
Chapter 1
Preliminaries

J. C. Huang
Department of Computer Science

University of Houston

©J. C. Huang 2009 Software Error Detection – Chapter 1 2

The central problem

Given a computer program, how can we determine
whether or not it will do exactly what it is intended
to do?

©J. C. Huang 2009 Software Error Detection – Chapter 1 3

Ideal solution

An ideal solution to this problem would be to
develop certain techniques that can be used to
construct the formal proof (or disproof) of the
correctness of a program systematically.

©J. C. Huang 2009 Software Error Detection – Chapter 1 4

The reality

There have been considerable efforts to develop such
techniques, and many different techniques for
proving program correctness have been reported as
the results. However, none of them has been
developed to the point where it can be used in
practice at a reasonable cost.

©J. C. Huang 2009 Software Error Detection – Chapter 1 5

A practical solution: testing

At present, a practical and more intuitive solution
would be to test-execute the program with a number
of test cases (input data) to see if it will do what it is
intended to do.

©J. C. Huang 2009 Software Error Detection – Chapter 1 6

Definition

By program testing here we mean a process in which
we attempt to determine if a program will do what it
is intended to do by actually executing it with a
number of inputs.

©J. C. Huang 2009 Software Error Detection – Chapter 1 7

The goals of program testing

We may want to test-execute a program in order to

• discover errors (debug testing), or

• assess the reliability (operational testing).

©J. C. Huang 2009 Software Error Detection – Chapter 1 8

Exhaustive testing

Perhaps the most intuitive (and seemingly plausible)
alternative is to consider the program as a black box
and test it for all possible input cases to see if it will
produce the correct outputs. This test strategy is
commonly referred to as exhaustive testing.

A successful exhaustive test constitutes a direct proof of the correctness.

©J. C. Huang 2009 Software Error Detection – Chapter 1 9

Exhaustive testing (continued)

Unfortunately, it is impractical to do exhaustive
testing on any real program because the number of
test cases involved is prohibitively large.

©J. C. Huang 2009 Software Error Detection – Chapter 1 10

Exhaustive testing (continued)

For example, consider a program that takes three
(short) integers as input, such as Program 1.0.1 in the
text. The number of possible inputs is

 216 × 216 × 216 = 248 ≈ 256 × 1012

If we can test-execute the program at the rate of one
microsecond per test-execution in average, it would
take about 8 years, 24/7, to complete!

©J. C. Huang 2009 Software Error Detection – Chapter 1 11

Exhaustive test (continued)

This example clearly indicates that exhaustive
testing is impractical. In general, we will never have
enough time and resources to do that.

In practice, we have to settle for testing the program
with a manageably small subset of the input domain.

©J. C. Huang 2009 Software Error Detection – Chapter 1 12

The central problem

Test-case selection is the central problem in program
testing.

How do we select test cases? It depends, among
other things, the reason why we wish to test the
program.

©J. C. Huang 2009 Software Error Detection – Chapter 1 13

Debug vs. operational testing

Debug testing is performed by a software developer
to improve reliability of a product by detecting and
removing latent faults in the program.

Operational testing is performed by an expert user to
assess the reliability of a program when an accurate
assessment is needed to decide whether to pay the
vendor, or to use the program for production run.

©J. C. Huang 2009 Software Error Detection – Chapter 1 14

The problem of test-case selection

For debug testing, we need to find a set of test cases
that, in the aggregate, has a high probability of
revealing at least one latent fault in the program.

For operational testing, we need to find a set of test
cases having the highest probabilities of being used
in production runs. (More about this in Chapter 4)

©J. C. Huang 2009 Software Error Detection – Chapter 1 15

Importance of the problem

The problem of test-case selection is central to the
study of debug testing. The essence is to maximize
the fault-discovery probability with a minimal set of
test cases.

The way the test cases are selected affects the cost
and effectiveness of a test to a great extent.

©J. C. Huang 2009 Software Error Detection – Chapter 1 16

Some terminologies

The input domain of a program is the set of all
possible inputs to the program, each of which is
sufficient to cause the program to be executed
completely.

For example, the input domain of Program 1.1 is
D = {<x, y, z> | x, y, and z are 16-bit integers}

©J. C. Huang 2009 Software Error Detection – Chapter 1 17

Program 1.1
main ()
{
int i, j, k, match;
cin >> i >> j >> k;
cout << i << j << k;
if (i <= 0 || j <= 0 || k <= 0
|| i+j <= k || j+k <= i || k+i <= j)
match = 4;
else if !(i == j || j == k || k == i)
match = 3;
else if (i != j || j != k || k != i)
match = 2;
else match = 1;
cout << match << endl;
}

©J. C. Huang 2009 Software Error Detection – Chapter 1 18

Some terminologies (continued)

An input (data) is an element of the input domain.

A test case is an input used to perform a test
execution.

The set of all test cases used in testing is called a test
set.

©J. C. Huang 2009 Software Error Detection – Chapter 1 19

OK(P, d)

Let D be the input domain of a given program P, let
d be an element of D, and let OK(P, d) be a predicate
that becomes TRUE if an execution of program P
with input d terminates and produces a correct result,
and FALSE otherwise. Predicate OK(P, d) can be
shortened to OK(d) if the omission of P would not
lead to any confusion.

©J. C. Huang 2009 Software Error Detection – Chapter 1 20

Oracle

An oracle is some contraption that can be used to
determine if the test result is correct.

Example:
The target-practice equipment used in testing the software
that controls a computerized gun sight is a good example of
an oracle. When the gun is fired at the target, a "hit" indicates
the test is successful, and a "miss" indicates otherwise.

©J. C. Huang 2009 Software Error Detection – Chapter 1 21

Successful test

A test using test set T is said to be successful if the
program terminates and produces a correct result for
every test cases in T. Formally, a successful test,
denoted by predicate SUCCESSFUL(T), is defined as

SUCCESSFUL(T) ≡ (∀t)T(OK(t))
The test fails if at least one input causes the program to
produce incorrect result, i.e.,

¬SUCCESSFUL(T) ≡ (∃t)T(¬OK(t))

©J. C. Huang 2009 Software Error Detection – Chapter 1 22

Maximizing the probability

Suppose we wish to construct T = {t1, t2, …, tn}, a
test set of n elements. The probability that at least
one fault will be revealed is

p(¬OK(t1)∨¬OK(t2) … ∨¬OK(tn))
= p((∃t)T(¬OK(t)))
= 1 - p((∀t)T(OK(t)))

This probability is what we wish to optimize in the
process of test-case selection.

©J. C. Huang 2009 Software Error Detection – Chapter 1 23

Maximizing the probability (continued)

To see how we may optimize, suppose we somehow
choose test case t1 to test the program first, and then
select another test case t2 to test the program further.
What relationship must hold between t1 and t2 so that
the joint fault discovery probability is arguably
enhanced?

©J. C. Huang 2009 Software Error Detection – Chapter 1 24

Maximizing the probability (continued)

Note that
p(¬OK(t1)∨¬OK(t2))

= p(¬(OK(t1)∧OK(t2)))
= p(¬(OK(t2)∧OK(t1)))
= 1 - p(OK(t2)∧OK(t1))
= 1 - p(OK(t2)|OK(t1))p(OK(t1))

Obviously we can increase this probability by
choosing some t2 with small p(OK(t2)|OK(t1)).

©J. C. Huang 2009 Software Error Detection – Chapter 1 25

Maximizing the probability (continued)

We define
δ(t1, t2) = p(OK(t2)|OK(t1)) - p(OK(t2))

as the computational coupling coefficient between
the two inputs t1 and t2.

©J. C. Huang 2009 Software Error Detection – Chapter 1 26

Maximizing the probability (continued)

It can be shown that
 p(¬OK(t1)∨¬OK(t2))

= 1 - δ(t1, t2)p(OK(t1)) - p(OK(t2))p(OK(t1))
The tester cannot change p(OK(t1)) or p(OK(t2))
because these are intrinsic to the program, but can
choose t2 to change the value of δ(t1, t2): the smaller
this coefficient is, the greater the value of the fault-
discovery probability p(¬OK(t1)∨¬OK(t2)).

©J. C. Huang 2009 Software Error Detection – Chapter 1 27

Maximizing the probability (continued)

δ(t1, t2) = 0 if p(OK(t2)|OK(t1)) = p(OK(t2)), i.e., if
OK(t1) and OK(t2) are two totally independent
events.

The events OK(t1) and OK(t2) probably would never
be totally independent because they may reflect the
competence of the same (team of) programmer(s).

©J. C. Huang 2009 Software Error Detection – Chapter 1 28

Maximizing the probability (continued)

Nevertheless, we can make δ(t1, t2) as small as
possible by choosing t2 in such a way that the
sequences of programming components invoked by
t1 and t2 be as different as possible.

In words, the choice of t2 should be such that it is
computationally as loosely coupled to t1 as possible.

©J. C. Huang 2009 Software Error Detection – Chapter 1 29

Maximizing the probability (continued)

It is obvious that two test cases are computationally
loosely coupled if they cause the program to traverse
different paths, or to execute different sequences of
components.

This fact provides us a simple general rules for
selecting test cases.

©J. C. Huang 2009 Software Error Detection – Chapter 1 30

Definition of a component

How do we define the “component” just mentioned?

It could be a program statement, an execution path,
or a subsystem, depending on the size of the program
being tested, or the level of testing being performed.

It is chosen to determine the granularity of the
programming constructs being scrutinized.

©J. C. Huang 2009 Software Error Detection – Chapter 1 31

An important observation

• Not every program component is involved in a
test-execution.

• If there is a fault in a component, and that
component is not involved in a test-execution,
then that fault will not be reflected in the test
result.

• Thus a test set will have a higher probability of
revealing a fault if it will cause every component
in the program to be exercised at least once.

©J. C. Huang 2009 Software Error Detection – Chapter 1 32

First principle of test-case selection

In choosing a new element for the test set being
constructed, the preference should be given to those
candidates that are computationally as loosely
coupled as possible to the existing elements in the
set.

©J. C. Huang 2009 Software Error Detection – Chapter 1 33

Second principle of test-case selection

A test set should include enough elements to cause
every component in the program to be exercised at
least once during the test.

©J. C. Huang 2009 Software Error Detection – Chapter 1 34

How to choose initial elements?

The users and designers of the program often have
test cases to offer. Accept them as the initial
elements. Otherwise, choose as an input
• for which the program is likely to fail,
• for which some complex computation is required,
• that is most likely to be used in production run,
• for which the corresponding output is known, or
• any element in the input domain.

©J. C. Huang 2009 Software Error Detection – Chapter 1 35

A unified conceptual framework

Most existing methods for debug testing can be
seen as an instantiation of this general method:

1. Select an initial element, or set of initial elements,
as just explained.

2. Use the first principle of test-case selection to add
elements to the set repeatedly.

3. Use the second principle to determine when to
stop the process.

©J. C. Huang 2009 Software Error Detection – Chapter 1 36

Error classification

An error categorization scheme is useful if it
enables us to characterize a test method in terms
of error type for which it is particularly effective.

©J. C. Huang 2009 Software Error Detection – Chapter 1 37

A conceptual framework

In abstract, the intended function of a program can
be viewed as a function f of the nature f: X → Y.
The definition of f usually is expressed as a set of
subfunctions f1, f2, ..., fm, where

fi: Xi → Y
(i.e., fi is f restricted to Xi for all 1 ≤ i ≤ m),

X = X1 ∪ X2 ∪ ... ∪ Xm, and
fi ≠ fj if i ≠ j.

©J. C. Huang 2009 Software Error Detection – Chapter 1 38

A conceptual framework (continued)

We shall use f(x) to denote the value of f evaluated
at x ∈ X, and suppose that each Xi can be described
in the standard subset notation

Xi = {x | x ∈ X ∧ Ci(x)}.

©J. C. Huang 2009 Software Error Detection – Chapter 1 39

A conceptual framework (continued)

Note that, in the above, we require the
specification of f to be compact, i.e., fi ≠ fj if i ≠ j.
This requirement makes it easier to construct the
definition of a type of programming error in the
following. In practice, the specification of a
program may not be compact, i.e., fi may be
identical to fj for some i and j. Such a
specification, however, can be made compact by
merging Xi and Xj.

©J. C. Huang 2009 Software Error Detection – Chapter 1 40

A conceptual framework (continued)

Let (P, S) denote a program, where P is the condition under
which the program will be executed, and S is the sequence of
statements to be executed. Furthermore, let D be the set of all
possible inputs to the program. Then the (valid) input domain of
this program should be X = { x | x ∈ D ∧ P(x)}, and the program
should be composed of n paths, i.e.,

(P, S) = (P1, S1) + (P2, S2) + ... + (Pn, Sn),
such that for every 1 ≤ i ≤ n, Si is the sequence of statements
designed to compute fj for some 1 ≤ j ≤ m (note that n is not
necessarily equal to m).

©J. C. Huang 2009 Software Error Detection – Chapter 1 41

An error classification scheme

Two basic types of error may be committed in constructing
the program (P, S):

(1) Computational error: the program has a
computational error if

(∃i)(∃j)((Pi ⊃ Cj ∧ Si(x) ≠ fj(x)).

(2) Domain error: the program has a domain error if
¬(∀i)(∃j)(Pi ⊃ Cj).

Where S(x) denotes the output produced by executing S with
input x.

©J. C. Huang 2009 Software Error Detection – Chapter 1 42

Other published classifications

Previously published methods include that of
Goodenough and Gerhart [GOGE77], Howden
[HOWD76], and White and Cohen [WHCO80]. All
three include one more type of fault called subcase
or missing-path fault, which occurs when the
programmer failed to create a subdomain required by
the specification, i.e., when ¬(∀i)(∃j)(Ci⊂Pj). Since
such a fault also manifests as a computational fault,
it will be omitted in this work for simplicity.

©J. C. Huang 2009 Software Error Detection – Chapter 1 43

Tasks involved in testing

1. test-case selection,
2. test execution,
3. test-result analysis, and, if it is debug testing,
4. fault removal and regression testing.

©J. C. Huang 2009 Software Error Detection – Chapter 1 44

Test-case selection

1. Identify all input variables.
2. Identify all components to be exercised.
3. Find a set of inputs that will cause all components

to be exercised during the test.

The cost is proportional to the number of test
cases needed, and complexity of the analysis
required to find them.

©J. C. Huang 2009 Software Error Detection – Chapter 1 45

Test execution

Test execute the program to produce test results.

The cost is proportional to the execution time and
the number of test cases used.

©J. C. Huang 2009 Software Error Detection – Chapter 1 46

Test-result analysis

Record and analyze the test results.

The cost is proportional to the number of test
cases used, and the amount of effort needed to
find the correct output for each and every test
case.

