Errata for Practical RF System Design

SOFTWARE MODIFICATION

Fig. 7.10-11.xlw and Fig. 7.12.xlw become Fig. 7.10-11mod1.xlw and Fig. 7.12mod1.xlw. [In the originals, the 0 xn spurs did not scale properly when the IF was changed.]

BOOK

Spaces are not included in line counts below. Additions in green, subtractions in red. The number of the printing is given by the last number in "10987 ..." on bottom of copyright page.

CORRECTIONS FOR PRINTINGS 1 THROUGH 3

p. xxi, third symbol
\sim is proportional to, (superscript) indicates rms
p. 159, Fig. 6.8, R_{F} becomes R_{FB}.
p. 160, Fig. 6.11, symbol τ replaces symbol T two places.
p. 314, Fig. G.3, delete the minus sign from $-X_{L}$.

CORRECTIONS FOR PRINTING 1 (and possibly 2)

p. 67, Fig. 3.10, x-axis: subscript 1 (one) becomes capital I (eye).
p. 67,2 places in last line, and p. 68 , Eq. (3.43): $\Delta \Rightarrow \delta$.
p. 77, first line below the figure, delete the exponent 2 within the "magnitude" brackets:

$$
\left|e_{\text {noise out, } k}^{2}\right|^{2} \Rightarrow\left|e_{\text {noise out, } k}\right|^{2}
$$

p. 96, Eq. (4.15), in the subscript: OPI2 becomes OIP2.
p. 106, Eq. (4.45): the denominator on the right should be the same as in Eq. (4.32):

$$
p_{\mathrm{OIP} 3,1}^{2} \Rightarrow p_{\mathrm{OIP} 3, \mathrm{IM}, 1}^{2}
$$

p. 107, Eq. (4.55):
$g_{k, q} \triangleq \prod_{j=k}^{q} g_{j} \Rightarrow g_{1,0} \triangleq 1$ and $g_{q+1, q} \triangleq 1$, otherwise $g_{k, q} \triangleq \prod_{j=k}^{q} g_{j}$
p. 127, Eqs. (5.5) and (5.6): insert 2 on the left end of each:

$$
\begin{aligned}
& \frac{S_{2}^{\prime}(f)}{2}=2 \frac{S_{0}(f)}{2} \star \frac{S_{0}(f)}{2} \Rightarrow 2\left(\frac{S_{2}^{\prime}(f)}{2}\right) \triangleq 2\left(\frac{S_{0}(f)}{2} \star \frac{S_{0}(f)}{2}\right) \text { and } \\
& \frac{S_{2}^{\prime}(0)}{2}=4 B\left(\frac{S_{0}}{2}\right)^{2} \Rightarrow 2 \frac{S_{2}^{\prime}(0)}{2}=4 B\left(\frac{S_{0}}{2}\right)^{2}
\end{aligned}
$$

p. 128, Eq. (5.7): insert 2 in the middle before the S^{\prime} fraction:
$a_{2}^{2} R \frac{S_{2}^{\prime}(0)}{2} \Rightarrow a_{2}^{2} R 2 \frac{S_{2}^{\prime}(0)}{2}$
p. 132, Fig. 5.7, and p. 135, Fig. 5.9, in the equations on the right: at (b), delete "R",
$a_{1}^{2} R\left(\frac{S_{0}}{2}\right) \Rightarrow a_{1}^{2}\left(\frac{S_{0}}{2}\right) ;$
at (d), square "R", $a_{3}^{2} \frac{27}{2} R B^{2}\left(\frac{S_{0}}{2}\right)^{3} \Rightarrow a_{3}^{2} \frac{27}{2} R^{2} B^{2}\left(\frac{S_{0}}{2}\right)^{3}$ and,
in the latter figure, on the lower right, change $S 0$ to S_{0}.
p. 134, 5 lines from the bottom: 666 becomes 660 .
p. 135, Fig. 5.9 (a) and (c): 385.25 becomes $382.25 ; 718.25$ becomes 712.252 places; 770.5 becomes 764.5 two places.
p. 158, line 15: "Fig. 5.7" becomes "Fig. 6.7".
p. 385 (index), right column, 10 lines from bottom: " 184 " becomes " 186 ".

