
Chapter 4
Software Testing Roundup

J. C. Huang
Department of Computer Science

University of Houston

©J. C. Huang 2009 Software Error Detection - Chapter 4 2

Topics

A few more points to ponder before wrapping up
the discussion on testing:
– Ideal test sets
– Operational testing
– Integration testing
– Testing of object-oriented programs
– Regression testing
– Criteria for stopping the test
– Choosing a test-case selection criterion

©J. C. Huang 2009 Software Error Detection - Chapter 4 3

State of the art

• At present, there does not exist a test method that
allows us to conclude, from a successful test, that
a program does not contain any error.

• If such a method exists, what properties it should
have?

©J. C. Huang 2009 Software Error Detection - Chapter 4 4

Notations

Let
S be a program,

D be the input domain of S,

S(d) denote the result of executing S with
input d∈ D,

©J. C. Huang 2009 Software Error Detection - Chapter 4 5

Notations (continued)

T be a subset of D, called a test set,

OK(d) be a predicate which becomes true if and
only if program S terminates cleanly for an
execution with input d and S(d) is an
acceptable result.

©J. C. Huang 2009 Software Error Detection - Chapter 4 6

Ideal set of test cases

Elements of T are called test cases.

T constitutes an ideal set of test cases if
(∀t)T(OK(t)) ⊃ (∀d)D(OK(d)).

If we can find an ideal set of test cases, we can
conclude from a success test that the program
contains no error.

©J. C. Huang 2009 Software Error Detection - Chapter 4 7

Successful test

A test using T is said to be successful if the
program executes correctly with every element of
T. Formally,

SUCCESSFUL(T) ≡ (∀t)T(OK(t)).

©J. C. Huang 2009 Software Error Detection - Chapter 4 8

How a set of test cases is selected?

Typically, a set of test cases is a subset of D
selected to satisfy some test-case selection
criterion, C, which is usually a predicate over 2D,
the power set (i.e., the set of all subsets) of D.

©J. C. Huang 2009 Software Error Detection - Chapter 4 9

Reliable selection criteria

A test-case selection criterion, C, is said to be
reliable if and only if the program succeeds or
fails consistently when executing a set of test
cases satisfying C. Formally,

RELIABLE(C) ≡
(∀T1)2D(∀T2)2D((C(T1) ∧ C(T2)) ⊃

(SUCCESSFUL(T1) ≡ SUCCESSFUL(T2)))

©J. C. Huang 2009 Software Error Detection - Chapter 4 10

Valid selection criteria

A test-case selection criterion, C, is said to be
valid for a particular program if and only if there
exists a set of test cases satisfying C which will
cause the program to fail the test if the program is
incorrect. To be more precise,

VALID(C)
≡ (∃d)D(¬OK(d)) ⊃ (∃T)2D(C(T) ∧ ¬SUCCESSFUL(T))

©J. C. Huang 2009 Software Error Detection - Chapter 4 11

On validity

Note that validity does not imply that every set of
test cases selected with C will cause the program
to fail the test if the program is incorrect.

©J. C. Huang 2009 Software Error Detection - Chapter 4 12

Example

Suppose the program is intended to double the
input, but instead, it squares the input. To express
it in the formalism introduced above,

F(d) = d × d for all d ∈ D and
OK(d) ≡ (F(d)=d+d).

©J. C. Huang 2009 Software Error Detection - Chapter 4 13

The program is intended to compute the remainder
of d÷5, but instead it computes the remainder of d
÷3, where "÷" denotes the operation of integer
division. To express it in the formalism
introduced above,

S(d) = (d mod 3) for all d ∈ D and
OK(d) ≡ S(d)=(d mod 5).

©J. C. Huang 2009 Software Error Detection - Chapter 4 14

Example (continued)

Observe that the program works correctly for all
integers 15k+0, 15k+1, and 15k+2, that is,
OK(15k+0), OK(15k+1), and OK(15k+2), for all
non-negative integer k, but it works incorrectly
otherwise.

©J. C. Huang 2009 Software Error Detection - Chapter 4 15

Example (continued)

C1(T) ≡ (T={1}) ∨ (T={2})

(reliable but not valid)

©J. C. Huang 2009 Software Error Detection - Chapter 4 16

Example (continued)

C2(T) ≡ (T={t}) ∧ (t ∈ {0, 1, 2, 3, 4})

(not reliable but valid)

©J. C. Huang 2009 Software Error Detection - Chapter 4 17

Example (continued)

C3(T) ≡ (T={t}) ∧ (t ∈ {3, 4, 5, 6})

(reliable and valid)

©J. C. Huang 2009 Software Error Detection - Chapter 4 18

Example (continued)

C4(T) ≡ (T={t, t+1, t+2, t+3}) ∧ (t ∈ D)

(reliable and valid)

©J. C. Huang 2009 Software Error Detection - Chapter 4 19

Goodenough and Gerhart’s result:
A test as a proof of correctness

Theorem 4.1: A successful test constitutes a direct
proof of program correctness, if it is done with a set of
test cases selected by a test criterion which is both
reliable and valid. Formally,

(∃C)(VALID(C)∧RELIABLE(C)
∧(∃T)2D(C(T)∧SUCCESSFUL(T)))

 ⊃ SUCCESSFUL(D)

©J. C. Huang 2009 Software Error Detection - Chapter 4 20

Comment

• In general, it is difficult to prove the validity and
reliability of a test-case selection criterion. In
some cases, however, it may become trivial.

• For example, the proof of validity becomes trivial
if C, the test-case selection criterion, does not
excludes any member of D, the input domain,
from being selected as a test case.

©J. C. Huang 2009 Software Error Detection - Chapter 4 21

Observation

• If C does not allow any member of D to be
selected, then C can be valid only if the program is
correct.

• Thus, in that case, it is required to prove the
program's correctness in order to prove the
validity of C.

©J. C. Huang 2009 Software Error Detection - Chapter 4 22

Observation

• The proof of reliability becomes trivial if C
requires selection of all elements in D because in
that case there will only be one set of test cases.

• The proof of reliability also becomes trivial if C
does not allow any element from D to be selected.

©J. C. Huang 2009 Software Error Detection - Chapter 4 23

Second question

• Does there exist an effective procedure to find an
ideal set of test cases?

• An ideal set of test case for a program is the one
with which a successful test constitutes a direct
proof of the correctness.

©J. C. Huang 2009 Software Error Detection - Chapter 4 24

Howden’s result

Theorem 4.2: There exists no computable
procedure H which, given an arbitrary program S
with domain D, can be used to generate a nonempty
finite set D ⊃ T such that.

(∀t)T(OK(t)) ⊃ (∀d)D(OK(d)).

©J. C. Huang 2009 Software Error Detection - Chapter 4 25

Operational testing

• The test cases are selected based on an operational
profile.

• USE(d), a predicate, is true if d is used in a production
run of the program.

• p(USE(d)) is the probability that d will be used in a
production run.

• A distribution of p(USE(d)) over the elements of the
input domain is called an operational profile.

©J. C. Huang 2009 Software Error Detection - Chapter 4 26

Operational testing (continued)

In other words, the test set to be used in an
operational testing is

To = { t | t∈D ∧ p(USE(t)) ≥ µ }.

where µ is some constant, and D is the input
domain.

©J. C. Huang 2009 Software Error Detection - Chapter 4 27

Operational testing (continued)

The value of µ should be chosen in such a way
that the sum of p(USE(t)) over all elements in To
should be greater than or equal to some
predetermined constant γ.

If a test with To is successful, we can conclude
that the program is γ×100% reliable.

©J. C. Huang 2009 Software Error Detection - Chapter 4 28

Operational vs. debug testing

Elements of To are those inputs that have high
probabilities of being used in a production run.
Therefore, if a fault is revealed in an operational
test, removal of that fault will contribute
significantly to the enhancement of the program
reliability.

©J. C. Huang 2009 Software Error Detection - Chapter 4 29

Operational vs. debug testing (continued)

This is in contrast to a debug test in which a test
case t might have a very high p(¬OK(t)) but very
low p(USE(t)). If it reveals a fault, and if that
fault is removed, it would have a relatively small
impact on the program reliability.

©J. C. Huang 2009 Software Error Detection - Chapter 4 30

Operational vs. debug testing (continued)

On the other hand, the reliability achieved through debug
testing remains valid unless the program is modified in
some way.
The same cannot be said about the reliability assessed
through an operational test. Operational profiles change in
time and with application environments. Consequently, it
is entirely possible that, in another time or another place,
the same software system may in fact not as reliable as it is
claimed to be.

©J. C. Huang 2009 Software Error Detection - Chapter 4 31

Integration testing

Integration testing is a process in which the
components of a software system are integrated
into a functioning whole. After we have all
components completed and thoroughly tested, we
have to put them together to form an executable
image of the entire system.

©J. C. Huang 2009 Software Error Detection - Chapter 4 32

The futility of “big-bang” approach

Unless the system is very small, consisting of just
a few components, we cannot integrate the system
simply by compiling each component and then
linking them together. One cannot expect the
program to work flawlessly the first time around.
With all components integrated at the same time,
it would be very difficult to isolate the problems
and locate the sources of the problems.

©J. C. Huang 2009 Software Error Detection - Chapter 4 33

Incremental approach

A better way is to integrate the components
incrementally. We start by putting two
components together to form a subsystem and test
it thoroughly. We then proceed to integrate one
component at a time into the subsystem so formed
until the entire system is completed.

©J. C. Huang 2009 Software Error Detection - Chapter 4 34

Incremental approach (continued)

Integrate the system incrementally makes it easier
to locate and remove the faults. Furthermore,
there is no need to recompile and relink all
components every time when a change is made to
a component.

©J. C. Huang 2009 Software Error Detection - Chapter 4 35

Bottom-up integration

This approach starts with unit testing, followed by
subsystem testing, followed by testing of the
entire system.

©J. C. Huang 2009 Software Error Detection - Chapter 4 36

Bottom-up approach (continued)

Modules are tested in isolation from one another
in an artificial environment known as a test
harness, which consists of the driver programs
and data necessary to exercise the modules.
Modules are combined to form subsystems, and
subsystems are then integrated to form the system
as a whole.

©J. C. Huang 2009 Software Error Detection - Chapter 4 37

Bottom-up approach (continued)

This approach is particularly appropriate for
programs like operating systems in which the
lowest level modules are device drivers and
service routines. It would be difficult to tell if the
program is working correctly or not without those
lower-level modules in place.

©J. C. Huang 2009 Software Error Detection - Chapter 4 38

Bottom-up approach: advantages

1. Unit testing is eased by a system structure that is
composed of small, loosely coupled modules.

2. Since most input-output operations are done by
the lower level modules, how to feed test cases to
the program is less of a problem.

©J. C. Huang 2009 Software Error Detection - Chapter 4 39

Bottom-up approach: disadvantages

1. The necessity to write and debug test harness.
Test harness preparation can amount to 50% or
more.

2. The necessity to deal with the complexity
resulting from combining modules and subsystems
into larger and larger units.

©J. C. Huang 2009 Software Error Detection - Chapter 4 40

Top-down approach

It starts with the main routine and one or two
immediately subordinate routines in the system
structure.

After this top-level skeleton has been thoroughly
tested, it becomes the test harness for its
immediately subordinate routines.

©J. C. Huang 2009 Software Error Detection - Chapter 4 41

Top-down approach (continued)

Top-down integration requires the use of program
stubs to simulate the effect of lower-level routines
that are called by those being tested.

©J. C. Huang 2009 Software Error Detection - Chapter 4 42

Top-down approach: advantages

1. System integration is distributed throughout the
implementation phase; modules are integrated as
they are developed.

2. Top-level interfaces are tested first and most
often.

3. The top-level routines provide a natural test
harness for lower-level routines.

4. Faults are localized to the new modules and
interfaces that are being added.

©J. C. Huang 2009 Software Error Detection - Chapter 4 43

Top-down approach: disadvantages

1. Sometimes it may be difficult to find top-level
input data that will exercise a lower-level module
in a particular manner.

2. The evolving system may be very expensive to
run as a test harness for new routines on a lower
level.

3. It may be costly to re-link and re-execute a system
each time a new routine is added.

4. It may not be possible to use program stubs to
simulate modules below the current level.

©J. C. Huang 2009 Software Error Detection - Chapter 4 44

Sandwich integration

This approach is predominantly top-down, but
bottom-up techniques are used on some modules
and subsystems.

This mix alleviates many of the problems
encountered in pure top-down testing and retains
the advantages of the top-down integration at the
subsystem and system level.

©J. C. Huang 2009 Software Error Detection - Chapter 4 45

Sandwich integration (continued)

Start by finding a way to form a small subsystem
consisting of modules on all levels to minimize the
need of test drivers and stubs, and then proceed to
add one module at a time to complete the
integration.

©J. C. Huang 2009 Software Error Detection - Chapter 4 46

Sandwich integration (continued)

This approach also makes it easier to determine what
should be the test cases, and what the expected
corresponding outputs are.

This approach will lead to the production of a running
subsystem sooner.

©J. C. Huang 2009 Software Error Detection - Chapter 4 47

Phased integration

Units at the next level are integrated all at once,
and the system is tested before integrating all
modules at the following level.

©J. C. Huang 2009 Software Error Detection - Chapter 4 48

Controversies about unit testing

Unit testing is a point of contention often raised in debates
over the strategies to be used in integration testing.

Those who support say unit tests "let the engineers locate
the problem areas and causes within minutes."

Those who oppose it advocate that units are not tested in
isolation, but are tested only after integration into a system.

©J. C. Huang 2009 Software Error Detection - Chapter 4 49

An experimental result

Experiments conducted by Solheim and Rowland
[SORO93] indicated that the top-down strategies
generally produce the most reliable systems and
are the most effective in terms of fault detection.

The higher fault detection rate appeared to be
caused by the fact that the top-down strategy
exercises more modules per test case than do the
other strategies.

©J. C. Huang 2009 Software Error Detection - Chapter 4 50

Testing object-oriented programs

All test methods discussed in the preceding
chapters were developed for programs written in a
procedural language. Those test methods should,
in principle at least, remain applicable to object-
oriented programs because an object oriented
language is a procedural language as well.

©J. C. Huang 2009 Software Error Detection - Chapter 4 51

Testing OO programs (continued)

Nevertheless, there are some complicating factors
idiosyncratic to the use of an object-oriented
language/paradigm that require certain changes in
the ways those methods are to be applied.

©J. C. Huang 2009 Software Error Detection - Chapter 4 52

Common practice

The common practice in debug-testing a large
software system is that we do unit testing first,
followed by integration testing.

©J. C. Huang 2009 Software Error Detection - Chapter 4 53

Common practice (continued)

The chunk of source code to be unit-tested should be
small so that, if the test failed, the source of the failure
can be readily located and removed. On the other
hand, it must be large enough to constitute a complete
syntactic unit that can be separately compiled.
For a traditional software system written in C, it is
commonly taken as a function or a set of related
functions.

©J. C. Huang 2009 Software Error Detection - Chapter 4 54

What is a “unit” in OO programs?

A method in an object-oriented program has the form of,
and works like, a function in C. Nevertheless it cannot be
treated as a unit in unit-testing because it is not separately
compilable. It is encapsulated in a larger program unit
called a class.

Therefore, a class, or a set of related classes,
appears to be an appropriate unit for unit testing.

©J. C. Huang 2009 Software Error Detection - Chapter 4 55

What we should know in making this choice

A class usually contains a storage unit that is
implemented as some data structure in the private
part that is not directly accessible to the test
harness. Thus if we test-execute the unit with an
input that causes changes to the content of the
storage, the tester will have no way to determine if
the correct changes have been made.

©J. C. Huang 2009 Software Error Detection - Chapter 4 56

What we should know (continued)

A possible solution to this problem is to require
the designer to make the class testable by
including additional methods in the class that can
be invoked to inspect the internal state of the
class.

©J. C. Huang 2009 Software Error Detection - Chapter 4 57

What we should know (continued)

A class is a program unit with memory. Its
response to an input is influenced by previous
inputs (or ordering of the inputs) as well.

©J. C. Huang 2009 Software Error Detection - Chapter 4 58

What we should know (continued)

For instance, the sequence of inputs “PUSH”,
“POP” will produce a test result different from
that of “POP”, “PUSH”.

This phenomenon is not unique, but is far more
common, to object-oriented programs.

©J. C. Huang 2009 Software Error Detection - Chapter 4 59

Messages

Whatever that we wish to do with an object it has
to be accomplished by invoking its methods in
sequence, and thus can be specified by a sequence
of identities of methods. Such a sequence is
called a message in the language of the object-
oriented technology

©J. C. Huang 2009 Software Error Detection - Chapter 4 60

Valid messages

When a program unit in an object-oriented
program needs to do something by making use of
methods, it passes messages to invoke those
methods.

A message is said to be valid if it is a sequence of
invocations of methods in the class that will cause
the methods to be executed with inputs from their
intended input domains.

©J. C. Huang 2009 Software Error Detection - Chapter 4 61

Message graphs

The validity of a message can be defined by a
directed graph called message graph.

There shall be as many nodes as the number of
methods in the class, each of which is uniquely
associated with a method. There shall be an edge
emanates from node A and terminates at node B if
it is permissible to send message A followed by
message B.

©J. C. Huang 2009 Software Error Detection - Chapter 4 62

An example stack class

Figure 4.1 shows an example message graph of a
stack class. With this class, one can create a new
stack, push an element on the stack, pop an
element from the top, or examine the top element
by using the methods named NEW, PUSH, POP,
and TOP, respectively.

©J. C. Huang 2009 Software Error Detection - Chapter 4 63

The message graph

PUSH

TOPNEW

POP

Figure 4.1. Message graph for a simple stack module.

©J. C. Huang 2009 Software Error Detection - Chapter 4 64

What the graph shows

This graph shows that message NEW cannot be
followed by message POP or TOP because the
stack is empty immediately after the message
NEW.

A message is valid if and only if it forms a path in
the message graph, e.g., NEW PUSH POP NEW
is valid, but NEW PUSH POP NEW POP PUSH
is not.

©J. C. Huang 2009 Software Error Detection - Chapter 4 65

Test-case selection

Choose a valid message as a test case if the goal is
to cause a certain program component to be
exercised during the test.

Choose an invalid messages as a test case if the
purpose is to determine if appropriate exceptions
would be raised.

©J. C. Huang 2009 Software Error Detection - Chapter 4 66

Test-case selection (continued)

The test-case selection methods discussed in the
preceding chapters can be applied to unit-test a
class as usual. A possible complicating factor is
that the test cases are now messages instead of
mere input data. If a message is chosen to cause a
particular component in a method to be exercised,
and if that message turns out to be invalid, it has
to be replaced by a valid message that will serve
the same purpose.

©J. C. Huang 2009 Software Error Detection - Chapter 4 67

The question of inheritance

Because some classes in an object-oriented
program may be created by making use of
inheritance, the question may arise as to the extent
to which a class has to be unit-tested if it is similar
in some way to another that has been completely
unit-tested.

©J. C. Huang 2009 Software Error Detection - Chapter 4 68

The question of inheritance (continued)

Weyuker et al. (1988) has proposed 11 axioms for
checking the completeness of a test [FRWE88],
some of which repeated below may be useful in
answering that type of questions.

©J. C. Huang 2009 Software Error Detection - Chapter 4 69

The question of inheritance (continued)

If we replace an inherited method with a locally
defined method that performs the same function,
will the test set for the inherited method be
adequate for the locally defined one?

No. Weyuker’s fifth axiom says that an adequate
test set for one algorithm is not necessarily an
adequate test set for another, even though they
compute the same function.

©J. C. Huang 2009 Software Error Detection - Chapter 4 70

The question of inheritance (continued)

Is the same test set adequate for two programs of
the same shape, i.e., if one can be transformed into
another through simple replacement of one or
more relational/arithmetic operators, or one or
more constant?

No, according to the Weyuker’s sixth axiom or
the second principle of test-case selection.

©J. C. Huang 2009 Software Error Detection - Chapter 4 71

The question of inheritance (continued)

Does a program need to be retested if the context
changes?

Yes, according to Weyuker’s 7th axiom.

©J. C. Huang 2009 Software Error Detection - Chapter 4 72

The question of inheritance (continued)

If we change the underlying implementation of an
object and keep the interface intact, is it
insufficient to test the modified object in
isolation?

No, according to Weyuker’s 8th axiom. We will
have to retest all dependent units as well.

©J. C. Huang 2009 Software Error Detection - Chapter 4 73

Integration testing of OO programs

The guidelines for integration testing discussed in
the preceding section remains mostly applicable to
an object-oriented software system. Classes will
be unit-tested in isolation, and then be integrated
into the system incrementally for integration
testing.

©J. C. Huang 2009 Software Error Detection - Chapter 4 74

Integration testing of OO programs
(continued)

For traditional programs, integration testing can be
done either in top-down or bottom-up manner.
Unfortunately, there is no clear top or bottom in
the organization of an object-oriented program
(i.e., no invocation hierarchy). Therefore, it is
difficult to develop a general rule.

©J. C. Huang 2009 Software Error Detection - Chapter 4 75

Integration testing of OO programs
(continued)

In general, one may start with a small set of classes
that can be used to produce an executable image, and
then expand it by adding one class at a time. The
order in which the classes are integrated into the
system will affect (a) the amount of test harness
required, (b) the number of new and useful test cases
we can find. Therefore, it should be chosen
accordingly to optimize the test efficiency.

©J. C. Huang 2009 Software Error Detection - Chapter 4 76

Regression testing

Regression testing should be performed to a
program after it is modified to remove a fault or to
add a function.

©J. C. Huang 2009 Software Error Detection - Chapter 4 77

Regression testing (continued)

The process is to rerun all or some of the previous
tests, and introduce new test cases if necessary, to
assure that no errors have been introduced through
the changes or to verify that the software still
performs the same functions in the same manner
as its older version.

©J. C. Huang 2009 Software Error Detection - Chapter 4 78

Regression testing (continued)

A library of test cases is needed to make this test
possible. It should be built and maintained in such
a way that past test cases and corresponding
symbolic traces can be efficiently stored and
retrieved.

©J. C. Huang 2009 Software Error Detection - Chapter 4 79

Criteria for stopping the test

If we select test cases based on the operational
profile, or if the test cases are chosen randomly
from the input domain, new elements can be
added to the test set being constructed endlessly.
Under those circumstances the question of when
to stop testing becomes germane.

©J. C. Huang 2009 Software Error Detection - Chapter 4 80

Criteria for stopping the test (continued)

An obvious answer to this question is to dilute the
test requirement by reducing the number of test
cases to be used. For instance, it is not unusual to
see that a software development contract includes
a stipulation allowing only some (say, 60 percent),
instead of all, statements in the source code be
exercised at least once during the test.

©J. C. Huang 2009 Software Error Detection - Chapter 4 81

Criteria for stopping the test (continued)

There is, however, a more elegant way to
determine when to stop the test. S. A. Sherer
(1991) has shown that it is possible to estimate the
cost and benefit of doing program testing
methodically, and therefore it is possible to find
the optimal time to stop.

©J. C. Huang 2009 Software Error Detection - Chapter 4 82

Cost and benefit estimation

S. A. Sherer (1991) has shown that it is possible to
estimate the cost and benefit of doing program
testing methodically, and therefore it is possible to
find the optimal time to stop testing.

©J. C. Huang 2009 Software Error Detection - Chapter 4 83

Cost and benefit estimation (continued)

She started by identifying potential faults in the
program, assessing the possible economical
impacts of failures that may be caused by those
faults, and estimating the probabilities of such
failures during a predetermined operation period
to compute R, the risk.

©J. C. Huang 2009 Software Error Detection - Chapter 4 84

Cost and benefit estimation (continued)

The theory provides a formula to compute ΔR, the
amount of reduction in R resulting from detection
followed by removal of faults in the program
through debug testing. It is assumed that no new
fault is introduced in the debugging process.

©J. C. Huang 2009 Software Error Detection - Chapter 4 85

Cost and benefit estimation (continued)

The theory also provides a way to estimate C, the
cost of testing, which is essentially the sum of the
cost of machine time and the labor required to do
testing and debugging.

©J. C. Huang 2009 Software Error Detection - Chapter 4 86

Cost and benefit estimation (continued)

The net benefit (NB) of doing the debug testing, therefore,
is equal to the reduction in risk minus the cost of testing,
i.e., NB = ΔR - C.

The cost of testing increases almost linearly with the time
for doing the test. Initially, the latent faults in the program
are more numerous and thus easier to find. Thus ΔR, the
reduction in risk, tends to increase exponentially with time.
Gradually the latent faults become fewer and harder to
find, and the magnitude of ΔR starts to level off.

©J. C. Huang 2009 Software Error Detection - Chapter 4 87

Cost and benefit estimation (continued)

The net benefit, NB, therefore increases
exponentially at the beginning, then starts leveling
off and reaches its maximum at tγ*. If further
testing is done beyond that point, the increase in
cost starts to outpace the increase in benefit, and
the net benefit decreases, and eventually becomes
zero and then negative. The relationship among
risk, cost, and benefit is depicted the curves shown
in Fig. 4.2.

©J. C. Huang 2009 Software Error Detection - Chapter 4 88

The net-benefit curve

t!

risk

reduction

toal

cost

net

benefit

t!
*

©J. C. Huang 2009 Software Error Detection - Chapter 4 89

Optimal time to stop testing

The obvious time to stop the testing is tγ*, when
the net benefit becomes maximal, or, if the ultra-
reliability is required, the point at which the net
benefit becomes zero.

©J. C. Huang 2009 Software Error Detection - Chapter 4 90

Choosing a test-case selection criterion

If a good operational profile is available, and if the
required reliability is not ultra-high, choose to do
an operational test.

Otherwise do debug testing.

©J. C. Huang 2009 Software Error Detection - Chapter 4 91

Choosing a criterion (continue)

The best way to do debug testing is to apply the
first principle of test-case selection repeatedly to
add new test cases to the test set being
constructed, and use the second principle to
determine when to stop the process.

©J. C. Huang 2009 Software Error Detection - Chapter 4 92

Choosing a criterion (continue)

The first principle says that, in choosing an
additional element for the test set, preference
should be given to those that are computationally
as loosely coupled to the existing elements as
possible.

The second principle says that there should be
enough elements in the test set to exercise every
component at least once during the test.

©J. C. Huang 2009 Software Error Detection - Chapter 4 93

Choosing a criterion (continue)

For unit testing in a software development effort,
the most prevalent choice of component appears to
be program statement. It is commonly known as
statement testing that requires every statement in
the program to be exercised at least once during
the test.

©J. C. Huang 2009 Software Error Detection - Chapter 4 94

Choosing a criterion (continue)

The choice of component to be exercised can be
"upgraded" from program statement to branch in
the control flow if the statement test is deemed
inadequate.

©J. C. Huang 2009 Software Error Detection - Chapter 4 95

Choosing a criterion (continue)

If the fault-discovery capability needs to be
strengthened further, use the coverage tree
depicted in Fig. 2.5 as a guide to select another
criterion that has a higher coverage. Generally
speaking, the higher the coverage of a criterion,
the greater the fault-discovery capability of the
test set chosen by using that criterion.

©J. C. Huang 2009 Software Error Detection - Chapter 4 96

 all-path

all-du-path

all-use

all-c/some-p

all-c-use

all-p/some-c

all-p-use

branch

statement

all-def Figure 2.5
The coverage relation

©J. C. Huang 2009 Software Error Detection - Chapter 4 97

Choosing a criterion (continue)

The fault-discovery capability can also be
strengthened by choosing additional type of
component to be exercised from the detailed
design or program specification as described in
Chapter 3.

©J. C. Huang 2009 Software Error Detection - Chapter 4 98

Choosing a criterion (continue)

If a lesser method is desired due to time or
resource constraints, add predicate testing instead,
which is effective in discovering faults related to
the decomposition of the function specified, or
add boundary-value analysis instead, which is
effective in discovering faults related to the
program's ability to handle the input and output
values on, and at the vicinities of, the upper and
lower bounds correctly.

©J. C. Huang 2009 Software Error Detection - Chapter 4 99

Choosing a criterion (continue)

Use error-guessing to choose additional test cases
whenever possible because it is relatively easy to
do, and many programmers can do it reasonably
well.

©J. C. Huang 2009 Software Error Detection - Chapter 4 100

Choosing a criterion (continue)

In theory, the mutation method appears to be a
good testing method if we know for sure that the
programmer is competent, and the type of
mistakes he or she tends to make can be expressed
in terms of a set of mutation rules. In practice,
however, its practical value is limited by the large
number of test cases it requires.

