
Chapter 5
Analysis of Symbolic Trace

J. C. Huang
Department of Computer Science

University of Houston

©J. C. Huang 2009 Software Error Detection - Chapter 5 2

The purpose of doing trace analysis

The significance of a correct test result, however,
can be enhanced by analyzing the execution path to
determine the condition under which it will be
traversed, and the nature of computation to be
performed in the process.

©J. C. Huang 2009 Software Error Detection - Chapter 5 3

Symbolic trace

The symbolic trace of an execution path in a
program is a list of statements and branch predicates
that occur on the path.

For example, consider the C++ program listed
below.

©J. C. Huang 2009 Software Error Detection - Chapter 5 4

Program 5.1:
#include <iostream>
#include <string>
using namespace std
int atoi(string& s)
{

int i, n, sign;
i = 0;
while (isspace(s[i]))

i = i + 1;
if (s[i] == '-')

sign = -1;
else

sign = 1;
if (s[i] == '+' || s[i] == '-')

i = i + 1;
n = 0;
while (isdigit(s[i])) {

n = 10 * n + (s[i] - '0');
i = i + 1;

}
return sign * n;

}

©J. C. Huang 2009 Software Error Detection - Chapter 5 5

Example

Potentially, this program can be executed along the
path described by the following symbolic trace.

©J. C. Huang 2009 Software Error Detection - Chapter 5 6

Trace 5.2:
i = 0;
/\ !(isspace(s[i]));
/\ !(s[i] == '-');
sign = 1;
/\ !(s[i] == '+' || s[i] == '-');
n = 0;
/\ (isdigit(s[i]));
n = 10 * n + (s[i] - '0');
i = i + 1;
/\ !(isdigit(s[i]));
return sign * n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 7

Another example

Consider another symbolic trace listed below that
describes the path that iterates each loop one more
time and redirecting the execution at the first “if”
statement.

©J. C. Huang 2009 Software Error Detection - Chapter 5 8

Trace 5.3:
#include <iostream>
#include <string>
using namespace std
int atoi(string& s)
{
i = 0;
/\ (isspace(s[i]));
i = i + 1;
/\ !(isspace(s[i]));
/\ (s[i] == '-');
sign = -1;
/\ !(s[i] == '+' || s[i] == '-');
n = 0;
/\ (isdigit(s[i]));
n = 10 * n + (s[i] - '0');
i = i + 1;
/\ (isdigit(s[i]));
n = 10 * n + (s[i] - '0');
i = i + 1;
/\ !(isdigit(s[i]));
return sign * n;
}

©J. C. Huang 2009 Software Error Detection - Chapter 5 9

Program graph

To help envisaging the structure of an execution
path, we will use a directed graph to represent the
control-flow structure of a program. Each edge in
the graph is associated with a pair of the form </\C,
S>, where C is the condition that must be true in
order for that edge to be traversed, and S is a
description of the computation to be performed when
that edge is traversed.

©J. C. Huang 2009 Software Error Detection - Chapter 5 10

Program graph (continued)

Program 5.1 can thus be represented by the program
graph shown in Fig. 5.1, and Trace 5.2 can be
represented by the program graph depicted in Fig.
5.2.

©J. C. Huang 2009 Software Error Detection - Chapter 5 11

Figure 5.1 The program graph of Program 5.1.

a

b

c

d e

f g

h

i

b: /\isspace(s[i]); i=i+1;

c: /\!(isspace(s[i]));

d: /\s[i]==' -'; sign= -1;

e: /\!(s[i]==' -'); sign=1;

f: /\s[i]=='+'||s[i]==' -'; i=i+1;

g: /\!(s[i]=='+' || s[i]==' -');

h:
n=0;

i: /\isdigit(s[i]); n=10*n+s[i] -'0'; i=i+1;

j: /\!(isdigit(s[i])); ctoi=sign*n;

j

a: i=0;

©J. C. Huang 2009 Software Error Detection - Chapter 5 12

Figure 5.2 An execution path in Program 5.1.

c

g

h

e

j

i

a

©J. C. Huang 2009 Software Error Detection - Chapter 5 13

The semantics of </\C, S>

It is the basic element of a symbolic trace.

If C is true, </\C, S> and "if C then S" will do
the same.

If C is false, </\C, S> will give no information
whatsoever. The statement “if C then S”,
however, will maintain status quo.

©J. C. Huang 2009 Software Error Detection - Chapter 5 14

The semantics of </\C, S> (continued)

If C is false, the branch associated with </\C, S>
will not be traversed.

If C is false, the meaning of </\C, S> becomes
undefined.

©J. C. Huang 2009 Software Error Detection - Chapter 5 15

State constraint

We shall call /\C a constraint instead of a path or
branch predicate. We shall use it as a shorthand
notation for the restrictive clause:

The program state at this point must satisfy
predicate C, or else the program becomes undefined.

©J. C. Huang 2009 Software Error Detection - Chapter 5 16

State constraint (continued)

By program state here we mean the aggregate of
values assumed by all variables involved. Since this
clause constrains the states assumable by the
program, it is called a state constraint, or a
constraint for short, and is denoted by /\C.

©J. C. Huang 2009 Software Error Detection - Chapter 5 17

State constraint (continued)

State constraints are designed to be inserted into a
program to create another program. For instance,
given a program of the form S1; S2, a new program
can be created by inserting the constraint /\C
between the two statement to form a new
program: S1; /\C; S2.

©J. C. Huang 2009 Software Error Detection - Chapter 5 18

State constraint (continued)

This new program is said to be created from the
original by constraining the program states to C
prior to execution of S2. Intuitively, this new
program is a subprogram of the original because
its definition is that of the original program
restricted to C. Within that restriction this new
program performs the same computation as the
original.

©J. C. Huang 2009 Software Error Detection - Chapter 5 19

State constraint (continued)

A state constraint is a semantic modifier. The
meaning of a program modified by a state
constraint can be formally defined in terms of
Dijkstra's weakest precondition as follows. Let S
be a programming construct and C be a predicate,
then for any postcondition R,

Axiom 5.4: wp(/\C;S, R) ≡ C ∧ wp(S, R).

©J. C. Huang 2009 Software Error Detection - Chapter 5 20

Logical-equivalence relation

Definition 5.5: Program S1 is said to be
equivalent to S2 if wp(S1, R) ≡ wp(S2, R) for any
postcondition R. This relation is denoted by S1 ⇔
S2.

©J. C. Huang 2009 Software Error Detection - Chapter 5 21

Subprogram relation

Definition 5.6: Program S2 is said to be a
subprogram of program S1 if wp(S2, R) ⊃ wp(S1,
R) for any postcondition R. This relation is
denoted by S1 ⇒ S2.

©J. C. Huang 2009 Software Error Detection - Chapter 5 22

A symbolic trace is a subprogram

Thus, by Definition 5.6, program S1;/\C;S2
is a subprogram of program S1;S2.

In general, a symbolic trace of a program
constitutes a subprogram of the original as
defined by Definition 5.6.

©J. C. Huang 2009 Software Error Detection - Chapter 5 23

Two trivial relations

(1) /\T; S ⇔ S for any S

(2) /\F; S ⇔ /\F; S' for any S and S'.

In words, it would not change anything by constraining a
program with a predicate that is always true, and any two
programs are logically equivalent if each is constrained by
a predicate that is always false.

©J. C. Huang 2009 Software Error Detection - Chapter 5 24

Rules for moving constraints

A state constraint not only directly constrains the
program state at the point where it is placed, but
also indirectly at other points upstream and
downstream in control flow as well.

What follows are the rules that allow us to move a
constraint up or down without changing anything.

©J. C. Huang 2009 Software Error Detection - Chapter 5 25

The scope of a constraint

The scope of a state constraint, which is defined to
be the range of control flow within which the
constraint has an effect, may or may not span the
entire program. A state constraint will have no
effect beyond a statement that undefines, or
assigns a constant value to, the variables involved.

©J. C. Huang 2009 Software Error Detection - Chapter 5 26

Moving a constraint upstream

Theorem 5.7: S;/\R ⇔ /\wp(S, R);S.

©J. C. Huang 2009 Software Error Detection - Chapter 5 27

Eample: simplification of Trace 5.2

Trace 5.2:
i = 0;
/\ !(isspace(s[i]));
/\ !(s[i] == '-');
sign = 1;
/\ !(s[i] == '+' || s[i]

== '-');
n = 0;
/\ (isdigit(s[i]));
n = 10 * n + (s[i] - '0');
i = i + 1;
/\ !(isdigit(s[i]));
return sign * n;

⇔
/\ !(isspace(s[0]));
i = 0;
/\ !(s[i] == '-');
sign = 1;
/\ !(s[i] == '+' || s[i]

== '-');
n = 0;
/\ (isdigit(s[i]));
n = 10 * n + (s[i] - '0');
i = i + 1;
/\ !(isdigit(s[i]));
return sign * n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 28

⇔
/\ !(isspace(s[0]));
i = 0;
/\ !(s[i] == '-');
sign = 1;
/\ !(s[i] == '+' || s[i]

== '-');
n = 0;
/\ (isdigit(s[i]));
n = 10 * n + (s[i] - '0');
i = i + 1;
/\ !(isdigit(s[i]));
return sign * n;

⇔
/\ !(isspace(s[0]));
/\ !(s[0] == '-');
/\ !(s[0] == '+' || s[0]

== '-');
i = 0;
sign = 1;
n = 0;
/\ (isdigit(s[i]));
n = 10 * n + (s[i] - '0');
i = i + 1;
/\ !(isdigit(s[i]));
return sign * n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 29

⇔
/\ !(isspace(s[0]));
/\ !(s[0] == '-');
/\ !(s[0] == '+' || s[0]

== '-');
i = 0;
sign = 1;
n = 0;
/\ (isdigit(s[i]));
n = 10 * n + (s[i] - '0');
i = i + 1;
/\ !(isdigit(s[i]));
return sign * n;

⇔
/\ !(isspace(s[0]));

/\ !(s[0] == '-');

/\ !(s[0] == '+' || s[0]
== '-');

/\ (isdigit(s[0]));

i = 0;

sign = 1;

n = 0;

n = 10 * n + (s[i] - '0');

i = i + 1;

/\ !(isdigit(s[i]));

return sign * n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 30

⇔
/\ !(isspace(s[0]));

/\ !(s[0] == '-');

/\ !(s[0] == '+' || s[0]
== '-');

/\ (isdigit(s[0]));

i = 0;

sign = 1;

n = 0;

n = 10 * n + (s[i] - '0');

i = i + 1;

/\ !(isdigit(s[i]));

return sign * n;

⇔
/\ !(isspace(s[0]));

/\ !(s[0] == '-');

/\ !(s[0] == '+' || s[0]
== '-');

/\ (isdigit(s[0]));

i = 0;

sign = 1;

n = 0;

n = 10 * n + (s[i] - '0');

/\ !(isdigit(s[i+1]));

i = i + 1;

return sign * n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 31

⇔
/\ !(isspace(s[0]));

/\ !(s[0] == '-');

/\ !(s[0] == '+' || s[0]
== '-');

/\ (isdigit(s[0]));

i = 0;

sign = 1;

n = 0;

n = 10 * n + (s[i] - '0');

/\ !(isdigit(s[i+1]));

i = i + 1;

return sign * n;

⇔
/\ !(isspace(s[0]));

/\ !(s[0] == '-');

/\ !(s[0] == '+' || s[0]
== '-');

/\ (isdigit(s[0]));

/\ !(isdigit(s[1]));

i = 0;

sign = 1;

n = 0;

n = 10 * n + (s[i] - '0');

i = i + 1;

return sign * n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 32

Backward substitution

The basic step of source-code transformation
made possible by virtue of Theorem 5.7 is also
known as backward substitution. It is so called
because the theorem is usually applied to an
assignment statement of the form "x := e" and
wp(x:=e, R) is computed by substituting e to each
and every occurrence of x in R.

©J. C. Huang 2009 Software Error Detection - Chapter 5 33

Application to program testing

In attempt to find an appropriate test case, it is
usually only apparent that a certain condition must
be true at some point in the control flow so that a
certain branch will be traversed when the control
reaches that point, but it is often difficult to tell
what has to be true at the input to make that
condition true at that point. We can find the
answer systematically by performing backward
substitution repeatedly along the symbolic trace.

©J. C. Huang 2009 Software Error Detection - Chapter 5 34

Another important application

In other occasions it may become necessary to
determine if a given (syntactic) path in the program
(graph) is feasible, and if so, what inputs would
cause that path to be traversed. We could find the
answer systematically by constructing the symbolic
trace of the path, and then performing backward
substitution repeatedly until all path constraints are
located on the top of the trace. Any input that
satisfies all the constraints on the top simultaneously
will cause the trace to be traversed

©J. C. Huang 2009 Software Error Detection - Chapter 5 35

An example

Program 2.2:
main()
{

int x, y, z;
cin >> x >> y;
z = 1;
while (y != 0) {

if (y % 2 == 1)
z = z * x;

y = y / 2;
x = x * x;

}
cout << z << endl;
}

©J. C. Huang 2009 Software Error Detection - Chapter 5 36

!

"

$

%

&

where !: cin >> x >> y;

z = 1;

": /\ y != 0;

#: /\ !(y % 2 == 1);

$: /\ y % 2 == 1;

z = z * x;

%: y = y / 2;

x = x * x;

&: /\ !(y != 0);

cout << z << endl;

Figure 5.3 The program graph of Program 2.2 .

©J. C. Huang 2009 Software Error Detection - Chapter 5 37

A few potential execution paths

By studying the path segments in Fig. 5.3 that
have to be exercised during a du-path test, we see
that the loop in Program 2.2 may have to be
iterated zero, one, or two times to traverse the
paths described by αη, αβδεη, αβγεη, αβδεβδεη,
 αβδεβγεη, αβγεβδεη, and αβδεβγεη.

©J. C. Huang 2009 Software Error Detection - Chapter 5 38

The shortest execution path

αη: cin >> x >> y;
z = 1;
/\ !(y != 0);
cout << z << endl;

⇔ cin >> x >> y;
/\ y == 0;
z = 1;
cout << z << endl

can be traversed by letting y == 0.

©J. C. Huang 2009 Software Error Detection - Chapter 5 39

Another example

abδeh: cin >> x >> y;
z = 1;
/\ y != 0;
/\ y % 2 == 1;
z = z * x;
y = y / 2;
x = x * x;
/\ !(y != 0);
cout << z << endl;

©J. C. Huang 2009 Software Error Detection - Chapter 5 40

⇔ cin >> x >> y;
/\ y != 0;
/\ y % 2 == 1;
/\ (y / 2 == 0);
z = 1;
z = z * x;
y = y / 2;
x = x * x;
cout << z << endl;

©J. C. Huang 2009 Software Error Detection - Chapter 5 41

This path can be traversed by letting y == 1
because that's what is required to make all the path
predicates (listed below) true.

/\ y != 0;
/\ y % 2 == 1;
/\ (y / 2 == 0);

©J. C. Huang 2009 Software Error Detection - Chapter 5 42

Yet another example

αβγεη: cin >> x >> y;
z = 1;
/\ y != 0;
/\ !(y % 2 == 1);
y = y / 2;
x = x * x;
/\ !(y != 0);
cout << z << endl;

©J. C. Huang 2009 Software Error Detection - Chapter 5 43

The simplified trace

⇔ cin >> x >> y;
/\ y != 0;
/\ !(y % 2 == 1);
/\ (y / 2 == 0);
z = 1;
y = y / 2;
x = x * x;
cout << z << endl;

©J. C. Huang 2009 Software Error Detection - Chapter 5 44

The path predicates

This path cannot be used as a candidate path in
selecting test cases because its path predicates
(listed below) cannot be satisfied simultaneously
by any y.

/\ y != 0;
/\ !(y % 2 == 1);
/\ (y / 2 == 0);

©J. C. Huang 2009 Software Error Detection - Chapter 5 45

Simplifying concatenation of constraints

It can be shown, as the direct consequence of
Axiom 5.4, that concatenation means logical
conjunction semantically. Formally,

Corollary 5.8: /\C1;/\C2;S ⇔ /\C1 ∧ C2;S.

©J. C. Huang 2009 Software Error Detection - Chapter 5 46

Moving and simplifying statements

Corollary 5.11:
x := Ε1; x := Ε2 ⇔ x := (Ε2)Ε1→x

Here (Ε2)Ε1→x denotes an expression obtained by
substituting x with E1 for every occurrence of x in
E2.

©J. C. Huang 2009 Software Error Detection - Chapter 5 47

Corollary 5.12: If x2 does not occur in E1 then
x1:= E1; x2:= E2 ⇔ x2:= (E2)E1→ x1; x1:= E1.

©J. C. Huang 2009 Software Error Detection - Chapter 5 48

Redundant constraint

Definition 5.13: A statement in a program is said
to be redundant if its sole purpose is to define the
value of a data structure, and this particular value
is not used anywhere in the program.

©J. C. Huang 2009 Software Error Detection - Chapter 5 49

Statement simplification

Corollary 5.14: If x1 := E1; x2 := E2 is a
sequence of two assignment statements such that,
by interchanging these two statements, x1 := E1
becomes redundant, then

(x1 := E1; x2 := E2) ⇔ x2 := (E2)E1→ x1

©J. C. Huang 2009 Software Error Detection - Chapter 5 50

Example

/\ (isdigit(s[0])) &&
!(isdigit(s[1]));

i = 0;
n = s[i] - '0';
i = i + 1;
sign = 1;
return sign * n;

⇔
/\ (isdigit(s[0])) &&

!(isdigit(s[1]));
i = 0;
n = s[i] - '0';
i = i + 1;
return 1 * n;
sign = 1;

©J. C. Huang 2009 Software Error Detection - Chapter 5 51

Example (continued)

⇔
/\ (isdigit(s[0])) &&

!(isdigit(s[1]));
i = 0;
n = s[i] - '0';
i = i + 1;
return 1 * n;
sign = 1;

⇔
/\ (isdigit(s[0])) &&

!(isdigit(s[1]));
i = 0;
n = s[i] - '0';
i = i + 1;
return n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 52

Example (continued)

⇔
/\ (isdigit(s[0])) &&

!(isdigit(s[1]));
i = 0;
n = s[i] - '0';
i = i + 1;
return n;

⇔
/\ (isdigit(s[0])) &&

!(isdigit(s[1]));
n = s[0] - '0';
i = 0;
i = i + 1;
return n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 53

Example (continued)

⇔
/\ (isdigit(s[0])) &&

!(isdigit(s[1]));
n = s[0] - '0';
i = 0;
i = i + 1;
return n;

⇔
/\ (isdigit(s[0])) &&

!(isdigit(s[1]));
n = s[0] - '0';
i = 0 + 1;
i = 0;
return n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 54

Example (continued)

⇔
/\ (isdigit(s[0])) &&

!(isdigit(s[1]));
n = s[0] - '0';
i = 0 + 1;
i = 0;
return n;

⇔
/\ (isdigit(s[0])) &&

!(isdigit(s[1]));
n = s[0] - '0';
i = 1;
return n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 55

Example (continued)

⇔
/\ (isdigit(s[0])) &&

!(isdigit(s[1]));
n = s[0] - '0';
i = 1;
return n;

⇔
/\ (isdigit(s[0])) &&

!(isdigit(s[1]));
n = s[0] - '0';
return n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 56

Example (continued)

⇔
/\ (isdigit(s[0])) &&

!(isdigit(s[1]));
n = s[0] - '0';
return n;

⇔

/\ (isdigit(s[0])) &&
!(isdigit(s[1]));

return s[0] - '0';
n = s[0] - '0';

©J. C. Huang 2009 Software Error Detection - Chapter 5 57

Example (continued)

⇔

/\ (isdigit(s[0])) &&
!(isdigit(s[1]));

return s[0] - '0';
n = s[0] - '0';

⇔

/\ (isdigit(s[0])) &&
!(isdigit(s[1]));

return s[0] - '0';

©J. C. Huang 2009 Software Error Detection - Chapter 5 58

From this analysis we can definitely conclude,
without further testing, that function atoi will
work correctly if the input is a single digit.

©J. C. Huang 2009 Software Error Detection - Chapter 5 59

Exceptions

r = a % b;
a = b;
b = r;
r = a % b;
a = b;
b = r;

This is an example
trace that cannot
be simplified by
the present method,

⇔ a = a % b;
b = b % a;
r = b;

although it can be
simplified by other
methods.

©J. C. Huang 2009 Software Error Detection - Chapter 5 60

Other simplification methods

Corollaries 5.11, 5.12, and 5.14 together provide a
method of symbolic trace simplification based on
the syntax of the trace.

Simplification can also be done based on the
semantics instead of the syntax. One such method
is illustrated below.

©J. C. Huang 2009 Software Error Detection - Chapter 5 61

Example

Consider the following sequence of assignment
statements in C++:

r = a % b;
a = b;
b = r;
r = a % b;
a = b;
b = r;

©J. C. Huang 2009 Software Error Detection - Chapter 5 62

Example (continued)

The three corollaries just mentioned are not
applicable. Yet this sequence can be simplified to
the one shown below.

a = a % b;
b = b % a;
r = b;

Can you devise rules to accomplish this?

©J. C. Huang 2009 Software Error Detection - Chapter 5 63

Supporting tools

We can build two software tools: an instrumentor
and a trace analyzer.

The instrumentor inserts necessary software
instruments into a program to generate symbolic
trace automatically. The trace analyzer helps the
user to rewrite a given symbolic trace into another.

©J. C. Huang 2009 Software Error Detection - Chapter 5 64

Supporting tools (continued)

We discuss the instrumentor in Chapter 7.

The functional design of a trace analyzer is given
below.

©J. C. Huang 2009 Software Error Detection - Chapter 5 65

Trace analyzer

We can build an analyzer to mimic the way we
analyze a symbolic trace manually.

The analyzer needs to provide the basic functional
capabilities of a modern interactive screen-
oriented text editor: displaying a chunk of trace
being analyzed, scrolling it up and down, cutting
and pasting, searching and replacing, undoing and
repeating an operation, etc.

©J. C. Huang 2009 Software Error Detection - Chapter 5 66

Trace analyzer (continued)

The analyzer should be able to move a constraint
upstream per Theorem 5.7 and Corollary 5.8, and
to move an assignment statement downstream per
Corollaries 5.11, 5.12, and 5.14.

The analyzer should have the capacity to simplify
a predicate or a computational expression.

©J. C. Huang 2009 Software Error Detection - Chapter 5 67

Trace analyzer (continued)

The operation of expression transformation and
simplification cannot be completely automated.
They have to be carried out interactively. The
effectiveness of a specific tool implementation is
therefore largely dependent on how its user
interface is designed.

©J. C. Huang 2009 Software Error Detection - Chapter 5 68

Trace analyzer (continued)

In the following we use an illustrative example to
show how such an interface can be designed. The
interface scheme has been proved to be effective
through experimentation.

The tool is to analyze Trace 5.2 step by step as
depicted below.

©J. C. Huang 2009 Software Error Detection - Chapter 5 69

Trace analyzer (continued)

C-up S-down Simplify Validate Undo
i = 0;
/\ !(isspace(s[i]));
/\ !(s[i] == '-');
sign = 1;
/\ !(s[i] == '+' || s[i] == '-');
n = 0;
/\ (isdigit(s[i]));
n = 10 * n + (s[i] - '0');
i = i + 1;
/\ !(isdigit(s[i]));
return sign * n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 70

Trace analyzer (continued)

C-up S-down Simplify Validate Undo
i = ◊ 0;
/\ !(isspace(s[i]));
/\ !(s[i] == '-');
sign = 1;
/\ !(s[i] == '+' || s[i] == '-');
n = 0;
/\ (isdigit(s[i]));
n = 10 * n + (s[i] - '0');
i = i + 1;
/\ !(isdigit(s[i]));
return sign * n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 71

Trace analyzer (continued)

C-up S-down Simplify Validate Undo
i =0;

◊ /\ !(isspace(s[i]));
/\ !(s[i] == '-');
sign = 1;
/\ !(s[i] == '+' || s[i] == '-');
n = 0;
/\ (isdigit(s[i]));
n = 10 * n + (s[i] - '0');
i = i + 1;
/\ !(isdigit(s[i]));
return sign * n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 72

Trace analyzer (continued)

C-up S-down Simplify Validate Undo
◊ /\ !(isspace(s[0]));

i =0;
/\ !(s[i] == '-');
sign = 1;
/\ !(s[i] == '+' || s[i] == '-');
n = 0;
/\ (isdigit(s[i]));
n = 10 * n + (s[i] - '0');
i = i + 1;
/\ !(isdigit(s[i]));
return sign * n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 73

Trace analyzer (continued)

C-up S-down Simplify Validate Undo
/\ !(isspace(s[0]));
/\ !(s[0] == '-');
/\ !(s[0] == '+' || s[0] == '-');
/\ (isdigit(s[0]));
/\ !(isdigit(s[1]));
i = 0;
sign = 1;
n = 0;
n = 10 * n + (s[i] - '0');
i = i + 1;
return sign * n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 74

Trace analyzer (continued)

C-up S-down Simplify Validate Undo
/\ !(isspace(s[0]));
/\ !(s[0] == '-');
/\ !(s[0] == '+' || s[0] == '-');
/\ (isdigit(s[0]));
/\ !(isdigit(s[1]));
i = 0;
sign = 1;

◊ n = 0;
n = 10 * n + (s[i] - '0');
i = i + 1;
return sign * n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 75

Trace analyzer (continued)

C-up S-down Simplify Validate Undo
/\ !(isspace(s[0]));
/\ !(s[0] == '-');
/\ !(s[0] == '+' || s[0] == '-');
/\ (isdigit(s[0]));
/\ !(isdigit(s[1]));
i = 0;
sign = 1;

◊ n = 10 * 0 + (s[i] - '0');
i = i + 1;
return sign * n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 76

Trace analyzer (continued)

C-up S-down Simplify Validate Undo
/\ !(isspace(s[0]));
/\ !(s[0] == '-');
/\ !(s[0] == '+' || s[0] == '-');
/\ (isdigit(s[0]));
/\ !(isdigit(s[1]));
i = 0;
sign = 1;

◊ n = s[i] - '0';
i = i + 1;
return sign * n;

©J. C. Huang 2009 Software Error Detection - Chapter 5 77

Trace analyzer (continued)

C-up S-down Simplify Validate Undo

/\ !(isspace(s[0]));
/\ !(s[0] == '-');
/\ !(s[0] == '+' || s[0] == '-');
/\ (isdigit(s[0]));
/\ !(isdigit(s[1]));
return s[0] - '0';

©J. C. Huang 2009 Software Error Detection - Chapter 5 78

Trace analyzer (continued)

Up to this point, all operations performed can be
carried out with relative ease. The information
needed to do so can be obtained by parsing the
symbolic trace and performing a data-flow
analysis for all the variables involved.

©J. C. Huang 2009 Software Error Detection - Chapter 5 79

Trace analyzer (continued)

Simplification of frequently encountered
expressions, such as reducing x+0 to x, x×1 to x,
or x+1+1+1 to x+3, can be done by using a rule-
based rewriting system.

©J. C. Huang 2009 Software Error Detection - Chapter 5 80

Trace analyzer (continued)

Simplification of a concatenation of constraints is
to be done based on Corollary 5.8, which says
/\C1;/\C2 ;S is logically equivalent to /\C1 ∧
C2 ;S. It is also known that if C1 implies (⊃) C2
then C1 ∧ C2 can be reduced to C1. The problem
is to find pairs of constraints that can be simplified
by using this fact.

©J. C. Huang 2009 Software Error Detection - Chapter 5 81

Trace analyzer (continued)

A simple-minded approach to simplification of a
conjunction of n predicates C1 ∧ C2 ∧ ... ∧ Cn is to
use a mechanical theorem prover to prove that Ci
⊃ Cj for all 1 ≤ i, j ≤ n and i ≠ j. If successful, it
means that Ci implies Cj, and therefore Cj can be
discarded. Otherwise Cj remains.

©J. C. Huang 2009 Software Error Detection - Chapter 5 82

Trace analyzer (continued)

If the analyzer has this theorem proving
capability, then all we need to do is to select all
the constraints on the top of the trace and click the
simplify button. The analyzer should display the
following as the result.

©J. C. Huang 2009 Software Error Detection - Chapter 5 83

Trace analyzer (continued)

C-up S-down Simplify Validate Undo

/\ (isdigit(s[0]));
/\ !(isdigit(s[1]));
return s[0] - '0';

