Errata for Multiple Testing Problems in Pharmaceutical Statistics (Edited by Alex Dmitrienko, Ajit C. Tamhane and Frank Bretz)

1. p. 19, Exercise 1.10: The last line should read "is rejected if there is no more than one misclassification."
2. p. 27, Example 2.2: In the calculation of the CI for $\sigma, 18$ inside the square root sign should be 19. The final CI is [303.89, 583.66].
3. p. $\mathbf{5 6}$, Calculation of $\widehat{\beta}_{12}$: The $+\operatorname{sign}$ between $(50-30)$ and $(35-25)$ should be sign.
4. p. 104, Example 3.19, second last line: $(12.749)^{2}=214.38$ should be $(12.749)^{2}=$ 162.54 .
5. p. 186, line 5: $\sum_{i=1}^{a} e_{i j}$ should be $\sum_{i=1}^{a} n_{i j} e_{i j}$.
6. p. 186, middle of the page: "intrablock estimators" should be "interblock estimators."
7. p. 219, Exercise 5.19: This exercise, as stated, is incorrect since the patient effects are confounded with the sequence effects.
8. p. 244, Bottom: The $\frac{1}{2}$ inside the square-root sign in the calculation of the estimated standard error of $\widehat{\bar{\mu}}_{2}-\widehat{\bar{\mu}}_{1}$. should be omitted and that number should be 0.0766 instead of 0.0541 . In the following calculation of SCI for $\alpha_{2}-\alpha_{1}$ the critical constant 3.532 should be divided by $\sqrt{2}$ and 0.0541 should be changed to 0.0766 . The final answer $[-0.049,0.333]$ is correct.
9. p. 267, line below (7.11): "thata" should be "that a."
10. p. 293, Exercise 7.7: This exercise refers to Exercise 7.4 - not 7.3.
11. p. 310, line 4: "Display 8.16 " should be "Display 8.2."
12. p. 311, Defining relations for $2_{\text {IV }}^{8-4}$ design: $\pm A B C G$ should be added to the equation.
13. p. 374, Equation (9.13): Delete an extra - 1 in the vector A_{2}.
14. p. 421, line 10: Chapter 13 should be Chapter 12.
15. p. 455, calculation of L : The value of $L=0.127$ - not 0.400 .
16. p. 547, Table 11.3: The second-to-last column should be labeled E(MS). The last column should be labeled F.
17. p. 467, Section 11.3.2.1: The rules given for expected mean squares apply to the restricted model - not to the unrestricted model assumed elsewhere in the chapter.
18. p. 468 , last line: The F-statistic should be $F_{A C}=\mathrm{MS}_{A C} / \mathrm{MS}_{A B C}$.
19. p. 483, Exercise 11.10: The data for the exercise is in Table 11.13 - not in Table 11.3 as mentioned in line -3 .
20. p. 483, Exercise 11.11: In the third sentence, delete "and" following "Since shingles are brittle." Add a period at the end of the next sentence.
21. p. 525 , Exercise 12.4 (a): The last sentence should be changed to "Show that there is not a significant difference in types of interventions."
22. p. 528, Table 12.19: The data value for Lot 15, Wafer 2 and Site 5 should be 100.520 instead of 00.520 .
23. p. 582, Example 14.4: In the equation for $\mathrm{SS}_{H_{0}}, \bar{y}_{i}$ should not be bold as it is not a vector.
24. p. 646, Answer to Exercise 3.5 (b): The F-statistic and the p-value should be $F=48.0, p=0.000$.
25. pp. 649-650: The exercises numbered $5.22,5.23,5.24$ should be renumbered 5.21 , 5.22, 5.23.
26. p. 653, Answer to Exercise 8.14: The answer given is computed from untransformed data. The answer computed using the square-root transformed data is as
follows.
The effect estimates are

$$
\begin{gathered}
\widehat{A}=-24.74, \widehat{B}=-25.32, \widehat{C}=-16.32, \widehat{D}=13.17, \widehat{E}=-49.80, \widehat{F}=163.00 \\
\widehat{G}=-81.10, \widehat{H}=24.20, \widehat{J}=-116.12, \widehat{K}=10.78
\end{gathered}
$$

The normal plot of the effects identifies only the main effects F and J as significant at $\alpha=0.05$.
27. p. 659, Answer to Exercise 11.1 (c): $\widehat{\rho}=0.205$ - not 0.295 .
28. p. 660, Answer to Exercise 12.10: This answer is computed with one wrong data value in Table 12.19 (see above). The corrected answer is as follows: The site effect cannot be tested since so no error estimate is available (because $n=1$). The lot and wafer effects are significant ($F=7.526, p=0.000$ and $F=5.147, p=0.000$). Variance component estimates are

$$
\widehat{\sigma}_{\text {Lots }}^{2}=35.624, \widehat{\sigma}_{\text {Wafers }}^{2}=8.796, \widehat{\sigma}_{\text {Sites }}^{2}=19.090
$$

To minimize variability, focus on sites and lots.
29. p. 660, Answer to Exercise 12.13: This answer assumes that Analyst is a fixed factor as in Example 12.3. If Analyst is treated as a random factor then the answer to (a) is only the mouse(medium) effect is significant ($F=17.07, p=0.000$) and the answer to (b) is

$$
\begin{gathered}
\widehat{\sigma}_{\text {Analyst }}^{2}=68.355, \widehat{\sigma}_{\text {Mouse }(\text { Medium })}^{2}=143.717, \widehat{\sigma}_{\text {Analyst } \times \text { Medium }}^{2}=8.708, \\
\widehat{\sigma}_{\text {Analyst*Mouse }(\text { Medium })}^{2}=1.0366, \widehat{\sigma}_{e}^{2}=51.599 .
\end{gathered}
$$

