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1 Background

Channel model, as introduced in the author's book The Theory of Scintillation
with Applications in Remote Sensing

http://www.wiley.com/WileyCDA/WileyTitle/productCd-047064477X.html,

provides a framework for analyzing the e�ects of propagation disturbances on
communication and remote sensing systems. A channel model imposes a ran-
dom modulation on a signal that would otherwise be detected in a background
of additive white noise. In book Chapter 5 the class of waveforms used for
remote sensing and communication are organized by a hierarchy of time scales
over which signal processing operations are applied. The impact of the random
modulation depends on the frequency, spatial, and temporal coherence of the
disturbance. For most signal processing applications, the temporal coherence
is most important. In e�ect, individual waveforms are undistorted, but their
amplitude and phase varies from waveform to waveform. The models described
in book Chapter 5 provide the analysis tools needed for performance analysis
in disturbed propagation environments. Book Chapter 5 also illustrates some
basic signal processing operations with real data. Channel modeling and data
processing applications are not built around a central utilities like PropCodes
1, 2, 3, and 4. Rather, speci�c applications draw on a collections of utilities.
Waveform simulations are to derive realizations of channel transfer function.
Running the script SetPath4ChannelModel in the subdirectory

� � �nExamples

will place the appropriate folders containing these utilities on the MATLAB
path. The user will be prompted to identify the MATLAB path to the folder
nPropagationCode1, which can be downloaded from

http://www.mathworks.com/matlabcentral/fileexchange/28800-2-d-propagation-simulation.

PropCode1 is used to simulate the e�ects of a channel transfer function realiza-
tion.
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2 Channel Modeling Utilities

The folder
� � � nPdComputation

contains MATLAB scripts for computing probability density functions (PDFs),
cumulative density functions (CDFs), and detection probabilities. The scin-
tillation Pd computations are described in book Sections 5.2.1.1 and 5.2.1.2.
Executing DisplayPd Richards will reproduce Figure 2 below, which is book
Figure 5.1. Similarly, executing PdNakagami and PdLogNormal will reproduce
Figures 2 and 2 below, which are book Figures 5.2 and 5.3. Other utilities
in the PdComputation folder will calculate standard radar Pd fading detec-
tion probabilities. Approximate Pd formulas can be found in Chapter 6.3 of
Fundamentals of Radar Signal Processing, Mark Richards, McGraw-Hill, 2005.
The MATLAB utilities in � � � nPdComputation compute the exact forms as de-
scribed in references to papers by Swerling and Schneidman. These utilities
are applicable to frequency-at fading, which implies that the channel modu-
lation is invariant over the duration of the waveform. The results also depend
on hypothesized fade distributions, which are not accurate under strong scatter
conditions. As discussed in the book, simulations provide the most accurate
performance assessments.

2.1 Frequency Coherence

Non-dispersive (frequency independent) propagation is established by the chan-
nel coherence bandwidth. Electronic components and the ionosphere exhibit
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a measurable frequency dependence that usually can be compensated. How-
ever, scintillation structure can induce a random frequency decorrelation that
distorts transmitted waveforms. A analytic formulas derived in book Chapters
3 and 4 provide estimates of the potential frequency decorrelation. Executing
the MATLAB script FreqCoherence with the default parameters1 will repro-
duce Figure 2.1, which is book Figure 5.4 discussed in book Section 5.3.2. The
ordinate is the fractional frequency at 400 MHz. The abscissa is the corre-
lation between two frequencies with the fractional frequency separation. The
two curves are for weak (red) and strong (blue) scintillation. The assumptions
under which the analytic formula applies are discussed in the book Chapters 3
and 4.

2.2 Temporal Coherence

Temporal coherence refers to the time scale of the random modulation propa-
gation disturbances impart to transmitted waveforms. There is a natural ten-
dency to think in terms of discrete random variables that are independent from
transmission to transmission. This assumption allows analytic computation of
performance bounds, but the modulation itself is continuous. Thus, realiza-
tions of the process applied to the actual data processing operations provide the
most accurate evaluations of performance. For transionospheric propagation,
PropCode3 would provide the highest �delity. However, this �delity comes
with a signi�cant cost in setup and processing time. Thus, most simulations
are performed using two-dimensional simulations as produced by PropCode1.

1Hit enter at any input request to use the default value.
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In the folder
...nExamplesnTemporalCoherence

executing the scripts SetupPropCode1Ex1 followed by PropCode1 and SetupPropCode1Ex2
followed by PropCode1 will generate two sets of output �les for subsequent pro-
cessing. These �les can be processed by executing MakeFigs with appropriate
GUI selection. The summary plots generated from the SetupPropCode1Ex1 in-
puts generates a series of summary plots, which include Figures 2.2 and Figures
2.2 (book Figures 5.5 and 5.6) Executing MakeFig57 will generate Figure 2.2
(book Figure 5.7), which shows the Doppler resolution that can be achieved in
the presence of noise only as a reference. Figures 2.2 and 2.2 (book Figures 5.8
and 5.9) show the progressive e�ects of temporal coherence loss. Note that in
2.2 the Doppler peak is both reduced in amplitude and shifted in frequency.

3 Digital Signal Processing Utilities

Under the best of conditions digital signal processing will be limited by back-
ground noise. In a well designed system the �rst low noise ampli�ed (LNA) sets
the noise level. For example, under the assumption that the signal intensity
is captured without processing loss, the measured signal intensity uctuations
from sample to sample comprise both channel-induced uctuations and noise.
In the folder

...nChannelModeling ExamplesnSignalProcessing

executing the script SIvsSNR will reproduce Figure 3 book Figure 5.10, which
shows the expectation of the measured scintillation index versus the actual scin-
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tillation index. Recall that background noise is Rayleigh distributed with a
unity scintillation index. Thus, as very low SNRs, the measured scintillation
index is close to the noise-dominated value SI = 1. To drive the noise bias
to a negligible value requires and SNR in excess of 20 dB. At moderate SNRs,
corrections can be made if the SNR is known.
The folder

...nDataAnalysis

contains a number of utilities, some of which have already been introduced. For
example, boxcar avg will perform a sliding average over symmetric window of
a speci�ed size. Near the ends of the intervals it uses the available samples.
The script computeSI computes a local SI estimate using boxcar avg. It also
returns the local mean intensity, which can be used for detrending the intensity
I  I= hIiN , where hIiN is the centered boxcar average over N samples, where
N is odd. The script specDen has already been introduced. It computes a
sliding PDF estimate normalized to preserve the variance over the data interval.
It will apply a weighting function, but for parameter estimation in power-law
environments windowing is not appropriate because it distorts the large scale
structure. The script DOPsim has also been introduced.
Signal processing with digital-receiver data requires continuous Doppler es-

timation or frequency tracking. An algorithm based on frequency hypothesis
testing is described in the book. The MATLAB frequency tracking algorithm
signalTracker included in the DataAnalysis folder. Because of receiver spe-
ci�c details that are not relevant to the basic principles, the frequency tracking
algorithm is demonstrated here with synthetic data following the discussion in
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book Section 5.4.3. Executing the script DemoFrequencyTrackingAlgorithm
will generate a synthetic quadratic phase signal embedded in white noise. Once
the synthetic signal is generated it is processed to track the frequency. Figure
3, which is book Figure 5.12, shows the absolute frequency and phase errors.
The frequency errors are uniform, while the phase errors exhibit a low-frequency
meander. As discussed in book Section 5.4.3, this is a direct consequence of
the integral relation between phase and frequency. Integration colors the white
noise, which makes it behave like Brownian motion.
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