
Chapter 7
Program Instrumentation

J. C. Huang
Department of Computer Science

University of Houston



©J. C. Huang 2009 Software Error Detection - Chapter 7 2

Program instrumentation

The main ideal is to insert additional statements
(instruments) into the program to be tested for information
gathering purposes.

By test executing the instrumented program for a properly
chosen set of test cases, we will be able to obtain
additional information for error detection and test
management.
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Possible applications

• Test-coverage and test-case effectiveness
measurement

• Assertion checking

• Dataflow-anomaly detection

• Pathwise decomposition



©J. C. Huang 2009 Software Error Detection - Chapter 7 4

Possible measurements for test coverage:

C1: Each statement in the program is executed at
least once.

C2: Each branch in the flowchart is traversed at least
once.

C3: Each possible execution path is traversed at
least once.
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How can it be done?
1) Identify a set of points in the control flow such that, if we

know the number of times each point is crossed during
execution, we can determine the number of times each
statement is executed (or, each branch is traversed).

2) Instrument the program with software counters at these
points.

3) Test the program for a set of test cases.
4) Examine the counter values to determine the extent of

coverage achieved.
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How to build a software counter?

• It can be implemented by using a subroutine
(procedure) named, say, count(j).

• This subroutine makes use of an integer array
counter[1..n].

• Each element of this array is set to zero initially.
• A call of count(j) causes the value of counter[j] to

be increased by 1.
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Where to place the counters?

A possible answer is to place a counter on each
branch in the control-flow diagram that emanates
from an entry node or a node with outdegree of two
or greater.  This method is easy to apply; but the
number of counters required may not be minimum.
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Summary

We can measure the test coverage through
instrumentation as outlined above.

The contents of counters also indicate where the
optimization pay-off will be greater.
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Measuring the effectiveness of a test case

By the effectiveness of a test case we mean its
capability to reveal errors in the program.  A test
case is ineffective if it causes the program to
produce fortuitously correct results, even though
the program is erroneous.
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A cause of ineffectiveness

One reason why a program may produce a
fortuitously correct result is that it contains
expressions of the form exp1 op exp2, and the test
case used causes exp1 to assume a special value such
that exp1 op exp2  = exp1  regardless of the value of
exp2.  In that event, if there is an error in exp2, it will
never be reflected in the test result.
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if the test case used is such
that predicate P(x,y)
becomes true.

P(x, y) or Q(z)

if the test case used is such
that predicate P(x)
becomes false

P(x) and Q(y, z)

if the test case used is such
that a + b = 0

(a + b) * (c - d)

Examples
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Multifaceted expressions

We shall say such expressions are multifaceted and
such test cases singularly focused because to test-
execute a program with a test case is in many ways
like to inspect an object in the dark with a flash light.
If the light is singularly focused only on one facet of a
multifaceted object, the inspector would not be able to
see any flaw on the other facets.
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Singularity index

The singularity index of a test case with
respect to a program is defined as the number
of times that a test case is singularly focused
on the multifaceted expressions encountered
during a particular test run.
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Computation of singularity index

• To compute the singularity index of a test case
automatically, a thorough inspection and analysis
of every expression contained in the program is
required.

• If we limit ourselves to multifaceted expressions
of the form exp1 op exp2,  the instrumentation tool
can be designed to instrument every facet in a
multifaceted expression to count the number of
time a test case is singularly focused on a facet.
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Example

For example, suppose a statement in the
program contains the following expression:

  a * (c + (d / e)).
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Example (continued)

There are three facets in this expression,
viz., a, (c + (d / e)),and d.

A tool can be designed to instrument this
expression as follows.
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Example (continued)

if (a == 0) si++;

if ((c + (d / e)) == 0) si++;

if (d == 0) si++;

a * (c + (d / e));

Here si  is a variable used to store the singularity
index of the test case.
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Summary

We can measure the effectiveness of a test case as
outlined above.

Observe that, the higher the singularity index, the
lower the effectiveness of the test case.
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Assertion Checking

The intended function of a program can often be
expressed in terms of assertions that must be
satisfied, or values that must be assumed by
variables at certain strategic points in the program.

Software instruments can be used to monitor the
values of variables or to detect any violation of
assertions.
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The use of a special language

The instruments can be constructed by using
the host language. The use of a special
language, however, facilitates construction of
the instruments and makes it less error prone.
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The language of PET

For example, a special high-level language is used in
the Program Evaluator and Tester (PET) developed
by Stucki.  This language allows the user to describe
the desired instrumentation precisely and concisely.
A preprocessor in the PET translates all instruments
into statements in the host language before
compilation.
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Inserting instruments as comments

• An interesting feature of the PET is that all instruments are
inserted into the program as comments in the host
language.

• After the program is thoroughly tested and debugged, all
instruments can be removed simply by recompiling the
program without using the preprocessor.

• The instruments generally make the program more
readable, and thus need not be removed physically.
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PET syntax

Local Assertions:

ASSERT (extended logical expression)
[HALT on n [VIOLATIONS]]
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PET syntax (continued)

ASSERT ORDER (array cross-section)
 [ASCENDING | DESCENDING]

[HALT ON n VIOLATIONS]]

Examples:

ASSERT(MOVE .LT. 9) HALT ON 10
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PET report

The report produced by PET includes the total
number of time this instrument is executed, number
of times the assertion is violated, and the values of
MOVE that violated the assertion.
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Example assertions

ASSERT ORDER (A(*, 3)) ASCENDING

REMARK: If there is a violation of this assertion, the PET
produce a report indicating the array elements and their
values that caused the violation.
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Example assertions (continued)

TRACE [FIRST | LAST | OFF] n [VIOLATIONS]

NOTE: This construct allows the user to control the number
of execution snapshots reported for local assertion violations.
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Global Assertions

Global assertions can be used to replace the use of
several similar assertions within a particular program
region.  Such assertions appear in the declaration
section of the program module, and allow us to
extend our capacity to inspect certain behavioral
patterns for entire program modules.
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Examples of global assertions

ASSERT RANGE (list of variables) (min, max)
ASSERT VALUES (list of variables) (list of legal values)
ASSERT VALUES (list of variables) NOT (list of illegal

values)
ASSERT SUBSCRIPT RANGE (list of array specifications)
ASSERT NO SIDE EFFECTS (parameter list)
HALT ON n [VIOLATIONS]
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Monitors

MONITOR [NUMERIC | CHARACTER] 
[RANGE] FIRST [n VALUES]
LAST [n VALUES] [ALL | (list of variables)]

MONITOR SUBSCRIPT RANGE [ALL | (list of array
names)]
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Example monitors

MONITOR RANGE FIRST LAST ALL  

MONITOR CHARACTER RANGE (XV, YV)  

MONITOR RANGE (A(*, 3))  

MONITOR SUBSCRIPT RANGE (A, B, C)
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Comment

• Assertion checking is potentially an effective
means for error detection.

• A programmer, however, may find it difficult to
use in practice.  To be effective, the programmer
has to place right assertions at the right places in
the program, which is not easy to do.
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Comment (continued)

The problem of finding right assertions in this
application is the same as that in proving program
correctness.  There is no effective procedure for
this purpose.
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Comment (continued)

Thus, when a violation is detected, the user has to
find out if it is caused by a programming error, or
if it is the result of an incorrect assertion.  This
often is the source of frustration in using assertion
checking.
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Data flow analysis

During program execution, a statement may act on
a variable (datum) in three different ways, viz.,
define, reference, and undefine.
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Data flow analysis (continued)

A  variable is defined in a statement if an
execution of the statement assigns a value to that
variable.
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Data flow analysis (continued)

A variable is referenced in a statement if an
execution of the statement requires that the value
of that variable be fetched from memory.
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Example

Thus in the assignment statement

x := x + y - z

y and z are both referenced while x is first
referenced and then defined.
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Data flow analysis (continued)

A variable may become undefined, e.g., when
• a loop is terminated
• the control exit from a block
• when the control exit from a subprogram
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Normal sequence of DF events

A sequence of actions may be taken on a variable
in a program while it is being executed.  A
reference to a variable constitutes a programming
error unless the value of the variable is defined
previously.  Furthermore, there is  no need to
define a variable unless it is to be referenced (i.e.,
its value to  be used) later.
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Abnormal sequence of DF events
Therefore, if we find that a variable in a program
is

(1) undefined and then referenced,
(2) defined and then undefined, or
(3) defined  and then defined again,

we may reasonably conclude that a programming
error might have been committed.
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Dataflow anomalies
We shall say there is a dataflow anomaly (of ur,
du, or dd type, respectively,) if a variable is
– undefined and then referenced,
– defined and then undefined, or
– defined  and then defined again.
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Detection method - static

A static method for detecting data flow anomalies
has been developed by Fosdick et al. The basic
idea is to  compute the so-called path expressions
of paths in a flow graph by making use  of data
flow analysis algorithms developed in connection
with program optimization.



©J. C. Huang 2009 Software Error Detection - Chapter 7 44

Detection method - static

1. A path expression describes the sequence of
actions taken on a variable when the program is
executed along the path.

2. The presence of data flow anomalies can thus be
detected by examining the constituent
components of path expressions.
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Detection method - dynamic

It is useful to think of a variable as being in one of
four possible states during program  execution.
The four possible states are

state U: undefined,
state D: defined  but not referenced,
state R: defined and referenced, and
state A: abnormal state
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A finite-state machine model

 For error-detection purposes it is proper to assume
that a variable is  in the state of being undefined
when it is declared implicitly or explicitly.  Now if
the action taken on this variable is "define," then it
will enter the  state of being defined but not
referenced.  Then, depending on the next action
taken on this variable, it will assume a different
state as shown next.
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The state diagram
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The anomalous sequences

Note that each edge in this state diagram is
associated with d, r, or u, which  stand for
"define," "reference," and "undefine,"
respectively.
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Three types of dataflow anomaly

If a sequence of  actions taken on the variable
contains either ur, du, or dd as a subsequence,
the variable will enter state A, which indicates the
presence of a data flow  anomaly in the execution
path.
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Detection by monitoring state transition

We need only to know if the sequence of actions
contains ur, du, or dd as a  subsequence.  Since
such a subsequence will invariably cause the
variable to  enter state A, all we need to do is to
monitor the states assumed by the variable during
execution.
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Finite state machine model

S

q

q'

!

q’ = f(q, α)
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State transition function

f(q, aβ) = f(f(q, a), β)

E.g.,  f(U, dur) = f(f(U, d), ur)
= f(D, ur)
= f(f(D, u), r)
= f(A, r)
= A.
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S; q := f(q,  )!

Instrumented program

q := f(q, α) is the instrument
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An
example
program

begin

read x, y, e

print x, y, e

w := y - x

w < e

x := x + w / 3

y := y - w / 3

x := sqrt(w)

F T
...

. 

. 

.
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Instrumented
program

begin

read x, y, e

print x, y, e

w := y - x

w < e

x := x + w / 3

y := y - w / 3

x := sqrt(w)

F T

xstate:=U

xstate:=f(xstate,d)

xstate:=f(xstate,r)

xstate:=f(xstate,r)

xstate:=f(xstate,rd)

xstate:=f(xstate,d)

values of xstate
upon an execution

xstate = U

xstate = D

xstate = R

xstate = R

xstate = D

xstate = A
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Data flow of array elements

To instrument a program for detection of data
flow anomalies as described in the preceding
section, we need to be able to identify the actions
taken by  each statement in the program as well as
the objects of actions taken.  This requires
additional considerations if array elements are
involved.
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Data flow of array elements

The sequence of actions taken by a statement on a
subscripted variable can be determined as usual.
Identification of the object, however, may become a
problem if the subscript is a variable or an arithmetic
expression.  First, we do not know which element of the
array that variable is meant to be without looking
elsewhere.  Second, the object of action taken may be
different every time that statement is executed.
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Possible solution in static analysis

This problem becomes very difficult when data
flow anomalies are to be detected by means of
static analysis.

In the method described in [FOOS76], this
problem is circumvented entirely by ignoring
subscripts and treating all elements of an array as
if they were a single variable.
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Implication

Consider the familiar sequence of three statements
given below:

 temp := a[j];

a[j] := a[k];

a[k] := temp;
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Implication (continued)

It is obvious that the data flow for every variable
involved is not anomalous, provided j <> k.

If a[j] and a[k] are created as the same variable,
however, the data flow becomes anomalous
because it is defined and defined again by the last
two statements.
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Implication (continued)

This example shows that a false alarm may be
produced if we treat all elements of an array as if
they were a single variable.

False alarm is a nuisance, and most importantly, a
waste of programmer's time and effort. 
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Implication (continued)

In some cases, a data flow anomaly will not be
detected if we treat all elements of an array as if
they were a single variable
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Implication (continued)

For example, consider
 i:=1;

 while i<=10 do

begin a[i]:=a[i+1]; i:=i+1 end;

If a[i] is mistakenly written as a[1], the data flow for
a[1] becomes anomalous because it is repeatedly
defined ten times.  This is not so if all elements of
the array are treated as a single variable.
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Conclusion

• Separate handling of array elements is highly
desirable.

• The problem posed by array elements can be
easily solved if program instrumentation is used.

• The true object of actions can be determined
dynamically at the execution time.
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Implementation requirements

1. Need to allocate  a separate memory location to
each and every element in the array for the
purpose of storing the state presently assumed by
that element, and

2. Need to instrument the program with statements
that will change the state of the right array
element at the right place.
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Possible solution

One simple structure that can be used is to store
the states of elements of an array in the
corresponding elements of another array of the
same dimension.
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Example

For statement like

a[i, j] := a[i, k] * a[k, j]

the required instruments would be

 sta[i, k] := f(sta[i, k], r);

sta[k, j] := f(sta[k, j], r);

sta[i, j] := f(sta[i, j], d).
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Test-case selection problem

After having a program instrumented, as described in the
preceding sections, possible data flow anomalies can be
detected by executing the program for a properly chosen set
of input data.  The input data used determines the execution
paths and, therefore, affects the number of anomalies that can
be  detected in the process.  The question now is: how do we
select input data so that all data flow anomalies can be
detected?
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Possible solution

Roughly speaking, we need to select a set of input
data that will cause the program to be executed along
all possible execution paths that iterate a loop zero or
two times.
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Notational convention

Let α, β, and γ denote strings of d's, r's, and u's.  If α
is a string and n is a nonnegative  integer, then αn

denotes a string formed by concatenating n α's.

For any string α, α0 is defined to be an empty string
denoted by λ.
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Data flow on a loop

Now let us consider the data flow with respect to a
variable, say, x, on an execution path.  Let β
represent the sequence of actions taken on x by the
constituent statements of a loop on this path. If the
loop is iterated n times in an execution, then the
sequence of actions taken by this loop structure can
be represented by βn.
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Data flow on a loop (continued)

Thus, if the program is executed along this path, the
string representing the sequence of actions taken on
x will be of the form αβnγ.
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Data flow on a loop

Recall that to determine if there is a data flow
anomaly with respect to x is to determine if dd, du,
or ur is a substring of αβnγ.  Therefore, the  present
problem is to find the least integer k such that if αβn

γ (for some n > k) contains either dd, du, or ur as a
substring, then so does αβkγ.
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Substring relation

We shall use .substr. to denote the binary relation
"is a substring of".

Thus r .substr.  rrdru, and ur .substr. ddrurd.
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A theorem for simple loops

Theorem 7.1:  Let α, β, and γ be any nonempty
strings, and let τ be any string of two symbols.
Then, for any integer n > 0,

τ .substr.  αβnγ implies τ .substr.  αβ2γ
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Proof

For n > 0, τ can be a substring of αβnγ only if τ is a
substring of α, β, γ, αβ, ββ, or βγ.  However, all of
these are a substring of αβ2γ.  Thus the proof
immediately follows from the transitivity of the
binary relation .substr.. Q.E.D.
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How many iterations are required?

Theorem 7.1 says that, if there exists a data flow
anomaly on an execution path that traverses a loop
at least once, anomaly can be detected by iterating
the loop twice during  execution.



©J. C. Huang 2009 Software Error Detection - Chapter 7 78

How many iterations are required?

Such a data flow anomaly may not be detected by
iterating the loop  only once because dd, du, and
ur may be a substring of ββ, and  ββ is not
necessarily a substring of αβγ.
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How many iterations are required?

Observe that Theorem 7.1 does not hold for the
case n = 0.  This is so because τ .substr. αγ
implies that τ is a substring of α, γ, or αγ, and αγ
is not necessarily a substring of αβnγ for any n >
0.
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How many times… (continued)

The significance of this fact  is that a certain type
of data flow anomaly may not be detected if a
loop is traversed during execution.  Next figure
exemplifies this type of data flow anomaly.
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Example

d

d

rdr
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How many times… (continued)

In general, if the data flow anomaly is caused by
exclusion of a loop from the execution path, then
it may not be detected if the loop is traversed
during execution.
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How many times… (continued)

Based on Theorem 7.1 and the above discussion,
we can conclude that  to ensure detection of all
data flow anomalies, each loop in a program has
to be iterated zero and two times in execution.
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Loop consisting of multiple path

It is not intuitively clear how this result can be applied
to the cases where a loop consists of more than one
path.

For instance, if we have a path structure shown below,
we are certain that paths abbd, accd, and ad have to
be covered in input data  selection.  However, it is not
clear whether paths such as abbccd, abcbcd, or
abcd have to be covered.
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Multiple-path loop

1

2

3

a

d

b
c
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Multiple-path loop (continued)

According to the result presented above, we need
only to iterate the loop zero and two times in order to
ensure detection of all data flow anomalies.

Thus if a path description contains p* as a
subexpression, we can replace it with (λ + p2) to
yield the description of the paths that have to be
traversed in execution.
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Multiple-path loop (continued)

Does the same method apply if p is a description of a
set of two or more  paths?
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Multiple-path loop (continued)

The answer  hinges on whether or not we can extend
Theorem 7.1 to the cases where β is a set of strings.

It turns out that the answer is affirmative.
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Multiple-path loop (continued)

To see why this is so, we shall first restate
Theorem 7.1 for the cases where α, β, and γ are
sets of strings.
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A theorem for multiple-path loop

Theorem 7.2:  Let α, β, and γ be any nonempty sets
of nonempty strings, τ be any string of two symbols,
and n be an integer greater than zero.  If τ is a
substring of an element in αβnγ then τ is a substring
of an element in αβ2γ.
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Proof?

Theorem 7.2 is essentially the same as Theorem 7.1
except that the binary relation of "is a substring of"
is changed to that of "is a substring of an element
in."  As such, it can be proved in the same manner.
The proof of Theorem 7.1 mutatis mutandis  can be
used as the proof of Theorem 7.2.
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Zero-Two (ZT) subset
Given an expression E that describes a set of paths,
we can construct another expression E02 from E by
substituting (λ + p2) for every subexpression of the
form p* in E.

For example, if E is a*bc*d, then E02 is (λ + a2)b(λ +
c2)d.  The set of paths described by E02 is called a ZT
subset  of that  described by E.
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Summary

To ensure detection of all data flow anomalies, it
suffices to execute the instrumented program along
paths in a ZT subset of the set of all possible
execution paths.

How can this be achieved?
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Input data selection
Step 1:  Find all paths from the entry to the exit in the

flow chart of the  program.

Step 2:  Find a ZT subset of the set of paths found in
Step 1.

Step 3:  For each path in the set obtained in Step 2, find
input data that will cause the program to be
executed along that path.
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Comment on the state diagram

The state diagram shown previously is such that,
once a variable enters  state A, it will remain in that
state all the way to the end of the execution path.
This implies that, once  the data flow with respect to
a variable is  found to be anomalous at a certain
point, the error condition will be continuously
indicated throughout that particular execution.
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Comment on the state diagram

A possible alternative would be to abort the program
execution once a data flow anomaly is detected.
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The significance of an anomaly

The presence of a data flow anomaly does not imply
that execution of the program will definitely produce
incorrect results.  It  implies only that execution may
produce incorrect results.

Thus we may wish  to register the existence of a data
flow anomaly when it is detected and then  continue
to analyze the rest of the execution path.
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Reset the state (to R)

In that case, we can design the software instrument
in such a way that, once a variable enters  state A, it
will properly register the detection of a data flow
anomaly and  then reset the state of the variable to
state R, or use the alternative state diagram shown
next.
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An alternative state diagram
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Static vs. Dynamic methods

1. The present method is conceptually much
simpler than the static method and, therefore, is
much easier to implement.
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Static vs. Dynamic methods

2. From the nature of computation involved, it is
obvious that the present method requires a much
smaller program to implement it on a computer.



©J. C. Huang 2009 Software Error Detection - Chapter 7 102

Static vs. Dynamic methods

3. From the user's point of view, the present method
is easier to use and more efficient because it
produces information about the locations and
types of data flow anomalies in a single process.
In the method developed by Fosdick and
Osterweil, additional effort is required to locate
the anomaly once it is detected.
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Static vs. Dynamic methods

4. The present method can be readily applied to
monitor the data flow of elements of an array,
which cannot be adequately handled in the static
method.  Thus the present method has a greater
error-detection capability and will produce fewer
false warnings.
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Static vs. Dynamic methods

5. In the present method, there is no need to
determine the order in which the subroutines are
invoked, and thus the presence of a recursive
subprogram will not be a problem.
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Static vs. Dynamic methods

6. The method presented in this paper is particularly
advantageous if it is used in conjunction with a
conventional program test to enhance the error-
detection capability.  In a conventional test, a
program has to be exercised as thoroughly as
possible, and, therefore, the task of finding a
suitable set of input data to carry out the data flow
analysis will not be an extra burden to the
programmer.
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Static vs. Dynamic methods
7. It is difficult to compare the cost.  Very roughly

speaking, the cost of applying the static method is
linearly proportional to the number of statements in
the program whereas that of applying the present
method is linearly proportional to the execution time.
Therefore, it may be more economical to use the static
method if the program is of the type that consists of a
relatively small number of statements, but it takes a
long time to execute (viz., a program that iterates a
loop a great number of times is of this type).
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Trace subprogram generation
When a program is executed for a particular input,
the program output represents the external
behavior of the program.  To the end users of the
program, external behavior is all what it matters.
However, to a software engineer, it is often
important to understand its internal working as
well.  The internal behavior of the program (i.e.,
how it works to produce the output) can be readily
determined by examining the trace subprogram
associated with that execution path.
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Definition

A trace subprogram is a constrained subprogram
defined for some execution path in the program.

(see Chapter 5)
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Info provided by trace subprogram

• explicitly describes the path along which the program
is executed,

• displays the conditions that must be satisfied at various
points along the path, and

• clearly describes the computation performed in terms
of the statements executed.



©J. C. Huang 2009 Software Error Detection - Chapter 7 110

Generation of trace subprogram

First, we need to determine the format in which each
statement or predicate appears in a trace subprogram.
For this purpose, we shall use "TRACE(S) = t" as the
shorthand notation for "the trace subprogram of
statement S is t".

Listed below are TRACE(S) for different types of
statement in C language.
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Expression statement

TRACE(E;) = E

if  E  is an expression statement.

Examples:  The trace subprogram of assignment
statement  x = 1 is simply  x = 1 itself.
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Conditional statement

(a)   TRACE(if (P) S) = /\ P
          TRACE(S)   if P is true,

     TRACE(if (P) S) = /\ !(P)      otherwise.
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Example

The trace subprogram of statement
        if (c == '\n') ++n;

If c is '\n' (new line) then the trace subprogram is
/\ c == '\n'

   ++n;

Otherwise it is
         /\ !(c == '\n')
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Conditional statement

(b)   TRACE(if (P) S1 else S2)= /\ P
                             TRACE(S1)

if P is true,

        TRACE(IF (P) S1 else S2)= /\ !(P)

                      TRACE(S2)

otherwise.
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Conditional statement
(c) TRACE(if (P1) S1
             else if (P2) S2
             else if (P3) S3
                  .
                  .
                  .
             else if (Pn) Sn
             else Sn+1)

     = /\ !(P1)
       /\ !(P2)
              .
              .
              .
            /\ Pi
            TRACE(Si)

 if Pi is true for some 1 ≤ i ≤ n.
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WHILE statement
TRACE(while (B) S) =  /\ B

                        TRACE(S)

                        /\ B

                        TRACE(S)

                          .

                          .

                          .

                        /\ B

                        TRACE(S)

                        /\ !(B)
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For the following statements

i = 1;
while (i <=

3)
i = i + 1;

the trace subprogram is defined to
be

i = 1;
/\ i <= 3
i = i + 1;
/\ i <= 3
i = i + 1;
/\ i <= 3
i = i + 1;
/\ !(i <= 3)

Example
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DO statement

   TRACE(do S while (B)) =   TRACE(S)
                              /\ B

                              TRACE(S)

                              /\ B

                                 .

                                 .

                                 .

                              TRACE(S)

                              /\ !(B)
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FOR statement
TRACE(for (E1, E2, E3) S)= E1

                              /\ E2

                              TRACE(S)

                              E3

                              /\ E2

                              TRACE(S)

                              E3

                                 .

                                 .

                                 .

                              /\ !(E2)
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Example
The trace subprogram of the following statement
    for( x = 1; x <= 3; x = x + 1 )
               sum = sum + x;

is defined to be
          x = 1;
          /\ x <= 3
          sum = sum + x;
          x = x + 1;
          /\ x <= 3
          sum = sum + x;
          x = x + 1;
          /\ x <= 3
          sum = sum + x;
          x = x + 1;
          /\ !(x <= 3)
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Generation of trace subprogram(continued)

Next, the instrumentation tool examines each
statement in the program, constructs its trace as
defined above, assigns an identification number
called TN (trace number) to the trace, and stores
the trace with its TN in a file.
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Generation of trace subprogram(continued)

The tool then constructs INST(S), which stands
for "the instrumented version of statement S",  and
writes it into a file created for storing the
instrumented version of the program.
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Generation of trace subprogram(continued)

Production of the trace is done by the program
execution monitor pem(). A function call
pem(TN(S)) causes the trace of S numbered
TN(S) to be fetched from the file and appended to
the trace being constructed.
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Expression statement
If E is an expression then

INST(E;)= pem (TN(E));

E;

e.g., if 35 is the trace number associated with statement
printf("This is a test. \n");

then
INST(printf("This is a test. \n");)

= pem (35);

printf("This is a test. \n");
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Conditional statement

INST(if (P) S) = if (P) {

pem (TN(P));

INST(S)

}

else

pem (TN(!(P)));
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Conditional statement (continued)

INST(if (P) S1 else S2) =    if (P) {

pem(TN(P));

INST(S1)

}

else {

pem (TN(!(P)));

INST(S2)

}
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WHILE statement

INST(while (P) S) = while (P) {

pem (TN(P));

INST(S)

}

pem (TN(!(P)));
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DO statement

INST(do S while (P);) = _do_?:

INST(S)

if (P) {

pem (TN(P));

goto _do_?;

}

else

pem (TN(!(P)));
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Remark

The question mark here will be replaced by an integer
assigned by the analyzer-instrumentor. Note that it is
incorrect to instrument the DO statement as shown below:

 do {

INST(S)

if (P) pem (TN(P));

}

 while (P);

pem (TN(!(P)));



©J. C. Huang 2009 Software Error Detection - Chapter 7 130

Remark

The reason is that predicate P will be evaluated
twice here.  If  P  contains a  shorthand or an
assignment operator, the instrumented  program
will  no  longer  be  computationally equivalent to
the original one.
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FOR statement

INST(for (E1; E2; E3) S)= pem (TN(E1));

 for (E1; E2; E3) {

pem (TN(E2));

INST(S)

pem (TN(E3));

}

pem (TN(!(E2)));


