vicinity of the defects.  This effect is supported by
scanning tunneling microscope images that reveal a higher concentration of
nitrogen near defects on the ruthenium surface.  This example is consistent with
the general trend that favours enhanced catalytic activity where individual metal
atoms are further apart on “stretched” surfaces, relative to defect-free regions.
Hence, catalyst “turnover” rates are dominated by dissociative adsorption on
defect sites, and these sites are essentially responsible for the entire reactivity
of metallic nanoparticles.

(5) When NO adsorbs on copper, the frequency at which dissociative adsorption
occurs increases by more than 3 orders of magnitude if it is vibrationally excited
relative to the ground state.  Results that support this claim appear in Science,
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284, 1647 (1999).  NO molecules were “pumped” into the 13th vibrational
state and directed toward the 111-surface of copper.  At the time when this
research was performed, no theory existed to explain the interactions of
vibrationally excited molecules with surfaces.

Page#423 just below equation (14-182); This result corresponds to free translation of the
activated complex over the barrier with activation energy denoted by ΔG*, or a
very low energy vibration of the activated complex due to weak bonding, which
causes it to dissociate into products.  Envision the distortion of a chemical bond
along a normal coordinate mode of vibration, with vibrational energy hPlanckυinfrared,
in the transformation from reactants to products.  Estimates of the lifetime of
the activated complex in the transition state are inversely proportional to
kinetic theory calculations of molecular velocities with thermal energy kBoltzmannT.
Now, equate the vibrational energy of the distorted bond in the activated
complex to the thermal energy of this intermediate as it translates through the
transition state.  This simplistic picture of the activated complex allows one to
identify the pre-exponential factor in equation (14-182), kBoltzmannT/hPlanck ≈ 1013

sec-1, as the stretching frequency υinfrared of the distorted chemical bond that
cleaves to form products.  As expected, the stretching frequency of this low-
energy distorted bond is found in the far-infrared region of the spectrum;

€ 

υinfrared ≈
kBoltzmannT
hPlanck

=
cLight
λ

λ−1 ≈
kBoltzmannT
hPlanckcLight

=
1.38x10−23 Joule /K( ) 298K( )

6.63x10−34 Joule− sec( ) 3x1010cm /sec( )
≈ 200cm−1

Furthermore, {υinfrared}-1 ≈ 10-13 sec. provides a crude estimate of the lifetime of
the activated complex in the transition state, which is consistent with the use
of femtosecond spectroscopy (i.e., on the order of 10-15 sec.) to probe sub-
molecular events in the transformation from reactants to products.  If the
reaction mechanism does not change and the same chemical bond must
dissociate, then better catalysts stabilize the intermediate and lower the energy
barrier ΔG* between reactants and products, but lifetimes of the distorted
complex moving through the transition state with thermal energy kBoltzmannT
should not change appreciably. Hence catalysts function by lowering the
activation energy, but not necessarily the pre-exponential factor, where the
latter for first-order kinetics can be viewed as the low-energy vibrational
frequency of a distorted chemical bond in the activated complex that cleaves to
form products.  Another viewpoint of the effect of catalysts on lifetimes in the
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transition state experienced by activated complexes focuses on the savings in
thermal energy, due the fact that the barrier is lowered, and utilization of this
energy reserve to increase molecular velocities and the pre-exponential factor.
The pressure dependence of kforward …

Page#446 Problem 14-27 (bottom of page)
N data pairs characterize the discrete temperature dependence of kinetic rate constants kRx

for gas-phase chemical reactions; kRx,i vs. Ti, 1≤i≤N.  It is desired to generalize the transition
state model, given by Equation (14-182), such that the generic function of temperature T in
the pre-exponential factor is g(T) = ATn, where A is a temperature-independent constant
and the exponent n is not necessarily equal to unity.  Develop a linear least squares strategy
to evaluate the pre-exponential constant A, the exponent n, and the transition state
activation energy Eact,TST = ΔG*, where ΔG* is the difference between molar Gibbs free
energies of the activated complex in the transition state and all of the reactants in their
standard states.  In other words, use all N data pairs (kRx,i,Ti; 1<i<N) and develop three
coupled linear algebraic equations to determine the three parameters in the following
function for kRx(T);

€ 

kRx T( ) = AT n exp −
Eact,TST

RgasT

 
 
 

 
 
 

Answer:
Begin by taking the natural logarithm of the previous equation prior to identifying the
independent and dependent variables in the function y(x) that contains three constants, a0,
a1, and a2, which must be related to the three parameters of interest in kRx(T).  Hence, for
temperatures T that are greater than zero, one obtains;

€ 

ln kRx( ) = ln A( ) + n ln T( )−
Eact,TST

RgasT

y x( ) = a0 + a1 ln x( ) +
a2
x

The following correspondences are appropriate;

(i) The independent variable, x = T (degrees Kelvin)
(ii) The dependent variable, y = ln(kRx)
(iii) The zeroth-order coefficient, a0 = ln(A)
(iv) The coefficient of ln(x) is, a1 = n
(v) The coefficient of x-1 is, a2 = – Eact,TST/Rgas
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Now, construct the Error via the formalism of Linear Least Squares Analysis, and
simultaneously minimize the Error with respect to a0, a1, and a2, yielding three coupled linear
algebraic equations for these three constants.  Using all of the data, one constructs the sum
of squares of the difference between yi and y(xi);

€ 

Error = y xi( )− yi{ }
2

=
i=1

N

∑ a0 + a1 ln xi( ) +
a2
xi
− yi

 
 
 

 
 
 

2

i=1

N

∑

Partial differentiation of the Error with respect to a0, a1, and a2 provides three equations that
must vanish to minimize the square of the differences between yi and y(xi) for all data
points.  By default, one is guaranteed to locate the minimum, and not a maximum, in the
Error by solving the following three equations simultaneously;

€ 

∂Error
∂a0

 

 
 

 

 
 
a1 ,a2

= 2 a0 + a1 ln xi( ) +
a2
xi
− yi

 
 
 

 
 
 
1( ) = 0

i=1

N

∑

∂Error
∂a1

 

 
 

 

 
 
a0 ,a2

= 2 a0 + a1 ln xi( ) +
a2
xi
− yi

 
 
 

 
 
 
ln xi( )[ ] = 0

i=1

N

∑

∂Error
∂a2

 

 
 

 

 
 
a0 ,a1

= 2 a0 + a1 ln xi( ) +
a2
xi
− yi

 
 
 

 
 
 

1
xi

 

 
 

 

 
 = 0

i=1

N

∑

Rearrangement and division of each equation by 2 yields the desired result below,
maintaining the same order with respect to partial differentiation.  All three unknown
constants a0, a1, and a2, appear on the left side of each linear equation;

€ 

Na0 + a1 ln xi( ) + a2
1
xi

=
i=1

N

∑ yi
i=1

N

∑
i=1

N

∑

a0 ln xi( ) + a1
i=1

N

∑ ln xi( ){ }
2

+ a2
ln xi( )
xii=1

N

∑ =
i=1

N

∑ yi ln xi( )
i=1

N

∑

a0
1
xi

+ a1
ln xi( )
xii=1

N

∑
i=1

N

∑ + a2
1
xi
2 =

i=1

N

∑ yi
xii=1

N

∑

Since activation energies that characterize a barrier are greater than zero, a2 must be
negative.  If the exponent on temperature T in the pre-exponential factor (i.e., ATn) is
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greater than zero, then a1 must be positive.  One expects that a1 = n should be close to
unity, in agreement with the final form of kinetic rate constants from transition state theory.

Page#446 Problem 14-28
Prove that Arrhenius activation energies are always larger than activation
energies for the generalized transition state model, if the exponent n on
temperature in the pre-exponential factor is positive.

Answer:
Equate temperature-dependent kinetic rate constants for both models, take the natural
logarithm and then the temperature derivative.  For example;

€ 

k∞ exp −
Eact,Arrhenius

RgasT

 
 
 

 
 
 

= AT n exp −
Eact,TST

RgasT

 
 
 

 
 
 

ln k∞( )−
Eact,Arrhenius

RgasT
= ln A( ) + n ln T( )−

Eact,TST

RgasT

Upon taking the temperature derivative of the previous equation, one obtains a relation
between temperature-dependent terms that contain the activation energies and the
exponent n on temperature in the pre-exponential factor.  The pre-exponential constants, k∞

and A, do not affect the relation between Arrhenius and transition-state activation energies.
The final result is;

€ 

Eact,Arrhenius

RgasT
2 =

n
T

+
Eact,TST

RgasT
2

Eact,Arrhenius

Rgas
=
Eact,TST

Rgas
+ nT

Hence, Arrhenius activation energies are greater than transition-state activation energies if
the exponent n on temperature in the pre-exponential factor is greater than zero.
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Part 4
Mass Transfer & Chemical Reaction in Isothermal Catalytic Pellets

(15) Diffusion & Heterogeneous Chemical Reaction in Catalytic Pellets
Page#450 just above (15-3); Hence, Laplace’s equation
Page#450 just below (15-3); replace “is the simplified mass transfer equation for” by

“must be solved to analyze steady state diffusion within the internal pores, …”

(16) Diffusion & Zeroth-Order Chemical Reactions in Catalytic Pellets
Page#468 First sentence of section 16-4; change “challange” to “challenge”.
Page#471 (last problem in the Chapter)
Problem#16-3
How large must the intrapellet Damkohler number be for reactant A such that one can use
the analytical relation (i.e., equation 16-8) between ηcritical and ΛA with confidence for flat-
slab porous-wafer catalysts to estimate the fraction of the central core of spherical
catalysts that are void of reactants when the pellet operates above the critical value of the
intrapellet Damkohler number (i.e., Λ2

critical = 6 when L = Rsphere)?

(17) Diffusion & First-Order Chemical Reactions in Catalytic Pellets

(18) Numerical Solutions for Diffusion & nth-Order Chemical Reactions in
Isothermal Catalytic Pellets

page#486 just above equation (18-13), add the noun “one” in front of (1).  Or, remove
the s at the end of each verb which follows (1) begin …, (2) calculate …, (3)
multiply …, and (4) evaluate …

(19) Numerical Solutions for Diffusion and Hougen-Watson Chemical
Kinetics in Isothermal Catalytic Pellets

page#500 equation#19-43 needs a closing parenthesis; script R*(all Ψi,surface)

(20) Effectiveness Factor Correlations
Page#532 8 lines up from the bottom of the page; ΨA = 1 at η = 1; change n to η
Page#535 just above Problem 20-9; … where ε ≤ 10-5.  A more elegant solution to part (b)

involves the use of equation (20-47a) for the effectiveness factor in catalysts
with rectangular symmetry, based on volumetric averaging of the kinetic rate
law for simple nth-order chemical reaction (i.e., n = 2).  If the dimensionless
molar density of reactant A at the center of the catalyst is the same as it is on
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the external surface of the catalyst [i.e., ΨA(η=0) = ΨA(η=1) = 1], then the
concentration profile is constant throughout the catalyst and ΨA ≠ f(η) in the
reaction-controlled regime where the rate of reactant diffusion into the catalyst
is much greater than the rate of chemical reaction.  Under these conditions,
integration of equation (20-47a) is trivial, as illustrated below;

€ 

E = ΨA η;Λ( ){ }
n
dη =

0

1

∫ 1{ }
2dη =1

0

1

∫

Page#536 True/false question 20-14 (b) might be phrased ambiguously

(21) Effective Diffusion Coefficients & Intrapellet Damkohler Numbers
within the Internal Pores of Catalytic Pellets

Page#543 4 lines below equation (21-19); … Brownian motion in three dimensions.  A
rigorous approach provided by G Chen in Nanoscale Energy Transport and
Conversion, Oxford (2005), pp. 412-416, reveals that diffusion coefficients can
be calculated from the velocity autocorrelation function.  This includes a factor
of 1/3 via the Green-Kubo equation on p.#503 of Chen’s textbook for three-
dimensional particle dynamics, where mobility is the inverse of the friction
coefficient.  In many cases, …

Page#545 just below the parametric values required in equation (21-24); As mentioned in
the previous section, binary molecular diffusion coefficients can be expressed in
terms of the velocity autocorrelation function via the Green-Kubo equation.
Hence, if vx(t’) is the x-component of a particle’s velocity vector prior to any
collision with its neighbors and vx(t) represents the corresponding x-component
of the same particle’s velocity after the collision, then random Brownian motion
in three-dimensional space implies that autocorrelation functions for all three
scalar components of the velocity vector are equivalent.  Under these
conditions, the Green-Kubo equation, which agrees with predictions of transport
coefficients via Enskog’s solution of the linearized Boltzmann equation, reduces
to;

€ 

DAB ≈ vx t( )vx t '( )
0

∞

∫ d t − t '( ) =
1
3

v t( )•v t −τ( )
0

∞

∫ dτ =
1
3

v t + τ( )•v t( )
0

∞

∫ dτ

The time difference before and after collisions is τ = t–t’, and the scalar dot
product of the particle velocity vectors yields a factor of cosχ, where χ is the
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angle of deflection in a collision.  An analogous expression for shear viscosity µ
that is consistent with two-dimensional particle motion in the xy-plane, prior to
and after a collision, contains the autocorrelation function of the product vxvy.
Hence;

€ 

µ ≈ vx t( )vy t( )vx t '( )vy t '( )
0

∞

∫ d t − t '( ) = vx t + τ( )vy t + τ( )vx t( )vy t( )
0

∞

∫ dτ

Integral calculus, symmetry of the convective momentum flux tensor, and
tedious algebra reveal that this expression for µ can be written in terms of the
square of the scalar dot product of velocity vectors before and after a collision,
yielding a factor of cos2χ [see, Resibois, P; & de Leener, M; Classical Kinetic
Theory of Fluids, Wiley (1977), pp. 141-2, 372-3].

Part 5
Isothermal Chemical Reactor Design

(22) Heterogeneous Packed Catalytic Tubular Reactors

Page579 The title of section 22-4 should be “Design of Non-Ideal Heterogeneous
Packed Catalytic Tubular Reactors with Interpellet Axial Dispersion”.
Hence, change “intrapellet” to “interpellet” in the title and in the header from
pages 579 to 591.  Also, make the same change on page xiv of the Table of
Contents for the title of section 22-4.

Page#580 immediately after equation (22-59);

which was also employed by Irving Langmuir [Journal of the American Chemical
Society, 30, 1742 (1908)].  One arrives at equation (22-59) by invoking
continuity of the rate of mass transfer of reactant A at ζ = 0- and ζ = 0+, where
interpellet axial dispersion exists within the packed bed, but not upstream from
the inlet where the catalytic pellets are absent and no chemical reaction occurs.
Realizing that the cross-sectional area for fluid flow decreases abruptly at the
inlet, due to the presence of the catalytic pellets, continuity of the rate of mass
transfer for reactant A at z=0 yields;
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€ 

qCA,BulkGasReal z = 0−( ) = qCA,BulkGasReal z = 0+( )−DA,interpellet
d
dz
CA,BulkGasReal

 
 
 

 
 
 z=0+

πRPFR
2 ε p,int erpellet

q = πRPFR
2 vz superficial

= ε p,int erpelletπRPFR
2 vz int erstitial

The characteristic molar density required for dimensional analysis is
CA,BulkGasReal(z=0-), and z = ζLPFR.  Even though chemical reaction occurs beyond
the inlet, but it is absent prior to the inlet, division of the steady state balance
for reactant A at z=0 by the product of the volumetric flowrate q and
CA,BulkGasReal(z=0-) yields the required Danckwerts boundary condition at the inlet,
where the mass transfer Peclet number contains the interstitial fluid velocity
and the interpellet axial dispersion coefficient.  Hiby (1962, p. 312) has …

Page#580 after the last line on the page, add; (see the solution to Problem 30-12).
Page#583 7th line from the top, after; PFR [see Problem 22-13 (f)], but reactor …
Page#591 1st line of section 22-4.3;  This is an unprecedented novel idea when the kinetics

are not zeroth-order that allows one to compare ΨA(ζ=1,RTD) …
Page#591 between equations (22-70) and (22-71); subject to ΨA=1 at ζ=0, which yields;
Page#592 just above Problem.  … in the PFR exit stream.  For example, when the

chemical kinetics are second-order irreversible, the product of the catalyst filling
factor, the effectiveness factor, and the interpellet Damkohler number is 5, and
the mass transfer Peclet number is 10, numerical results in Table 22-1 reveal
that non-ideal packed catalytic tubular reactors achieve 30% final conversion of
reactants to products when the Danckwerts boundary condition in the exit
stream (i.e., dΨA/dζ ⇒  0 when ζ=1) is satisfied.  One predicts 32% final
conversion in the same non-ideal reactor when the dimensionless reactant
concentration gradient in the exit stream is –2/9th, which agrees with equation
(22-76) for ideal reactors with n=2.

Page#595 5th line from the top, “fundamental basis of their existence”
Page#600 In steps 19 and 20, spell “Coefficient” completely and begin with capital C

Last True/False problem at the end of Chapter#22;
Problem 22-13 (f);
When the kinetic rate law is simple nth-order, irreversible, and only a function of the molar
density of one reactant, with n>0, one achieves higher conversion of reactants to products
under ideal conditions in plug flow tubular reactors (PFRs) relative to continuous stirred tank
reactors (CSTRs).  PFRs represent the extreme of no mixing, whereas CSTRs correspond to
the other extreme of complete mixing.  Hence, it is reasonable that when axial diffusion or
interpellet axial dispersion is included in the nonideal PFR differential design equation, one
achieves less conversion of reactants to products relative to ideal PFR predictions because
diffusion or dispersion introduces mixing ahead of and behind the “plug”.  In order of
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decreasing outlet conversion of reactants to products, the following trend is observed; (i)
ideal PFRs with no axial mixing, (ii) real PFRs with some axial mixing, and (iii) ideal CSTRs with
complete mixing throughout the reactor.  The mass transfer Peclet number and the reactor
type govern the extent of mixing, where smaller values of PeMT correspond to more mixing.
Are all of these statements TRUE or FALSE?
Note:  The ideal design equations for PFRs and CSTRs predict equivalent performance for
zeroth-order chemical kinetics.  However, one is not guaranteed that the analysis of both
types of nonideal reactors (i.e., PFRs vs. CSTRs) will yield equivalent predictions of reactant
conversion for zeroth-order reaction.  A more in-depth analysis of the difference between
real and ideal PFR performance for zeroth-order chemical kinetics is provided by Problem#12
at the end of Chapter 30 (as described near the end of this document).

(23) Heterogeneous Catalytic Reactors with Metal Catalyst Coated on the
Inner Walls of the Flow Channels

Page#613 first sentence of the last paragraph:  1) Fluid flow within … (replace with by
within)

Page#615 immediately after the last sentence of the first paragraph: The aspect ratio of
the rectangular channel is Ar = a/b and the eigenvalues are Mn = (2n+1)π/2.

The derivation of equation (23-2) proceeds as follows [see C Jarusiripot, PhD thesis,
Colorado State University (2006)].  Consider fully developed one-dimensional laminar flow of
incompressible Newtonian fluids through straight horizontal channels with rectangular cross-
section.  There are stationary solid boundaries at x = ±a and y = ±b, where channel width a
is much larger than its height b (i.e., Ar = a/b > 1).  The origin of the Cartesian coordinate
system coincides with the center of the channel at the inlet plane.  Gravity forces affect
fluid pressure vertically (i.e., y-direction), but there are no gravitational contributions to the
x- and z-components of the Equation of Motion.  The Equation of Continuity for one-
dimensional flow, ∇•v = ∂vz/∂z = 0, reveals that the z-component of the fluid velocity
vector vz does not depend on axial position z, measured in the direction of flow from the
inlet.  Since there is no transverse flow in the x- and y-directions, the unimportant
components of the Equation of Motion (i.e., x- and y-components) yield the following
information about dynamic pressure P, which is the sum of fluid pressure p and gravitational
energy per unit volume;

x-component: 0 = - ∂P/∂x, therefore P ≠ f(x)

y-component: 0 = - ∂P/∂y, therefore P ≠ f(y)
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These results imply that dynamic pressure is only a function of z at steady state.  Now, the
important component of the Equation of Motion in terms of velocity gradients for
incompressible Newtonian fluids yields a 2nd-order partial differential equation which allows
one to calculate vz(x,y);

z-component:

€ 

0 = −
dP
dz

+ µ
∂ 2vz
∂x2

+
∂ 2vz
∂y2

 
 
 

 
 
 

If fluid flow is driven only by a fluid pressure drop in the z-direction, then gz = 0 and one can
replace the dynamic pressure gradient dP/dz in the previous equation by the fluid pressure
gradient, dp/dz.  Separation of variables yields dp/dz = -Δp/L, where Δp represents the
positive fluid pressure drop from inlet to outlet.  The general solution for vz(x,y) can be
represented as the sum of homogeneous {vz(x,y)}Homogeneous and particular {vz(x,y)}Particular

solutions.  The appropriate equation for {vz(x,y)}Homogeneous, based on the z-component of the
Equation of Motion, is;

€ 

∂2

∂x2
+
∂2

∂y2
 
 
 

 
 
 
vz,Homogeneous = 0

One postulates the following separation of variables solution to the previous equation;

€ 

vz x, y( ){ }Homogeneous
= X x( )Y y( )

Substitution of the postulated homogeneous solution into the z-component of the Equation
of Motion and division by vz,Homogeneous yields;

€ 

1
X
d2X
dx2

= −
1
Y
d2Y
dy2

= λ2

where λ2 is the separation constant.  The previous equation is separated into two 2nd-order
linear ordinary differential equations:

€ 

d2X
dx2

−λ2X = 0; d
2Y
dy2

+λ2Y = 0

Solutions to these frequently occurring 2nd-order ODEs depend on the sign of the coefficient
of the zeroth-derivative term (i.e., -λ2 and +λ2).  If λ is real and λ2 is greater than zero, then
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X(x) is expressed in terms of hyperbolic sines and cosines, whereas Y(y) contains
trigonometric sines and cosines.  Hence;

€ 

X x( ) = Acosh λx( ) + Bsinh λx( )
Y y( ) =C cos λy( ) +Dsin λy( )

The particular solution to;

€ 

∂ 2

∂x2
+
∂ 2

∂y2
 
 
 

 
 
 
vz,Particular =

1
µ
dP
dz

= −
Δp
µL

< 0

is a one-dimensional quadratic function with respect to either x or y, such that the Laplacian
of vz,Particular yields a negative constant (i.e., -Δp/µL).  The result is;

€ 

vz ,Particular y( ) = −
Δp
2µL

y2 +Ey+F

The quadratic with respect independent variable y has been chosen because this is the
important functional dependence of vz that survives for channels with very large aspect
ratios (i.e., Ar = a/b ⇒ ∞).  Hence, the final result for vz(x,y) reduces to vz(y) ≈ F - y2Δp/2µL
when the stationary walls at x=±a have an insignificant effect on the one-dimensional
viscous flow profile.  The general solution for the z-component of the fluid velocity vector is;

€ 

vz x, y( ) = vz x, y( ){ }Particular + vz x, y( ){ }Homogeneous

= −
Δp
2µL

y2 +Ey+F + Acosh λx( ) + Bsinh λx( ){ } C cos λy( ) +Dsin λy( ){ }

Focus on the upper right-hand quadrant of the flow cross-section in the positive xy-plane
and invoke no-slip at the stationary solid boundaries (i.e., x=a, y=b) together with symmetry
at the midplanes (i.e., x=0, y=0).  Hence, the previous general solution for vz(x,y) must
satisfy the following boundary conditions;

€ 

vz x = a, y( ) = vz x, y = b( ) = 0

∂vz
∂x

 

 
 

 

 
 
x=0

=
∂vz
∂y

 

 
 

 

 
 
y=0

= 0
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Symmetry at both midplanes requires that B=D=E=0, because all odd functions of x and y
with respect to x=0 and y=0 [i.e., Ey, Bsinh(λx), Dsin(λy)] must be discarded from the
general solution, yielding the following simplified result for vz;

€ 

vz x, y( ) = −
Δp
2µL

y2 +F +G cosh λx( )cos λy( )

where integration constant G = AC.  Since F and G cannot be functions of x or y, no-slip at
y=b allows one to calculate F and define the eigenvalues for this problem;

€ 

F =
b2Δp
2µL

;λnb = 2n+1( ) π2
;n = 0,1,2,3...

vz x, y( ) =
Δp
2µL

b2 − y2{ }+ Gn cosh λnx( )cos λny( )
n=0

∞

∑

The no-slip boundary condition at x=a yields the following infinite series that defines
Gncosh(λna) as Fourier cosine coefficients of a simple quadratic function.  For example;

€ 

Gn cosh λna( )cos λny( )
n=0

∞

∑ = −
Δp
2µL

b2 − y2{ }

Gn cosh λna( ) cos λny( )cos λmy( )dy
0

b

∫
n=0

∞

∑ = −
Δp
2µL

b2 − y2{ }cos λmy( )dy
0

b

∫

With assistance from integral tables, it can be shown that all terms in the sum of integrals
vanish except when summation index n=m, due to the orthogonality relations of the cosine
functions.  For example, when n≠m;

€ 

cos λny( )cos λmy( )dy
0

b

∫ =
sin λn −λm( )y{ }
2 λn −λm( )

+
sin λn +λm( )y{ }
2 λn +λm( )

 

 
 
 

 

 
 
 
y=0

y=b

b
2π

sin n −m( )π yb
 
 
 

 
 
 

n −m( )
+
sin n+m+1( )π yb
 
 
 

 
 
 

n+m+1( )

 

 

 
 
 
 

 

 

 
 
 
 
y=0

y=b

= 0
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The only term that survives in the sum of integrals, when n=m, is;

€ 

cos λmy( )cos λmy( )dy
0

b

∫ =
y
2

+
sin 2λmy( )
4λm

 

 
 

 

 
 
y=0

y=b

=
b
2

+
b
2

sin 2m+1( )π y
b

 
 
 

 
 
 

2m+1( )π

 

 

 
 
 
 

 

 

 
 
 
 
y=0

y=b

=
b
2

The appropriate Fourier cosine coefficients in the infinite series solution for vz(x,y) are;

€ 

Gn cosh λna( ) cos λny( )cos λmy( )dy
0

b

∫
n=0

∞

∑ = Gn
b
2
δmn cosh λna( )

n=0

∞

∑

=
1
2
bGm cosh λma( ) = −

Δp
2µL

b2 − y2{ }cos λmy( )dy
0

b

∫

The right side of the previous equation is evaluated with assistance from integral tables;

€ 

b2 cos λmy( )dy
0

b

∫ =
b2

λm
sin 2m+1( ) πy2b
 
 
 

 
 
 

 

 
 

 

 
 
y=0

y=b

= −1( )m b
2

λm

y2 cos λmy( )dy
0

b

∫ =
1
λm
3 λmy 2cos λmy( ) +λmysin λmy( ){ }− 2sin λmy( )[ ]y=0

y=b

=
1
λm
3 λmb 2cos 2m+1( ) π2

 
 
 

 
 
 

+λmbsin 2m+1( ) π2
 
 
 

 
 
 

 
 
 

 
 
 
− 2sin 2m+1( ) π2

 
 
 

 
 
 

 

 
 

 

 
 =

−1( )m

λm
3 λmb( )2 − 2[ ]

The general expression for the coefficients in the infinite series for vz(x,y) is;

€ 

1
2
bGm cosh λma( ) = −

Δp
2µL

b2 − y2{ }cos λmy( )dy
0

b

∫ = −
Δp
2µL

−1( )m b
2

λm
−
−1( )m

λm
3 λmb( )2 − 2[ ]

 
 
 

  

 
 
 

  

= −1( )m+1 Δp
µLλm

3

Gm = −1( )m+1 2Δp
µbLλm

3 cosh λma( )

The final expression for the one-dimensional velocity profile through rectangular channels is;
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€ 

vz x, y( ) =
b2Δp
2µL

1− y /b( )2{ }+ 4 −1( )n+1

λnb( )3 cosh λna( )
cosh λnx( )cos λny( )

n=0

∞

∑
 

 
 
 

 

 
 
 

λnb = 2n+1( ) π2

If one defines a dimensionless z-component of the fluid velocity vector via division of vz(x,y)
by the average velocity <vz>Average, then it is necessary to evaluate the volumetric flowrate Q
through the rectangular channel by integrating the previous expression for vz over the entire
flow cross-section.  Since all four quadrants behave similarly via symmetry, it is sufficient to
focus on one quadrant only (i.e., 0≤x≤a, 0≤y≤b).  Hence;

€ 

Q = 4ab vz Average
= vz x, y( )dxdy

y=−b

b

∫
x=−a

a

∫ = 4 vz x, y( )dxdy
y=0

b

∫
x=0

a

∫

vz Average
= vz x

∗, y∗( )dx∗dy∗
y∗=0

1

∫
x∗=0

1

∫

In terms of dimensionless spatial variables in the flow cross-section, x*=x/a and y*=y/b, one
obtains the following result for the dimensionless velocity profile;

€ 

vz
∗ x∗, y∗( ) =

vz x
∗, y∗( )

vz Average

=

2 1− y∗( )2{ }+ 4 −1( )n+1

Mn
3 cosh MnAr( )

cosh MnArx
∗( )cos Mny

∗( )
n=0

∞

∑
 

 
 
 

 

 
 
 

4µL
b2Δp

vz x
∗, y∗( )dx∗dy∗

y∗=0

1

∫
x∗=0

1

∫

Mn = 2n+1( ) π2

Page#619 4 lines up from the bottom of the page:
(2) Rate of depletion of reactants due to heterogeneous surface-catalyzed
chemical reaction …

Page#620 4 lines down from the beginning of Section 23-3.2:
transverse to the primary flow direction.  (Catalyst poisoning introduces some
dependence of k1,Surface on z).  Hence;

Page#633 just above Self-Consistent Check of the Numerical Solution:
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Where the fitting parameter λ characterizes the spatial rate of decrease of
reactant bulk molar density on semi-logarithmic axes.  Appropriate
ransformation of the dimensionless axial variable ξ (see equations 23-80, 23-
81, and 23-82), which includes the aspect ratio and the Damkohler number,
allows one to develop universal correlations for all rectangular duct reactors
with uniform catalyst activity (Hatton & Quarmby, 1962).

Page#639 just above Section 23-6.3:
… understood.  However, if one were designing an experimental reactor to
measure the kinetics of heterogeneous surface-catalyzed chemical reactions,
then a tube-wall reactor with circular cross-section would eliminate nonuniform
reactant accessibility to the catalytic surface in the problematic corner regions.

Page#652 replace W(x) by W(χ) three lines above the last equation on this page.
Page#653 Problem 23-8

Use some of the numerical methodology discussed in this chapter to solve the
steady state microscopic mass transfer equation for convective diffusion in
heterogeneous catalytic “tube-wall” reactors with circular cross-section in the
laminar flow regime for incompressible Newtonian fluids.  Chemical reaction at
the catalytic surface (i.e., r=R) is irreversible and first-order with respect to
reactant A.  Let the tube radius R be the characteristic length in the definitions
of the Damköhler (i.e., β) and mass transfer Peclet (i.e., PeMT) numbers, and
consider the regime where PeMT is large enough to justify the neglect of axial
diffusion.

Answer:
The appropriate mass transfer equation is given in Step#5 of the previous problem at the
bottom of page#649, and the laminar flow velocity profile is provided in Step#7 on
page#650.  Hence, the primary objective of this exercise is to calculate the molar density of
reactant A, CA(r,z), from the following partial differential equation and its boundary
conditions in cylindrical coordinates, with variable coefficients and chemical reaction at the
boundary of the flow configuration;

€ 

2 vz Average
1−η2{ }∂CA

∂z
= DA

1
r
∂
∂r

r ∂CA

∂r
 
 
 

 
 
 

= DA
∂ 2CA

∂r2
+
1
r
∂CA

∂r
 
 
 

 
 
 

CA =CA,inlet@z = 0,r < R
∂CA

∂r
 
 
 

 
 
 r=0

= 0;−DA
∂CA

∂r
 
 
 

 
 
 r=R

= k1,SurfaceCA r = R, z( )
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The zero-flux boundary condition along the tube axis at r=0 is a consequence of symmetry,
and the radiation boundary condition at the catalytic surface (i.e., r=R) represents a balance
between diffusion and chemical reaction.  Radial and axial positions are dimensionalized using
tube radius R.  Hence, η = r/R and ζ = z/R.  Reactant molar density is dimensionalized via the
inlet condition, ΨA(η,ζ) = CA(r,z)/CA,inlet.  In terms of the important dimensionless numbers
that govern the solution to this problem;

€ 

Damkohler#;β =
k1,SurfaceR
DA,ordinary

Peclet#;PeMT =
vz Average

R
DA,ordinary

the mass transfer equation and its boundary conditions can be written as follows using
dimensionless variables;

€ 

2PeMT 1−η
2{ }∂ΨA

∂ζ
=
∂ 2ΨA

∂η2
+
1
η
∂ΨA

∂η

ΨA =1@ζ = 0,η <1
∂ΨA

∂η

 
 
 

 
 
 η=0

= 0; ∂ΨA

∂η

 
 
 

 
 
 η=1

= −βΨA η =1,ζ( )

Problem 23-7 provides an asymptotically exact mass transfer boundary layer solution for
CA(r,z) in the inlet region (i.e., z>0) for heterogeneous catalytic tubular reactors (see
Step#16 on page#652).  A much simpler approach is adopted below to initiate the
numerical algorithm by applying the radiation boundary condition at z=0 and r=R (or ζ=0 and
η=1) to estimate the molar density of reactant A at the wall near the inlet plane.  For
example;

€ 

∂ΨA

∂η

 
 
 

 
 
 η=1

≈
ΨA η =1,ζ = 0( )−1

Δη
= −βΨA η =1,ζ = 0( )

ΨA η =1,ζ = 0( ) ≈ 1
1+βΔη

which exhibits the correct trend, because reactant molar density at the catalytic surface
decreases when the rate of reaction is faster and the Damköhler number increases.  In an
effort to check the validity of the finite-difference solutions to the microscopic mass



TPfCRD; Corrections & New Ideas48

transfer equation, one poses the following question; Do the microscopic results satisfy the
quasi-macroscopic mass balance?  Hence, it is necessary to evaluate the bulk molar density
of reactant A at each axial position, given by equation (23-19), explicitly for tubular
reactors.  Analogous to equation (23-51) for rectangular ducts, the dimensionless bulk
reactant molar density in tubular reactors is;

€ 

CA,bulk z( ) =
vz r( )CA r, z( )rdrdΘ

S
∫∫

πR2 vz Average

= 4 CA r, z( ) 1−η2{ }
η=0

1

∫ ηdη

ΨA,bulk ζ( ) = 4 ΨA η,ζ( ) 1−η2{ }
η=0

1

∫ ηdη

Finally, the quasi-macroscopic mass balance for heterogeneous catalytic reactors with first-
order irreversible chemical reaction at the boundary, as described on pages 634-636, is
analyzed completely for uniform catalyst activity on the inner wall of tubes in Problem 23-6
on pages 647-648.  Hence, the second equation on page#648 is dimensionalized as follows;

€ 

vz Average
πR2 −

dCA,bulk

dz
 
 
 

 
 
 

= 2πRk1,SurfaceCA r = R, z( )

−
dΨA,bulk

dζ
=
2β
PeMT

ΨA η =1,ζ( )

These equations are analyzed via the following finite-difference algorithm that
can be implemented in conjunction with a linear equation solver.  A nonlinear
equation solver is required if the chemical kinetics are not first-order.

Important parameters that govern the solution to the convective diffusion mass transfer
equation for laminar flow tube-wall reactors
β = 150 Damköhler number; heterogeneous reaction rate wrt diffusion rate
PeMT = 25 Mass transfer Peclet number; rate of convection wrt diffusion rate

Numerical grid parameters that determine the total number of grid points and mesh size
NR = 101 number of discretized points in the radial direction
Δη = 1/(NR–1) step size in the radial direction
Δζ = 0.001 step increment in axial position
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Establish the dimensionless inlet molar density profile of reactant A
ΨA(j,k=0) = 1; 1≤j≤ NR–1 no conversion in the feed stream at ζ=0
ΨA(NR,k=0) = 1/(1+βΔη) approximate molar density at the wall via the BC at η=1

Evaluate the dimensionless laminar flow velocity profile at each radial mesh point
η(j) = (j–1)Δη; 1≤j≤NR

v*Z(j) = 2{1–[η(j)]2}

Initiate a counter and calculate the dimensionless axial position
k=1
***ζ = kΔζ use a loop and return to this statement each time counter k is incremented

Symmetry boundary condition at the center of the tube (i.e., η=0)
Second-order-correct forward difference representation for first derivatives, Eq. (23-35)

€ 

1
2Δη

−ΨA 3,k( ) + 4ΨA 2,k( )− 3ΨA 1,k( ){ } = 0

Radiation boundary condition at the catalytic wall (i.e., η=1)
Second-order-correct backward difference representation for first derivatives, Eq. (23-40)

€ 

1
2Δη

3ΨA NR ,k( )− 4ΨA NR −1,k( ) +ΨA NR − 2,k( ){ } = −βΨA NR ,k( )

Implicit finite-difference representation of the convective diffusion mass transfer equation
within the tube; 1st derivative with respect to axial position ζ is first-order correct; 1st and
2nd spatial derivatives with respect to radial position η are second-order correct, Eq. (23-24)

€ 

2 ≤ j ≤ NR −1

PeMTvz
∗ j( )

ΨA j,k( ) −ΨA j,k −1( )
Δζ

=
ΨA j +1,k( ) − 2ΨA j,k( ) + ΨA j −1,k( )

Δη( )2
+
ΨA j +1,k( ) −ΨA j −1,k( )

η j( )2Δη

Calculate the bulk molar density of reactant A via the trapezoidal rule

€ 

ΨA,bulk k( ) = 2 Δη
2

 
 
 

 
 
 

2η j( )vz∗ j( )ΨA j,k( )
j=2

NR −1

∑
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Verify that the finite-difference solution of the microscopic convective diffusion equation
also satisfies the quasi-macroscopic mass balance, using the trapezoidal rule

€ 

ΨA,bulk k −1( )−ΨA,bulk k( )
Δζ

=
2β
PeMT

ΨA NR ,k( )

Increment the counter, return to the step denoted by 3 asterisks ***, solve the system of
linear algebraic equations at the next axial step, calculate the bulk molar density of reactant
A and verify that the finite-difference solution also satisfies the quasi-macroscopic mass
balance
k = k+1
Go To ***

Calculate the dimensionless tube length ζ  = z/R that is required to achieve
50% conversion of reactant A to products when the Damköhler number is 150
and the mass transfer Peclet number is 25.  Hint: Graph ΨA,bulk vs. ζ to obtain
the answer.
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Heterogeneous Catalytic Tube-Wall Reactor; 1st-Order Kinetics

Damkohler Number = 150
Mass Transfer Peclet # = 25

Axial "Conversion" Profile

50% Conversion when z/R = 3. 5

Predict the thickness of the mass transfer boundary layer δMTBLT(ζ), measured
inward from the catalytically active surface toward the centerline of the tube,
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as a fraction of the tube radius R when ζ = 1, β = 150, and PeMT = 25.  Hint:
Graph ΨA(η,ζ=1) vs. η.  Within the mass transfer boundary layer;
ΨA(R-δMTBLT,ζ=1) ≤ 0.98
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Radial Profile; Beta=150,  PeMT=25,  zeta=1

Mass Transf er Boundary Layer Thickness

≈ 70% of the Tube Radius

(24) Multicomponent Gas-Liquid CSTR's

Page#672 the reference for covalent and van der Waals radii in Table 24-1 is;
General Chemistry, by Linus Pauling, 3rd edition, WH Freeman (1970)

Page#683 Problem 24-10 (last problem in the chapter on reactive distillation)

Pure liquid B is flowing at steady state from left to right across a perforated tray in a
distillation column and bubbles of gas A rise through the liquid.  Gas A is soluble in liquid B,
and A reacts irreversibly with B only in the liquid phase.  Due to the high concentration of B
in the liquid phase, the "method of excess" suggests that the kinetic rate law is pseudo-
first-order with respect to the liquid phase molar density of solubilized gas A.  The rising
motion of the bubbles produces a "well-stirred" liquid mixture of A and B, but the two
streams do not leave the tray in equilibrium with each other.  At most, equilibrium is
established at the spherical gas-liquid interface.
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(a) Consider mass transfer rate processes and their corresponding time constants to
describe the conditions that must exist if the outlet liquid stream contains a
significant fraction of species A, realizing that the inlet stream contains pure liquid B.
Do not use any equations.

Answer:
The time constant for interphase mass transfer of species A must be significantly smaller
than either of the time constants for (i) chemical reaction in the liquid phase or (ii)
convective mass transfer of the liquid phase across the tray in the distillation column (i.e.,
residence time).

(b) In the diffusion-limited regime, perform a macroscopic balance on the liquid phase and
obtain an algebraic equation that relates the outlet liquid phase molar density of
reactant A, CA,outlet, to the following quantities;

CA,equilibrium equilibrium molar density of species A on the liquid side of the gas-liquid
interface (i.e., equilibrium solubility of gas A in liquid B, g-mol/cm3)

DA,Liquid diffusion coefficient of species A in liquid B, (cm2/sec)
k1 pseudo-first-order kinetic rate constant in the liquid phase, (1/sec)
q volumetric flow rate of the liquid, (cm3/sec)
VL liquid phase volume on the tray, (cm3)
τ liquid phase residence time on the tray, VL/q (sec)
aL interfacial area per unit volume of liquid, (1/cm)

Answer:
The liquid phase can be analyzed as a well-mixed CSTR operating at steady state.  Hence,
one equates rates of input to rates of output for reactant A in its liquid phase mass balance.
Since the inlet liquid stream contains pure component B, there is no contribution from
convective mass transfer across the inlet plane.

Rate of input due to interphase mass transfer = {k1DA,Liquid}1/2[CA,equilibrium
  - CA,outlet]aLVL

(using a chemical-reaction-enhanced mass transfer coefficient in the diffusion-limited
regime, where curvature effects are negligible for thin mass transfer boundary layers)

Rate of output due to convective mass transfer = qCA,outlet

Rate of disappearance of reactant A due to 1st-order irreversible reaction = k1CA,outletVL

The steady state liquid-phase CSTR mass balance for reactant A, with dimensions of moles
per time, is;
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€ 

k1DA,Liquid CA,equilibrium −CA,outlet( )aLVL = qCA,outlet + k1CA,outletVL

CA,outlet =CA,equilibrium

aL k1DA,Liquid

aL k1DA,Liquid + k1 +
1
τ

(c) The Arrhenius activation energy for diffusion of solubilized gas A in liquid B, Eac/Diffusion,
is much smaller than the Arrhenius activation energy for the chemical reaction,
Eact/ChemicalReaction.  Hence,

€ 

Eact /Diffusion << Eact /ChemicalReaction

d
dT
lnDA,Liquid =

Eact /Diffusion

RT 2 > 0

d
dT
ln k1 =

Eact /ChemicalReaction

RT 2 > 0

Describe how a decrease in temperature T will affect the outlet liquid phase molar
density of reactant A.  Will CA increase, decrease, remain unchanged, or is it too
complex to determine how CA will change?

Part 6
Thermodynamics and Nonisothermal Reactor Design

(25) Non-Equilibrium Thermodynamics of Multicomponent Mixtures:
Formalism and the Stokes-Einstein Diffusion Equation

(26) Molecular Flux of Thermal Energy in Multicomponent Mixtures

(27) Thermal Energy Balances and Non-Isothermal Effectiveness Factors

Page#748 insert an Appendix just before the PROBLEMS section;
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Appendix:

Effects of the Collision Integral, Thermal Diffusion, and the Prater
Number on Maximum Temperature in Macroporous Catalysts with
Exothermic Chemical Reaction in the Diffusion-Controlled Regime

Overview.  The classic Prater equation is useful to estimate intrapellet temperatures
in packed catalytic tubular reactors when the dimensionless Prater number β is relatively
small (i.e., the magnitude of β ≤ 0.5).  However, for strongly exothermic chemical reactions,
both thermal diffusion and the temperature dependence of important physicochemical
properties of reactive gas mixtures should be included in the analysis of coupled heat and
mass transfer within isolated catalytic pellets.  In the diffusion-limited regime, intrapellet
temperature increases could be much greater than those predicted by the Prater equation.
The analysis herein for Lennard-Jones gases reveals that steady state predictions for
exothermic reactions might not be possible when the Prater number is on the order of unity,
because core temperatures are more than one order-of-magnitude larger than temperatures
on the external catalytic surface.  For reference, the Prater equation predicts that the
maximum intrapellet temperature is 2-fold larger than that on the external catalytic surface
when β=1, which severely underestimates realistic temperature increases by a factor of 5 or
6 (i.e., when β=1) for the synthesis of methanol from carbon monoxide and hydrogen.  The
largest increases in intrapellet temperature occur when all of the following conditions are
satisfied; (i) chemical reactions are strongly exothermic, (ii) physicochemical properties of
the reactive gas mixture exhibit temperature dependence, (iii) the Prater number
approaches unity, and (iv) Soret diffusion enhances the molar flux of C≡O (i.e., MWCO < MW”B”

in pseudo-binary mixtures) into the central core of macroporous catalysts as a consequence
of negative thermal diffusion coefficients.

Introduction.  The classic Prater equation 1-4 relates temperature and reactant molar
density in porous catalysts when (i) only one chemical reaction occurs, (ii) all
physicochemical properties of the reactive mixture exhibit no temperature dependence, and
(iii) thermal diffusion is not considered.  When catalysts operate in the diffusion-controlled
regime at large intrapellet Damköhler numbers 5, the Prater equation suggests that there is
a simple linear relation between maximum intrapellet temperatures near the central core of
the catalyst and the Prater number β, where β is defined in Equation [15].  This relation
between maximum intrapellet temperature and the Prater number exhibits significant
deviations from linearity when the analysis of coupled heat and mass transfer in
macroporous catalysts includes thermal diffusion and temperature-dependent
physicochemical properties of the reactive gas mixture.  Numerical analysis is required, in
general, to obtain the desired nonlinear relation between maximum intrapellet temperature
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and the Prater number β, which reveals that β has a practical upper limit for steady state
simulations to prevent core temperatures from increasing by several orders of magnitude
relative to conditions on the external catalytic surface.  This restriction on the magnitude of
the Prater number for exothermic chemical reactions is not obvious from the original Prater
equation, and there are very few publications in the Web of Science™ database that focus
on maximum temperature in porous catalysts with exothermic chemical reaction.  There
seems to be a dearth of publications that address intrapellet coupled heat and mass transfer
with exothermic chemical reaction in the presence of thermal diffusion (i.e., the Soret
effect).  The next two sections consider steady state analysis of the microscopic mass
transfer equation and the thermal energy balance with one chemical reaction in porous
catalysts.  Convective transport in neglected.  Equation [10] is valid in the presence or
absence of thermal diffusion, whereas thermal diffusion is neglected in Equation [13].
These two equations and their dimensionless analogs provide the starting point for
numerical analysis of maximum intrapellet temperature in the diffusion-controlled regime
where the central core of the catalyst is starved of reactants.

Theoretical Considerations

Stoichiometry and the steady state mass balance with diffusion and
chemical reaction in porous catalytic pellets.  Contributions from convective
transport are negligible in porous catalysts.  Hence, one begins with the steady state
microscopic mass transfer equation 6 for species i that includes pseudo-homogeneous
diffusion and multiple pseudo-volumetric chemical reactions;

€ 

∂Ci

∂t
+ v•∇Ci ⇒

neglibible
convective
transport

steady
state

0 = −∇•
ji,pellet
MWi

 
 
 

 
 
 

+ υikRk
k

reactions

∑ [1]

where Ci is the molar density of component i with molecular weight MWi, ji,pellet represents the
intrapellet diffusional mass flux of species i with respect to a reference frame that translates
at the mass-average velocity v  ≈ 0 of the reactive mixture, υ ik is the stoichiometric
coefficient of species i in reaction k, and Rk is the intrinsic rate of the kth chemical reaction.
Stoichiometric relations are exceedingly complex in the presence of multiple chemical
reactions 7.  In light of this complexity, the current problem is addressed for only one
chemical reaction on the internal catalytic surface.  Now, subscript k is not required, and the
previous mass balance with intrapellet diffusion and one chemical reaction yields the
following stoichiometric relation 6 that is the same for each component in the reactive
mixture, regardless of the consideration or neglect of thermal diffusion;
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€ 

1
υiMWi

∇• ji,pellet =
1

υAMWA

∇• jA,pellet = R [2]

Stoichiometric relations are generated from the mass balance by isolating all quantities that
are species specific (i.e., containing subscript i).  Equation [2] is integrated over an arbitrary
control volume V within the catalytic pores via Gauss' law, yielding equation [3];
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 
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υiMWi

n• ji,pellet −
1

υAMWA

n• jA,pellet
 
 
 

 
 
 @S

dS = 0
S
∫

where n is a unit normal vector directed outward from the surface of the control volume.
Since there are many choices for control volume V and surface S that surrounds this volume
element, the integrand of the surface integral must vanish.  Hence;

€ 

1
υiMWi

n• ji,pellet{ }@S
=

1
υAMWA

n• jA,pellet{ }@S [4]

It should be emphasized that this stoichiometric relation generated from the microscopic
mass transfer equation with diffusion and one chemical reaction is valid at any surface S
that surrounds control volume V within the pellet.

Intrapellet temperature.  The primary objective of this section is to relate
temperature and molar density within porous catalysts.  This is accomplished from steady
state analysis of coupled heat and mass transfer in an isolated pellet, where one pseudo-
volumetric chemical reaction converts reactants to products.  The thermal energy balance is
written in terms of specific internal energy u for an N-component mixture, prior to invoking
any assumptions 6;
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∂ρu
∂t

+∇•ρvu = −∇•q
pellet

− p∇•v−τ :∇v+ ji,pellet •gi
i=1

N

∑ [5]

The molecular flux of thermal energy in this N-component gas mixture is 6;
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q
pellet

= −keffective∇Tpellet +
Hi

MWi

ji,pellet
i=1

N

∑ [6]
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Fourier's law with effective intrapellet thermal conductivity keffective describes the first term
on the right side of Equation [6], and the inter-diffusional flux that contains products of
partial molar enthalpy and diffusional mass flux of each component in the summation
accounts for the most important coupling between heat and mass transfer.  The diffusion-
thermo (i.e., Dufour) effect is neglected in Equation [6] for the molecular flux of thermal
energy.  The following intrapellet rate processes are neglected in the microscopic thermal
energy balance 6 (i.e., Equation [5]);

(i) reversible exchange between internal and kinetic energies (i.e., p ∇ • v ⇒ 0),

(ii) irreversible conversion of kinetic energy to internal energy (i.e., τ : ∇ v ⇒ 0),

(iii) external force field effects (i.e., ∑1≤i≤N ji,pellet• gi ⇒ 0)

Hence, the rather complex thermal energy balance given by Equation [5] is simplified
considerably for steady state analysis with negligible intrapellet convective fluxes;

€ 

∇•q
pellet

= 0 [7]

Integration of Equation [7] over an arbitrary control volume V within porous catalysts, via
Gauss' law, yields;
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∇•q
pellet{ }dV =

V
∫ n•q

pellet[ ]
@S
dS =

S
∫ 0 [8]

where n is defined in the previous section.  Since there are many choices for control volume
V and surface S that surrounds this intrapellet volume element, the integrand of the surface
integral vanishes.  Hence;
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@S

= 0 [9]

Equation [9] is evaluated on the external surface of the catalyst, where n represents a unit
normal vector directed into the pellet.  Then, one invokes stoichiometry, via Equation [4], to
relate intrapellet diffusional molar fluxes when only one chemical reaction occurs.  Equation
[9] is manipulated as follows;
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1
MWA

n• jA,pellet{ }External
Surface

−ΔHReaction( )
[10]

where the stoichiometric coefficient of reactant A is –1.  The summation of products of
stoichiometric coefficients and partial molar enthalpies, over all species in the reactive
mixture, is an exact representation of the enthalpy change for chemical reaction, ΔHReaction,
on a molar basis 8.  Intermolecular interactions and non-ideal heats of solution are also
included in;
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υi Hi
i=1

N

∑ = ΔHReaction ≈ ΔHRx,298K
0 + υi Cp,i T( )

298K

T

∫
i=1

N

∑ dT [11]

because the summation on the left side of Equation [11] contains partial molar enthalpies.
In practice, one estimates ΔHReaction using literature values for standard state enthalpies of
formation at 298K and temperature polynomials for pure-component specific heats 9.  This
approximation is exact for ideal solutions because partial molar enthalpies reduce to pure-
component molar enthalpies under ideal conditions.  The diffusional molar flux of reactant A
in the direction of n is expressed in terms of a molar density gradient within the pellet and
an effective intrapellet diffusivity, DA,effective (i.e., thermal diffusion is considered later in this
Appendix)  Hence;

€ 

1
MWA

n• jA,pellet{ } = −DA,effective
∂CA,pellet

∂n [12]

where n is a spatial coordinate that increases in the direction of n, and the temperature
dependence of DA,effective is governed by pore size, as described in the following section.  The
intrapellet conductive and diffusional fluxes are evaluated in the normal coordinate direction,
relative to the external surface of the catalyst.  The desired relation between temperature
and reactant molar density is applicable to multi-dimensional transport throughout porous
catalysts of any geometry, but the stoichiometric condition among diffusional mass fluxes
limits this analysis to one chemical reaction 6.  As illustrated by Equation [13], which is
applicable everywhere throughout an isolated pellet, spatial coordinate n does not appear in
the final result;



TPfCRD; Corrections & New Ideas59
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n• keffective∇Tpellet{ } = keffective
∂Tpellet
∂n

= − −ΔHReaction( )DA,effective
∂CA,pellet

∂n
∂Tpellet
∂CA,pellet

=
− −ΔHReaction( )DA,effective

keffective

[13]

Maximum temperature in macroporous catalysts with exothermic chemical
reaction in the diffusion-controlled regime.  For isolated pellets, dimensionless
variables (i.e., Θ and ΨA,pellet) are introduced using the characteristic temperature TSurface and
reactant molar density CA,Surface on the external surface of the catalyst.  Hence;
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Θ =
Tpellet

TSurface
;ΨA,pellet =

CA,pellet

CA,Surface
[14]

The thermal energy generation parameter β, also known as the Prater number 1-4,6, strongly
influences temperature profiles within the catalyst.  If one accounts for the temperature
dependence of effective intrapellet diffusivities and the enthalpy change for chemical
reaction, then dimensional analysis of Equation [13] yields;
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TSurfacekeffective
= Pr ater#

[15]

The Prater number β, which is positive for exothermic reactions 1-4, should be calculated
using conditions on the external catalytic surface 6.  ε(Θ) represents a ratio of effective
intrapellet diffusivities at intrapellet temperature Tpellet relative to temperature on the
external surface of the catalyst, and ζ(Θ) is the ratio of the enthalpy change for chemical
reaction at intrapellet temperature Tpellet relative to ΔHReaction at the external catalytic surface
temperature.  The product of the Prater number and the intrapellet Damköhler number (i.e.,
βΛ2

A,intrapellet, the intrapellet Damköhler number is defined by Equation [27] in the Epilogue)
essentially represents a ratio of the rate of thermal energy generation due to chemical
reaction relative to the rate of conductive transport within the catalyst.  In the diffusion-
limited regime at large values of the intrapellet Damköhler number 5, the central core of the
catalyst is reactant-starved (i.e., ΨA,pellet ⇒ 0 as the dimensionless spatial coordinate η ⇒ 0)
and significant temperature increases occur within the catalyst when the reaction is
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exothermic.  Under these conditions, the Prater equation 1-4,6 provides a zeroth-order
prediction for the maximum dimensionless temperature, Θmax ≈ 1+β, near the center of the
catalyst when the temperature dependencies of (i) effective intrapellet diffusivities and (ii)
the enthalpy change for chemical reaction are neglected [i.e., ε(Θ) ≈ 1, ζ(Θ) ≈ 1].  When
simple temperature dependence of intrapellet diffusion coefficients is considered [i.e., ε(Θ)
≈ Θm, with m=0.5 for nanopores and m=1.5 for macropores], a better prediction for the
maximum dimensionless temperature is obtained via integration of Equation [15] for Θ vs.
ΨA,pellet, when ΨA,pellet⇒0 as η⇒0 for diffusion-controlled operation 6.  Hence;

€ 

∂Θ
∂ΨA,pellet

= −βε Θ( ) ≈ −βΘm

Θmax
1−m ≈ 1+ 1−m( )β 1−ΨA,pellet η = 0( ){ }⇒1+ 1−m( )β

[16]

Now, the upper limit for the thermal energy generation parameter is β < 2 in the macropore
regime, because steady state predictions of Θmax tend toward infinity when ε(Θ)≈Θ1.5,
m=3/2, and β=2.  The kinetic theory of dilute gases 10-13 describes the complete
temperature dependence of ordinary molecular diffusion coefficients;
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DA,ordinary ≈
T 3/2

pσ 2ΩD T( )

DA,effective =
ε p,int rapellet

τ or
DA,ordinary

[17]

The internal structure of the catalytic pores is described by an intrapellet void volume
fraction εp,intrapellet and tortuosity factor τor, where the former represents an average over pore
size and the latter averages the orientation of parallel pores 3,6.  Equation [17] contains the
dominant resistance to intrapellet mass transfer in macroporous catalysts where the
average pore size is typically greater than 1 µm.  The collision integral Ω D, which
quantitatively summarizes the dynamics of molecular trajectories and binary collisions for
dilute gas mixtures 10, provides a correction to the hard sphere intermolecular potential
energy because realistic molecules do not collide like hard spheres when the repulsive part
of the potential exhibits some degree of softness.  Since diffusion is inherently a “mixture
property”, collision cross-sections and collision integrals for diffusion, which scale as 1–cosχ
where χ is the deflection angle in a collision, are slightly smaller than those for viscosity and
thermal conductivity of pure materials, which scale as 1–cos2χ, at least as a first-order
approximation for these isotropic transport properties 10-12.  Relative to rigid spheres with
collision diameter σ for low-energy collisions, Lennard-Jones molecules have a slightly
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smaller cross-section for high-energy collisions that are almost head-on, due to strong
repulsive forces.  The influence of attractive forces when intermolecular separations are
greater than their equilibrium values is responsible for the fact that collision cross-sections
for diffusion can be almost 6-fold larger than the corresponding rigid-sphere cross-sections
for low-energy “grazing” collisions 10.  Numerical simulations in this section include
temperature dependence of the collision integral ΩD for diffusion in ε(Θ), as proposed by
Neufeld et al. 14 for molecules that follow the Lennard-Jones 6-12 potential energy of
interaction;
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ΩD T
∗( ) ≈ A T ∗{ }

−B
+C exp −DT ∗{ }+E exp −FT ∗{ }+G exp −HT ∗{ }

T ∗ =
kBoltzmannTSurfaceΘ
εLennard−Jones

;A =1.06036;B = 0.15610;C = 0.19300

D = 0.47635;E =1.03587;F =1.52996;G =1.76474;H = 3.89411

[18]

in addition to the three-halves power of dimensionless temperature for large pores.  There
are no distinguishable differences between the previous empirical equation and tabulated
values of the diffusion collision integral from Transport Phenomena, by Bird, Stewart, and
Lightfoot 13, for dimensionless temperatures T* between 0.30 and 100.  As a consequence
of including ΩD in the ratio of effective intrapellet diffusivities, there is an additional
dimensionless parameter that affects the maximum temperature rise in adiabatic pellets with
exothermic chemical reaction (i.e., kBoltzmannTSurface/εLennard-Jones).  The maximum depth of the
Lennard-Jones potential energy function, or the maximum energy of attraction when
molecules reside at their equilibrium separation distance [i.e., σ(2)1/6], is given by εLennard-

Jones/kBoltzmann with dimensions of absolute temperature, where kBoltzmann is Boltzmann’s
constant.  Now, one must integrate the following equation, with ζ(Θ) ≈ 1;
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[19]

numerically from the external surface, where dimensionless temperature Θ and molar density
ΨA,pellet are unity, inward toward the center of the catalyst where the molar density of
reactant A tends toward zero in the diffusion-controlled regime at large values of the
intrapellet Damköhler number.  It is necessary to transform the independent variable from
dimensionless molar density ΨA,pellet to 1–ΨA,pellet, so that the new independent variable begins
at zero on the external surface and achieves a value of 1 at the center of the pellet, as
required by numerical ODE solvers.  No singularity exists at the center of catalysts with
cylindrical or spherical symmetry.  As a consequence of this change in independent variable
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from ΨA,pellet to 1–ΨA,pellet, it is necessary to remove the negative sign in Equation [19].  A
second-order predictor-corrector algorithm was implemented with automatic step-size
adjustment that is useful for integrating stiff differential equations.  As a general rule, the
effect of the collision integral for diffusion and its temperature dependence on the maximum
temperature near the center of the catalyst is insignificant for thermal energy generation
parameters (i.e., Prater numbers) β < 0.5.  Under these conditions (i.e., β < 0.5), Θmax ≈ {1 –
β/2}-2 provides reasonably accurate estimates of the temperature increase due to
exothermic chemical reaction in macroporous catalysts 6.  This claim is based on
comparisons of Θmax, with and without the ratio of collision integrals in Equation [19] at
various Prater numbers 15.  Froment and Bischoff 3 calculate typical Prater numbers for ten
exothermic catalytic reactions, and only the dissociation of N2O is characterized by β > 0.5
(actually β = 0.64).  For example, macroporous alumina catalysts with effective thermal
conductivities of 1.6 x 10-3 J/cm-sec-K, surface temperatures near 350K, and reactant
molar densities estimated via the ideal gas law at TSurface and ambient pressure require
enthalpy changes for chemical reaction on the order of 120 kJ/mol (i.e., ≈29 kcal/mol) to
achieve a Prater number of unity 6.  Hence, intrapellet temperatures are not predicted to
increase significantly in many cases because large effective thermal conductivities (i.e.,
keffective) of metallic or metal-coated ceramic porous catalysts produce efficient intrapellet
heat transfer.  This is one of the primary reasons why typical Prater numbers do not exceed
unity.  For example, the strongly exothermic hydrogenation of benzene to cyclohexane over
a supported-nickel catalyst 7,16 is described by Prater numbers that approach 0.95 (i.e.,
ΔHReaction ≈ 50 kcal/mol).  When temperature dependence of the collision integral ΩD for
diffusion is considered, numerical simulations reveal that it is difficult to predict steady state
temperature profiles in macroporous catalysts with exothermic chemical reaction when the
thermal energy generation parameter β achieves values between 1.25 and 1.35.  This upper
limit of β for realistic predictions depends on the ratio of the catalytic surface temperature
TSurface to the Lennard-Jones characteristic temperature (i.e., TLennard-Jones), where the latter is
defined by the ratio of the maximum potential well depth εLennard-Jones to Boltzmann's constant
kBoltzmann.  The upper limit of β is larger (i.e., β ⇒ 1.35) for reasonable predictions of Θmax

when TSurface/TLennard-Jones increases.  Obviously, Θmax increases when β is larger and
TSurface/TLennard-Jones remains constant.  However, Θmax decreases when TSurface/TLennard-Jones is larger
at constant Prater number.  These trends are illustrated below in Figure#1 for intrapellet
diffusion of carbon monoxide (i.e., TLennard-Jones ≈ 110K) 10 when the external catalytic surface
temperature, TSurface, is either 300K, 400K, or 900K.
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Figure#1
Effect of the Prater number and the collision integral for ordinary molecular diffusion on the
maximum intrapellet temperature of macroporous catalysts in the diffusion-limited regime at large
values of the intrapellet Damköhler number.  Calculations are presented for carbon monoxide, whose
maximum intermolecular energy of attraction is described by a Lennard-Jones temperature (or
potential well depth, divided by Boltzmann’s constant) of 110K.  The Lennard-Jones temperature
and the temperature on the external catalytic surface represent additional parameters that appear in
the collision integral.  For Prater numbers β greater than 1, there are significant differences between
the maximum intrapellet temperature when the collision integral is included in the analysis, relative to
the lowest curve that excludes the collision integral.  Maximum temperature predictions without the
collision integral correspond to Θmax ≈ {1–β/2}-2.  Predictions from the original Prater equation yield
Θmax ≈ 1+β.

Effect of temperature-dependent enthalpy changes for exothermic
chemical reaction on the maximum temperature in macroporous catalysts in
the diffusion-controlled regime.  Production of methanol from a moderately high-
pressure stoichiometric feed of carbon monoxide and hydrogen.  This specific example
illustrates how the maximum intrapellet temperature for exothermic reactions is affected by
including temperature dependence in ΔHReaction, such that ζ(Θ) ≠ 1 in Equations [15] and
[19].  The synthesis of methanol from C≡O and H2 in gas-phase packed catalytic tubular
reactors is industrially important.  Consequently, a large amount of experimental data is
available to characterize this reaction over a wide range of operating pressures 17-21.  Since
there are no H-H bonds in the final product, 5-site Langmuir-Hinshelwood chemical reaction
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on zinc chromite catalysts (i.e., ZnO/Cr2O3) 6,17,18 is considered to be the rate-limiting step
for CO+2H2⇔CH3OH, with non-preferential dissociative adsorption of atomic hydrogen (i.e.,
H) on adjacent active sites.  The synthesis of methanol over Cu-based catalysts 19 seems to
occur exclusively by CO2 hydrogenation at lower operating pressures.  Equations [15], [17],
[18], and [19] with ζ(Θ) ≠ 1 provide the starting point for analysis of coupled heat and
mass transfer in macroporous catalysts with temperature-dependent physicochemical
properties, like DA,effective(Tpellet) contained in ε(Θ) and ΔHReaction(Tpellet) in ζ(Θ);
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[20]

The standard state enthalpy change at 298K, ΔH0
Reaction,298K, for the synthesis of methanol

from carbon monoxide and hydrogen is –21.7 kcal/mol.  The maximum energy of attraction
for this Lennard-Jones ternary gas mixture, εABC/kBoltzmann, is estimated from a geometric
average of pure-component potential well depths 6,10,13 when molecules reside at their
equilibrium separation distances;

€ 

εABC
kBoltzmann

≈
εC≡OεH2

εCH 3OH
3

kBoltzmann
≈ 123K [21]

Equation [21] is essentially an empirical mixture rule that allows one to estimate force
constants between dissimilar molecules via force constants for pure gases 10.  Hence, the
Lennard-Jones characteristic temperature for mixtures of C≡O, H2, and CH3OH is
approximately 123K in Equation [18] for the diffusion collision integral.  Following the
numerical procedures described in the previous section, integration of Equation [20] from
the external catalytic surface to the central core yields predictions of maximum
dimensionless temperature that depend on the Prater number, as illustrated in Figure#2.  It
is assumed that the temperature polynomials 9 for pure-component specific heats Cp,i(T) are
valid at reasonably high temperatures near the center of the pellet.
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Figure#2
Effect of the Prater number, the collision integral for ordinary molecular diffusion, and temperature
dependence of the exothermic enthalpy change for chemical reaction on the maximum intrapellet
temperature of macroporous catalysts in the diffusion-limited regime.  Calculations are presented
for; CO + 2H2 ⇔  CH3OH.  The Lennard-Jones temperature (or potential well depth, divided by
Boltzmann’s constant) of 123K represents a geometric average of εi/kBoltzmann for all three
components in the gas mixture (see Equation [21]).  Simulations are presented when temperature
on the external catalytic surface is 400K.  Inclusion of the collision integral and temperature
dependence of the enthalpy change for chemical reaction in the analysis of coupled heat and mass
transfer reveals that steady state simulations in macroporous catalysts might not be possible when
the Prater number approaches unity for the synthesis of methanol.

Consideration of thermal diffusion in pseudo-binary mixtures.  The preceding
analysis of coupled heat and mass transfer in macroporous catalysts with exothermic
chemical reaction in the diffusion-controlled regime suggests that predictions of maximum
intrapellet temperatures could be significantly larger than those calculated from the Prater
equation (i.e., Θmax ≈ 1+β) when the Prater number, defined by Equation [15], is greater
than 0.50.  Furthermore, steady state analysis of the methanol synthesis from carbon
monoxide and hydrogen is not a reasonable assumption when the Prater number approaches
unity because maximum intrapellet temperatures could be more than an order of magnitude
greater than TSurface.  The extreme upper limit of the Prater number for realistic steady state
intrapellet simulations decreases from 2.0 to 1.25-1.35 to < 1.0, respectively, as the
temperature dependencies of ordinary molecular diffusion coefficients for hard spheres (i.e.,
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T3/2), the collision integral ΩD(T), and the enthalpy change for chemical reaction ΔH0
Reaction(T)

are systematically included in the analysis.  Further modifications in the prediction of
maximum intrapellet temperature for exothermic reactions in macroporous catalysts include
contributions from thermal diffusion 6,10,13 to the diffusional mass flux vector (i.e., Equation
[12]) when steep temperature gradients exist within the catalyst;
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jA,pellet ≈ −DA,effective ∇CA,pellet +
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       [22]

Thermal diffusion has been neglected entirely in the classic treatise of reaction and diffusion
in permeable catalysts by Aris 7.  In Equation [22], [kT]A is the thermal diffusion ratio for
species A, which characterizes the relative importance of thermal diffusion with respect to
ordinary molecular diffusion.  In binary mixtures of rigid spheres, where the molar masses of
both components are very similar, the thermal diffusion ratio for species A is given by 10;
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where yi is the mole fraction of component i.  The thermal diffusion ratio ϕA(T*) for Lennard-
Jones molecules, relative to the corresponding ratio for rigid spheres, given by Equation
[23], is defined as;
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ϕA T
∗( ) =

kT T
∗( )[ ]A{ }

Lennard−Jones

kT[ ]A{ }Rigid
Sphere

[24]

Figure#3 illustrates the universality of ϕA(T*) vs. T* = T/TLennard-Jones for binary isotopic
mixtures whose intermolecular forces can be described by the Lennard-Jones 6-12 potential.
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Figure#3
Universal temperature dependence of the thermal diffusion ratio for Lennard-Jones gases, relative to
the corresponding ratio for rigid spheres (Eq. [23]), in binary isotopic mixtures.  The dimensionless
function ϕ(T*), defined by Equation [24], is plotted vs. dimensionless temperature for Lennard-Jones
molecules (Eq. [18]), as required for the appropriate collision integrals.  These data were obtained
from pp.#528,543,1126-1129,1131 in Molecular Theory of Gases & Liquids 10.

Inversion temperatures exist when ϕA(T*)=0 for T*≈0.40 and T*≈0.95.  As temperature
increases through these inversion points, the direction in which species A diffuses in
response to temperature gradients changes.  For example, if molecule A is the larger species
in binary isotopic mixtures (i.e., MWA>MWB), then its rigid-sphere thermal diffusion ratio is
greater than zero, via Equation [23], and A diffuses toward lower temperature when T* <
0.40 and T* > 0.95.  If MWA < MWB, then the rigid-sphere thermal diffusion ratio for species
A is negative and molecules of type A diffuse toward lower temperature when T* is between
0.40 and 0.95.  This is a crude approximation to the rigorous thermal diffusion ratio of
carbon monoxide in ternary gas mixtures with hydrogen and methanol.  Equation (8.2-50) in
Molecular Theory of Gases and Liquids 10 for binary mixtures is expanded in powers of
(MWA–MWB)/(MWA+MWB) and truncated after the linear term when the molar masses of both
components are similar.  The universal model illustrated in Figure#3 for Lennard-Jones
molecules is valid 22 when (MWA–MWB)/(MWA+MWB) < 0.15.  The analog of Equation [13] in
the presence of thermal diffusion is a considerably modified Prater equation that, upon
numerical integration, yields more sophisticated predictions of maximum intrapellet
temperatures relative to the results in Figures 1 and 2.  Stoichiometry among intrapellet
diffusional fluxes, as described by Equation [4] for only one chemical reaction, remains valid
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when thermal diffusion is operative.  Hence, the appropriate dimensional equation that
describes intrapellet temperature changes is obtained by substituting Equation [22] into
Equation [10].  Upon rearrangement, one obtains;
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Dimensional analysis of Equation [25] proceeds via the same methodology illustrated in
Equation [15].  Hence, with assistance from the universal temperature-dependent thermal
diffusion ratio ϕA(T*) for binary isotopic mixtures, illustrated in Figure#3, one predicts
maximum intrapellet temperatures via numerical integration of Equation [26] from the
external catalytic surface to the central core;
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Simulations are presented in Figure#4, for MWA < MWB, and Figure#5, for a wide range of
MWB, to investigate the effect of thermal diffusion inversion in pseudo-binary isotopic
mixtures on the maximum temperature within macroporous catalysts in the diffusion-
controlled regime.  When carbon monoxide is the smaller of the two components in pseudo-
binary isotopic mixtures, C≡O migrates toward higher temperature regions in the central
core of porous catalysts with exothermic chemical reaction for dimensionless temperatures
T* > 0.95 (i.e., see Equations [18], [23], and Figure#3).  These conditions are simulated in
Figure#4, revealing that the enhanced molar flux of C≡O toward the central core via thermal
diffusion, together with temperature dependence for all physicochemical parameters in
Equation [26], yields the largest prediction of maximum intrapellet temperatures.  Relative
to simulations that only account for temperature dependence of effective intrapellet
diffusivities and ΔHReaction, consideration of thermal diffusion (i.e., MWA < MWB) on maximum
intrapellet temperatures in Figure#4 is insignificant unless the Prater number is very close to
unity.
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MW(component A) = 28
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Figure#4
Effect of the Prater number, thermal diffusion, the collision integral for ordinary molecular diffusion,
and temperature dependence of the exothermic enthalpy change for chemical reaction on the
maximum intrapellet temperature within macroporous catalysts in the diffusion-limited regime.
Calculations are presented for; CO + 2H2 ⇔  CH3OH.  The Lennard-Jones temperature (or potential
well depth, divided by Boltzmann’s constant) of 123K represents a geometric average of εi/kBoltzmann

for all three components in the gas mixture (see Equation [21]).  Simulations are presented when
temperature on the external catalytic surface is 400K, and the molecular weight of component A
(i.e., MWCO = 28 daltons) is less than that of “component B” (i.e., MWB = 32 daltons) in pseudo-
binary mixtures.

In contrast, when C≡O is the larger of the two components in pseudo-binary mixtures, it
migrates toward lower temperatures near the external catalytic surface for T* > 0.95,
impeding the net diffusional flux of C≡O toward the central core.  Simulations in Figure#5 for
exothermic chemical reaction and Prater numbers greater than 0.75 indicate that maximum
intrapellet temperatures in the presence of thermal diffusion with MWA>MWB are less than
those predicted by Equation [20] when thermal diffusion is neglected (i.e. MWA = MWB = 28
daltons in Figure#5), but all other physicochemical parameters exhibit temperature
dependence.
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Methanol Synthesis from Carbon Monoxide and Hydro gen

MW(component A) = 28 daltons
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MW(component B)  = 20 daltons
MW(component B)  = 16 daltons

Figure#5
Effect of the Prater number, thermal diffusion, the collision integral for ordinary molecular diffusion,
and temperature dependence of the exothermic enthalpy change for chemical reaction on the
maximum intrapellet temperature within macroporous catalysts in the diffusion-limited regime.
Calculations are presented for; CO + 2H2 ⇔  CH3OH.  The Lennard-Jones temperature (or potential
well depth, divided by Boltzmann’s constant) of 123K represents a geometric average of εi/kBoltzmann

for all three components in the gas mixture (see Equation [21]).  Simulations are presented when
temperature on the external catalytic surface is 400K, and the molecular weight of component A
(i.e., C≡O) is 28 daltons.  The effect of the molecular weight of “component B” in pseudo-binary
mixtures is indicated in the legend.  Thermal diffusion does not affect these simulations when the
molecular weights of both components are the same (see Equation [23]).

Summary.  The simulations described in this contribution are based on an analysis of
coupled heat and mass transfer for Lennard-Jones gases in macroporous catalysts with
exothermic chemical reaction in the diffusion-controlled regime.  Numerical results suggest
that predictions of maximum intrapellet temperatures could be significantly larger than
those calculated from the Prater equation (i.e., Θmax ≈ 1+β) when the Prater number, defined
by Equation [15], is greater than 0.50.  Steady state analysis of the methanol synthesis
from carbon monoxide and hydrogen is not a reasonable assumption when the Prater
number approaches unity, because core temperatures are more than one order-of-
magnitude larger than temperatures on the external catalytic surface.  The extreme upper
limit of the Prater number for realistic steady state intrapellet simulations decreases from
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2.0 to 1.25–1.35 to < 1.0, respectively, as the temperature dependencies of ordinary
molecular diffusion coefficients for hard spheres (i.e., T3/2), the collision integral ΩD(T), and
the enthalpy change for chemical reaction ΔH0

Reaction(T) are systematically included in the
analysis.  The largest increases in intrapellet temperature occur when all of the following
conditions are satisfied; (i) chemical reactions are strongly exothermic, (ii) physicochemical
properties of the reactive gas mixture exhibit temperature dependence, (iii) the Prater
number approaches unity, and (iv) Soret diffusion enhances the molar flux of C≡O (i.e., MWCO

< MW”B” in pseudo-binary mixtures) into the central core of macroporous catalysts as a
consequence of negative thermal diffusion coefficients.

Epilogue.  The intrapellet Damköhler number represents a dimensionless ratio of the
pseudo-volumetric rate of nth-order chemical reaction relative to the rate of intrapellet
diffusion.  If Smρapparentkn,Surface is a temperature-dependent nth-order pseudo-volumetric kinetic
rate constant, with dimensions of (volume/mol)n-1 per time, for pseudo-volumetric rates of
reaction (i.e., dimensions of moles per pellet volume per time) that are expressed using
molar densities on the external surface of the catalyst, then for reactant A;

€ 

ΛA,int rapellet
2 =

Smρapparentkn,Surfacedequivalent
2 CA,Surface

n−1

DA,effective
[27]

where the effective intrapellet diffusion coefficient for reactant A is defined by Equation
[17].

Nomenclature

CA,pellet molar density of reactant A within a porous catalytic pellet
Ci molar density of species i
Ci,Surface molar density of gaseous species i near the external surface of a catalytic pellet
Cp,i specific heat of pure component i, expressed as a polynomial in T
DA,effective effective intrapellet diffusivity of reactant A in porous catalysts
DA,ordinary ordinary molecular diffusion coefficient for reactant A
dequivalent equivalent diameter of irregular-shaped pellets, = 6Vcatalyst/Sexternal

gi external body force per unit mass acting on species i in a mixture
Hi partial molar enthalpy of species i in a mixture
ji,pellet diffusional mass flux of species i within a porous catalytic pellet
kBoltzmann Boltzmann’s constant; 1.38066 x 10-23 Joule/K
keffective effective intrapellet thermal conductivity of a porous catalyst
kn,Surface nth-order kinetic rate constant with dimensions of (vol/mol)n-1(length/time) for

heterogeneous chemical reaction on the catalytic surface, where the reaction
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rate is expressed via molar densities and has dimensions of moles per internal
catalytic surface area per time

[kT]A ratio of the thermal diffusion coefficient to the ordinary molecular diffusion
coefficient in Equation [22] for diffusional mass flux of species A

MWi molecular weight of species i
m exponent for the temperature dependence of effective intrapellet diffusion

coefficients in macropores (i.e., m=1.5) and nanopores (i.e., m=0.5)
n outward directed unit normal vector on surface S that surrounds a chosen

volume element V
n independent spatial variable measured in the direction of n
p gas phase pressure
qpellet molecular flux of thermal energy in multicomponent gas mixtures
Rk pseudo-volumetric kinetic rate law for the kth independent chemical reaction
R pseudo-volumetric kinetic rate law when only one chemical reaction occurs
S surface element over which integration occurs via Gauss' law
Sexternal external surface area of one porous catalytic pellet
Sm internal catalytic surface area per unit mass of catalyst
t time
T temperature in the thermal energy balance
T* dimensionless temperature in the diffusion collision integral, Equation [18]
Tpellet temperature within porous catalytic pellets
TSurface temperature near the external surface of the catalytic pellets
u specific internal energy of the gas phase mixture
v mass-average velocity vector of a multicomponent reactive mixture
V volume element over which integration occurs
Vcatalyst total volume of one porous catalytic pellet
yi mole fraction of component i

Greek Symbols:
β Prater number, defined in Equation [15]
∇ gradient operator
ΔHReaction molar enthalpy change for the chemical reaction at temperature T
ΔH0

Rx,298K standard state molar enthalpy change for the chemical reaction at 298K
ε(Θ) ratio of effective intrapellet diffusivities for reactant A, defined in Equations

[15] and [19]
εLennard-Jones maximum energy of attraction for Lennard-Jones molecules, or maximum depth

of the potential well when molecules reside at their equilibrium separation
distance

εp,intrapellet intrapellet porosity, or void volume fraction, of an isolated catalytic pellet
Λ2

A,intrapellet intrapellet Damköhler number of reactant A, defined in Equation [27]
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υik stoichiometric coefficient of species i in the kth chemical reaction
υi stoichiometric coefficient of species i when there is only 1 reaction
η dimensionless intrapellet radial coordinate in porous spherical catalysts
ϕA(T*) thermal diffusion ratio for Lennard-Jones gases relative to that for hard

spheres, illustrated as a function of dimensionless temperature T* in Figure#3
for binary isotopic mixtures

ρapparent apparent density of a porous catalytic pellet, including occupied and void
volume

ρ total mass density of the gas phase mixture
Θ dimensionless intrapellet temperature in porous catalysts
Θmax maximum dimensionless intrapellet temperature near the center of porous

catalysts
σ collision diameter for the Lennard-Jones 6-12 intermolecular potential
τ viscous stress tensor (i.e., molecular momentum flux)
τor intrapellet tortuosity factor, representing an average over pore orientation
ΨA,pellet dimensionless intrapellet molar density of reactant A in porous catalysts
ΨA,Surface dimensionless molar density of reactant A near the external surface of a

catalytic pellet
ΩD collision integral for diffusion, parameterized by Equation [18]
ζ(Θ) dimensionless ratio of molar enthalpy changes for chemical reaction, defined by

Equations [15] and [20]
χ deflection angle for binary molecular collisions in dilute gas mixtures
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Page#761 need consistency between dW in eq. (28-27) and dw in eq. (29-5)

(29) Thermodynamic Stability Criteria for Single Phase Homogeneous
Mixtures

Page#786 need consistency between dW in eq. (28-27) and dw in eq. (29-5)

(30) Coupled Heat and Mass Transfer in Packed Catalytic Tubular
Reactors that Account for External Transport Limitations

Page#826 the right side of equation (30-17) needs a lowercase p in ji,pellet

Page#834-835 just above Step 3 and Step 5. …at prevailing values of CA,Surface and TSurface.
The characteristic length L in the definition of the intrapellet Damköhler
number is the radius of spherical catalytic pellets for the correlation given
by Equation (20-57) for 1st-order irreversible chemical kinetics.  The heat
and mass transfer correlations contain the Reynolds number, which is
based on particle dimensions and the interstitial fluid velocity.  The
Schmidt and Sherwood numbers require ordinary molecular diffusion
coefficients in the dimensionless mass transfer correlations for interphase
mass transfer coefficients, not interpellet axial dispersion coefficients.

Page#838 just below equation (30-64); which reduces to ΨA,surface = ΨA,bulk gas via (i)
equation (30-63) when α=0, or (ii) application of l’Hôpital’s rule in
equation (30-64) when the external resistance to mass transfer is
negligible (i.e., α=0 and β=0).  Equation (30-64) for …

Page#846 4 lines up from RPFR = 10 cm, need a space between 0.25 and (atm)-1
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Page#848 3 lines up from the bottom; … constants are 0.25 atm-1 [see equations 22-42,
22-54, and Figure 22-1 on pages 576-579])

Page#850 Last equation before section 30-6.1; add dz in the integral expression for TBulkGas

Page#852 add Section 30-6.3

Numerical simulations of temperature and molar density profiles in
the bulk fluid phase and on the external surface of porous catalysts

for moderately high-pressure syntheses of methanol from carbon
monoxide and hydrogen in non-adiabatic PFRs

The complete strategy for ideal nonisothermal packed catalytic tubular
reactors.  When porous pellets are packed in tubular reactors and the external resistances
to both heat and mass transfer cannot be neglected, it is necessary to predict temperature
TSurface and reactant molar density CA,Surface on the external catalytic surface.  The appropriate
initial guesses are based on bulk conditions at the reactor inlet.  With assistance from
effectiveness factor correlations, the rate of reactant consumption is averaged
volumetrically throughout the catalyst by evaluating heterogeneous rate laws using
conditions on the external catalytic surface.  Hence, the appropriate sequence of
calculations is; (i) predict CA,Surface and TSurface via coupled heat and mass transfer principles
discussed earlier in this chapter, (ii) calculate the intrapellet Damköhler number for reactant
A on the external catalytic surface, (iii) estimate the effectiveness factor via dimensionless
correlations that consider catalyst geometry and the kinetic rate law, (iv) predict a
volumetric average of the rate of reactant consumption throughout the catalyst, and (v)
solve coupled plug-flow differential mass and thermal energy balances to estimate changes
in temperature and reactant molar density within the bulk gas phase.  The mathematical
description of this strategy is summarized below;

(1) Use bulk conditions at the reactor inlet, CA,BulkGas(z=0) and TBulkGas(z=0), to estimate the
intrapellet Damköhler number Λ2

A,intrapellet and the corresponding effectiveness factor Ε
via dimensionless correlations that account for catalyst geometry and the appropriate
kinetic rate law (i.e., nth-order kinetics).  The characteristic length L in the definition of
the intrapellet Damköhler number is the radius of spherical catalytic pellets for the
analytical correlations described in Chapter#20 for 1st-order irreversible chemical
kinetics.  If the kinetics are not zeroth-order or first-order, then numerical methods
are required to calculate the effectiveness factor.

(2) Since Ci,BulkGas at the reactor inlet is known via the nature of the feed stream, one
should obtain an iterative solution to the following set of coupled non-linear algebraic
equations to predict CA,Surface, Ci,Surface, and TSurface near the reactor inlet;
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DA,effective TSurface( )
E = f ΛA,int rapellet

2 ;n,CatalystGeometry( )

All of these expressions have been discussed earlier in this chapter.  Each iteration
requires a recalculation of the intrapellet Damköhler number and the effectiveness
factor (i.e., analytical or numerical) at the prevailing values of CA,Surface and TSurface.  Gas-
phase mass transfer coefficients for species A (i.e., kA,MTC) and species i (i.e., ki,MTC) in
the first three equations above should be evaluated via equation (22.3-43) or (22.3-
44) in Transport Phenomena, 2nd edition, by Bird, Stewart, & Lightfoot.  For creeping
flow around solid spheres, the Sherwood number for mass transfer scales as the one-
third power of the particle-based mass transfer Peclet number (i.e., Peparticle), which
incorporates the equivalent diameter of a single catalytic pellet, the average
interstitial fluid velocity through the packed bed, and ordinary molecular diffusion
coefficients at bulk-gas temperatures in the external gas-phase boundary layer
adjacent to spherical gas-solid interfaces.  The corresponding heat transfer coefficient
(i.e., hHTC) in the third equation above should be evaluated using equation (14.5-2) or
(14.5-6) in BSL’s 2nd edition of Transport Phenomena.  All of these heat and mass
transfer correlations are consistent with two-dimensional creeping flow of
incompressible fluids adjacent to high-shear, no-slip interfaces.

(3) When convergence is obtained for CA,Surface, Ci,Surface, and TSurface near the reactor inlet, it
is possible to (i) use the current value of the effectiveness factor, (ii) predict the
volumetric rate of consumption of reactant A throughout the pellets via effectiveness
factor formalism, and (iii) employ numerical methods like the Runge-Kutta-Gill 4th-
order-correct integration algorithm to solve coupled dimensional mass and thermal
energy balances for ideal gas-phase plug-flow tubular reactors that include the
effectiveness factor in the kinetic rate law.  The first term on the right side of the
one-dimensional thermal energy balance (i.e., 2nd equation below), which reduces the
bulk gas temperature, represents heat transfer to the surroundings because the
reactor is not insulated.  The second term on the right side of the thermal energy
balance represents heat generation due to exothermic chemical reaction.  The primary
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objective is to predict CA,BulkGas, Ci,BulkGas, and TBulkGas at a small distance z downstream
from their values at the reactor inlet.

€ 

q dCA ,BulkGas

dVReactor
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Ci,BulkGas = Ci,BulkGas,Inlet +υ i CA ,BulkGas,Inlet −CA ,BulkGas{ }

(4) Use values for CA,Surface, Ci,Surface, and TSurface that were obtained from convergence in
step#2, which includes the most up-to-date values of the intrapellet Damköhler
number and the effectiveness factor, update bulk gas molar densities and
temperature from the solution of coupled mass and thermal energy balances in
step#3, and obtain another iterative solution to the coupled nonlinear algebraic
equations in step#2.  The primary objective is to predict CA,Surface, Ci,Surface, and TSurface

slightly downstream from their previous values.

(5) Repeat step#3 and step#4 to predict molar densities and temperatures in the bulk
fluid phase and on the external surface of the catalyst from inlet to outlet of the
packed catalytic tubular reactor.

There is some discrepancy in the Chemical Engineering textbook literature about the use of
superficial (i.e., <vz>superficial) vs. interstitial (i.e., <vz>interstitial) average fluid velocity to describe
convective transport in the coupled plug-flow mass and thermal energy balances (i.e.,
summarized in step#3) for packed catalytic tubular reactors.

Numerical analysis of pseudo-1st-order irreversible chemical kinetics in
ideal packed catalytic tubular reactors when the external resistances to heat
and mass transfer cannot be neglected.  Production of methanol from a moderately
high-pressure stoichiometric feed of carbon monoxide and hydrogen.  This realistic example
implements the complete strategy outlined in the previous section to simulate ideal reactor
performance at high mass and heat transfer Peclet numbers, when reactants are consumed
by approximate 1st-order irreversible kinetics on the internal surface of porous spherical
pellets.  The catalyst is distributed uniformly in a fixed-bed arrangement.  The synthesis of
methanol from C≡O and H2 in gas-phase packed catalytic tubular reactors is industrially
important.  Consequently, a large amount of experimental data is available to characterize
this reaction over a wide range of operating pressures.  For simplicity, the effectiveness
factor is calculated analytically via the classic isothermal expression in spherical coordinates,
as developed in Chapter#20.  The cgs system of units is employed in the following analysis.
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Design parameters for ideal tubular reactor performance when external resistances to
heat and mass transfer are considered.  Most of the parametric values, summarized below,
are self-explanatory.  The interaction energy that governs molecular trajectories and binary
collisions is assumed to follow the Lennard-Jones 6-12 potential function.  The collision
diameter σ and the depth of the potential well are required to calculate collision integrals for
viscosity and ordinary molecular diffusion, as well as the important dimensionless numbers
(i.e., Reynolds, Schmidt, Prandtl, and Damköhler) that are necessary to estimate interphase
heat and mass transfer coefficients, and the effectiveness factor.  An integral formulation of
linear least squares regression for continuous objective functions, discussed in Chapter#15
and implemented in Chapter#22, is employed to quantify reversible heterogeneous catalytic
reactions using first-order irreversible rate laws [i.e., k1,Pseudo-VolumetricCA,inlet(ξequilibrium - ξ)], where
ξequilibrium is the equilibrium conversion of carbon monoxide (C≡O) that depends on the local
external catalytic surface temperature TSurface and pressure at each axial position in the
tubular reactor.  Since there are no H-H bonds in the final product, 5-site Langmuir-
Hinshelwood chemical reaction on zinc chromite catalysts (i.e., ZnO/Cr2O3) is considered to
be the rate-limiting step for CO+2H2⇔CH3OH (i.e., see Chapter#22), with non-preferential
dissociative adsorption of atomic hydrogen (i.e., H) on adjacent active sites.  The synthesis
of methanol over Cu-based catalysts seems to occur exclusively by CO2 hydrogenation at
lower operating pressures.  Under non-ideal conditions, kinetic rate laws should be
constructed using fugacities instead of molar densities or partial pressure, as suggested in
the Problems Section of Chapter#7.

Length of the packed catalytic tubular reactor = 325 cm
Radius of the packed catalytic tubular reactor = 7 cm
Radius of each porous catalytic pellet (spherical) = 0.7 cm
Average catalytic pore radius = 10 nm
�Approximate Lennard-Jones collision diameter σ for CO in the ternary gas mixture ≈ 3.5 Å
Approximate (i.e., geometric average) Lennard-Jones potential well depth for a ternary gas
mixture of C≡O, H2, and CH3OH; εABC/kBoltzmann ≈ {εCOεH2εCH3OH}1/3/kBoltzmann ≈ 123K
Tortuosity factor for individual porous catalytic pellets = 2
Intrapellet porosity, or void volume fraction for each catalytic pellet = 0.60
Interpellet porosity, or void volume fraction of the entire packed bed = 0.35
Volumetric flowrate of bulk gas through the packed bed = 100 cm3/sec (i.e., 6 Litre/min)
Average residence time = 175 seconds
Ambient temperature = 298K
Inlet bulk gas temperature = 498K (nonisothermal) or 528K (isothermal)
Inlet total pressure = 50 atmospheres
Standard state entropy change for CO+2H2⇔CH3OH; ΔS0

Rx,298K ≈ –53 cal/mol-K
Standard state enthalpy change (exothermic chemical reaction); ΔH0

Rx,298 ≈ –21.7 kcal/mol
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Arrhenius activation energy for the forward reaction = 22.7 kcal/mol
Pre-exponential factor for pseudo-1st-order Arrhenius kinetic rate constant ≈ 3 x 106 sec-1

Overall heat transfer coefficient (to the surroundings) = 6 x 10-4 cal/cm2-sec-K
Stoichiometric feed (i.e., 1:2) of C≡O and H2 at the reactor inlet
Axial step size for numerical integration = ΔζPFR = 10-4; 0 ≤ ζPFR = z/LPFR ≤ 1

Comparison of analytical and numerical solutions for ideal isothermal tubular reactors.
Numerical simulations were compared with the analytical solution (i.e., Equations 30-60 and
30-61) when the kinetics are 1st-order and irreversible, and heat effects due to chemical
reaction are negligible.  Hence, isothermal operation was simulated at 528K, with external
mass transfer resistance included in the analysis, but no temperature gradients anywhere
throughout the system.  Analytical and numerical solutions for the predicted bulk-gas
conversion of carbon monoxide are essentially indistinguishable, but the gas-phase molar
density of C≡O near the external catalytic surface is slightly less than its corresponding bulk
gas-phase molar density, as expected for reactants.

Nonisothermal tubular reactor performance.  The influence of external resistances to
heat and mass transfer was analyzed in ideal plug flow reactors without interpellet axial
dispersion in the species mass balance or axial conduction in the thermal energy balance.
The external resistance to heat transfer is proportional to the difference between bulk gas
and surface temperatures.  Analogously, external mass transfer resistance scales linearly
with the difference between species molar density near the external catalytic surface and in
the bulk gas phase.  Using the parameters defined earlier in this section, temperature
profiles in the bulk gas stream and near the external surface of the catalytic pellets are
illustrated in Figure#30-4.
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Figure#30-4
Temperature profiles in the bulk gas phase (i.e., dashed line; TBulkGas) and near the external surface of
porous catalytic pellets (i.e., solid line; TSurface) for the production of methanol from carbon monoxide
and hydrogen in ideal tubular reactors that are not insulated from the surroundings.  The ≈80K
increase in reactor temperature relative to TBulkGas,Inlet, 20% of the reactor length downstream from
the inlet, is attributed to exothermic chemical reaction.  All simulation parameters are defined in the
text.  The horizontal coordinate ζPFR represents dimensionless axial position in the direction of bulk
flow, measured from the reactor inlet.

The corresponding reactant (i.e., C≡O) molar densities are presented in Figure#30-5.  C≡O
conversion ξ is defined by one minus dimensionless molar density in the bulk gas phase (i.e.,
ξ = 1 – ΨA,BulkGas).  Simulations reveal that the maximum difference between external catalytic
surface temperature and bulk gas temperature [i.e., (TSurface – TBulkGas)max ≈ 40K] occurs
approximately 8% of the reactor length downstream from the inlet, whereas this
temperature difference (i.e., TSurface – TBulkGas) is less than 10K much further downstream.  As
expected for exothermic reactions, temperatures within the porous pellets and near the
external catalytic surface should be higher than those in the bulk gas stream.  The interplay
between the rate of thermal energy generation due to exothermic chemical reaction and the
rate of thermal energy removal due to heat transfer across the lateral surface of the reactor
governs the maximum temperature increase [(TBulkGas – TBulkGas,inlet)max ≈ 80K in Figure#30-4),
the axial position where maximum temperature occurs, and the overall shapes of the profiles
in Figure#30-4 and Figure#30-5.
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Figure#30-5
Dimensionless molar density profiles for carbon monoxide in the bulk gas phase (i.e., dashed line;
ΨA,BulkGas) and near the external surface of porous catalytic pellets (i.e., solid line; ΨA,Surface) for the
gas-phase production of methanol from a stoichiometric feed of C≡O and H2 in ideal tubular reactors
that are not insulated from the surroundings.  Based on simulation parameters defined in the text,
the maximum difference between ΨA,BulkGas and ΨA,Surface occurs approximately 8% of the reactor length
downstream from the inlet [i.e., (ΨA,BulkGas – ΨA,Surface)max ≈ 0.07 when ζPFR ≈ 0.08], and ≈35% final
conversion of C≡O to CH3OH is achieved (i.e., ΨA,BulkGas ≈ 0.65 when ζPFR=1).  The horizontal
coordinate ζPFR represents dimensionless axial position in the direction of bulk flow, measured from
the reactor inlet.

The bulk gas temperature decreases when the rate of heat removal across the lateral
surface of the reactor is greater than the generation rate due to exothermic chemical
reaction, as described by the one-dimensional thermal energy balance for plug-flow reactors.
Thermal runaway occurs when the generation rate significantly outweighs the rate of heat
removal, producing steep increases in reactor temperature and near-equilibrium reactant
conversions that might not be described adequately by steady state analyses.  Practical
strategies to prevent thermal runaway, summarized and implemented in Chapter#4, include
(i) lowering the inlet temperature of the reactive fluid, (ii) diluting the feed stream with an
inert carrier gas, (iii) increasing the surface-to-volume ratio of the reactor by decreasing its
diameter, and (iv) increasing the flowrate and lowering the inlet temperature of a cooling
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fluid that flows either cocurrently or countercurrently with respect to the reactive fluid.  One
might predict that an increase in bulk gas flowrate of the reactive fluid, which decreases the
residence time τPFR, should reduce the overall temperature increase, (TBulkGas – TBulkGas,inlet)max,
for exothermic reactions and decrease the final conversion of carbon monoxide.  However,
decreases in τPFR and subsequent increases in the mass transfer Peclet number PeMT reduce
external heat and mass transfer resistances in the gas-phase boundary layers surrounding
the catalytic pellets.  Consequently, the diffusional flux of reactants toward the external
catalytic surface increases, reaction rates increase because kinetic rate laws are evaluated
at higher reactant molar densities near the external catalytic surface, more thermal energy
is generated when reaction rates increase, and the flux of thermal energy from the pellets to
the bulk gas phase increases.  There is a restricted range of residence times and mass
transfer Peclet numbers where all of these sequential effects produce larger increases in
reactor temperature and higher conversion, even though shorter residence times suggest
that there is less opportunity to convert reactants to products.  Isothermally, the effect of
residence time, or PeMT, on reactant conversion is illustrated in Figures 30-1 to 30-3 when
the external resistance to mass transfer is important.  The study of maximum conversion in
nonideal packed catalytic tubular reactors, summarized in Table#30-2, is based on these
results.  Under nonisothermal conditions, both external resistances are significant near the
reactor inlet, and they decrease in magnitude as one approaches the reactor outlet.
External transport resistances vanish completely at steady state when there is no chemical
reaction.  This claim is supported by analyzing all of the coupled nonlinear algebraic
equations in step#2 of the overall strategy.  In other words, CA,BulkGas = CA,Surface and TBulkGas =
TSurface when kn,Surface = 0.  Pellet size, internal pore structure, reactor diameter, and volumetric
flowrate represent important design parameters that influence the relative magnitude of
external transport resistances, and they should have significant effects on the temperature
and molar density profiles illustrated in Figure#30-4 and Figure#30-5.

Page#857 Problem 30-7(i):
Include the necessary corrections from part (h) in the expression for the
dimensionless bulk molar density of reactant A;

€ 

ΨA,bulk z( ) =
CA,bulk z( )
CA,inlet

= exp −8φ ΛA
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z

deffective
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and verify that the universal correlation for duct reactors with rectangular
cross-section, given by equations (23-80) and (23-81), is reasonable for “tube-
wall” catalytic channels with circular cross-section.  The dimensionless axial
coordinate ξ is given by equation (23-49), the mass transfer Peclet number is
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defined in equation (23-50), and the Damköhler number is given by equation
(23-18) when the equivalent diameter of circular channels is 2R.

Answer:
Let’s focus on the argument of the exponential function in the problem statement for part
(h) and use the expression for external mass transfer resistance parameter φ from part (b)
of this same problem.  Then, rewrite the (1) mass transfer coefficient in terms of the
Sherwood number, and (2) the heterogeneous first-order kinetic rate constant (i.e., reaction
velocity constant) via the Damköhler number.  One obtains the following result;
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Steps 13 and 17 of Problem 23-7 provide an expression for the local Sherwood number near
the tube inlet via mass transfer boundary layer analysis.  The local Sherwood number is also
known as the Nusselt number for mass transfer, and ShLocal, which varies inversely with the
dimensionless mass transfer boundary layer thickness δMTBLT (i.e., see Step 17 of Problem 23-
7), decreases in the flow direction because δMTBLT(ξ) scales as the cube root of dimensionless
axial position ξ  measured from the inlet.  Notice that there is a factor of 2 difference
between the definition of ξ in equation (23-49) and the dimensionless axial coordinate ζ
that appears in the dimensionless boundary layer thickness in Steps 12 & 13 of Problem 23-
7 on page#651-652.  In other words, ξ = ζ/2.  Hence;
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where Γ(2/3) is the gamma function evaluated at argument 2/3, and the previous reactor
correlations for Sh(ξ) and ΨA,bulk(ξ) are valid for small ξ near the tube inlet.

Page#857 Problem 30-7(j):
Modify this analysis of heterogeneous catalysis in ideal plug-flow tubular
reactors with expensive metal catalyst coated on the inner wall (i.e., r=RPFR) of
the flow channel and significant mass transfer resistance for zeroth-order
kinetics.  Consider the realistic situation where the catalytic surface is reactant-
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starved in the diffusion-limited regime at large values of the Damköhler number
relative to the mass transfer Peclet number or, analogously, small chemical
reaction time constants relative to the time constant for convective mass
transfer (i.e., residence time τCMT).  Formulate a reactor design strategy to
calculate the realistically useful upper limit for τCMT and the corresponding final
conversion of reactants to products that should be expected.

Answer:
Begin with the quasi-macroscopic plug flow mass balance in ideal tubular reactors with
uniform activity at the catalytic surface, as described by the answer to part (a) of this
problem on page#854.  Upon modifying the reaction rate term in the mass balance to
account for heterogeneous zeroth-order kinetics, one obtains;

€ 

πRPFR
2 vz Avg

dCA,bulk

dz
= −2πRPFRk0,surface

where k0,surface is the heterogeneous zeroth-order kinetic rate constant with dimensions of
moles per area per time.  Even though zeroth-order heterogeneous rate laws do not depend
on reactant molar densities in the vicinity of the catalytic surface, it is extremely important
to relate surface and bulk molar densities of each species in the reactive mixture for the
following reason.  Zeroth-order rate laws are mathematically simple, but they do not provide
accurate descriptions of realistic situations when the catalytic surface is reactant-starved
because the reaction rate proceeds at a non-zero temperature-dependent “constant” that
must be turned-off when reactants are totally depleted.  This problem is not encountered
when rate laws depend on reactant molar densities, because reaction rates vanish when
reactants are not present.  Accurate reactor design models that simulate zeroth-order
kinetics at the catalytic surface must monitor surface molar densities of the reactants and
manually turn-off  the rate of conversion of reactants to products when reactants are totally
depleted.  This is accomplished by (i) analytically solving the plug-flow mass balance for bulk
molar density as a function of axial position z within the tube, (ii) relating bulk and surface
molar densities via the balance between diffusion and reaction at the catalytic surface, (iii)
identifying the critical axial coordinate zcritical where surface molar densities of reactants
vanish, and (iv) designing the reactor such that its length LPFR is less than zcritical because
reactants cannot be converted to products beyond zcritical if the surface is void of reactants.
If mass transfer resistance is significant, then the catalytic surface could be completely
reactant-starved while the bulk fluid phase contains residual reactants that cannot be
converted to products as a consequence of rate-limiting radial diffusion relative to the rate
of chemical reaction.  Hence, one should not expect to achieve 100% conversion for
irreversible heterogeneous reactions in exceedingly long tubes because no reaction occurs
beyond zcritical.  Analytical solution of the plug-flow mass balance for CA,bulk is obtained rather
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quickly, because the profile is described by a linear decrease from CA,inlet at z=0 to CA,bulk(z) at
axial position z downstream from the inlet;

€ 

CA,bulk z( ) =CA,inlet −
2k0,surface
RPFR vz Avg

z

The next step in the reactor design strategy requires the establishment of a steady state
balance between the rate of radial diffusion of reactant A toward the catalytic surface,
expressed via Fick’s first law of diffusion using mass-transfer-coefficient formalism, and the
rate of consumption of reactants via heterogeneous reaction on the surface, where each
rate process has dimensions of moles per area per time.  This balance at the reaction site
provides a relation between surface and bulk molar densities of reactant A;
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One identifies the critical axial coordinate zcritical where reactant molar densities vanish by
substituting the linear molar density profile for CA,bulk(z) into the previous equation and
requiring that CA,surface ⇒  0.  The important reactor design criterion for zeroth-order
heterogeneous catalysis on the inner wall of empty tubes is formulated as follows when the
Damköhler number is greater than the mass transfer Peclet number;
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There are three important mass transfer rate processes that must be considered for
accurate design of heterogeneous catalytic reactors with expensive metal catalyst coated
on the inner walls of the flow channels.  The characteristic time constants for these rate
processes are (i) τCMT for convective mass transfer in the primary flow direction, (ii) λChemRx

for nth-order irreversible chemical reaction at the catalytic surface, and (iii) ΘRadialDiffusion for
radial diffusion of reactants from the bulk fluid to the wall at r=RPFR.  The previous criterion
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identifies an upper limit on reactor length LPFR, or residence time τCMT, to avoid the
embarrassing situation where the catalytic surface is completely void of reactants.  In terms
of mass transfer time constants;
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τCMT ≤ λChemRx −ΘRadialDiffusion

τCMT =
LPFR
vz Avg
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RPFR
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Prediction of the upper limit for reactant conversion, when LPFR = zcritical and ≤ is replaced by
an equal sign for τCMT (= λChemRx – ΘRadialDiffusion), is obtained by (i) evaluating the bulk molar
density of reactant A at z = zcritical = LPFR;
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CA,bulk z = zcritical = LPFR( ) ≥CA,inlet −
2k0,surface
RPFR vz Avg

LPFR

and (ii) defining reactant conversion χA with respect to CA,inlet using bulk molar density, not
surface molar density, even though heterogeneous reaction rates require nonzero species
molar densities in the vicinity of the catalytic surface.  Hence, the upper limit for the final
conversion of reactant A is predicted to be;
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which approaches 100% for irreversible chemical reactions when the time constant for radial
diffusion is much shorter than the time constant for chemical reaction.  Under these
conditions with negligible mass transfer resistance (i.e., ΘRadialDiffusion << λChemRx), the catalytic
surface will not be reactant-starved until the residence time τCMT approaches the time
constant for chemical reaction and 100% conversion of reactants to products is achieved.
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Page#857 Problem 30-7(k):
Calculate a numerical value for the conversion of reactant A in the exit stream of a 4-cm
inner diameter (i.e., RPFR = 2 cm) isothermal PFR at 300C with one zeroth-order
irreversible surface-catalyzed chemical reaction on the inner wall at r=RPFR, where the
heterogeneous temperature-dependent rate law is; RSurface = k0,surface, with dimensions of moles
per catalytic surface area per time.  The time constant for zeroth-order irreversible chemical
reaction λ is 2 minutes and the average residence time for convective mass transfer is 1.5
minutes.  There is significant mass transfer resistance between the bulk fluid phase and the
catalytic surface, characterized by the following mass transfer coefficient for reactant A;
kA,MTC = 1 cm/minute.

Answer:
Begin by calculating the time constant for radial diffusion of reactant A toward the catalytic
surface at r=RPFR.  Hence, ΘRadialDiffusion = 1 minute, and the useful upper limit for τCMT is 1
minute (i.e., τCMT ≤ λChemRx –  ΘRadialDiffusion), which implies that the catalytic surface becomes
reactant-starved 67% of the reactor length from the inlet [i.e., zcritical/LPFR = 0.67, because
λChemRx – ΘRadialDiffusion = 1 minute and τCMT = 1.5 minutes].  Now, calculate reactant conversion
χA via the useful upper limit for τCMT, not the actual residence time (i.e., 1.5 minutes),
because no chemical reaction occurs in the latter third of the tube where reactant molar
densities have vanished in the vicinity of the catalytic surface and radial diffusion toward the
heterogeneous reaction site is not fast enough to replenish the surface with reactants.
Hence, 50% conversion is achieved in the presence of significant mass transfer resistance,
when residual reactants exist in the bulk fluid phase but the catalytic surface is reactant-
starved.  One predicts 75% conversion if bulk and surface molar densities are
indistinguishable, such that chemical reaction occurs when reactants are present in the bulk
fluid and it is possible to achieve 100% conversion if τCMT is the same as λChemRx (i.e.,
ΘRadialDiffusion ⇒ 0).

Page#857 Problem 30-7(m):
Sketch the conversion of reactant A vs. residence time τ from τ=0 to τ=1.5 minutes at two
different temperatures, 300C (λ = 2 minutes) and 500C (λ = 1.5 minutes).  Obviously, the
time constant for chemical reaction decreases at higher temperature because the reaction
rate increases, but the mass transfer coefficient that characterizes diffusion of reactant A
toward the catalytic surface is essentially temperature-independent at 1 cm/minute.  Be
quantitative on both axes.

Answer:
Use the same logic that was discussed in the answer to the previous part of this problem to
identify the useful upper limit of τCMT and the maximum conversion of reactants to products
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that occurs when the catalytic surface becomes reactant-starved.  Faster rates of chemical
reaction at higher temperature will produce more severe diffusion-controlled conditions
because reactants cannot reach the catalytically active sites on the tube wall at a rate that
is fast enough in comparison with the rate at which they are consumed.  Typically, more
conversion is achieved at higher temperatures when the apparent activation energy is
positive in multiple-reaction sequences with rate-limiting steps.  However, faster kinetics at
higher temperatures create reactant-starved conditions closer to the tube inlet, and a larger
fraction of the catalytic reactor is not useful to convert reactants to products when the rate
law is described by zeroth-order kinetics.  Since the time constant for radial diffusion toward
the catalytic surface is not a strong function of temperature for liquids, the useful upper
limit of τCMT is reduced from 60 seconds at 300C to 30 seconds at 500C.  The corresponding
final conversion of reactant A decreases from 50% at 300C to 33% at 500C.  This is a
consequence of mathematically simple, but conceptually difficult, zeroth-order rate laws
that convert reactants to products faster at higher temperature when the surface is not
reactant-starved.  In this particular example, the slope of χA vs. τCMT is steeper at 500C
relative to 300C, but the latter two-thirds of the reactor cannot convert reactants to
products at 500C compared to the latter one-third of the reactor being extremely inefficient
at 300C.  This analysis suggests that the two curves (actually linear relations) for χA vs. τCMT

intersect when τCMT ≈ 40 seconds.  The reactor operating at 500C already achieved 33%
conversion at τCMT = 30 seconds and the catalytic surface has been reactant-starved for the
last 10 seconds.  The reactor operating at 300C continues to convert reactants to products
at a slower rate for an additional 20 seconds (i.e., beyond τCMT = 40 seconds) because
surface molar densities of reactants have not vanished at the point of intersection.

Page#857 Third line of Problem 30-8; reactor without external mass transfer resistance
(i.e., α = 0)

A few more problems on the last few pages of Chapter#30;  Problem 30-12

Zeroth-Order Chemical Kinetics in Packed Catalytic Tubular
Reactors; With and Without Interpellet Axial Dispersion

Consider the differential design equation for packed catalytic tubular reactors with
zeroth-order chemical kinetics.  When interpellet axial dispersion is negligible at large mass
transfer Peclet numbers, one must solve the following 1st-order dimensionless ODE;
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PeMT
dΨA,ideal

dζ
= −E(ΛA,int ra ) 1−ε p,int er{ }ΛA,inter

2
(1)
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subject to the boundary condition that the dimensionless molar density ΨA,ideal of reactant A
under ideal conditions is, by definition, unity at the reactor inlet where ζ=0.  Since the
reaction rate is independent of molar density for zeroth-order chemical kinetics, equation
(1) is valid for ideal tubular reactors in which external mass transfer resistance is included or
neglected, provided that the catalytic surface is not starved of reactants.  If the product of
the effectiveness factor, the catalyst filling factor, and the interpellet Damköhler number on
the right side of equation (1) is denoted by Ω;
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Ω = E(ΛA,int ra ) 1−ε p,int er{ }ΛA,int er
2

(2)

then the solution to equation (1) is;
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When interpellet axial dispersion is important at low mass transfer Peclet numbers, the
differential design equation for nonideal reactors corresponds to a 2nd-order ODE;
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= PeMTZ +E(ΛA,int ra ) 1−ε p,inter{ }ΛA,int er
2 (4)

The homogeneous analytical solution for the dimensionless axial reactant concentration
gradient in nonideal reactors is;

€ 

Zhomogeneous =
dΨA,nonideal

dζ
 
 
 

 
 
 homogeneous

=C1 exp PeMTζ( ) (5)

The particular solution, which is the same as the complete axial concentration gradient in
ideal packed catalytic tubular reactors with zeroth-order kinetics, is;

€ 

Zparticular =
dΨA,nonideal

dζ
 
 
 

 
 
 particular

= −
Ω
PeMT

(6)
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The Danckwerts boundary condition in the exit stream (i.e., Z=0 when ζ=1) is satisfied
when;

€ 

C1 =
Ω
PeMT

exp −PeMT( ) (7)

The final expression for the dimensionless axial reactant concentration gradient in nonideal
reactors is obtained by adding the homogeneous and particular solutions for Z;

€ 

Z =
dΨA,nonideal

dζ
 
 
 

 
 
 

= −
Ω
PeMT

1− exp −PeMT (1−ζ )[ ]{ } (8)

Equation (8) is integrated analytically to obtain the molar density profile of reactant A for
zeroth-order chemical kinetics in nonideal packed catalytic tubular reactors in which
interpellet axial dispersion is important.  If the catalytic surface is not starved of reactants,
then the following expression is valid when external mass transfer resistance is either
included or neglected, because reactant molar density does not appear in the rate law for
zeroth-order kinetics;

€ 

ΨA,nonideal (ζ ) =C2 −
Ω
PeMT

ζ −
1

PeMT
exp PeMTζ( )−1{ }exp −PeMT( )[ ]

 
 
 

 
 
 

(9)

The boundary condition at the reactor inlet governs the value of integration constant C2 in
equation (9).  For example, if one employs the definition of dimensionless reactant molar
density, which requires that ΨA,nonideal = 1 at ζ = 0, then C2 = 1.  However, the Danckwerts
boundary condition at the reactor inlet (i.e., interpellet axial dispersion is important for ζ >
0, but it is nonexistent prior to the inlet plane) suggests that;

€ 

ΨA,nonideal (ζ = 0)− 1
PeMT

dΨA,nonideal

dζ
 
 
 

 
 
 ζ=0

=1 (10)

Now;

€ 

C2 =1− Ω
PeMT

2 1− exp −PeMT( ){ } (11)
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The final expression for the reactant molar density profile, that satisfies Danckwerts
boundary conditions at the inlet and outlet, is;

€ 

ΨA,nonideal (ζ ) = ΨA,ideal (ζ )−
Ω
PeMT

2 1− exp −PeMT (1−ζ )[ ]{ } (12)

If one evaluates equations (3), (9), and (12) in the exit stream (i.e., ζ=1) and compares the
final conversion of reactant A {i.e., 1 – ΨA(ζ=1)} for real and ideal packed catalytic tubular
reactors with zeroth-order chemical kinetics, then the following results are obtained;

(1) If Ω ≤ PeMT, then Ω/PeMT represents the final conversion that one should achieve under
ideal conditions via equation (3) when the mass transfer Peclet number is larger than
its critical value, such that interpellet axial dispersion is negligible.  Reactants have not
been consumed completely and mass transfer resistance between the bulk fluid phase
and the external surface of the catalyst is not an important factor for reactor design.

(2) Equation (12) indicates that nonideal reactors which satisfy both Danckwerts
boundary conditions achieve the same final conversion (i.e., at ζ=1) that is predicted
by the ideal design equation.

(3) Equation (9) suggests that nonideal reactors which satisfy the Danckwerts boundary
condition in the exit stream and the ideal reactor boundary condition at the inlet,
based on the definition of dimensionless reactant molar density, achieve less
conversion than ideal reactors, because ΨA,nonideal(ζ=1) is larger than ΨA,ideal(ζ=1);

€ 

ΨA,nonideal (ζ =1) = ΨA,ideal (ζ =1)+ Ω
PeMT

2 1− exp −PeMT( ){ } (13)

When the mass transfer Peclet number is large enough (i.e., larger than its critical
value that increases at higher interpellet Damköhler numbers), the second term on the
right side of Equation (13) is negligible and the PFR behaves ideally.

Addendum: Zeroth-order kinetics in non-ideal heterogeneous
catalytic tubular reactors with mass transfer resistance

Modify the previous analysis of heterogeneous catalysis in nonideal plug-flow tubular
reactors with expensive metal catalyst coated on the inner wall (i.e., r=RPFR) of the flow
channel and significant mass transfer resistance for zeroth-order kinetics.  There are no
porous pellets packed in this “tube-wall” reactor.  Consider the realistic situation where the
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catalytic surface is reactant-starved in the diffusion-limited regime at large values of the
Damköhler number relative to the mass transfer Peclet number or, analogously, small
chemical reaction time constants relative to the time constant for convective mass transfer
(i.e., residence time τCMT).  Formulate a reactor design strategy to calculate the realistically
useful upper limit for τCMT and the corresponding final conversion of reactants to products
that should be expected for non-ideal PFRs that obey (i) Danckwerts boundary conditions at
the inlet and outlet, vs. (ii) the ideal boundary condition at the inlet and the Danckwerts
boundary condition in the exit stream.

Answer:
For specific numerical values of the mass transfer Peclet number and all three important
mass transfer time constants discussed in Problem 30-7(j), numerical techniques are
required to calculate the critical value of the dimensionless axial coordinate ζcritical at which
the molar density of reactants vanishes on the catalytic surface.  When non-ideal PFRs obey
Danckwerts boundary conditions at the inlet and outlet, the bulk molar density profile for
reactant A is given by Equation (12) in Problem 30-12 when the effectiveness factor is
unity and the catalyst filling factor is not an issue;

€ 

ΨA,bulk (ζ) =1− ΛA
2 ζ

PeMT
−
ΛA
2

PeMT
2 1− exp −PeMT (1−ζ )[ ]{ }

In terms of the ideal PFR boundary condition at the inlet and the Danckwerts boundary
condition in the exit stream, the non-ideal bulk molar density profile for reactant A is given
by Equation (9) with C2=1 in Problem 30-12 when the effectiveness factor is unity and the
catalyst filling factor is not an issue;

€ 

ΨA,bulk (ζ) =1− ΛA
2 ζ

PeMT
+
ΛA
2

PeMT
2 exp PeMTζ( )−1{ }exp −PeMT( )[ ]

The steady state balance between the rate of radial diffusion of reactant A toward the
catalytic surface, expressed via Fick’s first law of diffusion using mass-transfer-coefficient
formalism, and the rate of consumption of reactants via heterogeneous catalysis, where
each rate process has dimensions of moles per area per time was considered in Problem 30-
7(j).  Hence, the relations between surface and bulk molar densities for reactant A are given
below in dimensional and dimensionless form;
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€ 

CA,surface z( ) =CA,bulk z( )−
k0,surface
kA,MTC

ΨA,surface ζ( ) = ΨA,bulk ζ( )−
ΘRadialDiffusion

λChemRx

The critical dimensionless axial coordinate in the flow direction ζcritical (= zcritical/LPFR) is
calculated from the previous dimensionless equation for surface molar density, such that
ΨA,surface(ζcritical)=0.  The appropriate nonlinear equations, whose positive roots are desired,
can be expressed as;

€ 

(i);1− ΛA
2 ζcritical
PeMT

−
ΛA
2

PeMT
2 1− exp −PeMT (1−ζcritical )[ ]{ }−

ΘRadialDiffusion

λChemRx
= 0

(ii);1− ΛA
2 ζcritical
PeMT

+
ΛA
2

PeMT
2 exp PeMTζcritical( )−1{ }exp −PeMT( )[ ]− ΘRadialDiffusion

λChemRx
= 0

where the ratio of the Damköhler number to the mass transfer Peclet number (i.e., Λ2
A/PeMT)

is equivalent to the ratio of the residence time τCMT to the time constant for zeroth-order
chemical reaction λChemRx.  The following trends are appropriate for zeroth-order kinetics in
non-ideal PFRs with significant mass transfer resistance.  The catalytic surface is reactant-
starved when 0≤ζcritical≤1, which implies that the latter section of the reactor cannot convert
reactants to products even though reactants are present in the bulk fluid phase.  An
efficient reactor design strategy corresponds to LPFR ≤ zcritical, or ζcritical ≥ 1, because reactants
are never totally depleted on the catalytic surface within the reactor.  Hence, an important
design criterion identifies physically realistic ranges for the dimensionless numbers (i.e., Λ2

A

and PeMT) and mass transfer time constants where ζcritical ≥ 1 in the previous two equations
that characterize the surface molar density of reactants in non-ideal PFRs, subject to two
different sets of split boundary conditions.  ζcritical decreases and approaches zero, which is
extremely undesirable, when (i) the Damköhler number increases, (ii) the mass transfer
Peclet number decreases, (iii) the residence time τCMT increases, (iv) the chemical reaction
time constant λChemRx decreases, and (v) the time constant for radial diffusion ΘRadialDiffusion

increases.  When ΘRadialDiffusion is comparable to, or greater than, λChemRx, the previous two
equations reveal that non-ideal heterogeneous catalytic tubular reactors with zeroth-order
kinetics cannot convert reactants to products.  For example, when ΘRadialDiffusion = λ ChemRx,
equation (ii) predicts ζcritical=0 and equation (i) predicts ζcritical<0.  This situation must be
avoided.
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Problem 30-13
A packed catalytic tubular reactor (radius RPFR and length LPFR) contains porous spherical
catalysts (radius Rsphere) and operates at the following values of the important dimensionless
numbers that govern reactor performance.  The reaction kinetics are second-order
irreversible (i.e., n = 2) and the rate law depends only on the molar density of reactant A on
the external surface of the catalyst [i.e., k2(CA,surface)2].

Intrapellet Damkohler number (characteristic length is Rsphere), Λ2
A,intrapellet = 4

Interpellet Damkohler number, Λ2
A,interpellet = 14

Mass transfer Peclet number, PeMT = 3
Simple particle-based Peclet number, Pesimple = 50
Interpellet porosity, εp,interpellet = 0.5

(a) Predict reactant conversion in the PFR exit stream.
Answer:
Calculate the chemical reaction coefficient = (1-εp,interpellet)Λ2

A,interpelletE ≈ 5 (actually 4.97).
Then, use Table 30-1 on page#841 for a non-ideal reactor [i.e., PeMT is 10-fold smaller than
(ReSc)critical ≈ 30] with significant external mass transfer resistance because α ≈ 2.5.  Based
on the definition of dimensionless reactant molar density, final conversion is given by χfinal =
1 – ΨA,BulkGas,real(ζ=1) = 20% (i.e., 0.20).

(b) Explain why it is or is not possible to obtain an analytical solution to the ideal reactor
problem with second-order irreversible chemical reaction [i.e., k2(CA,surface)2] and
significant external mass transfer resistance.

Answer:
With assistance from the appropriate variable transformations and integration tables, it
might be possible to integrate the ideal mass transfer equation analytically.  However,
numerical methods are the “technique of choice” because one must relate CA,Surface and
CA,BulkGas via a quadratic equation when the external resistance to mass transfer is significant.
Then one requires C2

A,Surface to account for the rate of disappearance of reactant A via
second-order chemical kinetics in the mass balance.

(c) The reactor length is tripled (i.e., three-fold increase in LPFR) while maintaining the
same pellet packing density.  How do the five dimensionless numbers listed in the
problem statement above change?

Answer:
The particle-based dimensionless numbers are not affected by an increase in the length of
the reactor.  Hence, the intrapellet Damkohler number, the effectiveness factor, and the
particle-based mass transfer Peclet number do not change.  The interpellet porosity of the
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packed bed remains constant according to the problem statement.  The mass transfer
Peclet number scales as LPFR and the interpellet Damkohler number scales as the square of
LPFR.  If reactor length increases by a factor of 3, then PeMT = 9 (i.e., increases by a factor of
3) and Λ2

interpellet = 126 (i.e., increases by a factor of 9).

(d) Does α, the dimensionless number that governs the importance of external mass
transfer resistance, increase, decrease, remain unchanged, or is it too difficult to
determine how α changes for second-order irreversible kinetics when the reactor
length increases by a factor of three?

Answer:
There is no change in α, which remains constant at a numerical value of 2.5 as the reactor
length increases by a factor of 3.  In general, α is independent of reactor length.  Equation
(30-76) on page#841 reveals that α scales as the ratio of the chemical reaction coefficient
to the square of the mass transfer Peclet number.  The chemical reaction coefficient is
directly proportional to the interpellet Damkohler number.  Hence, both the chemical
reaction coefficient and the square of the mass transfer Peclet number scale as L2

PFR,
yielding no dependence of α on LPFR.  There are no other dimensionless numbers in the
definition of α in equation (30-76) that depend on LPFR.

(e) Predict conversion in the exit stream of an ideal PFR after the three-fold increase in
reactor length if the kinetics are 1st-order irreversible [i.e., k1CA,surface], not 2nd-order.
Do not neglect external mass transfer resistance.

Answer:
According to equation (30-61) on page#837, one predicts 77% final conversion for first-
order irreversible chemical kinetics in ideal packed catalytic tubular reactors when external
mass transfer resistance cannot be neglected.  Alpha remains constant at 2.8 for first-order
kinetics as LPFR increases by a factor of 3.  The only difference between α = 2.5 for second-
order kinetics and α = 2.8 for first-order kinetics is due to the effectiveness factor in
spherical catalytic pellets (E = 0.71 for n=2 vs. E = 0.81 for n=1 when Λ2

A,intrapellet = 4).

(f) The volumetric flowrate is tripled (i.e., three-fold increase in q) while maintaining the
same pellet packing density.  How do the five dimensionless numbers listed in the
problem statement above change?

Answer:
The intrapellet Damkohler number and the effectiveness factor are not affected by a change
in volumetric flowrate.  According to the problem statement, the interpellet porosity of the
packed bed remains constant.  The other three dimensionless numbers change.  The
particle-based mass transfer Peclet number increases by a factor of 3 because it is defined
in terms of the average interstitial fluid velocity between the catalytic pellets.  As Pesimple

increases from 50 to 150, the correlation coefficient that relates interpellet axial dispersion
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to Pesimple increases from 1 to 2.  Hence, the mass transfer Peclet number decreases by a
factor of 2, from 3 to 1.5, because the interpellet axial dispersion coefficient appears in the
denominator of PeMT.  There is no other effect of flowrate on PeMT because the interstitial
fluid velocity in the dimensional scaling factor for convective mass transfer (i.e., in the
numerator of PeMT) cancels the effect of an increase in flowrate on the interpellet axial
dispersion coefficient.  Since interpellet axial dispersion coefficients increase by a factor of 6
(i.e., 3-fold increase in the interstitial fluid velocity and a 2-fold increase in the correlation
coefficient from the dimensional analysis of flow through porous media), the interpellet
Damkohler number decreases from 14 to 2.33 when the volumetric flowrate triples.

(g) Does α, the dimensionless number that governs the importance of external mass
transfer resistance, increase, decrease, remain unchanged, or is it too difficult to
determine how α changes for second-order irreversible kinetics when the volumetric
flowrate increases by a factor of three?

Answer:
Since α is proportional to β, equations (30-57), (30-62) and (30-63) reveal that an increase
in volumetric flowrate causes the mass transfer coefficient to increase as the gas-phase
resistance decreases in the boundary layer external to the catalytic pellets.  Both α and β
decrease as the external mass transfer resistance decreases at higher gas-phase volumetric
flowrate.  Interpellet axial dispersion coefficients scale linearly with q via their dependence
on the interstitial fluid velocity between the catalytic pellets, and interpellet Damkohler
numbers scale inversely with q.  In the creeping flow regime, mass transfer coefficients in
the gas-phase boundary layer scale as the one-third power of the particle-based Reynolds
number, which includes the interstitial fluid velocity.  Equation (30-76) on page#841 reveals
that α scales as q-1/3 for creeping flow.  Hence, if q increases 3-fold, then α decreases by
31/3, or 1.4, which agrees with the actual decrease in α from part (h), even though the
correlation coefficient for interpellet axial dispersion from flow in porous media increases
from 1 to 2 when the volumetric flowrate triples and the particle-based mass transfer Peclet
number increases from 50 to 150.

(h) Predict conversion in the exit stream of an ideal PFR after the three-fold increase in
volumetric flowrate if the kinetics are 1st-order irreversible [i.e., k1CA,surface], not 2nd-
order.  Do not neglect external mass transfer resistance.

Answer:
According to equation (30-61) on page#837, one predicts 19% final conversion for first-
order irreversible chemical kinetics in ideal packed catalytic tubular reactors when external
mass transfer resistance cannot be neglected.  Reactant conversion is governed primarily by
a 3-fold decrease in residence time.  Alpha actually decreases from 2.8 to 2.0 when the
kinetics are first-order irreversible and the volumetric flowrate triples.  This agrees with α ≈
q-1/3.
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(i) The spherical pellet diameter is reduced by a factor of two (i.e., two-fold decrease in
Rsphere) while maintaining the same pellet packing density.  How do the five
dimensionless numbers listed in the problem statement above change?

Answer:
Both the particle-based and vessel-based dimensionless numbers are affected when the size
of the pellets changes.  The interpellet porosity remains unchanged, according to the
problem statement.  Since the intrapellet Damkohler number scales as the square of the
pellet radius, a 2-fold decrease in Rpellet produces a 4-fold decrease in Λ2

intrapellet from 4 to 1,
and a corresponding increase in the effectiveness factor from 0.71 to 0.89 as summarized
in Table 18-1 on page#488 for second-order irreversible chemical kinetics.  Since particle
diameter for spherical catalysts represents the characteristic length in Pesimple, the particle-
based mass transfer Peclet number decreases 2-fold from 50 to 25, and the correlation
coefficient for interpellet axial dispersion remains constant at ϕcorrelation = 1.  The mass
transfer Peclet number scales inversely with particle size, so PeMT increases 2-fold from 3 to
6.  Interpellet axial dispersion coefficients scale linearly with particle size, so a 2-fold
decrease in pellet diameter produces a 2-fold decrease in interpellet axial dispersion
coefficients and a corresponding 2-fold increase in the interpellet Damkohler number from
14 to 28.

(j) Does α, the dimensionless number that governs the importance of external mass
transfer resistance, increase, decrease, remain unchanged, or is it too difficult to
determine how α changes for second-order irreversible kinetics when the spherical
catalytic pellet size is reduced by a factor of two?

Answer:
Equation (30-76) on page#841 reveals an approximate dependence of α on particle size.
This is only an estimate of how α depends on dequivalent because the effectiveness factor
scales inversely with dequivalent only in the diffusion-limited regime (i.e., E ≈ 1/Λintrapellet) at large
values of the intrapellet Damkohler number.  In general, interpellet axial dispersion
coefficients scale linearly with dequivalent and the mass transfer Peclet number scales inversely
with dequivalent.  Hence, in the diffusion-limited regime, the chemical reaction coefficient scales
inversely with d2

equivalent via the effectiveness factor and the interpellet Damkohler number.
Now, the effects of dequivalent on α via the chemical reaction coefficient and the mass transfer
Peclet number cancel [see equation (30-76)] and the only remaining dependence of α on
dequivalent is due to the particle-based mass transfer Peclet number, so α ≈ (dequivalent)2/3

because Pesimple scales linearly with dequivalent.  When particle size decreases by a factor of 2,
the previous scaling law in the diffusion-limited regime suggests that α decreases by 22/3, or
1.6.  If one neglects the effect of particle size on the effectiveness factor in the extreme
reaction-rate-controlled regime at very small values of the intrapellet Damkohler number
(i.e., E ≈ 1, isothermally), then the chemical reaction coefficient scales inversely with dequivalent
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via the interpellet Damkohler number, the ratio of the chemical reaction coefficient to Pe2
MT

scales linearly with dequivalent, and α ≈ (dequivalent)5/3.  When particle size decreases 2-fold, this
scaling law suggests that α decreases by 25/3, or 3.2.  Actual calculations for first-order
irreversible kinetics in part (k) indicate that α decreases by a factor of 2.8, from 2.8 to 1.0,
when dequivalent decreases 2-fold, the intrapellet Damkohler number Λ2

intrapellet decreases 4-fold,
and the effectiveness factor increases from E = 0.81 when Λ2

A,intrapellet = 4 to E = 0.94 when
Λ2

A,intrapellet = 1.

(k) Predict conversion in the exit stream of an ideal PFR after the two-fold decrease in
size of the spherical catalytic pellets if the kinetics are 1st-order irreversible [i.e.,
k1CA,surface], not 2nd-order.  Do not neglect external mass transfer resistance.

Answer:
According to equation (30-61) on page#837, one predicts 66% final conversion for first-
order irreversible chemical kinetics in ideal packed catalytic tubular reactors when external
mass transfer resistance cannot be neglected.  Alpha decreases from 2.8 to 1.0 when the
kinetics are first-order irreversible and the diameter of the catalytic pellets decreases by a
factor of two.  The actual scaling law is somewhere between α ≈ (dequivalent)5/3 at small
intrapellet Damkohler numbers, and α ≈ (dequivalent)2/3 at large intrapellet Damkohler numbers,
which is consistent with the fact that Λ2

intrapellet = 1.

(l) The tubular reactor diameter is doubled (i.e., two-fold increase in RPFR) while
maintaining the same pellet packing density.  How do the five dimensionless numbers
listed in the problem statement above change?

Answer:
The intrapellet Damkohler number and the effectiveness factor are not affected by a change
in reactor diameter.  According to the problem statement, the interpellet porosity of the
packed bed remains constant because the pellet packing density does not change.  The
particle-based mass transfer Peclet number decreases 4-fold, from 50 to 12.5, because the
average interstitial fluid velocity is 4-fold smaller if the volumetric flowrate remains constant
and the flow cross-sectional area experiences a 4-fold increase.  In this range of Pesimple, the
correlation coefficient that relates interpellet axial dispersion to Pesimple does not change, and
neither does the mass transfer Peclet number.  Since the average interstitial fluid velocity
experiences a 4-fold decrease, so does the interpellet axial dispersion coefficient, which
causes the interpellet Damkohler number to increase by a factor of four, from 14 to 56,
when the reactor diameter is doubled.

(m) Does α, the dimensionless number that governs the importance of external mass
transfer resistance, increase, decrease, remain unchanged, or is it too difficult to
determine how α changes for second-order irreversible kinetics when the reactor
diameter increases by a factor of two?



TPfCRD; Corrections & New Ideas100

Answer:
The primary reason that α increases is due to the fact that the average interstitial velocity
decreases when the flow cross-sectional area increases and the volumetric flowrate remains
constant.  A few important dimensionless numbers are affected by <vz>interstitial.  The
interpellet Damkohler number and the chemical reaction coefficient increase by a factor of
four, due to a 4-fold decrease in the interpellet axial dispersion coefficient when <vz>interstitial

decreases by a factor of four.  The particle-based mass transfer Peclet number also
decreases by a factor of four.  The mass transfer resistance increases in the external gas-
phase boundary layer when the interstitial fluid velocity decreases.  In the creeping flow
regime, mass transfer coefficients scale as the one-third power of the particle-based
Reynolds number, which includes the interstitial fluid velocity.  This effect is accounted for
by the dependence of the particle-based Sherwood number on Pesimple for creeping flow
around submerged objects.  Equation (30-76) on page#841 reveals that α scales as (RPFR)2/3

for creeping flow, via consideration of the effect of RPFR on the chemical reaction coefficient,
or the interpellet Damkohler number, and Pesimple.  Hence, if RPFR increases 2-fold, then α
increases by 22/3, or 1.6, which agrees with the actual increase in α from part (n), below.

(n) Predict conversion in the exit stream of an ideal PFR after the two-fold increase in
reactor diameter if the kinetics are 1st-order irreversible [i.e., k1CA,surface], not 2nd-order.
Do not neglect external mass transfer resistance.

Answer:
According to equation (30-61) on page#837, one predicts 75% final conversion for first-
order irreversible chemical kinetics in ideal packed catalytic tubular reactors, primarily
because residence time increases by a factor of four with significant external mass transfer
resistance.  Part (e) above reveals that ideal packed catalytic tubular reactors achieve 77%
conversion when LPFR triples, which corresponds to a 3-fold increase in residence time with α
= 2.8 and first-order irreversible kinetics.  Relative to part (e), this example indicates that
one achieves slightly less conversion (i.e., 75%) when residence time increases 4-fold
because alpha increases from 2.8 to 4.5 when RPFR is doubled.  This agrees with α ≈ (RPFR)2/3.
Equation (30-76) on page#841 describes how α depends on some important dimensionless
parameters that govern the performance of packed catalytic tubular reactors.  The
correlation is exact in the creeping flow regime.  Several examples in this multi-part problem
reveal an equivalent creeping-flow scaling law for α in terms of some important dimensional
parameters, as discussed above;
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€ 

α ≈
RPFR
2/3 dequivalent

γ

q1/3
≠ f LPFR( )

2
3

< γ <
5
3

where the exponent γ is a decreasing function of the intrapellet Damkohler number.  For
example, γ is slightly less than 5/3 when ΛA,intrapellet approaches zero in the extreme reaction-
rate-controlled regime, and γ = 2/3 at very large values of the intrapellet Damkohler number
in the diffusion-controlled regime where the effectiveness factor scales inversely with
ΛA,intrapellet.
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