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The main topic

This chapter presents a family of test-case selection
methods that can be used to do debug testing.  These
methods make use of the information extracted from
the source code to select test cases.
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The central problem

How to construct a test set T (= {t1, t2, …, tn})
having a maximal probability of revealing a fault?

The probability to be optimized is
p(¬OK(t1)∨¬OK(t2) … ∨¬OK(tn)) 

= p((∃t)T(¬OK(t)))
= p(¬(∀t)T(OK(t)))
= 1 - p((∀t)T(OK(t)))
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The central problem (continued)

We can construct the test set incrementally by letting
T = {t1} first.

If there is any information available to find an input
that has a high probability of revealing a fault, make
it t1.  Otherwise arbitrarily choose one from the input
domain.  (More will be said about the choice of t1 in
Ch. 4.)
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The central problem (continued)

Next we choose t2 from the input domain such that
the probability
p(¬OK(t1)∨¬OK(t2))

= p(¬(OK(t1)∧OK(t2)))
= p(¬(OK(t2)∧OK(t1)))
= 1 - p(OK(t2)∧OK(t1))
= 1 - p(OK(t2)|OK(t1))p(OK(t1))

is as high as possible.
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The central problem (continued)

In choosing the third element of T, the probability to
be maximized is
p(¬OK(t1)∨¬OK(t2)∨¬OK(t3))
= p(¬(OK(t1)∧OK(t2)∧OK(t3)))
= p(¬(OK(t3)∧OK(t2)∧OK(t1)))
= 1 - p(OK(t3)∧OK(t2)∧OK(t1))
= 1 - p(OK(t3)|OK(t2)∧OK(t1))p(OK(t2)∧OK(t1)).
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The central problem (continued)

In general, to add a new element to the test set T = {t1, t2,
…, ti}, the (i+1)th test case ti+1 is to be selected to
maximize the probability
p(¬OK(t1) ∨…∨ ¬OK(ti)∨¬OK(ti+1))
= p(¬(OK(t1)∧…∧OK(ti)∧OK(ti+1)))
= p(¬(OK(ti+1)∧OK(ti)∧…∧OK(t1)))
= 1 - p(OK(ti+1)∧OK(ti)∧…∧OK(t1))
= 1 - p(OK(ti+1)|OK(ti)∧…∧OK(t1))p(OK(ti)∧…∧OK(t1)).
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The central problem (continued)

This probability can be maximized by minimizing
the conditional probability:

p(OK(ti+1)|OK(ti)∧…∧OK(t1)),
i.e., by selecting ti+1 in such a way that δ(t1, ti+1), δ
(t2, ti+1), … δ(ti, ti+1), are all minimal.
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The central problem (continued)

In practice, there are several different ways to do
this, each of which led to the development of a
different test-case selection method discussed in this
and the following chapters.
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Essence of a test-case selection method

First, a type of programming construct, such as a statement
or branch predicate, is identified as the essential component
of a program, each of which in the program must be exercised
during the test in order to reveal potential faults.

Second, a test-case selection criterion is established to
guide the construction of a test set.

Third, an analysis method is devised to identify such
constructs in a program, and to select test cases from the input
domain so that the resulting test set is of a reasonable size,
and its elements are computationally loosely coupled.
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Path testing

In path testing, the component to be exercised is
execution path.  The test-case selection criterion is to
select test cases to test the program to the extent that
every feasible execution path in the program is
traversed at least once during the test.
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Path testing (continued)

Path testing is interesting in that
• The set of all subdomains formed by the inputs

that traverse the same execution path constitutes a
partition of the input domain.

• Any two inputs in the different subdomains are
computationally loosely coupled.

• Any two inputs in the same subdomain are
computationally tightly coupled.
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Path testing (continued)

Path testing, therefore, is an ideal method for test-
case selection.

Unfortunately, it’s applicability is rather limited
because most real programs contain loop constructs
that are likely to expand into a prohibitively large
number of feasible  execution paths.
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Path testing (continued)

Despite of its impracticality, the path testing is
discussed here first because all other test methods
discussed in the following can be viewed as an
approximation of the path testing.  Originally, these
methods were developed independently based on the
propositions that a certain subset of execution paths
in a program is more important in some sense, and
therefore should be exercised during the test.
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Path testing (continued)

In the conceptual framework used in this book,
however, each of these methods can be viewed as a
different way to sample execution paths to be tested.
It is the resulting reduction in the number of paths to
be exercised that make these methods more practical
to use but less effective in fault discovery.
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Statement testing

For most programs, not every statement will occur
in a given execution path.  Therefore, if a program
contains a statement in error and that statement is
not executed during the test, we will not be able to
detect any abnormality at all in the test result.

Thus, a possible test criterion is to have each and
every statement in the program executed at least
once during the test.
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The futility

It must be emphasized here, however, that the use of such
a set of test cases gives us no assurance that the presence
of an error will be definitely reflected in the test result.

  For instance, if a statement in the program, say, x=x+y is
somehow erroneously written as x=x-y, and if the test
case used is such that it sets y = 0 prior to the execution of
this statement, the test result certainly will not indicate the
presence of this error.
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Example
The following program is designed to find the abscissa
within the interval (a, b) at which a function f(x) assumes
the maximum value.  The basic strategy used is that, given
a continuous function that has a maximum in the interval
(a, b), we can find the desired point on the x-axis by first
dividing the interval into three equal parts.  Then compare
the values of the function at the dividing points a+w/3 and
b-w/3, where w is the width of the interval being
considered.  If the value of the function at a+w/3 is less
than that at b-w/3, then the leftmost third of the interval is
eliminated for further consideration; otherwise the
rightmost third is eliminated.
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An example program
Main()
{

float a, b, e, w, p, q, u, v;

scanf("%5.2f %5.2f %1.4f", &a, &b, &e);
w = b - a;
while (w > e) {

p = a + w / 3;
u = f(p);
q = b - w / 3;
v = f(q);
if (u < v)

a = p;
else

b = q;
w = b - a;

}
max = (a + b) / 2;
printf("5.2f\n", max);

}
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The program graph
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where

α:  scanf("%5.2f %5.2f %1.4f", &a, &b, &e);

w = b - a;
β:  /\ w > e;

p = a + w / 3;
u = f(p);
q = b - w / 3;
v = f(q);

γ: /\ !(u < v);

b = q;
δ: /\ u < v;

a = p;
ε: w = b - a;

η:  /\ !(w > e);

max = (a + b) / 2;
printf("5.2f\n", max);
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The function

f(x)

x
1 2 3 4 5 6 7
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Example (continued)

Now suppose we wish to test this program for
three different test cases, and assume that the
function f(x) can be plotted as shown in Figure
2.2.  Let us first arbitrarily choose e to be equal to
0.1, and choose the interval (a, b) to be (3, 4), (5,
6), and (7, 8).  Now suppose that the values of
max for all three cases are found to be correct in
the test.  What can we say about the design of this
test?
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Example (continued)

Observe that in all three intervals chosen the value
of u will be always greater than v as we can see
from the function plot.  Consequently, the
statement a=p in the program will never be
executed during the test.  Thus if this statement is
for some reason erroneously written as, say, a=q
or b=p, we will never be able to discover the error
in a test using the three test cases mentioned
above.  This is so simply because this particular
statement is not "exercised" during the test.
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Example (continued)

The functional plot given in Figure 2.2 shows that
u will always be less than v within the interval (0,
1).  Thus if the set of test cases used includes the
interval (0, 1) we will be able to discover the error
described above.
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Example (continued)

The point to be made here is that our chances of
discovering errors through program testing can be
significantly improved if we select the test cases in
such a way that each and every statement will be
executed at least once.
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An observation

The use of such a set of test cases gives us no
assurance that the presence of an error will be
definitely reflected in the test result. For instance,
if a statement in the program, say, x=x+y is
somehow erroneously written as x=x-y, and if
the test case used is such that it sets y = 0 prior to
the execution of this statement, the test result
certainly will not indicate the presence of this
error.
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A common programming error

There is a class of common programming errors
that cannot be discovered in this way.

For instance, consider the type of error illustrated
in Figure 2.3, where the flow of control is
transferred to a wrong place as indicated by the
dotted line.
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A common programming error (continued)
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A common programming error (continued)

This occurs when a C programmer mistakenly writes

if (B)  instead of if (B) {
s1; S1;
s2; S2

}
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A common programming error (continued)

In this case the program produces correct results as
long as the input data cause B to be true when this
program segment is entered.

The requirement of having each and every statement
executed at least once is trivially satisfied in this
case by choosing input data so that B is true.
Obviously, the error will not be detected in this case.
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Limitation of a statement test

The problem is that a program may contain paths
from the entry to the exit (in its control flow)
which need not be traversed in order to have each
and every statement executed at least once.  Since
the present test requirement can be satisfied
without having such paths traversed during the
test, it is only natural that we will not be able to
discover errors that occur on those paths.
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Impracticality of path testing

An obvious solution to this problem would be to
require that each and every control path in the
program be traversed at least once during the test.
However, this test requirement can be easily proved
to be impractical because in practice almost every
program contains loops, and a program with a loop
contains at least as many different control paths as
the number of times the loop can be iterated, which
is prohibitively large in many cases.
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Branch test

A more realistic solution is to require that each
and every edge or branch (these two terms are
used interchangeably throughout this article) in
the program graph be traversed at least once
during the test.
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Branch test (continued)

In accordance with this new test requirement, we
will have to use a new test case that makes B false,
in addition to the one that satisfies B, in order to
have every branch in Figure 2.3 traversed at least
once.  Hence our chances of discovering the error
will be  greatly improved, because the program
will most likely produce an erroneous result for
the test case that makes B  false.
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Branch test covers statement test

Observe that this new requirement of having each
and every branch traversed at least once is more
stringent than the previously stated requirement of
having each and every statement executed at least
once.  In fact, satisfaction of the new requirement
implies satisfaction of the previous one. Satisfaction
of the previously stated requirement, however, does
not necessarily entail satisfaction of the new one.
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How to determine coverage?

A simple and practical way to determine to what extent the
test coverage has been achieved is to instrument the
program to be tested by using a set of software counters as
explained in a later chapter.  After having the program
tested for a number of test cases, we can determine the
coverage achieved by examining the resulting counter
values.  If the test requirement is to have each branch
traversed at least once, and if the program is instrumented
in such a way that there is one counter on each decision-to-
decision path, then the requirement is satisfied when the
values of all counters are non-zero.
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What test cases to use?

Alternatively, we can begin the test procedure by
finding a (minimal) set of test cases that will test
the program thoroughly.  We then use this set of
test cases, perhaps in conjunction with any other
desirable test cases, to test the program.  In this
way the desired degree of thoroughness will be
automatically achieved.  Furthermore, by using a
minimal set (i.e., a set with a minimal number of
elements) of test cases, we can keep the required
resources for program testing to a minimum.
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How to generate test cases?

1. Find S, a minimal set of paths from the entries to
the exits in the program graph such that every
branch is on some path in S;

2. Find a path predicate for each path in S; and
3. Find a set of assignments to the input variables,

each of which satisfies a path predicate obtained in
step 2.  This set is the desired set of test cases.
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Example
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Consider the program
shown in Fig. 2.1.
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Example (continued)

Consider the set S = {αβδεη, αβγεη} of two
paths, traversal of which will cause every branch
to be traversed at least once.
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Trace subprogram αβδεη:

scanf("%5.2f %5.2f %1.4f", &a, &b, &e);
w = b - a;
/\ w > e;
p = a + w / 3;
u = f(p);
q = b - w / 3;
v = f(q);
/\ u < v;
a = p;
w = b - a;
/\ !(w > e);
max = (a + b) / 2;
printf("5.2f\n", max);
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Αβδεη becomes

scanf("%5.2f %5.2f %1.4f", &a, &b, &e);
/\ b - a > e;
/\ f(a + (b - a) / 3) < f(b - (b - a) / 3);
/\ !(2 * (b - a) / 3 > e);
w = b - a;
p = a + w / 3;
u = f(p);
q = b - w / 3;
v = f(q);
a = p;
w = b - a;
max = (a + b) / 2;
printf("5.2f\n", max);
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The path condition of path αβδεη is
b - a > e

&& f(a + (b - a) / 3) < f(b - (b - a) / 3)
&& !(2 * (b - a) / 3 > e)

which can be simplified to

b - a > e
&& f((b + 2a) / 3) < f((a + 2b) / 3)
&& !(2 * (b - a) / 3 > e)
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Trace subprogram αβγεη
scanf("%5.2f %5.2f %1.4f", &a, &b, &e);
w = b - a;
/\ w > e;
p = a + w / 3;
u = f(p);
q = b - w / 3;
v = f(q);
/\ !(u < v);
b = q;
w = b - a;
/\ !(w > e);
max = (a + b) / 2;
printf("5.2f\n", max);



©J. C. Huang 2009 Software Error Detection - Chapter 2 46

αβγεη  becomes

scanf("%5.2f %5.2f %1.4f", &a, &b, &e);
/\ b - a > e;
/\ !(f(a + (b - a) / 3) < f(b - (b - a) / 3));
/\ !(2 * (b - a) / 3 > e);
w = b - a;
p = a + w / 3;
u = f(p);
q = b - w / 3;
v = f(q);
b = q;
w = b - a;
max = (a + b) / 2;
printf("5.2f\n", max);
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The path condition of αβγεη is
b - a > e
&& !(f(a + (b - a) / 3) < f(b - (b - a) / 3))
&& !(2 * (b - a) / 3 > e)

which can be simplified to

b - a > e
&& !(f((b + 2a) / 3) < f((a + 2b) / 3))
&& !(2 * (b - a) / 3 > e)
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How to evaluate ¬((f(x1) < f(x2)) ?

It is observed that a < b because they stand for the
lower and upper boundaries of an interval on the
x-axis.  Hence it is always true that (b+2a)/3 <
(a+2b)/3.  Now, from the function plot in Fig. 2.2
we see that  ¬((f(x1) < f(x2)) will be true if x1 < x2
and x1 is greater than or equal to 2.  In other
words, the second atomic expression will be true if
(b + 2a)/3 = 2, or, equivalently, b + 2a = 6.
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Modified path conditions
Thus, instead of the path predicates shown above, we may
consider

b-a>e && b+2a>=6 && !(2*(b-a)/3>e)

as the path predicate of path αβδεη, and

b-a>e && !((b+2a)>=6) && !(2*(b-a)/3> e)

as that of path αβγεη for the purpose of finding test cases.
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Test the program with
a ← 0,    b ← 0.5,    e ← 1/3.

If the program contains an error, say, p=a+w/3 is
somehow written as p=a-w/3, then the algorithm
will not converge.

There is an infinite loop in the program.
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Test the program with
a ← 0,    b ← 0.5,    e ← 1/3.

If the logical expression (associated with the
second decision box in Figure 2.1) is erroneously
written as v<u instead of u<v, then variable max
will contain the abscissa at which f(x) assumes the
minimum value (instead of the maximum).  In
other words, we will obtain as the test result max
= Δ, i.e., max is within the distance Δ = e/2 = 1/6
from a = 0, which is clearly not a correct answer,
as one can see from the function plot.
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Test the program with
a ← 0,    b ← 0.5,    e ← 1/3.

If the program is correct, it should produce

max = 0.5 - Δ

as the result, Δ, where Δ is the error less than or
equal to e/2 = 1/6.
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Test the program with
a ← 0,    b ← 0.5,    e ← 1/3.

If the program is in error, say, the assignment
statement p=a+w/3 is somehow written as p=a-
w/3, then the algorithm will not converge.
Consequently, we have an infinite loop in the
program and execution will not terminate.
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Test the program with
a ← 0,    b ← 0.5,    e ← 1/3.

If the logical expression (associated with the
second decision box in Figure 2.1) is erroneously
written as v<u instead of u<v, then variable max
will contain the abscissa at which f(x) assumes the
minimum value (instead of the maximum).  In
other words, we will obtain as the test result max
= Δ, i.e., max is within the distance Δ = e/2 = 1/6
from a = 0, which is clearly not a correct answer
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Complicating factors

1)  Number of paths involved in a large program.

In general, the number of paths that exist in a real
world program is so large that test case selection
cannot be done without automated tools.
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Complicating factors (continued)

2) Non-traversable paths in a program:
Not every path in the control-flow diagram is a
feasible execution path.

The fact that an unfeasible path cannot be
identified on the basis of the graph structure of the
flowchart but rather by the fact that it has an
unsatisfiable path predicate, greatly complicates
the problem.
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Complicating factors: Example

main()
{
int x, y, z;

scanf("%d %d", &x, &y);
z = 1;
while (y != 0) {

if (y % 2 == 1)
z = z * x;

y = y / 2;
x = x * x;

}
printf("%d\n", z);

}
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Complicating factors: Example
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Complicating factors: Example
α:  scanf("%d %d", &x, &y);

z = 1;
β:  /\ y != 0;
γ: /\ !(y % 2 == 1);
δ: /\ y % 2 == 1;

z = z * x;
ε: y = y / 2;

x = x * x;
η:  /\ !(y != 0);

printf("%d\n", z);
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Complicating factors: Example

This program computes xy by a binary decomposition
of y for integer y ≥ 0.  By inspection we see that every
branch is on some path in the set given below:

{αβδεη, αβγεη}

and thus is a candidate minimal covering set for test-
case construction.
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Complicating factors: Example
Thus the path predicates for these two paths are:

y != 0 && y % 2 == 1 && y / 2 == 0

and

y != 0 && y % 2 != 1 && y / 2 == 0,

the second of which is not satisfiable, and thus represent an
infeasible execution path.
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Complicating factors (continued)

3)  Loop structure in a program:

It is desirable to iterate a loop as few times as
possible for economical reasons.

Unfortunately, some loops have to be iterated for a
constant number of times (e.g., FOR loops)
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Complicating factors (continued)

4) Subscripted variables:
There will be more than one way to satisfy a
predicate if an array element is involved. For
example, consider the predicate: a[i+1] == a[j].
This predicate can be satisfied by letting i + 1 == j
or by assigning the same value to a[i+1] and a[j].
Thus a degree of indeterminacy is added to the
process of finding an assignment that satisfies a
predicate.
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Complicating factors (continued)

5) Block structure and call of procedure or subroutine:  if the
program is written in a language (such as C) that permits
the use of block structures, or if it contains a function
(procedure) call, then we need to be able to tell whether a
given variable is local or global.  Since the same identifier
can be used to denote two distinct variables in the same
program, we must keep track of the scopes in which the
variables are defined.  We also need to know whether an
identifier stands for a "call by name" or a "call by value"
parameter in order to construct a path predicate correctly.
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Complicating factors (continued)

6) Path predicates involving floating-point variables:
the truth values of such predicates may become
unpredictable.
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Significance of Path Testing

It is interesting to see what branch test means in
terms of the tasks to be performed by a program.
Mathematically speaking, a computer program
may be considered as the definition of a function.
This function usually is expressed as a union of a
set of partial functions, each defined on a subset of
the intended input domain.
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Subprograms vs. partial functions

Each partial function is associated with an
execution path in such a way that the sequence of
non-control statements on the path is actually a
subprogram that computes the values of that
partial function.
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Path predicate

The condition that a set of input data has to satisfy
in order for a path to be traversed in execution is
generally referred to as the path predicate
(condition) of that path.  The path predicate
essentially defines the membership of a
subdomain in which the corresponding partial
function is defined.
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Implication of branch testing

If every branch in the program is traversed at least
once, it implies that most, but not necessarily all,
of the possible execution paths will be traversed at
least once.  Therefore, to test a program by having
every branch traversed at least once is to test the
correctness of most partial functions for at least
one point in the subdomain in which each is
defined.
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On path testing

If there is an error in the constituent statements of
a certain path, it is most likely that we will
discover the error because the corresponding
partial function will be checked for at least one
point in its domain.
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On branch testing
We must remember, however, that some possible
execution paths may not be covered in a branch
test.
Furthermore, for some input data, some programs
may produce results that are fortuitously correct,
as we have illustrated before.  This is why the
requirement of having every branch traversed at
least once is still not sufficient to ensure that the
presence of an error will be definitely indicated in
the test result.
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Impracticality of path testing

Obviously, we can make a test more thorough by
requiring that every possible execution path in the
program be exercised at least once.  But it is
infeasible in practice because most programs
contain loop constructs, each of which yields a
prohibitively large number of executable paths.
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A viewpoint

Having every branch traversed at least once can be
seen as a practical way to obtain a well distributed
sample of execution paths.
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Other path-oriented methods

In addition to branch testing, there are at least
three other methods for selecting paths to be
tested, viz.,
– Boundary-interior testing
– McCabe method
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Boundary-interior testing

The first, called the boundary-interior testing, is
designed to circumvent the problem presented by
a loop construct.  A boundary test of a loop
construct  causes it to be entered but not iterated.
An interior test causes a loop construct to be
entered and iterated at least once.
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Boundary-interior testing (continued)

To be more precise, if an execution path is
expressed in a regular expression then the paths to
be exercised in the boundary-interior test is
described by replacing every occurrence of
expression of the form α* with (λ+α), where λ is
the null path.

The examples listed in Table 2.1 should clarify
this definition.
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ace + abce + acde + abcdeab*cd*e

ad + abd + acda(b+c)*d

ac + abcab*c

paths to be traversed in the testpaths in the program

Table 2.1 Examples
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Boundary-interior testing (continued)

In practice, the paths prescribed by this method
may be infeasible because certain types of loop
construct, such as a "for" loop in C++ and other
programming languages, has to iterate a fixed
number of times every time it is executed.

Leave such a loop construct intact because it will
not be expanded into many paths.
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Boundary-interior testing (continued)

Semantically speaking, the significance of having
a loop iterated zero and one time can be explained
as follows.  A loop construct is usually employed
in the source code of a program to implement
something that has to be recursively defined.
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Boundary-interior testing (continued)

For example, a set D of data whose membership
can be defined recursively in the form
(1) d0 ∈ D,  (initialization clause)
(2) If d ∈ D and P(d) then f(d) is also an element

of D,  (inductive clause)
(3) Those and only those obtainable by a finite 
number of applications of (1) and (2) are the 
elements of D,  (extremal clause)
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Boundary-interior testing (continued)

where P is some predicate and f is some function.  In
this typical recursive definition scheme, the
initialization clause is used to prescribe what is known
or given, and the inductive clause is used to specify
how a new element can be generated from the given
ones.
Obviously, set D is correctly defined if the
initialization and inductive clauses are correctly
stated.
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Boundary-interior testing (continued)

When D is used in a program, it will be
implemented as a loop construct of the from

d := d0;
while P(d) do begin S; d := f(d) end;

where S is the program segment designed to make
use of the elements of the set.
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Boundary-interior testing (continued)

Obviously, a test execution without entering the
loop will exercise the initialization clause, and a
test execution that iterates the loop only once will
exercise the inductive clause.  Therefore, we may
say that boundary-interior testing is an abbreviated
form of path testing.
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McCabe’s testing method

The second method is proposed by Charles
McCabe based on his complexity measure.  It
requires that at least a maximal set of linearly
independent paths in the program be traversed
during the test.
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McCabe’s testing method (continued)

A graph is said to be strongly connected  if there is
a path from any node in the graph to any other
node.

It can be shown that, in a strongly connected
graph G = <E, N>, where E is the set of edges and
N is the set of nodes in G, there can be as many as
v(G) elements in a set of linearly independent
paths,
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McCabe’s testing method (continued)

where

v(G) = |E| - |N| + 1.

The number v(G) is also known as McCabe's
cyclomatic number, a measure of program
complexity.
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McCabe’s testing method (continued)

Here we speak of a program (control) graph with
one entry and one exit.  It has the property that
every node can be reached from the entry, and
every node can reach the exit.  In general, it is not
strongly connected, but can be made so by adding
an edge from the exit to the entry.
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Example

!

"

# $

%

&

µ

For example, we can make 
the program graph in Fig. 2.4 
strongly connected by adding 
the edge µ (in dashed line) 
as depicted on the left.



©J. C. Huang 2009 Software Error Detection - Chapter 2 89

Example (continued)

Since there are 7 edges and 5 nodes in this graph,
v(G) = 7 - 5 + 1 = 3 in this example.  Note that,
for an ordinary program graph without that added
edge, the formula for computing v(G) should be:

v(G) = |E| - |N| + 2.
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Example (continued)
For any path in G, we can associate it with a 1 by
|N| vector, where the element on the i-th column is
an integer equal to the number of times the i-th
edge is used in forming the path.  Thus, if we
arrange the edges in the above graph in the order
αβδεγµη, then the vector representation of path α
βγεη is <1 1 0 1 1 0 1>, and that of βγεβγε is <0 2
0 2 2 0 0>.  We shall write <αβγεη> = <1 1 0 1 1
0 1>, and <βγεβγε> = <0 2 0 2 2 0 0>.
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Example (continued)
A path is said to be a linear combination of others if its
vector representation is equal to that formed by a linear
combination of their vector representations.
Thus, path βγεη is a linear combination of βγ and εη
because <βγεη> = <βγ> + <εη> = <0 1 0 0 1 0 0> + <0
0 0 1 0 0 1> = <0 1 0 1 1 0 1>,  and path αη is a linear
combination of αβδεη and βδε because <αη> = <αβδε
η> - <βδε> = <1 1 1 1 0 0 1> - <0 1 1 1 0 0 0> = <1 0 0
0 0 0 1>.
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Example (continued)

A set of paths is said to be linearly independent if no
path in the set is a linear combination of any other
paths in the set.

Thus {αβδεη, αβγεη, αη} is linearly independent,
but {αβδεη, αβδεβδεη, αη} is not (because <αβδεη
> + <αβδεη> - <αβδεβδεη> = <αη>).
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Example (continued)

A basis set of paths is a maximal set of linearly
independent paths.  In graph G given above, since
v(G) = 3, {αβδεη, αβγεη, αη} constitutes a basis
set of paths.  Note that, although v(G) is fixed by
the graph structure, the membership of a basis set
is not unique.  For example, {αβδεη, αβδεβγεη,
αη} is also a basis set in G.
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Properties of v(G)
• v(G) ≥ 1.
• v(G) is the maximum number of linearly independent paths

in G, and it is the size of the basis set.
• Inserting or deleting a node with out-degree of 1 does not

affect v(G).
• G has only one path if v(G) = 1.
• Inserting a new edge in G increases v(G) by 1.
• v(G) depends only on the decision structure of the 

program represented by G.
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Data-flow testing

The third approach to path sampling is based on
the data flow in the program.

When a program is executed along a path, the
value of each variable involved is defined first and
then used later.  By requiring such "define-use"
relations be exercised during the test, the
probability of error  detection can be increased.
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Data-flow oriented methods

Data flow testing is also a form of structure
testing.  The "component" that will be exercised
during the test is a segment of control path that
starts from the point where a variable is defined,
and ends at the point where that definition is used.
We need to introduce a few terms before we
proceed to describe data-flow oriented methods
for test case selection.
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Properties of a data-flow path

A path is said to be definition clear with respect to
a variable, say, x, if it begins at a point where x is
defined, and contains no statement that causes x to
be undefined or redefined.

A path is loop-free if every node on the path
occurs only once.
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Properties of a data-flow path (continued)

A simple path is a path in which at most one node
occurs twice.

A du path of a variable, say, x, is a simple path
that is definition clear with respect to x.
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All-du-path testing

It requires that every du path form every definition
of every variable in the program to every use of
that definition be traversed at least once during the
test.



©J. C. Huang 2009 Software Error Detection - Chapter 2 100

δεβδ, δεηδ, ηδ

αβδ, αβγεηδ, ηα
z

εβ, εβγ, εβδ, εη, εβδε,
εβγε

εβ, γ, δ, ηε

αβ, αβγ, αβδ, αη, αβδ
ε, αβγε

εβ, γ, δ, ηα

y

εβδ, εβγεδ, εε

αβδ, αβδε, αβγεδ, εδ, εα
x

du-pathsc-used inp-used indefined invariable

Table 2.2
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√√√δεη

√δεβδ

√√√εη

√αη

εβγε

√√εβδε

√αβγε

√√αβδε

αβγεβδεηαβδεβδεηαβδεηαη

Table 2.3
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δεη

δεβδ

εη

αη

εβγε

εβδε

αβγε

αβδε

√

αη

√

√

√

αβδεη

√

√

√

√

√

αβδεβδεη

√

√

√

√

αβγεβδεη

√

αβδεβγεβδεη

Table 2.4
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All-use testing

It requires that at least one definition-clear path
from every definition of every variable to every
use of that definition be traversed during the test



©J. C. Huang 2009 Software Error Detection - Chapter 2 104

δεβδ, δεηδ, ηδ

αβδ, αβγεηδ, ηα
z

εβ, εβγ, εβδ, εη, εβδε,
εβγε

εβ, γ, δ, ηε

αβ, αβγ, αβδ, αη, αβδ
ε, αβγε

εβ, γ, δ, ηα

y

εβδ, εβγεδ, εε

αβδ, αβδε, αβγεδ, εδ, εα
x

du-pathsc-used inp-used indefined invariable

Table 2.5
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δεη

δεβδ

εη

αη

εβγε

εβδε

αβγε

αβδε

√

αη

√

√

√

αβδεη

√

√

√

√

√

αβδεβδεη

√

√

√

αβγεβδεη αβδεβγεβδεη

Table 2.6
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All p-use/some c-use testing

It requires that at least one definition-clear path
from every definition of every variable to every p-
use (i.e., the definition is used in a predicate) of
that definition be traversed during the test.  If there
is no p-use of that definition, replace "every p-use"
in the above sentence with "at least one c-use (i.e.,
the definition is used in a computation)."
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δεβδ, δεηδ, ηδ

αβδδ, ηα
z

εβ, εβγ, εβδ, εη, εβδε,
εβγε

εβ, γ, δ, ηε

αβ, αβγ, αβδ, αη, αβδ
ε, αβγε

εβ, γ, δ, ηα

y

εβδ, εβγεδ, εε

αβδ, αβδε, αβγεδ, εδ, εα
x

du-pathsc-used inp-used indefined invariable

Table 2.7
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δεη

εη

αη

εβγ

εβδ

αβγ

αβδ

√

αη

√

√

√

αβδεη

√

√

√

√

αβδεβδεη

√

√

√

√

αβγεβδεη

√

√

√

√

√

αβδεβγεβδεη

Table 2.8
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All c-use/some p-use testing

It requires that at least one definition-clear path
from every definition of every variable to every c-
use of that definition be traversed during the test.
If there is no c-use of that definition, replace
"every c-use" in the above sentence with "at least
one p-use."
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δεβδ, δεηδ, ηδ

αβδδ, ηα
z

εβ, εβγ, εβδ, εη, εβδε,
εβγε

εβ, γ, δ, ηε

αβ, αβγ, αβδ, αη, αβδ
ε, αβγε

εβ, γ, δ, ηα

y

εβδ, εβγεδ, εε

αβδ, αβδε, αβγεδ, εδ, εα
x

du-pathsc-used inp-used indefined invariable

Table 2.9
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δεη

δεβδ

εβγε

εβδε

αβγε

αβδε

√

√

αβδεη

√

√

√

√

αβδεβδεη

√

√

√

αβγεβδεη

√

√

√

√

αβδεβγεβδεη

Table 2.10
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All definitions testing

It requires that, for every definition of every
variable in the program, at least one du-path
emanating from that definition be traversed at least
once during the test.
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δεβδ, δεηδ, ηδ

αβδδ, ηα
z

εβ, εβγ, εβδ, εη, εβδε,
εβγε

εβ, γ, δ, ηε

αβ, αβγ, αβδ, αη, αβδ
ε, αβγε

εβ, γ, δ, ηα

y

εβδ, εβγεδ, εε

αβδ, αβδε, αβγεδ, εδ, εα
x

du-pathsc-used inp-used indefined invariable

Table 2.11
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√δεβδ

√√εβδ

√√αβδ

αβγεβδεηαβδεβδεηαβδεη

Table 2.12
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All p-use testing

It derives from the all p-use/some c-use  by
dropping the "some c-use" requirement.
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δεβδ, δεηδ, ηδ

αβδδ, ηα
z

εβ, εβγ, εβδ, εη, εβδε,
εβγε

εβ, γ, δ, ηε

αβ, αβγ, αβδ, αη, αβδ
ε, αβγε

εβ, γ, δ, ηα

y

εβδ, εβγεδ, εε

αβδ, αβδε, αβγεδ, εδ, εα
x

du-pathsc-used inp-used indefined invariable

Table 2.13
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δεη

εη

αη

εβγ

εβδ

αβγ

αβδ

√

αη

√

√

√

αβδεη

√

√

√

√

αβδεβδεη

√

√

√

√

αβγεβδεη

√

√

√

√

√

αβδεβγεβδεη

Table 2.14
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All c-use testing

It derives from the all c-use/some p-use  by
dropping the "some p-use" requirement.
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δεβδ, δεηδ, ηδ

αβδδ, ηα
z

εβ, εβγ, εβδ, εη, εβδε,
εβγε

εβ, γ, δ, ηε

αβ, αβγ, αβδ, αη, αβδ
ε, αβγε

εβ, γ, δ, ηα

y

εβδ, εβγεδ, εε

αβδ, αβδε, αβγεδ, εδ, εα
x

du-pathsc-used inp-used indefined invariable

Table 2.15
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δεη

δεβδ

εβγε

εβδε

αβγε

αβδε

√

√

αβδεη

√

√

√

√

αβδεβδεη

√

√

√

αβγεβδεη

√

√

αβδεβγεβδεη

Table 2.16
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Coverage relation

A test-case selection criterion C1 is said to cover
another criterion C2 if satisfaction of C1 implies
satisfaction of C2.

For example, branch test covers statement test, but
not the other way around.



©J. C. Huang 2009 Software Error Detection - Chapter 2 122

all-path

all-du-path

all-use

all-c/some-p

all-c-use

all-p/some-c

all-p-use

branch

statement

all-def

Coverage 
relation 
(continued)
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Error classification

An error categorization scheme is useful if it
enables us to characterize a test method in terms
of error type for which it is particularly effective.
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A conceptual framework

In abstract, the intended function of a program can
be viewed as a function f of the nature f: X → Y.
The definition of f usually is expressed as a set of
subfunctions f1, f2, ..., fm, where fi: Xi → Y (i.e., fi
is f restricted to Xi for all 1 ≤ i ≤ m),  X = X1 ∪ X2
∪ ... ∪ Xm, and fi ≠ fj if i ≠ j.    We shall use f(x)
to denote the value of f evaluated at x ∈ X, and
suppose that each Xi can be described in the
standard subset notation Xi = {x  | x ∈ X ∧ Ci(x)}.
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A conceptual framework (continued)

Note that, in the above, we require the
specification of f to be compact, i.e., fi ≠ fj if i ≠ j.
This requirement makes it easier to construct the
definition of a type of programming error in the
following.  In practice, the specification of a
program may not be compact, i.e., fi may be
identical to fj for some i and j.  Such a
specification, however, can be made compact by
merging Xi and Xj.
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A conceptual framework (continued)

Let (P, S) denote a program, where P is the condition under
which the program will be executed, and S is the sequence of
statements to be executed.  Furthermore, let D be the set of all
possible inputs to the program.  Then the (valid) input domain of
this program should be X = { x | x ∈ D ∧ P(x)}, and the program
should be composed of n paths, i.e.,

(P, S) = (P1, S1) + (P2, S2) + ... + (Pn, Sn),
such that for every 1 ≤ i ≤ n, Si is the sequence of statements
designed to compute fj  for  some 1 ≤ j ≤ m (note that n is not
necessarily equal to m).
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An error classification scheme

We shall use S(x) to denote the computation performed by
an execution of S with x as input.

Two basic types of error may be committed in constructing
the program (P, S):

(1) Computational error:  the program has a 
computational error if

(∃i)(∃j)((Pi ⊃ Cj ∧ Si(x) ≠ fj(x)).

(2) Domain error:  the program has a domain error if 
¬(∀i)(∃j)(Pi ⊃ Cj).
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It is different!

Note that the above definition is not identical to
that given by Goodenough and Gerhart, Howden,
or White and Cohen.  More will be said about the
differences later.
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Domain strategy testing

The domain strategy testing described below is
designed to detect domain errors, and is based on
a geometrical analysis of the domain boundary,
taking advantage of the fact that points on or near
the border are most sensitive to domain errors.
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Domain strategy testing (continued)

Test cases are to be selected for each border
segment which, if processed correctly, determine
that both the relational operator and the position of
the border are correct.
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Oracle

• An important assumption made in this work is that
the user or an oracle is available who can decide
unequivocally if the output is correct for the
specific input processed.

• The oracle decides only if the output values are
correct, and not whether they are computed
correctly.  If they are incorrect, the oracle does not
provide any information about the error and does
not give the correct output values.
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Assumptions
The test method is applicable only if the program has the
following properties:
(a) It contains only simple linear predicates of the 

form a1v1+ a2v2 + ... + akvk ROP C, where ai's and C
are constants, and ROP is a relational operator.

(b) The path predicate of every path in the program is 
composed of a conjunction of such simple linear 
predicates.

(c) Coincidental (fortuitous) correctness of the 
program will not occur for any test case.
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Assumptions (continued)
(d) A missing path error is not associated with the path 

being tested.
(e) Each border is produced by a simple predicate.
(f) The path corresponding to each adjacent domain 

computes a different subfunction.
(g) Functions defined in two adjacent subdomains yield

different values for the same test point near the border.
(h) Any border defined by the program is linear, and if it is

incorrect, the correct border is also linear.
(i) The input space is continuous rather than discrete.
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The method

Each border is a line segment in a k-dimensional
space, which can be open or closed, depending on
the relational operator in the predicate.
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The method (continued)

A closed  border segment of a domain is actually
part of that domain and is formed by a predicate
with ≥, =, or ≤ operator.
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The method (continued)

An open  border segment of a domain forms part
of the domain boundary, but does not constitute
part of that domain, and is formed by a <,  >, or ≠
operator.
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The method (continued)

The test points (cases) selected will be of two
types defined by their relative position with
respect to the given border.  An on  test point lies
on the given border while an  off  test point is a
small distance ε from, and lies on the open side of,
the given border.
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The method (continued)

When testing a closed border of a domain, the on
test points are in the domain being tested, and
each off  test point is in some adjacent domain.
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The method (continued)

When testing an open border, each on  test point is
in some adjacent domain while the off  test points
are in the domain being tested.
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The method (continued)

Three test points will be selected for each border
segment in an on-off-on sequence as depicted in
Fig. 2.5.
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The method (continued)

!

a b

P Q

Domain  D

Domain  D

i

j

Given border

Correct border

c
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The method (continued)

The test will be successful if the test points a and b are
computed by the subfunction defined for domain Di, and
the test point c is computed by that defined for the
neighboring domain Dj.  This will be the case if the correct
border is a line that intersects the line segments ac and bc
at any point except c.  In order to verify that the given
border is identical to the correct one, we need to select the
test point c in such a way that its distance from the given
border is ε, an arbitrarily small number.
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Three
different
types
of
error
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Comments
Two important assumptions were made at the outset:
(1) all path predicates are numerical and linear, and
(2) functions defined in two adjacent subdomains yield
different values for the same test point near the border.

The class of real-world programs satisfying assumption (1)
is probably small.  Assumption (2) is contrary to
requirements in most practical applications: the common
requirement is to have the functions defined in the adjacent
subdomains to produce approximately the same, if not
identical, values near the border.
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CW+C error classification method

This method is a modified version of the
Howden’s method to be discussed later.

It is more operational in that the classification is
based on the kind of changes needed to correct the
error.
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CW+C error classification method
(contin’d)

A program can be viewed as
• establishing an exhaustive partition of the input

space into mutually exclusive domains, each of
which corresponds to an execution path, and

• specifying, for each domain, a set of assignment
statements which compute the domain computation.
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CW+C error classification method
(contin’d)

Thus we have a canonical representation of a
program, which is a (possibly infinite) set of pairs

{(D1, f1),  (D2, f2), ..., (Di, fi), ... }
where Di is the i-th domain and fi is the
corresponding domain computation function.
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CW+C error classification method
(contin’d)

Given an incorrect program P, let us consider the
changes in its canonical representation as a result
of modifications performed on P.
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Domain-boundary modification

Definition:  A domain-boundary modification
occurs if the modification results in a change in
the Di component of some (Di, fi) pair in the
canonical representation.
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Domain-computation modification

Definition:  A domain-computation modification
occurs if the modification results in a change in
the fi component of some (Di, fi) pair in the
canonical representation.
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Missing-path modification

Definition:  A missing-path modification occurs if
the modification results in the creation of a new
(Di, fi) pair such that Di is a subset of Dj occurring
in some (Dj, fj) pair in the canonical representation
of P.
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Modification type is not uniquely
defined

Notice that a particular modification (say a change
of some assignment statement) can be a
modification of more than one type.  In particular,
a missing-path modification is also a domain-
boundary modification.
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Error classification result is not unique
• Error occurs in a program can be classified on the

basis of the modifications needed to obtain a correct
program and consequent changes in the canonical
representation.

• In general, there will be many correct programs and
multiple ways to get a particular correct program.
Hence, the error classification is not absolute, but
relative to the particular correct program that would
result from the series of modifications.
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C+W error classification scheme

Definition:  An incorrect program P can be
viewed as having a domain error (computational
error) (missing-path error) if a correct program
P* can be created by a sequence of modifications,
at least one of which is a domain-boundary
modification (domain-computation modification)
(missing-path modification).
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Howden’s error classification method
We will be concerned with programs which are either correct
or can be considered deviations from a hypothetical correct
program P*.

The "differences" between P and P* define errors in P.  Each
class of programs P will consist of correct programs P*
together with incorrect programs P which differ from P* by
some type of error.
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Howden’s classification method (contin’d)

A path through a program corresponds to some
possible flow of control.  A path may be infeasible
in the sense that there is no input data which will
cause the path to be executed.

In general, a program containing loops will have
an infinite number of paths.  The errors in a
program can be categorized in terms of their
effects on the paths through the program.
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Howden’s classification method (contin’d)

Associated with each path through a program is
the subset of the input domain which causes the
path to be followed and a sequence of
computations which is carried out by the path.
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Path domain and path computation

Definition:  Suppose Pi is a path through a
program P.  Then the path domain  Di = D(Pi) for
Pi is the subset of the input domain which causes
Pi to be executed.  The path computation  Ci =
C(Pi) for Pi is the function which is computed by
the sequence of computations in Pi.
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Equivalence of two paths

In general Ci may not be defined over all of D or,
since P may contain errors, even over all of Di.

In comparing two computations Ci and Cj, we say
that Ci and Cj are equivalent (Ci = Cj) if Ci and Cj

are defined for the same subset D' of D and Ci(x) =
Cj(x) for all x ∈ D'.
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The effect of errors

The effect of program errors on the paths through
a program can be described in terms of their
effects on the path domains and path computations
of the paths.
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The definition of correctness

• If there is an isomorphism (one-to-one
correspondence) between the paths Pi of P and the
paths Pi* of the correct version P* of P such that
D(Pi) = D(Pi*) and C(Pi) = C(Pi*) for all paths,
then P = P* and P is correct.

• If P is not correct, no isomorphism having these
properties can be constructed.  Either the domains
or the computations, or both, of P and P* will be
different.
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(Path) computation error

Definition:  Suppose P is an incorrect program for
computing a function F and P* is a correct
program.  Suppose there is an isomorphism
between the paths Pi of P and the paths Pi* of P*
such that for all pairs of paths (Pi, Pi*), D(Pi) =
D(Pi*) but that for some pairs (Pk, Pk*), C(Pk) ≠
C(Pk*).   Then P contains a path computation  or
computation  error.
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(Path) domain error

Definition:  Suppose P is an incorrect program for
computing a function F and P* is a correct
program.  Suppose there is an isomorphism
between the paths Pi of P and the paths Pi* of P*
such that for all pairs of paths (Pi, Pi*), C(Pi) =
C(Pi*) but that for some pairs (Pk, Pk*), D(Pk) ≠
D(Pk*).   Then P contains a path domain or
domain error.
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Subcase error

Definition:  Suppose P is an incorrect program for
computing a function F and P* is a correct
program.  Suppose there is an isomorphism
between the paths Pi of P and a subset of the paths
Pi* of P* such that C(Pi*) = C(Pi) and D(Pi) ⊃
D(Pi*)   for all paths Pi in P.  Then P contains a
subcase error.
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The assumptions

When a program contains a computation error we
assume that the paths in P and P* have been
indexed so that D(Pi) = D(Pi*) for all paths.

When it contains a domain or a subcase error we
assume they have been indexed so that C(Pi) =
C(Pi*) for all paths Pi in P.
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Howden’s theorem

Theorem:  Suppose that P is an incorrect program
and that the only difference between P and P* is in
some statement which does not affect the flow of
control in P.  Then P has a computation error.
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Another Howden’s theorem

Theorem:  Suppose that P is an incorrect program
and that the only difference between P and a
correct program P* is in some statement which
affects the flow of control in P.  Then P may have
a computation, domain, or subcase error.
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G+G error classification method
Missing Control Flow Paths.  This type of error
arises from failure to examine a particular condition; it
results in the execution of inappropriate actions.

For example, failure to test for a zero divisor before executing a division
may be a missing-path error. When a program contains this type of error, it
may be possible to execute all control flow paths through the program
without detecting the error.  This is why exercising all program paths does
not constitute a reliable test.
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G+G error classification method
(contin’d)

Inappropriate Path Selection.  This type of error occurs when
a condition is expressed incorrectly, and therefore, an action is
sometimes performed (or omitted) under inappropriate
conditions.

  When a program contains this type of error, it is quite possible to exercise all
statements and all branch conditions without detecting the error.  This error
can occur not merely through failure to evaluate the right combination of
conditions, but also through failure to see that the method of evaluation is not
adequate (e.g., determining whether three numbers are equal by writing
(X+Y+Z)/3 = X).
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G+G error classification method
(contin’d)

Inappropriate or Missing Action.  Examples are calculating a
value using a method that does not necessarily give the correct
result (e.g., d*d instead of d+d), or failing to assign a value to a
variable, or calling a function or procedure with the wrong
argument list.  Some of these errors are revealed when the action
is executed under any circumstances. Requiring all statements in
a program to be executed will catch such errors.  But sometimes
the action is incorrect only under certain combinations of
conditions; in this case, merely exercising the action (or the part
of the program where a missing action should appear) will not
necessarily reveal the error.  For example, this is the case if d*d
is written instead of d+d.
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G+G error classification method
(contin’d)

This classification of errors is useful because our goal is to
detect errors by constructing appropriate tests. But insight into
test reliability is given by the proposed classification.  For
example, consider the test-data selection criterion, "choose data
to exercise all statements and branch conditions in an
implementation."  In evaluating the reliability of this criterion,
we would ask, "Will all construction, specification, design, and
requirements errors always be detected by exercising programs
with data satisfying this criterion?"  Clearly, if a design error, for
example, is manifested as a missing path in an implementation,
then this criterion for test data selection will not be reliable.
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Program mutation

A mutant of a program P is defined as a program
P' derived from P by making one of a set of
carefully defined syntactic changes in P.  Typical
changes include replacing one arithmetic operator
by another, one statement by another, and so forth.
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Example program
main()   /* compute sine function */
{
   int i;
   float e, sum, term, x;

      scanf("%f %f" x, e);
      printf("x= %10.6f  e= %10.6f\n" x, e);
      term = x;
      for (i = 3; i <= 100 && term > e; i = i + 2)
      {
        term = term * x * x / (i * (i - 1));
        if (i % 2 == 0) sum = sum + term;
        else sum = sum - term;
      }
      printf("sin(x)= %8.6f\n" sum);
}
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An example mutant
/* a mutant obtained by changing variable x to a constant 0 */
main()   /* compute sine function */
{
   int i;
   float e, sum, term, x;
      scanf("%f %f", x, e);
      printf("x= %10.6f  e= %10.6f\n", x, e);
      term = 0;
      for (i = 3; i <= 100 && term > e; i = i + 2)
      {
        term = term * x * x / (i * (i - 1));
        if (i % 2 == 0) sum = sum + term;
        else sum = sum - term;
      }
      printf("sin(x)= %8.6f\n", sum);
}
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Another example mutant
/* a mutant obtained by changing a relational operator */
/* in i <= 100 to i >= 100                             */
main()   /* compute sine function */
{
   int i;
   float e, sum, term, x;
      scanf("%f %f", x, e);
      printf("x= %10.6f  e= %10.6f\n", x, e);
      term = x;
      for (i = 3; i >= 100 && term > e; i = i + 2)
      {
        term = term * x * x / (i * (i - 1));
        if (i % 2 == 0) sum = sum + term;
        else sum = sum - term;
      }
      printf("sin(x)= %8.6f\n", sum);
}
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Yet another example mutant

/* a mutant obtained by changing constant 0 to 1 */
main()   /* compute sine function */
{
   int i;
   float e, sum, term, x;

      scanf("%f %f", x, e);
      printf("x= %10.6f  e= %10.6f\n", x, e);
      term = x;
      for (i = 3; i <= 100 && term > e; i = i + 2)
      {
        term = term * x * x / (i * (i - 1));
        if (i % 2 == 1) sum = sum + term;
        else sum = sum - term;
      }
      printf("sin(x)= %8.6f\n", sum);
}
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Basic idea

Let P' be a mutant of some program P.  A test case
t is said to differentiate  P' from P if an execution
of P and P' with t produced different results.
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Basic idea (contin’d)

If t failed to differentiate P' from P, either P' is
functionally equivalent to P, or t is ineffective in
revealing the changes (errors) introduced into P'.
Thus a test method can be formulated as follows.
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Mutation testing

Given a program P, which is written to implement function f,
Step 1: Generate Φ, a set of mutants of P, by using a set  of 

mutation operations.

Step 2: Identify and delete all mutants in Φ which are 
equivalent to P.

Step 3: Find T, a set of test cases that as a whole differentiate
P from every mutant in Φ, to test-execute P and 
elements of Φ.



©J. C. Huang 2009 Software Error Detection - Chapter 2 180

The “competent programmer” assumption
These three steps constitute a Φ mutant test.  The
test is successful  if P(t) = f(t) for all t∈T.  A
successful Φ mutant test implies that the program
is free of any errors introduced into P in the
process of constructing Φ.  If we can assume that
P was written by a competent programmer who
had a good understanding of the task to be
performed and was not capable of making any
mistakes other than those introduced in
constructing Φ, we can conclude that P is correct.
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Construction of mutants

How can Φ be constructed in practice?  Budd et
al. suggested that a set of syntactic operations can
be used to construct the desired mutants
systematically.  The definition of such operations
obviously would be language dependent.  For
Fortran programs, the mutation operations may
include the following.
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The mutation operations

(1) Constant Replacement:  Replacing a constant, say, C, with
C+1 or C-1, e.g., statement  A = 0  becomes  A = 1  or  A
= -1.

(2) Scalar Replacement:  Replacing one scalar variable with
another, e.g., statement  A = B - 1  becomes  A = D - 1.

(3) Scalar for Constant Replacement:  Replacing a constant
with a scalar variable, e.g., statement  A = 1  becomes  A =
B.
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The mutation operations (contin’d)

(4) Constant for Scalar Replacement:  Replacing a scalar
variable with a constant, e.g., statement  A = B  becomes
A = 5.

(5) Source Constant Replacement:  Replacing a constant in
the program with another constant found in the same
program, e.g., statement A = 1 becomes  A = 11, where the
constant 11 appears in some other statement.
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The mutation operations (contin’d)

(6) Array Reference for Constant Replacement:
Replacing a constant with an array element, e.g.,
statement  A = 2 becomes A = B(2).

(7) Array Reference for Scalar Replacement:
Replacing a scalar variable with an array element,
e.g., statement  A = B + 1 becomes  A = X(1) + 1.
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The mutation operations (contin’d)
(8) Comparable Array Name Replacement:  Replacing a

subscripted variable with the corresponding element in
another array of the same size and dimension, e.g.,
statement  A = B(2, 4) becomes  A = D(2, 4).

(9)  Constant for Array Reference Replacement:  Replacing
an array element with a constant, e.g., statement  A = X(1)
becomes A = 5.

(10) Scalar for Array Reference Replacement: Replacing a
subscripted variable with a nonsubscripted variable, e.g.,
statement A = B(1) - 1 becomes  A = X - 1.



©J. C. Huang 2009 Software Error Detection - Chapter 2 186

The mutation operations (contin’d)
(11) Array Reference for Array Reference Replacement:

Replacing a subscripted variable by another, e.g.,
statement  A = B(1) + 1 becomes  A = D(4) + 1.

(12) Unary Operator Insertion:  Insertion of one of the unary
operators such as  - (negation) in front of any data
reference, e.g., statement  A = X  becomes  A = -X.

(13) Arithmetic Operator Replacement:  Replacing an
arithmetic operator (i.e., +, -, *, /, **) with another, e.g.,
statement A = B + C  becomes  A = B - C.
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The mutation operations (contin’d)

(14) Relational Operator Replacement:  Replacing a
relational operator (i.e., =, <>, <=, <, >=, >) with another,
e.g., expression  X = Y  becomes  X <> Y.

(15) Logical Connector Replacement:  Replacing a logical
connector (i.e., .AND., .OR., .XOR.) with another, e.g.,
expression A .AND. B  becomes  A .OR. B.

(16) Unary Operator Removal:  Deleting any unary operator,
e.g., statement  A = -B/C  becomes  A = B/C.
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The mutation operations (contin’d)
(17) Statement Analysis:  Replacing a statement with a trap

statement that causes the program execution to be aborted
immediately, e.g., statement  GOTO 10  becomes  CALL
TRAP.

(18) Statement Deletion:  Deleting a statement from the
program.

(19) Return Statement:  Replacing a statement in a
subprogram by a RETURN statement.
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The mutation operations (contin’d)
(20) Goto Statement Replacement:  Replacing the statement

label of a GOTO statement by another, e.g., statement
GOTO 20 becomes GOTO 30.

(21) DO Statement End Replacement:  Replacing the end
label of a DO statement with some other label, e.g.,
statement  DO 5 I=2,10 becomes  DO 40 I=2,10.

(22) Data Statement Alteration:  Changing the values of
variables assigned by a DATA statement (in FORTRAN),
e.g., statement DATA Y /22/ becomes DATA Y /31/.
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Application of the mutation operations

A mutant in Φ is created by applying one mutation
operation to one statement in the program.  The
set Φ consists of all possible mutants constructed
by applying every mutation operation to every
applicable statement in the program.
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Identification & removal of equivalent
mutants

In the second step of the mutant test method, after all
possible mutants are generated, one needs to identify and
to remove mutants that are functionally equivalent to the
program.  In general, determining the equivalency of two
programs is a problem unsolvable in the sense that there
does not exist a single effective algorithm for this purpose.
Although a mutant differs from the original program only
by one statement, determination of equivalency may
become problematic in practice.  This difficulty remains to
be a major obstacle in making program mutation as a
practical method for program testing.
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Significance of a discriminating test case
Observe that a mutant of program P is created by altering a
statement in P.  A test case would not differentiate the
mutant from P unless this particular statement is involved
in the test-execution.  Thus, to find a test case to
differentiate a mutant is to find an input to P that causes the
statement in question to be "exercised" during the test.  Of
course, causing the statement to be exercised is only a
necessary condition.  For some input, a non-equivalent
mutant may produce an output fortuitously identical to that
of P.  A sufficient condition, therefore, is that the mutant
and P do not produce the same output for that input.
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Example

Consider a C program that includes the following
statement:

while (fahrenheit <= upper) {
celsius = (5.0 / 9.0) *

(fahrenheit - 32.0);
fahrenheit = fahrenheit + 10.0;

}
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Example (contin’d)

A mutant obtained by replacing constant 5.0 with
4.0, for instance, thus includes the following
statement:

while (fahrenheit <= upper) {
celsius = (4.0 / 9.0) *

(fahrenheit - 32.0);
fahrenheit = fahrenheit + 10.0;

}
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Example (contin’d)

Obviously, any test case satisfying fahrenheit >
upper will not be able to differentiate this mutant because
the mutated statement in the loop body will not be
executed at all.  To differentiate this mutant, the test case
must cause that statement to be exercised.  In addition, the
test case must cause the mutant to produce a different
output.
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Example (contin’d)

A test case that set fahrenheit = upper = 32.0
just before the loop will not do it (because the factor
fahrenheit - 32.0 will become zero, and variable
celsius will be set to zero regardless of the constant
used there).  Such a test case may satisfy the need of a
statement-coverage test because it causes the statement in
question to be executed, but not the need of this mutation
test because it will cause the mutant to produce an output
fortuitously identical to that of the original program.
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An example test result

Test # P M1 M2 M3 M4 M5 M6 P*
1 3 3 3 3 3 5 3 3
2 7 4 7 7 7 7 7 7
3 8 8 9 8 8 8 8 8
4 11 11 13 14 11 11 11 11
5 22 22 22 22 7 22 22 22
6 5 5 5 5 5 5 9 5

This is a complete mutant test, and P is correct.
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Mutant test vs. statement test

A Φ mutant test, therefore, is at least as thorough as a
statement-coverage test (i.e., a test in which every
statement in the program is exercised at least once).  This
is so because there is no program statement that can be
made absolutely error-free, even if it is written by a
competent programmer.  That means Φ should contain at
least one mutant from every statement in the program, if
the Φ mutant test is to be effective.  That in turn means
that the set of test cases used should have every statement
in the program exercised at least once, so that all mutants
can be differentiated from the program.
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Mutant test vs. statement test (contin’d)

A Φ mutant test may be more thorough than a
statement-coverage test because if a test case
failed to differentiate a non-equivalent mutant in
Φ, additional test cases must be employed. These
additional test cases make it possible to detect
errors of the type induced by the mutation
operation used.
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The cost

This added thoroughness is achieved with an
enormous cost, however.
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A cost analysis

Suppose that a given program P has m mutants, and n test
cases are used to differentiate all mutants.

In any other test method, the use of n test cases requires
only n test executions,

In mutation test, additional test executions must be
performed for the mutants.
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A cost analysis (contin’d)

If every mutant is tested with every test case, then m×n test
executions will be required for the mutants alone.

If every test result produced by a mutant that happens to be
different from that produced by P is also found to be
incorrect, then the number of test executions can be
reduced.  This is so because there is no point in testing a
mutant again if it has already produced a different (and
incorrect) result.
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A cost analysis (contin’d)

In that case, the number of mutant tests  (i.e., test-
executions of mutant) needed depends on the number of
mutants each test case is able to differentiate, and the order
in which the test cases are used.
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A cost analysis (contin’d)

In the best case, the first test case differentiates all but n-1
mutants with m test executions.  The second test case
differentiates one mutant with n-1 test executions.  The
third test case differentiates one mutant with n-2
executions, and so on and so forth.
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A cost analysis (contin’d)

In general, the i-th test case differentiates one mutant with
n-i+1 test executions (for all 1 < i = n).  Thus the total
number of test executions required will be

m + (n - 1) + (n - 2) + ... + 1 = m + ((n - 1) + 1)/2 * (n - 1)
= m + n(n - 1)/2
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A cost analysis (contin’d)

In the worst case, each of the first n-1 test cases
differentiates only one mutant, and the last test
case differentiates the remaining m-(n-1) mutants.
The total number of test executions required will
be

m + (m - 1) + (m - 2) + ... + (m - (n - 1))
= mn - (1 + 2 + ... + (n - 1))
= mn - n(n - 1)/2



©J. C. Huang 2009 Software Error Detection - Chapter 2 207

A cost analysis (contin’d)

These two figures represent two extreme cases.  In
average, the number of test executions required
will be

(m + n(n - 1)/2 + mn - n(n - 1)/2)/2 = (m + mn)/2
= m(n + 1)/2
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A cost analysis (contin’d)

  Size
(no. of     No. of   No. of test              No. of mutant tests needed

Prog. statements) mutants cases needed  (minimum)   (maximum)  (average)

  1    30        900         4    906    3,594     2,250
  2    31        773         7    794    5,390     3,092
  3    16        383         7    404    2,660     1,532
  4    62     5,033       34 5,529 170,626   88,078
  5    28     3,348       13 3,426   43,446   23,436
  6    57     8,026       17 8,162 136,306   72,234
  7    43     1,028       40 1,808   40,340   21,074
  8    55     6,317         5 6,327   31,575   18,951
  9    34        945         9    981     8,469     4,725
10    19        567       12    633     6,738     3,686
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Comment on the cost

Note that in other test methods, the number of
test-executions is equal to the number of test cases
needed to complete the test.  In the mutant test,
additional executions of mutants have to be
carried out with the same test cases.  The last three
columns in the above table indicate the minimum,
maximum, and average number of test-executions
required.
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Comment on the cost

Take program 8 in the above table as example.  Only 5 test
cases (and hence test-executions) are required to complete
a statement-coverage test.  For a mutant test, somewhere
between 6,327 and 31,575 additional test-executions are
required.  Assuming that each test-execution can be
completed in 10 seconds (including the time needed to
analyze the test result), these additional test-executions
will consume somewhere between 17.5 and 87.7 hours of
time.  It remains to be shown that a mutant test is cost
effective in comparison with other test methods.
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