
Chapter 3
Specification-Based Test-Case

Selection Methods

J. C. Huang
Department of Computer Science

University of Houston

©J. C. Huang 2009 Software Error Detection - Ch. 3 2

Basic idea

Test cases can also be selected based
on the information extracted from
the program specification.

The two principles of test-case
selection are applicable just like in
selecting test cases based on the
source code.

©J. C. Huang 2009 Software Error Detection - Ch. 3 3

Specification-based vs.
source-code based

Critics of the code-based test-case
selection methods often claim that
specification-based methods are
better because, if the source code did
not implement some part of the
specification, a code-based method
will never yield a test case to reveal
what is missing.

©J. C. Huang 2009 Software Error Detection - Ch. 3 4

Specification-based vs.
source-code based

That is true.

But the fact is that the programmer is
not only capable of making mistakes
by omission but also by commission
as well.

©J. C. Huang 2009 Software Error Detection - Ch. 3 5

Specification-based vs.
source-code based

For example, the programmer often
partition the input domain into more
subdomains prescribed by the
specification.

In that case, errors in some
subdomain may not be detected by
the test cases selected based on the
specification alone.

©J. C. Huang 2009 Software Error Detection - Ch. 3 6

Specification-based vs.
source-code based

Therefore, it is more accurate to say
the code-based methods complement
the specification-based methods.

Certain types of fault cannot be
detected by using the code-based
methods alone, and certain types of
faults cannot be detected by using
the specification-based methods
alone.

©J. C. Huang 2009 Software Error Detection - Ch. 3 7

Specification-based vs.
source-code based

It is harder and costlier to select test
cases based on the program
specification because the specification
is often written in a natural language.

©J. C. Huang 2009 Software Error Detection - Ch. 3 8

Basic idea

The specification-based methods can
be similarly developed by applying
the two principles.

It involves identification of the
components to be exercised during
the test, and selection of test cases
that are computationally as loosely
coupled among one another as
possible.

©J. C. Huang 2009 Software Error Detection - Ch. 3 9

An important difference

Because execution paths cannot be
readily identified in a program
specification, different schemes have
to be devised to find test cases that
are computationally loosely coupled.

©J. C. Huang 2009 Software Error Detection - Ch. 3 10

Constructs of interest

What constructs in a program spec.
can be used to select test cases?

Condition clauses and action clauses

A condition clause is an expression
that can be true or false.

An action clause is an expression
that prescribes an action to be taken
by the program during execution.

©J. C. Huang 2009 Software Error Detection - Ch. 3 11

Example

Specification 3.1:
Write a program that takes three
positive integers as input and
determine if they represent three sides
of a triangle, and if they do, indicate
what type of triangle it is. To be more
specific, it should read three integers
and set a flag as follows:

©J. C. Huang 2009 Software Error Detection - Ch. 3 12

Example (continued)

if they represent a scalene triangle then
set the flag to 1,

if they represent an isosceles triangle
then set the flag to 2,

if they represent an equilateral triangle
then set the flag to 3,

and if they do not represent a triangle
then set the flag to 4.

©J. C. Huang 2009 Software Error Detection - Ch. 3 13

Example (continued)

We can see that in this specification
there are four condition clauses:

They represent a scalene triangle
They represent a isosceles triangle
They represent an equilateral triangle
They do not represent a triangle at all

©J. C. Huang 2009 Software Error Detection - Ch. 3 14

Example (continued)

and four action clauses:

Set the flag to 1
Set the flag to 2
Set the flag to 3
Set the flag to 4

©J. C. Huang 2009 Software Error Detection - Ch. 3 15

Example (continued)

Such clauses can be used to find out
how the function implemented by the
program can be decomposed into a set
of subprograms. We can then choose
the subprograms as the components to
be exercised during the test.

©J. C. Huang 2009 Software Error Detection - Ch. 3 16

Theoretical significance

A program can be viewed as an artifact
that embodies a mathematical function
f: X → Y, where f is often
implemented as a set of n subfunctions

f = {f1, f2, ..., fn},
fi: Xi → Y, and
X = X1 ∪ X2 ∪ ... ∪ Xn.

Thus we can choose fis as the
components to be exercised.

©J. C. Huang 2009 Software Error Detection - Ch. 3 17

The two principles

In applying the two principles to
develop methods for test-case
selection, we can choose fis as the
components to be exercised.

Note that if two test cases exercise two
different subfunctions they will also be
loosely coupled computationally as
well because they will be processed by
two different subprograms.

©J. C. Huang 2009 Software Error Detection - Ch. 3 18

Methods to be discussed

• Subfunction testing
• Predicate testing
• Boundary-value analysis
• Error guessing

©J. C. Huang 2009 Software Error Detection - Ch. 3 19

Subfunction testing

The components to be exercised are the
subfunctions to be implemented by the
program.

The test set should consist of at least one
element from each subdomain.

To be more precise, if the specification
says that f: X → Y is the function to be
implemented, f = {f1, f2, ... fn}, fi: Xi → Y
and X = X1 ∪ X2, ∪ ... ∪ Xn then the test
should contain at least one element from
each and every Xi.

©J. C. Huang 2009 Software Error Detection - Ch. 3 20

Subfunction testing (continued)

We assume that subfunction fi will
compute its value for every element in
Xi by performing the same sequence of
operations. Otherwise fi has to be
further decomposed until this property
is satisfied.

©J. C. Huang 2009 Software Error Detection - Ch. 3 21

Subfunction testing (continued)

A subfunction test therefore will cause
every component in the specification to
be exercised at least once, and all test
cases will be computationally loosely
coupled.

©J. C. Huang 2009 Software Error Detection - Ch. 3 22

Example 1 (continued)

Consider Specification 3.1.

The input domain is the set of all
triples of the form <x1, x2, x3>, where
xi ≥ MININT and xi ≤ MAXINT for all
i = 1, 2, and 3.

©J. C. Huang 2009 Software Error Detection - Ch. 3 23

Example 1 (continued)

It is obvious from the specification that the input
domain X has to be partitioned into four
subdomains, viz., X = X1 ∪ X2 ∪ X3 ∪ X4, such
that

X1 = {<x1, x2, x3> | <x1, x2, x3> ∈ X ∧
TRIANGLE(x1, x2, x3) ∧ SCALENE(x1, x2, x3)}

X2 = {<x1, x2, x3> | <x1, x2, x3> ∈ X ∧
TRIANGLE(x1, x2, x3) ∧ ISOSCELES(x1, x2, x3)}

X3 = {<x1, x2, x3> | <x1, x2, x3> ∈ X ∧
TRIANGLE(x1, x2, x3) ∧ EQUILATERAL(x1, x2,
x3)}

X4 = {<x1, x2, x3> | <x1, x2, x3> ∈ X ∧
TRIANGLE(x1, x2, x3) ∧ ¬TRIANGLE(x1, x2,
x3)}

©J. C. Huang 2009 Software Error Detection - Ch. 3 24

Example 1 (continued)

where

TRIANGLE(x1, x2, x3) ≡ x1>0 ∧ x2>0 ∧
x3>0 ∧ x1+x2>x3 ∧ x2+x3>x1 ∧ x3+x1>x2

SCALENE(x1, x2, x3) ≡ x1≠x2 ∧ x2≠x3 ∧
x3≠x1

ISOSCELES(x1, x2, x3) ≡ x1=x2 ∧ x2≠x3 ∧
x3≠x1 ∨ x1≠x2 ∧ x2=x3 ∧ x3≠x1 ∨ x1≠x2 ∧
x2≠x3 ∧ x3=x1

EQUILATERAL(x1, x2, x3) ≡ x1=x2 ∧
x2=x3 ∧ x3=x1

©J. C. Huang 2009 Software Error Detection - Ch. 3 25

Example 1 (continued)

For this example, to do subfunction testing,
therefore, is simply to test-execute the
program with a test set consisting of four
test cases, one each from subdomains X1,
X2, X3, and X4.

A possible test set would be T = {<3, 4, 5>,
<3, 3, 4>, <7, 7, 7>, <2, 3, 6>}.

The four subfunctions to be exercised, f1,
f2, f3, and f4 are "set flag to 1", "set flag to
2", "set flag to 3", and "set flag to 4",
respectively.

©J. C. Huang 2009 Software Error Detection - Ch. 3 26

Example 2

Construct a test set based on the
program specification given below.

©J. C. Huang 2009 Software Error Detection - Ch. 3 27

Example 2 (continued)

Specification 3.2:

Given a text terminated by an ENDOFTEXT
character and consisting of words separated by
BLANK or NEWLINE characters, reformat it to a
line-by-line form in accordance with the
following rules: (1) line breaks are made only
where the given text has BLANK or NEWLINE;
(2) each line is filled as far as possible as long as
(3) no line will contain more than MAXPOS
characters.

The resulting text should contain no blank lines.
Set the alarm and terminate the program if the
text contains an oversized word.

©J. C. Huang 2009 Software Error Detection - Ch. 3 28

Example 2 (continued)

We shall identify the input domain first.

It is assumed that the input text is read by
the program one character at a time.
Therefore, the input is the set of all ASCII
characters, assuming that the input is to be
provided through a keyboard. We can
start by partitioning the input domain into
three subdomains, XEW, XET, and XAN,

©J. C. Huang 2009 Software Error Detection - Ch. 3 29

Example 2 (continued)

where
XEW: the set of end-of-the-word markers

in the input text consisting of
BLANK (white space) and
NEWLINE characters.

XET: the set consisting of end-of-the-text
marker.

XAN: the set consisting of all
alphanumerical characters and
punctuation marks that may appear
in the input text.

©J. C. Huang 2009 Software Error Detection - Ch. 3 30

Example 2 (continued)

So let us examine what the program
needs to do if we partition the input
domain into a set of subdomains as
listed in Table 3.1.

©J. C. Huang 2009 Software Error Detection - Ch. 3 31

f3x ∈ XAN3

f2x ∈ XET2

f1x ∈ XEW1

subfunctiondomain
predicatesubdomain

Table 3.1
A trial partition of the input domain

©J. C. Huang 2009 Software Error Detection - Ch. 3 32

[The input character is either a blank or new-line]
if wordlength > 0 then

begin
if linelength + wordlength ≥ MAXPOS then

begin
write(newline);
linelength := wordlength

end
else

begin
write(blank);
linelength := linelength + wordlength

end;
write(word);
wordlength := 0;

end;
read(char);

f1 (in Table 3.1)

©J. C. Huang 2009 Software Error Detection - Ch. 3 33

f2 (in Table 3.1)

[The input character is an end-of-the-
text mark]
if wordlength + linelength ≥ MAXPOS
then

write(newline);
else

write(blank);
write(word);
write(char);
exit;

©J. C. Huang 2009 Software Error Detection - Ch. 3 34

[The input character is alphanumeric]
append(char, word);
wordlength := wordlength + 1;.
if wordlength > MAXPOS then

begin
write(alarm);
exit

end
else

read(char);

f3 (in Table 3.1)

©J. C. Huang 2009 Software Error Detection - Ch. 3 35

Example 2 (continued)

Note that the description of every
subfunction listed in Table 3.1 contains
an "if" statement, indicating that the
inputs in the same subdomain may be
processed by different sequences of
operations. This is due to the fact that
what needs to be done for a particular
input is not only dependent on its
membership in a particular subdomain
but also on the previous inputs as well.

©J. C. Huang 2009 Software Error Detection - Ch. 3 36

f3.2
x ∈ XAN and

wordlength≤MAXPOS
3.2

f3.1
x ∈ XAN and

wordlength>MAXPOS
3.1

f2.2

x ∈ XET and
wordlength+linelength

< MAXPOS
2.2

f2.1

x ∈ XET and
wordlength+linelength

≥ MAXPOS
2.1

f1.2

x ∈ XEW
and

wordlength ≤ 0
1.2

f1.1

x ∈ XEW
and

wordlength > 0
1.1

subfunctiondomain predicatesubdomain

Table 3.2 Further partitioning of the input domain.

©J. C. Huang 2009 Software Error Detection - Ch. 3 37

f1.1 (in Table 3.2)

[The input character is either a blank or new-line
 which marks the end of current word]
if linelength + wordlength ≥ MAXPOS then

begin
write(newline);
linelength := wordlength

end
else

begin
write(blank);
linelength := linelength + wordlength

end;
write(word);
wordlength := 0;
read(char);

©J. C. Huang 2009 Software Error Detection - Ch. 3 38

f1.2 (in Table 3.2)

[The input character is either a blank or
new-line which is redundant]
read(char);

©J. C. Huang 2009 Software Error Detection - Ch. 3 39

f2.1 (in Table 3.2)

[The input character is an end of the
text mark and the current word is too
long to be written on the current line]
write(newline);
write(word);
write(char);
exit;

©J. C. Huang 2009 Software Error Detection - Ch. 3 40

f2.2 (in Table 3.2)

[The input character is an end of the text
mark and the current word can be
written on the current line]
write(blank);
write(word);
write(char);
exit;

©J. C. Huang 2009 Software Error Detection - Ch. 3 41

f3.1 (in Table 3.2)

[The input character is alphanumeric
and the current word is too long]
append(char, word);
wordlength := wordlength + 1;
write(alarm);

©J. C. Huang 2009 Software Error Detection - Ch. 3 42

f3.2 (in Table 3.2)

[The input character is alphanumeric
and the current word is not too long]
append(char, word);
wordlength := wordlength + 1;.
read(char);

©J. C. Huang 2009 Software Error Detection - Ch. 3 43

Example 2 (continued)

Subdomain X1.1 has to be partitioned
further because the description of f1.1
has to make use of a branch statement.

©J. C. Huang 2009 Software Error Detection - Ch. 3 44

f3.2
x ∈ XAN and
wordlength≤MAXPOS

3.2

f3.1
x ∈ XAN and
wordlength>MAXPOS

3.1

f2.2
x ∈ XET and
wordlength+linelength
< MAXPOS

2.2

f2.1
x ∈ XET and
wordlength+linelength
≥ MAXPOS

2.1

f1.2
x ∈ XEW and
wordlength ≤ 0

1.2

f1.1.2
x ∈ XEW and
wordlength > 0 and
linelength+wordlength
< MAXPOS

1.1.2

f1.1.1
x ∈ XEW and
wordlength > 0 and
linelength+wordlength
≥ MAXPOS

1.1.1
subfunctiondomain predicatesubdomain

Table 3.3
A complete partitioning of the input domain.

©J. C. Huang 2009 Software Error Detection - Ch. 3 45

f1.1.1 (in Table 3.3)

[The input character is either a blank or
new-line]
write(newline);
linelength := wordlength;
write(word);
wordlength := 0;
read(char);

©J. C. Huang 2009 Software Error Detection - Ch. 3 46

f1.1.2 (in Table 3.3)

[The input character is either a blank or
new-line]
write(blank);
linelength := linelength + wordlength;
write(word);
wordlength := 0;
read(char);

©J. C. Huang 2009 Software Error Detection - Ch. 3 47

f1.2 (in Table 3.3)

[The input character is either a blank or
new-line which is redundant]
read(char);

©J. C. Huang 2009 Software Error Detection - Ch. 3 48

f2.1 (in Table 3.3)

[The input character is an end of the
text mark and the current word is too
long to be written on the current line]
write(newline);
write(word);
write(char);
exit;

©J. C. Huang 2009 Software Error Detection - Ch. 3 49

f2.2 (in Table 3.3)

[The input character is an end of the
text mark and the current word can be
written on the current line]
write(blank);
write(word);
write(char);
exit

©J. C. Huang 2009 Software Error Detection - Ch. 3 50

f3.1 (in Table 3.3)

[The input character is alphanumeric
and the current word is too long]
append(char, word);
wordlength := wordlength + 1;
write(alarm);
exit;

©J. C. Huang 2009 Software Error Detection - Ch. 3 51

f3.2 (in Table 3.3)

[The input character is alphanumeric
and the current word is not too long]
append(char, word);
wordlength := wordlength + 1;.
read(char);

©J. C. Huang 2009 Software Error Detection - Ch. 3 52

Example 2 (continued)

Alternatively, necessary context for the
program to determine what to do for a
particular input character can also be
provided by defining the input domain
as a set of sequences of two characters
instead of single characters. For
example, consider Specification 3.2
again. Since X, the set of all possible
input characters, can be partitioned into
three subdomains, the set of sequences
of two characters, XX, can be
partitioned into 3 × 3 = 9 subdomains
as shown below.

©J. C. Huang 2009 Software Error Detection - Ch. 3 53

Example 2 (continued)

X = XAN ∪ XET ∪ XEW

XX
= (XAN ∪ XET ∪ XEW)(XAN ∪ XET ∪ XEW)
= XANXAN ∪ XANXET ∪ XANXEW

∪ XETXAN ∪ XETXET ∪ XETXEW

∪ XEWXAN ∪ XEWXET ∪ XEWXEW

©J. C. Huang 2009 Software Error Detection - Ch. 3 54

f9xi-1xi ∈ XEWXEW9
f8xi-1xi ∈ XEWXET8
f7xi-1xi ∈ XEWXAN7
f6xi-1xi ∈ XETXEW6
f5xi-1xi ∈ XETXET5
f4xi-1xi ∈ XETXAN4
f3xi-1xi ∈ XANXEW3
f2xi-1xi ∈ XANXET2
f1xi-1xi ∈ XANXAN1
subfunctiondomain predicatesubdomain

Table 3.4 A trial partitioning
of the input domain as a set of pairs.

In the above, xi is the current character and xi-1 is
to the character read just before the current one.

©J. C. Huang 2009 Software Error Detection - Ch. 3 55

f1 (in Table 3.4)

[The current character is part of a new word]
append(char, word);
wordlength := wordlength + 1;
if wordlength > MAXPOS then
begin

write(alarm);
exit

end
else

read(char);

©J. C. Huang 2009 Software Error Detection - Ch. 3 56

f2 (in Table 3.4)

[The current character marks the end of
the text]
append(char, word);
if linelength + wordlength ≥ MAXPOS
then

write(newline);
write(word);
exit;

©J. C. Huang 2009 Software Error Detection - Ch. 3 57

f3 (in Table 3.4)

[The current character marks the end of a new
word]
if linelength + wordlength ≥ MAXPOS then

begin
write(newline);
linelength := 0

end
else

write(blank);
write(word);
linelength := linelength + wordlength;
wordlength := 0;
read(char);

©J. C. Huang 2009 Software Error Detection - Ch. 3 58

f4, f5, f6 (in Table 3.4)

[The current character is redundant]
No reaction is expected from the
program.

©J. C. Huang 2009 Software Error Detection - Ch. 3 59

f7 (in Table 3.4)

[The current character is the beginning
of a new word]
append(char, word);

©J. C. Huang 2009 Software Error Detection - Ch. 3 60

f8 (in Table 3.4)

[The current character marks the end of
the input text that has a space or new-
line character at the end]
write(char);
exit;

©J. C. Huang 2009 Software Error Detection - Ch. 3 61

f9 (in Table 3.4)

[The current character is redundant]
read(char);

©J. C. Huang 2009 Software Error Detection - Ch. 3 62

Example 2 (continued)

Subdomains 1, 2, and 3 need to be
further partitioned to eliminate the
need of using conditional statements in
describing the subfunctions to be
performed. By repeating the
partitioning procedure illustrated
above, we obtain Table 3.5.

©J. C. Huang 2009 Software Error Detection - Ch. 3 63

f9xi-1xi∈XEWXEW9
f8xi-1xi∈XEWXET8
f7xi-1xi∈XEWXAN7
f6xi-1xi∈XETXEW6
f5xi-1xi∈XETXET5
f4xi-1xi∈XETXAN4

f3.2
xi-1xi∈XANXEW and
linelength+wordlength<MAXPOS3.2

f3.1
xi-1xi∈XANXEW and
linelength+wordlength≥MAXPOS3.1

f2.2
xi-1xi∈XANXET and
linelength+wordlength<MAXPOS2.2

f2.1
xi-1xi∈XANXET and
 linelength+wordlength≥MAXPOS2.1

f1.2
xi-1xi∈XANXAN and
wordlength ≤ MAXPOS1.2

f1.1
xi-1xi∈XANXAN and
wordlength > MAXPOS1.1

Subfunc.domain predicateSubdom.

Table 3.5 A complete partitioning of the input pairs.

©J. C. Huang 2009 Software Error Detection - Ch. 3 64

f1.1 (in Table 3.5)

[The current character is part of a new
word which is too long]
append(char, word);
wordlength := wordlength + 1;
write(alarm);
exit;

©J. C. Huang 2009 Software Error Detection - Ch. 3 65

f1.2 (in Table 3.5)

[The current character is part of a new
word of proper length]
append(char, word);
wordlength := wordlength + 1;
read(char);

©J. C. Huang 2009 Software Error Detection - Ch. 3 66

f2.1 (in Table 3.5)

[The current character marks the end of
the text and the last word has to be
written on the next line]
append(char, word);
write(newline);
write(word);
exit;

©J. C. Huang 2009 Software Error Detection - Ch. 3 67

f2.2 (in Table 3.5)

[The current character marks the end of
the text and there is enough room on
the current line to write the last word]
append(char, word);
write(word);
exit;

©J. C. Huang 2009 Software Error Detection - Ch. 3 68

f3.1 (in Table 3.5)

[The current character marks the end of
a new word which has to be written on
the next line]
write(newline);
write(word);
linelength := wordlength;
wordlength := 0;
read(char);

©J. C. Huang 2009 Software Error Detection - Ch. 3 69

f3.2 (in Table 3.5)

[The current character marks the end of
a new word which can be written on
the current line]
write(blank);
write(word);
linelength := linelength + wordlength;
wordlength := 0;
read(char);

©J. C. Huang 2009 Software Error Detection - Ch. 3 70

f4, f5, f6 (in Table 3.5)

[The current character is redundant]
No reaction is expected from the
program.

©J. C. Huang 2009 Software Error Detection - Ch. 3 71

f7 (in Table 3.5)

[The current character is the beginning
of a new word]
append(char, word);
wordlength := wordlength + 1;
read(char);

©J. C. Huang 2009 Software Error Detection - Ch. 3 72

f8 (in Table 3.5)

[The current character marks the end of
the input text that has a space or new-
line character at the end]
write(char);
exit;

©J. C. Huang 2009 Software Error Detection - Ch. 3 73

f9 (in Table 3.5)

[The current character is redundant]
read(char);

©J. C. Huang 2009 Software Error Detection - Ch. 3 74

Example 2 (continued)

Based on the above analysis, to do a
subfunction test on the program
specified by Specification 3.2,
therefore, is to test the program with a
set of texts that satisfies all 12 domain
predicates listed in Table 3.5.

©J. C. Huang 2009 Software Error Detection - Ch. 3 75

Predicate testing

In subfunction testing, we find domain
predicates that partition the input
domain into a set of subdomains in
which those subfunctions are defined,
and then select one element from each
of these subdomains. For example, if
C1 and C2 are the domain predicates,
there will be four possible combinations
of these two domain predicates, viz., C1
∧ C2, C1 ∧ ¬C2, ¬C1 ∧ C2, and ¬C1 ∧
¬C2. To do subfunction testing is to test
the program with one test case from
each subdomain defined by C1 ∧ C2, C1
∧ ¬C2, ¬C1 ∧ C2, and ¬C1 ∧ ¬C2.

©J. C. Huang 2009 Software Error Detection - Ch. 3 76

Predicate testing (continued)

In predicate testing, the components to
be exercised are domain predicates.
We exercise each domain predicate
with two test cases, one that makes the
predicate true, and another that makes
the predicate false. For instance, if we
find two domain predicates C1 and C2
in the specification, to do predicate
testing is to test the program with four
test cases, each individually satisfying
C1, ¬C1, C2, and ¬C2, respectively.

©J. C. Huang 2009 Software Error Detection - Ch. 3 77

Predicate testing (continued)

Since the selection of test cases is done
piecemeal, some combination of C1
and C2 may not have a representative
element in the resulting set of test
cases. For example, we might select x1
and x2 to satisfy C1 and ¬C1, and select
x3 and x4 to satisfy C2 and ¬C2,
respectively. If it turns out that x1, x2,
x3, and x4 individually satisfy C1 ∧ C2,
¬C1 ∧ ¬C2, ¬C1 ∧ C2, C1 ∧ ¬C2,
respectively, then it would be perfect.
It would be just the same as doing a
subfunction test.

©J. C. Huang 2009 Software Error Detection - Ch. 3 78

Predicate testing (continued)

But since the selection of x1 and x2 are
done independent of the selection of x3
and x4, we might end up selecting x1
that satisfies C1 ∧ C2, x2 that satisfies
¬C1 ∧ ¬C2, x3 that satisfies C1 ∧ C2,
and x4 that satisfies ¬C1 ∧ ¬C2. The
net effect is that the four test cases
would come from two of the four
subdomains only!

©J. C. Huang 2009 Software Error Detection - Ch. 3 79

Predicate testing (continued)

What is wrong with testing the
program with four test cases from two
of the four subdomains?

There is nothing to guarantee that any
of the four pairs, (x1, x3), (x1, x4), (x2,
x3), and (x2, x4) are loosely coupled
computationally.

©J. C. Huang 2009 Software Error Detection - Ch. 3 80

Predicate testing (continued)

In order to enhance the fault-discovery
capability of the method, take all
domain predicates into consideration
when the test cases are being selected.
Every time a test case is selected, make
note of the subdomain to which it
belongs, and avoid selecting a test case
from any subdomain that is already
represented, if all possible.

©J. C. Huang 2009 Software Error Detection - Ch. 3 81

Predicate testing (continued)

The present method can be viewed as a
counter-part of branch testing
presented in the preceding chapter. If
the counter part of any of the domain
predicate identified in this method
cannot be found in the source code, it
should be investigated because it is an
indication that the programmer might
have neglected to implement some part
of the program specification.

©J. C. Huang 2009 Software Error Detection - Ch. 3 82

Boundary-value analysis

In this method the test cases are
selected to exercise the limits or
constraints imposed on the program
input/output that can be found in, or
derived from, the program
specification.

©J. C. Huang 2009 Software Error Detection - Ch. 3 83

Boundary-value analysis (continued)

In abstract, the input (output) domain is
an infinite and multiple-dimensional
space. In practice, it is partitioned into
two major subdomains containing valid
and invalid inputs (outputs).

©J. C. Huang 2009 Software Error Detection - Ch. 3 84

Boundary-value analysis (continued)

In this method, a multiple of test cases
are to be selected near or on the
boundaries of each subdomain.

Select test cases that lie directly on,
above, and beneath the boundaries of
input and output variables to explore
the program behavior along the border.

©J. C. Huang 2009 Software Error Detection - Ch. 3 85

Boundary-value analysis (continued)

In particular

(1) If an input variable is defined in a
range from the lower bound LB to
the upper bound UB, use LB, UB,
LB - δ, and UB + δ, where δ
stands for the smallest value
assumable by the variable, as the
test cases.

(2) Use rule (1) for each and every
output variable.

©J. C. Huang 2009 Software Error Detection - Ch. 3 86

Boundary-value analysis (continued)

(3) If the input or output of a program
is a sequence, focus attention on
the first and last element of the
sequence, the sequence that is of
zero/maximum length.

(4) Use one's ingenuity to search for
additional boundary values.

©J. C. Huang 2009 Software Error Detection - Ch. 3 87

Boundary-value analysis (continued)

The rationale: If the program is
implemented properly and the operating
system does what it is supposed to do
while the program is being tested, the
computational steps taken at LB, LB-δ,
UB, and UB+δ of a datum used in the
program should be significantly different
than other points. That means the test
cases selected at these points will be
loosely coupled computationally. Hence
the test cases so chosen will have an
enhanced capacity for fault discovery.

©J. C. Huang 2009 Software Error Detection - Ch. 3 88

Error guessing

We have been using the strategy of
building an effective test set by adding
to the set being constructed a new
element that is loosely coupled to any
other element already in the set. A
new element is loosely coupled to
other elements if it is to be processed
by a different sequence of operations,
or if it is located on, or near, the border
of a domain as discussed in the
preceding sections.

©J. C. Huang 2009 Software Error Detection - Ch. 3 89

Error guessing (continued)

We avoid choosing two elements from
the same subdomain. In general such
inputs are computationally tightly
coupled because they will be processed
by the same sequence of operations.
But if we know a subfunction well, we
may be able to find two inputs that are
not tightly coupled even if they belong
to the same subdomain.

©J. C. Huang 2009 Software Error Detection - Ch. 3 90

Error guessing (continued)

For example, if we know that the
program input is a file and that file
could be empty, that empty-file input
will be loosely coupled to other non-
empty inputs.

©J. C. Huang 2009 Software Error Detection - Ch. 3 91

Error guessing (continued)

If we know that the arithmetic
operation of division is included in
computing a subfunction, we know that
input that causes the divisor to become
zero will be loosely coupled to other
elements in the same subdomain.

©J. C. Huang 2009 Software Error Detection - Ch. 3 92

Error guessing (continued)

If we know that the author of the
program has the tendency to commit
missed-by-one error in composing a
loop construct, the input that causes a
loop to iterate zero or one time will be
loosely coupled to the others.

©J. C. Huang 2009 Software Error Detection - Ch. 3 93

Error guessing (continued)

If we know that one of the subfunctions
specified in the program specification
has a mathematical pole at a certain point
in the input domain, that input will be
loosely coupled to others.

©J. C. Huang 2009 Software Error Detection - Ch. 3 94

Error guessing (continued)

There are faults that can be found based
on the knowledge about the skill or habit
of the programmer, the programming
language used, the programming
environment in which the program will
be developed and deployed, the
intricacies in the application domain, and
common sense about computer
programming. We call that error-
guessing if new test cases are found in
the ways just mentioned.

©J. C. Huang 2009 Software Error Detection - Ch. 3 95

Error guessing (continued)

For example, consider Specification
3.2 again. The tester may choose test
cases to determine if the program will
work correctly for

• an input text of length zero,
• a text containing no ENDOFTEXT

character,
• a text containing a word of length

MAXPOS,
• a text containing a very long word (of

length greater than MAXPOS),
• a text containing nothing but

BLANK's and NEWLINE's,

©J. C. Huang 2009 Software Error Detection - Ch. 3 96

Error guessing (continued)

• a text with an empty line,
• words separated by two or more

consecutive BLANK's or
NEWLINE's,

• a line with BLANK as the first or last
character,

• a text containing digits or special
characters,

• a text containing nonprintable
characters,

• MAXPOS set to a number greater
than the system default line length.

©J. C. Huang 2009 Software Error Detection - Ch. 3 97

Tools

Tools for the specification-based
methods must have the capability to
process the language in which the
design/specification is written. Since
such documents are usually written in a
natural language, the required
capability (of natural language
processing) would be costly to acquire.

©J. C. Huang 2009 Software Error Detection - Ch. 3 98

Tools (continued)

Furthermore, the specification of a
program usually does not contain all
information needed to complete the
test-case selection process. Some of
that has to be derived from the
documents by inference or from the
facts available from other sources.

The cost of building such tools can
hardly be justified in most situations.

©J. C. Huang 2009 Software Error Detection - Ch. 3 99

Tools (continued)

The analysis required to do test-case
selection is similar to that required in
doing detailed design.

The cost can be reduced by doing the
test-case selection while doing the
program design.

©J. C. Huang 2009 Software Error Detection - Ch. 3 100

Automation

Generally speaking, automation of any
of the specification-based test-case
selection methods is difficult, and is
not the most effective way to reduce
the cost. It is the (software
engineering) practice of building test
cases whenever possible, and
especially at the detail program design
stage, that will lead to a significant
reduction in the cost of testing.

