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This chapter contains materials useful for

• interpreting the program specification correctly,
• determining if any part of the program specification is

violated (i.e., not satisfied),
• proving that a certain assertion is a theorem (i.e., always

true),
• arguing for (or against) the correctness of a given program,
• relating a subfunction in the specification to the

corresponding subprogram, and
• finding an input to test-execute a specific subprogram.



©J. C. Huang 2009 Logico-mathematical Background 3

Motivating question:

Suppose the specification of the payroll program that is
used to print your paycheck contains the following
statement:

"If the employee is a US citizen, compute the social
security tax and deduct it from the gross amount."

Now suppose that you find an instance of social-security-
tax deduction on the pay check of a non-citizen.  Can you
conclude that the program is incorrect?
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Another motivating question:

Suppose the requirements of a computerized decision
support system include the following statement:

"If the drug passes both animal test and clinical test, then the
company will market it if and only if it can be produced and
sold profitably and the government does not intervene."

Now further suppose that the product failed to pass the
clinical test and this system supports the company to
market the product.  Does the system violate this
requirement?
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The Propositional Calculus

A proposition  is a declarative sentence that is either true
or false.  For example,
– Harvard is a private university.
– x + y = y + x
– Eleven is divisible by three.
– The number 4 is a prime number.

are propositions.  The first two sentences are true, and the
last two false.
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Connectives

Given propositions, we can form new propositions by

combining them with connectives such as

negation:   ¬,   not
conjunction:  ∧,   and
disjunction:   ∨,   or
implication:  ⊃,   implies,  if ... then ...
equivalence:  ≡,  ... if and only if ...
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Definition of the connectives:

p q ¬p p ∧ q p ∨ q p ⊃ q p ≡ q
F F T    F    F    T    T
F T T    F    T    T    F
T F F    F    T    F    F
T T F    T    T    T    T
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Well-formed formula

A well-formed formula   (wff) in the language of the
propositional calculus is a syntactically correct
expression.  It is composed of connectives,
propositional variables (such as  p, q, r, s, ...),
constants (T and F), and parentheses.
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The syntax

The syntax of a wff is recursively defined as follows
1. A propositional variable standing alone is a wff.
2. If  is a wff then ¬(α) is also a wff.
3. If  and  are wffs then (α) ∧ (β), (α) ∨ (β), (α) ⊃

(β), and (α) ≡ (β) are also wffs.
4. Those and only those obtainable by a finite

number of applications of (1), (2), and (3) are
wffs.
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The precedence relation:

A wff obtained by the above definition may
contain many parentheses and thus not suitable for
human consumption.  The use of parentheses can
be reduced by using the following precedence
(listed in the descending order):

¬,  ∧,  ∨,  ⊃,   ≡
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Truth Table

The truth table of a wff lists the truth values of the formula
for all possible combinations of assignments to the values of
variables involved. For example:

p q p ⊃ q p ∧ (p ⊃ q)

F F    T    F
F T    T    F
T F    F    F
T T    T    T
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Practical application

• In practice, a rule or specification is stated as a
proposition.

• A rule is not violated, or a specification is
satisfied, if it is evaluated to be true.

• Analysis of a statement can often be facilitated by
translating it into a well-formed formula first.
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Example A.1

Suppose the policy of a pharmaceutical company
includes the following statement:

Proposition Alpha: If the drug passes both animal
test and clinical test, then the company will market it
if and only if it can be produced and sold profitably
and the government does not intervene.
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Example A.1 (continued)

Now let us further suppose that the company is
developing a new drug with an enormous market
potential, and an ambitious manager has just decided
to put the drug on the market immediately, despite of
the fact that the drug has failed the clinical test.  Does
this decision to market the drug violate the policy
stated as Proposition Alpha?
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Example A.1 (continued)

First, translate the above statement into the well-formed
formula shown below:

A1: a ∧ c ⊃ (m ≡ p ∧ ¬g)
where
  a: the drug passes animal test
  c: the drug passes clinical test
  m: the company will market the drug
  p: the drug can be produced and sold profitably
  g: the government intervenes
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Example A.1 (continued)

It is obvious that, if the drug failed the clinical test,
i.e., if c is false, then the formula is true regardless of
the truth values of other variables.

a ∧ c ⊃ (m ≡ p ∧ ¬g)
? F F Τ       ?

Hence the policy is not violated.
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Example A.1 (continued)

Note, however, that the policy is ambiguous in that it
can also be interpreted as follows:

A2: a ∧ c ⊃ m ≡ p ∧ ¬g.
   F F T     ?  ?      ?

If the policy is interpreted this way then there is
insufficient information to determine if the policy is
violated.
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Tautology and contradiction

Definition A.2: If for every assignment of values
to its variables a wff has the value T, it is said to
be a tautology;   if it always has the value F then it
is said to be contradictory (or, a  contradiction).
A wff is said to be satisfiable if and only if it is
not contradictory.  A wff is said to be contingent if
and only if it is neither valid nor contradictory.
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Tautology and contradiction

Notation A.3: If A is a tautology, we write  |-A.

Note that A is a tautology if and only if ¬A is a
contradiction.
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Relations among propositions

In practice, we often have to deal with a set of
propositions, and it is useful to define the
following two relations among them.
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Logical equivalence

Definition A.4: Two wffs A and B are said to be
logically equivalent  if and only if they have the same
truth table.

Theorem A.5:  A and B are logically equivalent if and
only if  |-A ≡ B.
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Logical consequence
Definition A.6: B is a logical consequence  of A
(denoted by A |- B) if for each assignment of truth
values to the variables of A and B such that A has the
value T then B also has the value T.

Theorem A.7:  A |- B if and only if  |-A ⊃ B.
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Logical consequence
The antecedent A may consist of a set of propositions.
In that case, we have

Theorem A.8:  A1, A2, … , An |- B if and only if
|- A1 ∧ A2 ∧ … ∧ An ⊃ B.
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How to prove that A ⊃ B is a theorem?

By the definition of the implication (⊃)
connective, A ⊃ B can be false only if A is true
and B is false.

Hence, a common technique for showing |-A ⊃ B
is to show that A cannot be true if B is false.
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Multiple Antecedents

In practical applications, the antecedent often consists
of a conjunction of n parts: A1, A2, … , An.  In that
case,

• to show that the assumption is consistent is to show
thatA1 ∧ A2 ∧ … ∧ An is satisfiable, and

• to show that  A1 ∧ A2 ∧ … ∧ An ⊃ B is a tautology is
to let B be false and show that it is impossible to make
all Ai's true at the same time.
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Applications

In applications where we have to make a decision
to satisfy a number of constraints, a relation of the
type |- A1 ∧ A2 ∧ … ∧ An ⊃ B is useful.  Let Ai's
be the constraints and B be the proposed decision.
B is a valid decision if

|- A1 ∧ A2 ∧ … ∧ An ⊃ B because
• Decision B leads to satisfaction of all constraints.
• Decision to the contrary (i.e., ¬B) leads to

violation of a rule or contradiction of a fact.
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Applications (continued)

On the other hand, if B is not a logical consequence
of Ai's, a decision to the contrary, i.e., ¬B, could be
a valid decision because in that case it is possible to
make B false without violating any Ai.
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Example

Now let us get back to Proposition Alpha that
says:

"If the drug passes both animal test and clinical test, then the
company will market it if and only if it can be produced and
sold profitably and the government does not intervene"

which can be translated into a wff as
A2: a ∧ c ⊃ m ≡ p ∧ ¬g
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Example

Let us suppose that, in addition to the policy expressed as
Proposition Alpha, which is repeated below for convenience.

A1 or A2:
If the drug passes both animal test and clinical test, then the
company will market it if and only if it can be produced and
sold profitably and the government does not intervene.
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Example (continued)

the company further stipulates that if the drug cannot
be produced and sold profitably, the company should
not market it.

This can be expressed as a wff as
A3: ¬ p ⊃ ¬m
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Example (continued)

Furthermore, the company requires its decision
makers to keep in mind that if the drug failed the
animal test or clinical test, and the drug is marketed,
the government will intervene.

This can be expressed as
A4: (¬ a ∨ ¬ c) ∧ m ⊃ g
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Example (continued)

Also remember that the drug failed the clinical test, i.e.,
A5: ¬c

Now if we can show that |- A2 ∧ A3 ∧ A4 ∧ A5 ⊃ B,
where B is ¬m, it means that all constraints can only be
satisfied at the same time by not marketing the drug.

That is to say, the company cannot market the drug
without violating at least one rule or contradicting a
fact.
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Example (continued)

In other words, if we let
A2: a ∧ c ⊃ m ≡ p ∧ ¬g
A3: ¬ p ⊃ ¬m
A4: (¬ a ∨ ¬ c) ∧ m ⊃ g
A5:  ¬ c

---------------------------------
B:  ¬ m

Is A2 ∧ A3 ∧ A4 ∧ A5 ⊃ B a tautology?
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Example (continued)

It turns out that A2 ∧ A3 ∧ A4 ∧ A5 ⊃ B is a
tautology.

It can be proved by letting B to be false, and
see if we can make all Ai's true at the same
time as demonstrated in the following.
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Example (continued)

1. Let m←T so that B becomes false.
B:  ¬ m
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Example (continued)

1. Let m←T so that B becomes false.
2. Let c←F to make A5 true.

A5:  ¬ c
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Example (continued)

1. Let m←T so that B becomes false.
2. Let c←F to make A5 true.
3. (1) and (2) requires that g←T to make A4 true.

A4: (¬ a ∨ ¬ c) ∧ m ⊃ g
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Example (continued)

1. Let m←T so that B becomes false.
2. Let c←F to make A5 true.
3. (1) and (2) requires that g←T to make A4 true.
4. This requires that p←T to make A3 true.

A3: ¬ p ⊃ ¬m
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Example (continued)

1. Let m←T so that B becomes false.
2. Let c←F to make A5 true.
3. (1) and (2) requires that g←T to make A4 true.
4. This requires that p←T to make A3 true.
5. For A2 to be true, we need to set g←F.  This

contradicts (3).
A2: a ∧ c ⊃ m ≡ p ∧ ¬g
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Example (continued)

1. Let m←T so that B becomes false.
2. Let c←F to make A5 true.
3. (1) and (2) requires that g←T to make A4 true.
4. This requires that p←T to make A3 true.
5. For A2 to be true, we need to set g←F.  This

contradicts (3).
6. Hence A2 ∧ A3 ∧ A4 ∧ A5 ⊃ B is a tautology.
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Example (continued)

That is to say, in views of the three rules/policies
and the fact that the drug has failed the clinical
test,  the company should not market the drug
unless the company is willing to violate at least
one of the rules or contradict the fact that the drug
failed the clinical test.
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Example (continued)

Note that A2, A3, A4, and A5 are consistent in that
it is possible to make them all true at the same
time, e.g. by using the following assignment:

c ← F
m ← F
p ← T
g ← F
a ← T
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Example (continued)

Also note that A1 ∧ A3 ∧ A4 ∧ A5 ⊃ B is not a
tautology (prove this!).  That is to say, if the first
rule is interpreted in the way denoted by A1, the
company may decide to market or not to market
the drug without violating any rule or
contradicting any fact denoted by A1, A3, A4, and
A5.
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The First-Order Predicate Calculus

An extension of the propositional calculus that
allows us to deal with sentences of the form:

x > 0
She is six feet tall.
Everyone is dressed in blue today.

These are called sentential forms.
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Additional vocabulary

 In addition to those in the propositional calculus, the first-order
predicate calculus includes symbols

for individual constants (names of individuals): a, b, c, …
   for individual variables (pronouns): x, y, z, …
  for function letters (to denote functions): f, g, h, …
   for predicate letters (to denote predicates): F, G, H, …
   for quantifiers: universal quantifier  (∀x),

existential quantifier (∃x).
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The syntax

Definition A.9: A term  is defined as follows:
(1) Individual constants and individual variables are

terms.
(2) If f is an n-ary functional letter and  t1, t2, …, tn are

terms then f(t1, t2, … , tn) is a term.

(3) Those and only those obtained by (1) and (2) are
terms.
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The syntax (continued)

Definition A.10: A string is an atomic formula if it is
(1) a propositional variable standing alone, or
(2) a string of the form F(t1, t2, … , tn), where F is an n-

ary predicate letter and  t1, t2, … , tn are terms.
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The syntax (continued)

Definition A.11: a well-formed formula (wff)  in the language
of the first-order predicate calculus is defined as follows.

(1) An atomic formula is a wff.
(2) If A is a wff and  x  is an individual variable  then  (∀

x)A and (∃x)A are wff.
(3) If A and B are wffs the  ¬A, (A) ∧ (B), (A) ∨ (B), (A)

⊃ (B), and (A) ≡ (B) are wffs.
(4) Those and only those obtained by 1, 2, and 3 are wffs.



©J. C. Huang 2009 Logico-mathematical Background 49

The quantifiers

   The notation

(∀x)P is to be read as "for all x (in the domain) …
" and

(∃x)P is to be read as "there exists an x (in the
domain) such that …".
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The scope of a quantifier

is the subexpression to which the quantifier is
applied.  The occurrence of an individual variable,
say, x, is said to be bound  if it is either an
occurrence (∀x), (∃x), or within the scope of a
quantifier (∀x) or (∃x).  Any other occurrence of a
variable is a free occurrence.
Example:

P(x) ∧ (∃x)(Q(x) ≡ (∀y)R(y))
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More about scope

A variable may be within the scope of more than
one quantifier.

In that case, an occurrence of a variable is bound
by the innermost quantifier on that variable within
whose scope that particular occurrence lies.
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Interpretation

Definition A.12: An interpretation  of a wff consists
of a non-empty domain D and an assignment to each
n-ary predicate letter of an n-ary predicate on D, to
each n-ary function letter of an n-ary function on D,
and to each individual constant of a fixed element of
D.
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Satisfiability in a domain

Definition A.13: A wff is satisfiable  in a domain
D if there exists an interpretation with domain D
and assignments of elements of D to the free
occurrences of individual variables in the formula
such that the resulting proposition is true.
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Validity in a domain

Definition A.14:  A wff is valid  in a domain D if
for every interpretation with domain D and
assignment of elements of D to free occurrences
of individual variables in the formula the resulting
proposition is true.
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Satisfiability and Validity

A wff is satisfiable if it is satisfiable in some
domain.

A wff is valid if it is valid in all domains.
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Example A.15

Consider the wff (∀x)P(f(x, a), b).  A possible
interpretation of this wff would be

D: the set of all integers
P(u, v): u > v
f(y, z): y + z
a: 1
b: 0

 That is, it becomes (∀x)D(x + 1 > 0), and is false.
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Example A.16

Example: Consider the wff (∀x)(∃y)P(f(x, y), a).  A

possible interpretation of this wff would be:
D: the set of all integers
P(u, v): u is equal to v
f(x, y): x + y
a: 0

Thus it reads (∀x)(∃y)(x + y = 0), and is true.
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The order in which quantifiers occur

Observe that the order in which the quantifiers are
given is important, and cannot be arbitrarily
changed.  For example,

(∀x)(∃y)(x + y = 0) is true, and
(∃x)(∀y)(x + y = 0) is false

in the previous interpretation.



©J. C. Huang 2009 Logico-mathematical Background 59

Prenex normal form

Definition A.18:  A wff is said to be in the prenex
normal form  if it is of the form

(Q1x1)(Q2x2) … (Qnxn)M,
where each (Qixi) is either (∀xi) or (∃xi), and M is
a formula containing no quantifiers.

(Q1x1)(Q2x2) … (Qnxn) is called the prefix  and M
the matrix  of the formula.
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Theorems A.17

(∃x)(∃y)A ≡ (∃y)(∃x)A
(∀x)(∀y)A ≡ (∀y)(∀x)A
(∀x)(A ⊃ B) ≡ ((∃x)A ⊃ B)
(∃x)(A ⊃ B) ≡ ((∀x)A ⊃ B)
(∀x)(A ⊃ B) ≡ (A ⊃ (∀x)B)
(∃x)(A ⊃ B) ≡ (A ⊃ (∃x)B)

where x does not occur free in B in (3) and (4),
and in A in (5) and (6).
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Theorems (continued)

To illustrate the necessity of the qualifier "where x
does not occur free in B" for (3), let us consider
the following interpretation where x occurs free in
B(x, y):

D: the set of all positive integers
A(x, y):  x divides y
B(x, y):  x ≤ y
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Theorems (continued)

With this interpretation (3) reads
(∀x)("x divides y" ⊃ x≤y)

≡ (∃x)(x divides y) ⊃ x≤y.
Although the left-hand side of the "≡" is true, the
truth value of the right-hand side depends on the
assignment made to the free variable x, and thus
the equivalence relation does not hold.
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Theorems (continued)

Now if we interpret B(x, y) to be (∃x)((y÷x)x=y),
(3) reads

(∀x)("x divides y" ⊃ (∃x)((y÷x)x=y))
≡ (∃x)(x divides y) ⊃ (∃x)((y÷x)x=y).

The equivalence relation holds because x does not
occur free in B.
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Theorems (continued)

Note that the equivalence relation also holds if x
does not occur in B at all.  For example, if we
interpret B(x, y) to be "y is not prime" then (3)
reads

(∀x)("x divides y" ⊃ "y is not prime")
≡ (∃x)(x divides y) ⊃ "y is not prime".
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More theorems (for ∧ and ∨)

(1a)  ¬((∃x)A(x))  ≡  (∀x)(¬A(x))
(1b)  ¬((∀x)A(x))  ≡  (∃x)(¬A(x))
(2a)  (Qx)A(x) ∨ B  ≡  (Qx)(A(x) ∨ B)
(2b)  (Qx)A(x) ∧ B  ≡  (Qx)(A(x) ∧ B)
(3a)  (∃x)A(x) ∨ (∃x)C(x)  ≡  (∃x)(A(x) ∨ C(x))
(3b)  (∀x)A(x) ∧ (∀x)C(x)  ≡  (∀x)(A(x) ∧ C(x))
(4a)  (Q1x)A(x) ∨ (Q2x)C(x) ≡ (Q1x)(Q2y)(A(x) ∨ C(y))
(4b)  (Q3x)A(x) ∧ (Q4x)C(x) ≡ (Q3x)(Q4y)(A(x) ∧ C(y))

where x does not occur in B in (2), y does not occur in A(x) in
(4), and Q, Q1, Q2, Q3, and Q4 are either  ∃  or  ∀.
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Example A.19

(∀x)P(x) ∧ (∃x)Q(x) ∨ ¬(∃x)R(x)
(∀x)P(x) ∧ (∃x)Q(x) ∨ (∀x)(¬R(x)) by (1a)
(∀x)(∃y)(P(x) ∧ Q(y)) ∨ (∀x)(¬R(x)) by (4b)
(∀x)(∃y)(∀z)(P(x) ∧ Q(y) ∨ ¬R(z)) by (4a)
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Example application

Find an assignment that satisfies
b - a > e  ∧  b + 2a ≥ 6  ∧  2(b - a)/3 ≤ e

which is the path condition of an execution path.
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Inequalities expressed as equalities

a ≠ b if and only if there exists an x ≠ 0 such that a + x = b.
a < b if and only if there exists an x > 0 such that a + x = b.
a < b if and only if there exists an x > 0 such that a + x = b.
a > b if and only if there exists an x < 0 such that a + x = b.

 a ≥ b if and only if there exists an x < 0 such that a + x = b.
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Alternative expressions

In the language of the predicate calculus:

a = b ⇔ (∃x)≠ 0(x = b - a)
a < b ⇔ (∃x)> 0(x = b - a)
a < b ⇔ (∃x)≥0(x = b - a)
a > b ⇔ (∃x)> 0(x = a - b)
a ≥ b ⇔ (∃x)≥0(x = a - b)
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The path condition

can be expressed as
(∃x)D1(x = b - a - e)

∧ (∃x)D2(x = b + 2a - 6)

∧ (∃x)D2(x = e - 2(b - a)/3)

where D1 is the set of all real numbers >0
and D2 is the set of all real numbers  ≥0
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The path condition

in its prenex normal for is found to be

(∃x)D1(∃y)D2(∃z)D2(x = b - a - e ∧ y = b + 2a - 6 ∧ 
z = e - 2(b - a)/3)

which can be reduced to:
(∃x)D1(∃y)D2(∃z)D2(3x - y + 3z = 6 - 3a)
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Test-case selection

The domain of this formula requires that the value of
x, y, and z must satisfy x > 0, y ≥ 0, and z ≥ 0.  Now if
we let

x ← 0.1, y ← 0, z ← 0.
then a possible assignment would be

a ← 1.9 b ← 2.2 e ← 0.2
that satisfies the path condition

b - a > e  ∧  b + 2a ≥ 6  ∧  2(b - a)/3 ≤ e
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Principle of Mathematical Induction

If 0 has a property P, and if any integer n is P then
n+1 is also P, then every integer is P.

The principle is used in proving statements about
integers or, derivatively, in proving statements
about sets of objects of any kind which can be
correlated with integers.



©J. C. Huang 2009 Logico-mathematical Background 74

Steps involved in constructing a proof

The procedure is to prove that
(a)  0 is P     (induction basis),

to assume that
(b)  n is P      (induction hypothesis),

to prove that
(c)  n+1 is P     (induction step)

using (a) and (b); and then to conclude that
(d)  n is P for all n.
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Example

Suppose we wish to prove that
    n
Σi = 0 + 1 + 2 + … + n = n(n+1)/2

      i = 0
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Example (continued)

To begin, we must state the property that we want
to prove.  This statement is called the induction
proposition.  In this case P is directly given by

     n
n is P ⇔ Σi = n(n+1)/2

        i = 0
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Example (continued)

(a) For the basis of the induction we have, for n = 0, 
0 =  0(0+1)/2, which is true.

(b) The induction hypothesis is that k is P for some
arbitrarily choice of k:
  k
 Σi = 0 + 1 + 2 + ... + k = k(k+1)/2

        i = 0
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Example (continued)

(c)  For the induction step, proving k + 1 is P, we have
k+1        k
 Σi = Σi + (k+1) = k(k+1)/2 + (k+1)

        i = 0      i=0

= k2 + 3k + 2/2
= (k+1)(k+2)/2
= (k+1)((k+1)+1)/2

(using the induction hypothesis)
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Example (continued)

(d)  Hence k+1 has the property P.
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Inductive (or recursive) definition

Inductive definition  of a set or property P:
given a finite set A,
(a) the elements of A are P (basis clause)
(b) the elements of B, all of which are constructed

from A, are P (inductive clause)
(c) the elements constructed as in (a) and (b) are

the only elements of P (extremal clause)
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Recursive definition of a set

say, D

1. Element d0 is in D.
2. If d is in D and P(d) then f(d) is also in D.
3. Those and only those obtained by a finite

applications of (1) and (2) are in D.
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Example

Recursive definition of set D of even integers
between 0 and 32, inclusive:

1. 0 is an element of D.
2. If d ∈ D and d ≤ 30 then d+2 is also an 

element in D.
3. Those and only those obtained by a finite 

application of (1) and (2) are elements of D.
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Directed Graphs and Path Description

When we study the logical structure of a program,
we need to be able to speak of a path structure
precisely and concisely.  This can be
accomplished by making use of the language of
regular expressions.
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Three basic connection schemes

a b

a

b

a

ab a+b a*

A set of paths between any two nodes in a (directed) 
graph can be described in terms of symbols associated 
with the constituent edges as follows.
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Extension

The same rules also apply to the cases where a
and b are expressions describing complex path
structures.

Hence a set of paths can be described by an
expression composed of edge symbols and three
connectives: concatenation, disjunction (+), and
looping (*).
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Example

1

2

3

4

a

b

c e

d

The set of paths between nodes 1 
and 4 in the graph shown above 
can be described by the regular 
expression 

a(e+bc*d).
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Loop

If p describes a path, then p* describes a loop
formed by p and hence a set of paths obtained by
iterating the loop for any number of times.
Formally,  p*= λ+p+pp+ppp+....  Here λ is a
special symbol denoting the identity under
concatenation (i.e., xλ = λx = x for any x) and is
to be interpreted as a path of length zero (obtained
by iterating the loop zero times).
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Matrix representation of a graph

Let G be a directed graph with n nodes.  G can be
represented by an n × n matrix as follows.  First,
the nodes in G are to be order in some way.  Then
we form an n × n matrix [G] = [gij], where gij (the
element on the i-th row and j-th column) is a
regular expression denoting the set of all paths of
length 1 (i.e., the paths formed by a single edge)
leading from the i-th node to the j-th node.



©J. C. Huang 2009 Logico-mathematical Background 89

Example

!
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!
!
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00
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eb

a

The graph given previously can be represented as

1

2

3

4

a

b

c e

d

∅: empty set.
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Matrix operation

Let [X], [Y], [Z], and [W] be n × n matrices.  We
define

[X] + [Y] = [Z] = [zij]

where zij = xij + yij
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Matrix operation (continued)

[X][Y] = [W] = [wij]

where  wij =      xikykj,      and

[X]* = [X]0 + [X]1 + [X]2 + [X]3 + ...,

where [X]0 is defined to be an n × n matrix in which
every element on the main diagonal is λ, and all other
elements are identically ∅.

+
=

n

k 1

+
=

n

k 1
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General form of a matrix
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Elimination of the k-th column and row
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Elimination of node k (continued)
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Elimination of node k (continued)

!
"

#
$
%

&

jjji

ijii

bb

bb
[B’] =

By repeatedly eliminating unessential nodes, we will 
be left with a 2×2 matrix shown below:



©J. C. Huang 2009 Logico-mathematical Background 96

Elimination of node k (continued)

Then pij can be constructed from the elements

in [B'] as follows:

pij = (bii + bij bjj *bji)*bij(bjj + bji bii*bij)*

If bii = bji = bjj = ∅, which is almost always the

case in many applications, then we have

pij = bij
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Example
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Consider again the graph represented by
1

2

3

4

a

b

c e

d
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Example (continued)

/ 0 / 0 / 0 

/ 0 c d

/ 0 / 0 / 0 
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To find the set of all paths between nodes 1 and 4,
we shall first eliminate node 2, i.e., column 2 and 
row 2 to yield
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/ 0 [ ] / 0 b e[ ]= + *
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Example (continued)
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Example (continued)

Now column 2 and row 2 corresponds to the node
labeled by integer 3.  It can be similarly
eliminated to yield the following 2 × 2 matrix.
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Example (continued)

/ 0 ae
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Example (continued)

Hence, the set of paths leading
from node 1 to node 4 is
described by

ae + abc*d.

1

2

3

4

a

b

c e

d
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Remark

Generally speaking, the nodes can be eliminated
in any order.

By eliminating the nodes in different order, the
method may produce different regular expressions
(with different complexities) as the result.  But
they all represent the same set of paths.


