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Static Analysis

Static analysis is a process in which we attempt to
find faults in a program by examining the source
code systematically without test-executing it.
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What can we do with it?

It can be used to
• find symptom of possible programming faults, and
• explicates the computation performed by the

program.
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Anomalies

Sometimes part of a program may be abnormally
formed.  We call that an anomaly instead of a fault
because it may or may not cause the program to fail.
Nevertheless, it is a symptom of possible
programming error.
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Types of anomalies

Possible anomalies include
• Structural flaws in a program module,
• Flaws in module interface,
• Errors in event sequencing.
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Types of structural flaw detectable

• Extraneous entities
• Improper loop constructs.
• Improper loop nesting.
• Unreferenced labels.
• Unreachable statements.
• Transfer of control into a loop.

Note that it is difficult, if not impossible, to create a construct of any of
the last four types unless the use of GOTO statement is allowed.
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Example

For example, in C++, a beginner may write
char* p;

strcpy( p, "Houston" );

which is syntactically correct but semantically
wrong.  It should be written like

char* p;

p = buffer;

strcpy( p, "Houston" );
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Types of interface flaw detectable

• Inconsistencies in the declaration of data structures.
• Improper linkage among modules (e.g., discrepancy

in the number and types of parameters).
• Flaws in other inter-program communication

mechanism such as common blocks.
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Detectable event-sequencing errors

• Priority interrupt handling conflict
• Error in file handling
• Data-flow anomaly
• Anomaly in concurrent programs
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Data-flow Anomaly

When a program is being executed, it may act on a
variable (datum) in three different ways, namely,
define, reference, and undefine.
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Data-flow Anomaly (continued)

The dataflow with respect to a variable is said to be
anomalous if the variable is either undefined and
referenced, defined and then undefined, or defined
and defined again.
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Data-flow Anomaly (continued)

The presence of a data-flow anomaly in the program is
only a symptom of possible programming error.  The
program may or may not be in error.
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Data-Flow Anomaly Detection
in Concurrent Programs

Possible events that may occur:
• define
• reference
• undefine
• schedule
• unschedule (not scheduled)
• wait
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Possible types of anomaly:
• a dead definition of a variable
• waiting for a process not scheduled
• scheduling a process in parallel with itself
• waiting for a process guaranteed to have terminated

previously
• referencing an uninitialized variable
• referencing a variable which is being defined by a

parallel process
• referencing a variable whose value is indeterminate
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Example program

(See the slide in Chapter 6a.)
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The process-augmented flow-graph
(1) Main: program

(15) schedule T1

(16) schedule T2

(17) def flag

(18) if flag 

then def x

(19) ref x

(20) def y

(21) wait for T2

(22) if flag

then def y

(23) ref y

(24) wait for T2

(25) schedule T1

(26) close Main

(8) T2: task

(9) def x

(10) def y

(11) close T2

(4) T1: task

(5) ref x

(6) wait for T3

(7) close T1

(12) T3:task

(13) def x

(14) close T3
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Possible anomalies

• An uninitialized variable (x) may be referenced at
line 5, as task T1 may execute to completion
before T2 begins.

• The definitions of y as found in task T2 (line 10)
and the main program (line 20) may be useless
since y may be redefined at line 22 before y is ever
referenced.
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Possible anomalies (continued)

• y is defined by two processes that may be
executed concurrently, and thus the reference at
line 23 may be to an indeterminate value.

• Variable x is assigned a value by task T2 (line 9)
while simultaneously being referenced by the
main program at line 19.
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Possible anomalies (continued)

• There is a possibility that task T1 will be scheduled in
parallel with itself at line 25 since there is no guarantee
that T1 terminates after its initial scheduling.

• The wait at line 24 is unnecessary, as T2 was guaranteed
to have terminated at line 21, and it has not been
scheduled subsequently.

• The wait at line 6 will never be satisfied as T3 was never
scheduled.
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Symbolic Evaluation (Execution)

The basic idea is to execute the program with
symbolic inputs and produce symbolic formulae as
output.
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Example:

 read(x, y);

    z := x + y;

    x := x - y;

    z := x * z;

    write(z);
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Ordinary execution with  x = 2  and  y = 4.

                value trace
                x          y          z

          --------------------------

 read(x, y);    2          4  undefined

 z := x + y;    2          4          6

 x := x - y    -2          4          6

 z := x * z;   -2          4        -12

 write(z);     -2          4        -12
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Symbolic execution with  x = a  and  y = b

                 value trace
               x      y          z

             ---------------------

  read(x,y);   a      b  undefined

  z:=x+y;      a      b        a+b

  x:=x-y      a-b     b        a+b

  z:=x*z;     a-b     b    a*a-b*b

  write(z);   a-b     b    a*a-b*b
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Path condition

If the program consists of more than one execution
path, it is necessary to choose a path through the
program to be followed, and the result of execution
should include path condition, or pc for short, which
is a Boolean expression over the symbolic values.
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Comment

Generally speaking, the usefulness of symbolic
execution is limited to numerical programs designed
to compute a function describable by a closed
formula.
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Example

a
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For example, the technique is useful to the
following Fortran program designed to solve
quadratic equations by using the formula:
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Program 6.1

(See the text.  It is too large to be included in a slide)
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A trace subprogram
READ (5, 11) A, B, C
/\.NOT. (A .EQ. 0.0 .AND. B .EQ. 0.0 .AND. C .EQ.

0.0)
/\ (A .NE. 0.0 .OR. B .NE. 0.0)
/\ (A .NE. 0.0)
/\ (C .NE. 0.0)
RREAL = -B/(2.0*A)
DISC = B**2 - 4.0*A*C
RIMAG = SQRT(ABS(DISC))/(2.0*A)
/\.NOT. (DISC .LT. 0.0)
R1 = RREAL + RIMAG
R2 = RREAL - RIMAG
WRITE (6, 31) R1, R2
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We can rewrite it into the canonical form first,

READ (5, 11) A, B, C

/\ (A .NE. 0.0 .OR. B .NE. 0.0 .OR. C .NE. 0.0)

/\ (A .NE. 0.0 .OR. B .NE. 0.0)

/\ (A .NE. 0.0)

/\ (C .NE. 0.0)

/\ (B**2 - 4.0*A*C .GE. 0.0)

RREAL = -B/(2.0*A)

DISC = B**2 - 4.0*A*C

RIMAG = SQRT(ABS(DISC))/(2.0*A)

R1 = RREAL + RIMAG

R2 = RREAL - RIMAG

WRITE (6, 31) R1, R2
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then the path condition can be simplified to

READ (5, 11) A, B, C

/\ (A .NE. 0.0 .OR. B .NE. 0.0)

/\ (A .NE. 0.0)

/\ (C .NE. 0.0)

/\ (B**2 - 4.0*A*C .GE. 0.0)

RREAL = -B/(2.0*A)

DISC = B**2 - 4.0*A*C

RIMAG = SQRT(ABS(DISC))/(2.0*A)

R1 = RREAL + RIMAG

R2 = RREAL - RIMAG

WRITE (6, 31) R1, R2
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and further simplified to

READ (5, 11) A, B, C

/\ (A .NE. 0.0)

/\ (C .NE. 0.0)

/\ (B**2 - 4.0*A*C .GE. 0.0)

RREAL = -B/(2.0*A)

DISC = B**2 - 4.0*A*C

RIMAG = SQRT(ABS(DISC))/(2.0*A)

R1 = RREAL + RIMAG

R2 = RREAL - RIMAG

WRITE (6, 31) R1, R2
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and then symbolically execute it to yield

R1=-B/(2.0*A)

+SQRT(ABS(B**2-4.0*A*C))/(2.0*A)

R2=-B/(2.0*A)

-SQRT(ABS(B**2-4.0*A*C))/(2.0*A)

pc:A.NE.0.0.AND.C.NE.0.0

.AND.B**2-4.0*A*C.GE.0.0

This demonstrate the usefulness of a symbolic execution because it clearly
indicates what the program will do for the cases where the path condition
pc is satisfied.
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Another possible application

Symbolic execution can also be used to guide
simplification of source code.  For example, consider
the following segment of code:

     r=a%b;
     a=b;
     b=r;
     r=a%b;
     a=b;
     b=r;
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Symbolic execution with a=A and b=B

after execution of the symbolic values becomes
of statement

a=A
b=B

r=a%b r=A%B
a=b a=B
b=r b=A%B
r=a%B r=B%(A%B)
a=b a=A%B
b=r b=B%(A%B)
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Suggested simplification

The result of symbolic execution strongly suggests
that the code can be simplified to:

r=B%(A%B) ⇔ a=a%b;

a=A%B r=b%a;

b=B%(A%B) b=r;
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Comment
In general, the result of a symbolic execution is a set of strings
(symbols) representing the values of the program variables.  These
strings often grow uncontrollably during the execution.  Thus the
results may not be of much use unless the symbolic execution
system is capable of simplifying these strings automatically.

Such a simplifier basically requires the power of a mechanical
theorem prover.  Therefore, a symbolic execution system is a
computationally intensive software system, and is relatively
difficult to build.
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Program slicing

Program slicing is a method for abstracting from a
program.  Given a subset of a program's behavior, slicing
reduces that program to a minimal form which still
produces that behavior.

The reduced program, called a slice, is an independent
program guaranteed to faithfully represent the original
program within the domain of the specified subset of
behavior
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Example program P

1  begin
     2    read(x, y);
     3    total := 0.0;
     4    sum := 0.0;
     5    if x <= 1
     6      then sum := y
     7      else begin
     8             read(z);
     9             total := x*y
    10          end;
 11    write(total, sum)
 12  end.



©J. C. Huang 2009 Software Error Detection - Chapter 6 39

Example slice S1
Slice on the value of z at statement 12:

        1  begin
   2    read(x, y);
   5    if x <= 1
   6      then
   7      else begin
   8             read(z);
  10           end;
  12  end.
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Example slice S2
Slice on the value of total at statement 12:
   1  begin
   2    read(x, y);
   3    total := 0.0;
   5    if x <= 1
   6      then
   7      else begin
   9             total := x*y
  10           end;
  12  end.
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Example slice S3

Slice on the value of x at statement 9:

       1  begin
   2    read(x, y);

  12  end.
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DEF and REF sets

Definition 6.2: Let P be a program, and suppose
that the statements are numbered consecutively.
Then for each statement n in P we can define two
sets: REF(n) is the set of all variables referenced
at n, and DEF(n) is the set of all variables defined
at n.
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Slicing criterion

Definition 6.3: A slicing criterion of program P is an
ordered pair (i, V), where i is a statement number in
P and V is a subset of the variable in P.
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Example slicing criteria

C1: (12, {z}),

C2: (12, {total}), and

C3: (9, {x}).
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Value trace
Definition 6.4: A value trace of a program P is a
finite list of ordered pairs

              (n1, s1)(n2, s2) ... (nk, sk)

where each ni denotes a statement in P, and each si
is a vector of values of all variables in P
immediately before the execution of ni.



©J. C. Huang 2009 Software Error Detection - Chapter 6 46

Example

Consider the program listed in the next slide in
which the vector of variables used is

<x, y, z, sum, total>
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Example program
1  begin

           2    read(x, y);
           3    total := 0.0;
           4    sum := 0.0;
           5    if x <= 1
           6      then sum := y
           7      else begin
           8             read(z);
           9             total := x*y
          10           end;
          11    write(total, sum)
          12  end.
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A value trace

T1: (1, <?, ?, ?, ?, ?>)
(2, <?, ?, ?, ?, ?>)
(3, <X, Y, ?, ?, ?>)
(4, <X, Y, ?, ?, 0.0>)
(5, <X, Y, ?, 0.0, 0.0>)
(6, <X, Y, ?, 0.0, 0.0>)
(11, <X, Y, ?, Y, 0.0>)
(12, <X, Y, ?, Y, 0.0>)
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Another possible value trace
T2: (1, <?, ?, ?, ?, ?>)

(2, <?, ?, ?, ?, ?>)
(3, <X, Y, ?, ?, ?>)
(4, <X, Y, ?, ?, 0.0>)
(7, <X, Y, ?, 0.0, 0.0>)
(8, <X, Y, ?, 0.0, 0.0>)
(9, <X, Y, Z, 0.0, 0.0>)
(10, <X, Y, Z, 0.0, X*Y>)
(11, <X, Y, Z, 0.0, X*Y>)
(12, <X, Y, Z, 0.0, X*Y>)
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Remark

In the above we use a question mark (?) to denote
an undefined value, and a variable name in upper
case to denote the value of that variable obtained
through an input statement in the program.
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Projection

Definition 6.5: Given a slicing criterion C = (i, V)
and a value trace T, we can define a projection
function Proj(C, T) that deletes from a value trace
all ordered pairs except those with i as the left
component, and from the right components of the
remaining pairs all values except those of
variables in V.
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Example projection
Proj(C1, T1) = Proj((12, {z}), T1)

       = Proj((12, {z}), (1, <?, ?, ?, ?, ?>)
(2, <?, ?, ?, ?, ?>)
(3, <X, Y, ?, ?, ?>)
(4, <X, Y, ?, ?, 0.0>)
(5, <X, Y, ?, 0.0, 0.0>)
(6, <X, Y, ?, 0.0, 0.0>)
(11, <X, Y, ?, Y, 0.0>)
(12, <X, Y, ?, Y, 0.0>)

= (12, <?>)
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Another example projection
Proj(C2, T1) = Proj((12, {total}), T1)

= Proj((12, {total}), (1, <?, ?, ?, ?, ?>)
(2, <?, ?, ?, ?, ?>)
(3, <X, Y, ?, ?, ?>)
(4, <X, Y, ?, ?, 0.0>)
(5, <X, Y, ?, 0.0, 0.0>)
(6, <X, Y, ?, 0.0, 0.0>)
(11, <X, Y, ?, Y, 0.0>)
(12, <X, Y, ?, Y, 0.0>)

= (12, <0.0>)
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Yet another example projection

Proj(C3, T2) = Proj((9, {x}), T2)
= Proj((9, {x}), (1, <?, ?, ?, ?, ?>)

(2, <?, ?, ?, ?, ?>)
(3, <X, Y, ?, ?, ?>)
(4, <X, Y, ?, ?, 0.0>)
(7, <X, Y, ?, 0.0, 0.0>)
(8, <X, Y, ?, 0.0, 0.0>)
(9, <X, Y, Z, 0.0, 0.0>)
(10, <X, Y, Z, 0.0, X*Y>)
(11, <X, Y, Z, 0.0, X*Y>)
(12, <X, Y, Z, 0.0, X*Y>)

= (9, <X>)
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Formal definition of a slice
Definition 6.6: A slice S of a program P on a slicing criterion
C = (i, V) is any executable program satisfying the following
two properties:

(a) S can be obtained from P by deleting zero or more
statement from P.
(b) Whenever P halts on an input I with value trace T, S
also halts on input I with value trace T', and Proj(C, T) =
Proj(C', T'), where C' = (i', V), and i' = i if statement i is in the
slice, or i' is the nearest successor to i otherwise.
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Example

Again, consider P, the example program listed in
the next slide, and the slicing criterion C1 = (12,
{z}).  According to the above definition, S1 is a
slice because if we execute P with any input x = X
such that X £ 1, it will produce the value trace T1,
and as given previously, Proj(C1, T1) = (12, <?>).
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Example program P
1  begin

           2    read(x, y);
           3    total := 0.0;
           4    sum := 0.0;
           5    if x <= 1
           6      then sum := y
           7      else begin
           8             read(z);
           9             total := x*y
          10           end;
          11    write(total, sum)
          12  end.
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Example (continued)

Now if we execute S1 with the same input, it should yield
the following value trace:
T'1: (1, <?, ?, ?, ?, ?>)

(2, <?, ?, ?, ?, ?>)
(5, <X, Y, ?, ?, ?>)
(6, <X, Y, ?, ?, ?>)
(12, <X, Y, ? , ?>)
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Example (continued)

Since statement 12 exists in P as well as S1, C1 = C'1, and

Proj(C'1, T'1) = ((12, {z}),  T'1)
= (1, <?, ?, ?, ?, ?>)

(2, <?, ?, ?, ?, ?>)
(5, <X, Y, ?, ?, ?>)
(6, <X, Y, ?, ?, ?>)
(12, <X, Y, ?, ?, ?>)

= (12, <?>)
= Proj(C1, T1)
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Example (continued)

Hence S1 is a slice of P.

As yet another example in which C  C’, consider
C = (11, {z}). Since statement 11 is not in S1, C'
will have to be set to (12, {z}) instead because
statement 12 is the nearest successor of 11.
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Comment

There can be many different slices for a given
program and slicing criterion.  There is always at
least one slice for a given slicing criterion -- the
program itself.
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Comment

The above definition of a slice is not constructive
in that it does not say how to find one.  The
smaller the slice the better. However, finding
minimal slices is equivalent to solving  the halting
problem -- it is impossible.
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Code Inspection

Code inspection (walk-through) is a process
designed to assure high quality of the software
produced.  It should be carried out after the first
clean compilation of the code to be inspected, and
before any formal testing is done on that code.
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Objectives

(a) to find logic errors,
(b) to verify the technical accuracy and completeness

of the code,
(c) to verify that the programming language definition

used conforms to that of the compiler to be used
by the customer,
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Objectives (continued)

(d) to ensure that no conflicting assumptions 
or design decisions have been made in 
different parts of the code, and

(e) to ensure that good coding practices and 
standards are used, and the code is easily 
understandable.
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The team should include

(a) the designer who will answer any question,
(b) the moderator who ensures that any discussion is

topical and productive,
(c) the paraphraser who steps through the code and

paraphrase it in English, and
(d) the librarian or recorder.
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Material needed

(a) program listings and design documents,
(b) a list of assumptions and decisions made in

coding, and
(c) a participant-prepared list of problems and

minor errors.
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Comment

The purpose of a code inspection should not be to
evaluate the competence of the author of the code,
or to unnecessarily criticize coding style.  The
style of the code should not be discussed unless it
prevents the code from meeting the objectives of
the code inspection.
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Products
(a) a summary report which briefly describes the

problems found during the inspection,
(b) a form for listing each problem found so that its

disposition or resolution can be recorded, and
(c) a list of updates made to the specifications and

changes made to the code.
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Reinspect when

(a) a nontrivial change to the code is required, or
(b) the number of problems found exceeds one for

every 25 non-commentary lines of the code.
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Reschedule when
(a) any mandatory participant can not be in attendance,
(b) the material needed for inspection is not made available to

the participants in time for preparation,
(c) there is a strong evidence to indicate that the participants

are not properly prepared,
(d) the moderator can not function effectively for some

reason, or
(e) material given to the participants is found to be not up-to-

date.
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Comment

The process described above is to be carried out manually.  Some
part of which, however, can be done more readily if  proper tools
are available.

For example, in preparation for a code inspection, if the
programmer find it difficult to understand certain parts of the source
code, software tools can be used to facilitate understanding.  Such
tools can be built based on the program analysis method described
in Sec. 1.6, and the technique of program slicing outlined in the
next section.
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Proving Programs Correct

A common task in program verification is to show
that, for a given program S, if a certain
precondition  Q is true before the execution of S
then a certain postcondition  R is true after the
execution, provided that S terminates.  This
proposition is commonly denoted by
Q{S}R for short.

S

Q

R
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Proving Programs Correct (continued)

If we succeeded in showing that Q{S}R is a
theorem (i.e., always true), then to show that S is
partially correct, with respect to some input
predicate I and output predicate Ø, is to show that
I ⊃ Q and R ⊃ Ø.

S

I

∅

Q

R
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Two alternative approaches

Verification of correctness can be carried out in two ways:
Given S, I, and Ø we may first let R ≡ Ø and show

that Q{S}Ø for some predicate Q, and then show
that I ⊃ Q.

Alternatively, we may let Q ≡ I and show that I{S}R
for some predicate R, and then show that R ⊃ Ø.
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Bottom-up approach

In the first approach the basic problem is to find as
weak as possible a condition Q such that Q{S}Ø
and I ⊃ Q.

A possible solution is to use the method of
predicate transformation to find the weakest
precondition.
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Top-down approach

In the second approach the problem is to find as
strong as possible a condition R so that I{S}R and
R ⊃  Ø.  This problem is fundamental to the
method of inductive assertions.

S

I

∅

Q
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Assumption about the language used

We assume that programs are written in a
language consisting of the following statements:
(1) assignment statements: x := e;
(2) conditional statements: if B then S else S';
(3) repetitive statements: while B do S;
and a program is constructed by concatenating
such statements.
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INTDIV: an example program

INTDIV: begin
q := 0;
r := x;

  while r ≥ y do
begin

r := r - y;
q := q + 1

end
end.



©J. C. Huang 2009 Software Error Detection - Chapter 6 80

Example

Suppose we wish to verify that program INTDIV
is partially correct with respect to input predicate
I: x ≥ 0 ∧ y > 0 and output predicate ∅: x = r + q ×
y ∧ r < y ∧ r ≥ 0, i.e., to prove that

(x≥0 ∧ y>0){INTDIV}(x=r+q×y ∧ r<y ∧ r≥0)

is a theorem.
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The Predicate Transformation Method:
Bottom-Up Approach

Recall that in the first approach, given S, I, and Ø,
the basic problem is to find as weak as possible a
condition Q such that Q{S}Ø,  and then determine
if  I ⊃ Q.

S

I

∅

Q
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Weakest precondition

Let S be a programming construct and R be a
predicate or condition (henceforth we shall use the
terms predicate, condition, and logical expression
interchangeably).  Then wp(S, R) denotes the
weakest precondition  for the initial state such that
an execution of S will properly terminate, leaving
it in a final state satisfying the condition R.
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wp(S, R)

is called a predicate transformer and has the following
properties:
1. For any S, wp(S, F) ≡ F
2. For any program S and any predicates S, Q, and R, if

Q ⊃ R then wp(S, Q) ⊃ wp(S, R).
3. For any programming construct S and any predicates

Q and R, (wp(S, Q) ∧ wp(S, R)) ≡ wp(S, Q ∧ R).
4. For any deterministic programming construct S 

and any predicates Q and R,
(wp(S, Q) ∨ wp(S, R)) ≡ wp(S, Q ∨ R).
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skip and abort
We shall define two special statements:  skip and
abort.

The statement  skip is the same as the null statement in a
high-level language, or the "no-op" instruction in an
assembly language.  Its meaning can be given as
wp(skip, R) ≡ R for any predicate R.

The statement  abort, when executed, will not lead to a
final state.  Its meaning is defined as wp(abort, R) ≡ F
for any predicate R.



©J. C. Huang 2009 Software Error Detection - Chapter 6 85

wp(x:=E, R) ≡ RE→x

R x := E RE→x simplified to
x = 0 x := 0 0 = 0 T
a > 1 x := 10 a > 1 a > 1
x < 10 x := x + 1 x + 1 < 10 x < 9
x ≠ y x := x - y x - y ≠ y x ≠ 2y
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wp(S1;S2, R)

For a sequence of two programming constructs S1
and S2,

wp(S1;S2, R) ≡ wp(S1, wp(S2, R)).
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wp(if B then S1 else S2, R)

wp(if B then S1 else S2, R) ≡
B∧wp(S1, R) ∨ ¬B∧wp(S2, R).
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wp(while B do S, R)

wp(while B do S, R) ≡ (∃j)j≥0(Aj(R)),
where

A0(R) ≡ ¬B∧R and
Aj+1(R) ≡ B∧wp(S, Aj(R)) for all j ≥ 0.
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Example: proving INTDIV correct

We first compute
wp(while r ≥ y do begin r := r - y; q := q + 1 end,
x = r + q × y ∧ r < y ∧ r ≥ 0)

where B ≡ r ≥ y
 R ≡ x = r + q × y ∧ r < y ∧ r ≥ 0

S:  r := r - y; q := q + 1;



©J. C. Huang 2009 Software Error Detection - Chapter 6 90

Example (continued)

A0(R) ≡ ¬B∧R
≡ r < y ∧ x = r + q × y ∧ r < y ∧ r ≥ 0
≡ x = r + q × y ∧ r < y ∧ r ≥ 0

A1(R) ≡ B∧wp(S, A0(R))
≡ r ≥ y ∧ wp(r := r - y; q := q + 1, x = r + q × y

∧ r < y ∧ r ≥ 0)
≡ r ≥ y ∧ x = r - y + (q + 1) × y ∧ r - y < y

∧ r - y ≥ 0
≡ x = r + q × y ∧ r < 2 × y ∧ r ≥ y
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Example (continued)

A2(R) ≡ B∧wp(S, A1(R))
≡ x = r + q × y ∧ r < 3 × y ∧ r ≥ 2 × y

A3(R) ≡ B∧wp(S, A2(R))
≡ x = r + q × y ∧ r < 4 × y ∧ r ≥ 3 × y
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Example (continued)

From these we may guess that
Aj(R) ≡ B∧wp(S, Aj-1(R))

≡ x = r + q × y ∧ r < (j+1) × y ∧ r ≥ j × y

and we have to prove that our guess is correct by
mathematical induction.
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Example (continued)

Assume that Aj(R) is as given above, then
A0(R) ≡ x = r + q × y ∧ r < (0+1) × y ∧ r ≥ 0 × y

≡ x = r + q × y ∧ r < y ∧ r ≥ 0
Aj+1(R) ≡ B∧wp(S, Aj(R))

  ≡ r ≥ y ∧ wp(r := r - y; q := q + 1, x = r + q ×
y ∧ r < (j+1) × y ∧ r ≥ j × y)

  ≡ r ≥ y ∧ x = r - y + (q + 1) × y ∧ r - y < (j+1)
× y ∧ r - y ≥ j × y

  ≡ x = r+q×y ∧ r<((j+1)+1)×y ∧ r≥(j+1)×y
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Example (continued)

These two instances of Aj(R) show that if Aj(R) is
correct then Aj+1(R) is also correct as given above.
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Example (continued)

Hence

wp(while r ≥ y do begin r := r - y; q := q + 1 end,
x = r + q × y ∧ r < y ∧ r ≥ 0)

≡ (∃j)j≥0(Aj(R))
≡ (∃j)j≥0(x = r + q × y ∧ r < (j+1) × y ∧ r ≥ j × y)
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Example (continued)

wp(q:=0; r:=x,  (∃j)j≥0(x=r+q×y∧r<(j+1)×y∧r≥j×y))
≡ (∃j)j≥0(x < (j+1) × y ∧ x ≥ j × y)

which is implied by  x ≥ 0 ∧ y > 0, and hence the
proof that the following is a theorem:

(x≥0 ∧ y>0){INTDIV}(x=r+q×y ∧ r<y ∧ r≥0).
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Partial correctness and strong
verification

Recall that Q{S}R is a shorthand notation for the
proposition: "if Q is true before the execution of S then R
is true after the execution, provided that S terminates".
Termination of the program has to be proved separately.

If Q ≡ wp(S, R), however, termination of the program is
guaranteed.  In that case, we can write Q[S]R instead,
which is a shorthand notation for the proposition: "if Q is
true before the execution of S then R is true after the
execution of S, and the execution will terminate".
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The  Inductive Assertion Method:
Top-Down Approach

In the top-down approach, given a program S and
a predicates Q, the basic problem is to find as
strong as possible a condition R such that Q{S}R.

S

R

Q
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Assignment statement

If S is an assignment statement of the form x := E,
where x is a variable and E is an expression, we
have

Q{x := E}(Q' ∧ x = E')x'→E-1

where Q' and E' are obtained from Q and E,
respectively, by replacing every occurrence of x
with x', and then replace every occurrence of x'
with E-1, such that x = E' ≡ x' = E-1.
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Given Q and x := E,
construct (Q' ∧ x = E')x'→E-1 as follows.

1. Write Q ∧ x = E.
2. Replace every occurrence of x in Q and E with x' to yield

Q' ∧ x = E'.
3. If x' occurs in E' then construct x' = E-1 from x = E'  such

that x = E' ≡ x' = E-1, else E-1 does not exist.
4. If E-1 exists then replace every occurrence of x' in Q' ∧ x =

E' with E-1.  Otherwise, replace every atomic predicate in
Q' ∧ x = E' having at least one occurrence of x' with T (the
constant predicate TRUE).
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Example

Q   x:=E    (Q'∧x=E')x'→E-1 simplified to
x = 0   x := 10   T ∧ x = 10 x = 10
a > 1   x := 1   a > 1 ∧ x = 1 a > 1 ∧ x = 1
x < 10  x := x + 1   x - 1 < 10 x < 11
x ≠ y   x := x - y   x + y ≠ y x ≠ 0
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A notational convention

As explained earlier, it is convenient to use |-P to
denote the fact that P is a theorem (i.e., always
true).

A verification rule may be stated in the form "if |-
X then |-Y," which says that if proposition X has
been proved as a theorem then Y also is thereby
proved as a theorem.
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An important fact

Note that  Q[S]R ⊃ Q{S}R, but not the other way
around.

Can you prove that Q[S]R ⊄ Q{S}R?
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Rule 1:

For an assignment statement of the form x := E

|-Q{x := E}(Q' ∧ x = E')x'→E-1
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Rule 2:

For a conditional statement of the form
if B then S1 else S2

If |-Q∧B{S1}R1 and |-Q∧¬B{S2}R2

then |-Q{if B then S1 else S2}R1∨R2.
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Rule 3

For a loop construct of the form while B do S

If |-Q ⊃ R and |-(R∧B){S}R
then |-Q{while B do S}(¬Β ∧ R).

This rule is commonly known as the invariant-relation
theorem, and any predicate R satisfying the premise is
called a  loop invariant  of the loop construct while B
do S.
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The top-down strategy

Thus the partial correctness of program S with
respect to input condition I and output condition Ø
can be proved by showing that I{S}Q and Q ⊃ Ø.

S

I

∅

Q
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The proof can be constructed in smaller
steps

if S is a long sequence of statements.  Specifically,
if S is S1;S2; ... ;Sn then I{S1;S2; ... ;Sn}Ø can be
proved by showing that I{S1}P1, P1{S2}P2, ... , and
Pn-1{Sn}Ø for some predicates P1, P2, ... , and Pn-1.
Pis  are called inductive assertions, and this
method of proving program correctness is called
the inductive assertion method.
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Proof requires guesswork

Required inductive assertions for constructing a
proof often have to be found by guesswork, based
on one's understanding of the program in question,
especially if a loop construct is involved.  No
algorithm for this purpose exists, although some
heuristics have been developed to aid the search.
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Proving the correctness of INTDIV

I: x ≥ 0 ∧ y > 0
begin

q := 0;
r := x;

  while r ≥ y do
begin r := r - y; q := q + 1 end

end.
∅: x = r + q × y ∧ r ≥ 0 ∧ r < y
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Proving INTDIV (continued)
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I: x ≥ 0 ∧ y > 0

begin
q := 0;
 x ≥ 0 ∧ y > 0 ∧ q = 0 (by Rule 1)
r := x;

  while r ≥ y do
begin r := r - y; q := q + 1 end

end.
∅: x = r + q × y ∧ r ≥ 0 ∧ r < y
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Proving INTDIV (continued)

I: x ≥ 0 ∧ y > 0
begin

q := 0;
 x ≥ 0 ∧ y > 0 ∧ q = 0
r := x;
 x ≥ 0 ∧ y > 0 ∧ q = 0 ∧ r = x (by Rule 1)

  while r ≥ y do
begin r := r - y; q := q + 1 end

end.
∅: x = r + q × y ∧ r ≥ 0 ∧ r < y



©J. C. Huang 2009 Software Error Detection - Chapter 6 114

Proving INTDIV (continued)

I: x ≥ 0 ∧ y > 0
begin

q := 0;
r := x;
x ≥ 0 ∧ y > 0 ∧ q = 0 ∧ r = x

  while r ≥ y do
begin r := r - y; q := q + 1 end

x = r + q × y ∧ r ≥ 0 ∧ r < y
end.
∅: x = r + q × y ∧ r ≥ 0 ∧ r < y
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Proving INTDIV (continued)

Obviously
x = r + q × y ∧ r ≥ 0 ∧ r < y

 implies (in fact it is identical to)
∅

and hence the proof.



©J. C. Huang 2009 Software Error Detection - Chapter 6 116

Comment on the above method

There are many variations to the inductive-
assertion method.  The above version is designed,
as an integral part of this section, to show that a
correctness proof can be constructed in a top-
down manner.  As such, we assume that a program
is composed of a concatenation of statements, and
an inductive assertion is to be inserted between
such statements only.
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Comment (continued)

The problem is that most programs contain nested
loops and compound statements, which may
render applications of Rules 2 and 3 hopelessly
complicated.

The complication induced by nested loops and
compound statements can be eliminated by
representing the program as a flowchart.
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A variation of the inductive assertion method

In this method, the program is represented as a
flowchart, and appropriate assertions are placed on
various points in the control flow.  These
assertions "cut" the flowchart into a set of paths.
A path  between assertions Q and R is formed by a
single sequence of statements that will be
executed if the control flow traverses from Q to R
in an execution, and contains no other assertions.
It is possible that Q and R are the same.
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x := E

Basic path 1

Q

R

Associated lemma: (Q' ∧ x = E')x'→E-1 ⊃ R
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Basic path 2

B

Q

T
R

Associated lemma: Q ∧ B ⊃ R
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Basic path 3

B

Q

Associated lemma: Q ∧ ¬B ⊃ R

F
R
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The proof

In this method, we shall let the input predicate be
the starting assertion at the program entry, and let
the output predicate be the ending assertion at the
program exit.  To prove the correctness of the
program is to show that every lemma associated
with a basic path is a theorem.
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The proof (continued)

If we succeeded in doing that, then due to
transitivity of the implication relation, it implies
that, if the input predicate is true at the program
entry, the output predicate will be true also if and
when the control reaches the exit (i.e., if the
execution terminates).  Therefore it constitutes a
proof of the partial correctness of the program.
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The proof (continued)

In practice, we work with composite paths instead
of simple paths to reduce the number of lemma
needs to be proved.  A composite path is a path
formed by a concatenation of more than one
simple path.  The lemma associated with a
composite path can be constructed by observing
that the effect produced by a composite path is the
conjunction of that produced by its constituent
simple paths.
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The proof (continued)

At least one assertion should be inserted into each
loop so that any path is of finite length.

S
B

T F
x
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Flowchart of program INTDIV

q := 0

r := x

r := r - y

q := q + 1
r ! yT F

A: x ! 0 and y > 0

C: x = r + q * y

and r < y and r ! 0

B: x = r + q * y and r ! 0 and y > 0

Entry

Exit
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Example (continued)

Three assertions are used: A is the input predicate, C is
the output predicate, and B is the assertion used to cut
the loop. Assertion B cannot be simply q = 0 and r = x
because B is not merely the ending point of path AB, it
is also the beginning and ending points of path BB.
Therefore, we have to guess the assertion at that point
that will lead us to a successful proof.  In this case, it is
not difficult to guess because the output predicate
provides a strong hint as to what we need at that point.
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Example (continued)

There are three paths: AB, BB, and BC.

Path AB: x ≥ 0 ∧ y > 0 ∧ q = 0 ∧ r = x ⊃ x = r + q *
y ∧ r ≥ 0 ∧ y > 0

Path BB: x = r + q*y ∧ r ≥ 0 ∧ y > 0 ∧ r ≥ y ∧ r' = r -
y ∧ q' = q + 1 ⊃ x = r' + q' * y ∧ r' ≥ 0 ∧ y > 0

Path BC: x = r + q * y ∧ r ≥ 0 ∧ y > 0 ∧ ¬(r ≥ y) ⊃ x
= r + q * y ∧ r < y ∧ r ≥ 0
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Example (continued)

These three lemmas can be readily proved as
follows.

Lemma for Path AB:  Substitute 0 for q and r for x in
the consequence.

Lemma for Path BB: Eliminate q' and r' and
simplify.

Lemma for Path BC: Use the fact that ¬(r ≥ y) is r <
y, and simplify.
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Common error

A common error made in constructing a correctness
proof is that the guessed assertion is either  stronger or
weaker than what is needed. Let P be the correct
inductive assertion to use in proving I{S1;S2}O, that is,
I{S1}P and P{S2}O are both a theorem.  If the guessed
assertion is too weak, say, P ∨ Δ, where Δ is some
extraneous predicate, I{S1}(P∨Δ) is still a theorem, but
(P∨Δ){S2}O may not be.  On the other hand, if the
guessed assertion is too strong, say, P ∧ Δ, (P∧Δ){S2}O
is still a theorem but I{S1}(P∧Δ) may not be.
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Common error (continued)

Consequently, if one failed to construct a proof by
using the inductive assertion method, it does not
necessarily mean that the program is incorrect.
Failure of a proof could result either from an
incorrect program or incorrect choices of
inductive assertions.  In comparison, the bottom-
up (predicate transformation) method does not
have this disadvantage.


