
1

Appendix K: Build a Java EE 6 Database Application with SQL Server Database

CONTENT

K.1 Creating a Java EE 6 Web Application Project ………………………………………….2
K.2 Creating the Entity Classes from the Database …………………………………………..3
K.3 Creating the Enterprise Java Beans ………………………………………………………4
K.4 Using JavaServer Faces (JSF) 2.0 ………………………………………………………..8
K.5 Creating the Faculty Managed Bean ……………………………………………………..9
K.6 Creating the Faculty Listing Web Page ………………………………………………….11
K.7 Add the JDBC Driver for the SQL Server Database into the Project ……………………13
K.8 Building and Running the First Java EE 6 Web Page …………………………………...14
K.9 Creating the Faculty Details Web Page ………………………………………………….15
K.10 Creating and Editing the faces-config.xml Configuration File ………………….……….17
K.11 Editing the General Web Application Configuration File web.xml ………………..……22
K.12 Modifying the FacultyList and FacultyDetails Pages to Perform Page Switching ………23
K.13 Building and Running the Entire Java EE 6 Project ……………………………………..24

2

K.1 Creating a Java EE 6 Web Application Project

Perform the following operations to create a new Java EE 6 Web application project named
JavaEEWebDBFaculty:

1. Launch the NetBeans 6.8 IDE.
2. Choose File > New Project (Ctrl-Shift-N) from the main menu.
3. Select Enterprise Application from the Java EE category and click on the Next.
4. Type JavaEEDBFaculty for the project name and set the desired project location.
5. Deselect the Use Dedicated Folder option, if selected. Click on the Next.
6. Set the server to GlassFish v3 and set the Java EE Version to Java EE 6. Keep all

other default settings and click on the Finish button.

Your finished New Enterprise Application window should match one that is shown in
Figure K.1.

Figure K.1 The finished New Enterprise Application window.

NetBeans will create three projects namely JavaEEDBFaculty (Enterprise Application

project), JavaEEDBFaculty-ejb (EJB project) and JavaEEDBFaculty-war (Web project), as
shown in Figure K.2.

Figure K.2 Created three projects by NetBeans IDE.

3

Next let’s create our entity classes to map our sample database and tables since the Session
Beans are responsible for manipulating the data and they will be created in the EJB project.

K.2 Creating the Entity Classes from the Database

Perform the following operations to create our entity classes for our sample database:

1. In the Projects window, right-click on the JavaEEDBFaculty-ejb project and select
the New > Entity Classes from Database… item from the popup menu.

2. Check the Data Source Radio button, click on the dropdown arrow and select the New
Data Source from the corresponding dropdown list.

3. On the opened Create Data Source dialog, enter CSE_DEPT into the JNDI Name field
and click on the dropdown arrow on the Database Connection combo box, and select
our sample database CSE_DEPT connection URL jdbc:sqlserver://
localhost\SQLEXPRESS:5000;databaseName=CSE_DEPT [ybai on dbo]. Click on
the OK button to close this dialog box.

Note: Make sure that you have installed the JDBC Driver for our sample SQL Server
database CSE_DEPT we built in Chapter 2 and connected it with the NetBeans 6.8 IDE
in the Services window. Refer to section 6.2.1.2 in Chapter 6 to complete these steps.

4. Under the Available Tables list box, select Faculty and click on Add button so that

it appears in the Selected Tables list box. Your New Entity Classes from
Database window should match one that is shown in Figure K.3. Click on the Next
button to continue.

Figure K.3 The New Entity Classes from Database window.

4

5. Click on the Create Persistence Unit button and select CSE_DEPT as the Data
Source. Leave the rest as default as shown in Figure K.4 and click on the Create
button to continue.

6. Provide a package name, com.javaeedbfaculty.entity in the Package field and
click on the Next button.

7. Change the Collection Type to java.util.List and click on the Finish button to
complete this entity class creation process.

Figure K.4 The Create Persistence Unit dialog.

You can find that one entity class, Faculty.java has been created under the Source

Packages, com.javaeedbfaculty.entity, in the Projects window, which is shown in Figure
K.5.

Figure K.5 The new created entity class Faculty.java.

Next let’s create the Java Beans to perform communication functions between the JSF pages

and Java Persistence API to make the data actions against our sample database.

K.3 Creating the Enterprise Java Beans

Now that we have the Entity classes, the next step is to create the Session (Stateless) Bean,

FacultySession that will manipulate and provide the Retrieving functionality on the Faculty

5

object. In this application, the client that uses this function is the JSF pages. One of the benefits
of doing this (i.e. to provide the functionalities in the EJB layer) is reusability because the same
functions can be used by more than one JSF pages, other EJBs, Enterprise Application Clients
and Web Services Clients when exposed as Web services. Other benefits include scalability
because the EJB container can easily be tuned and scaled up when load increases.

Perform the following operations to create this Enterprise Java Bean:

1. From the Projects window, right-click on the JavaEEDBFaculty-ejb project and
select the New > Session Bean menu item.

2. In the opened New Session Bean dialog, specify the EJB Name as FacultySession,
the Package as com.javaeedbfaculty.ejb, the Session Type as Stateless and
leave two Create Interface checkboxes unchecked. Your finished New Session
Bean dialog box should match one that is shown in Figure K.6. Click on the Finish
button to complete this creation of Session Bean process.

Figure K.6 The finished New Session bean dialog box.

3. From the Projects window, navigate to the source of the newly created Session

Bean (skeleton) by double clicking on the FacultySession item that is under the
Enterprise Beans folder, as shown in Figure K.7.

4. In the opened code window, right-click in any place in this window and select the
Persistence > Use Entity Manager menu item from the popup menu, and then you
can find that the @PersistenceContext notation is inserted automatically into this
code window, so now the EntityManager, with variable name em, is ready to be used.
The auto-created codes by the NetBeans have been highlighted in bold and shown in
Figure K.8.

6

Figure K.7 The new created FacultySession Bean.

5. Create a business method for the Session Bean: Retrieve() since we need to use this

method to perform data query from the Faculty table later; right-click in the Insert
Code > Add Business Method section in the code window, and select the Insert Code
menu item from the popup menu, under the Generate list, select the Add Business
Method menu item.

Figure K.8 The inserted codes for the Entity Manager.

6. In the opened Add Business Method dialog, provide Retrieve to the Name field as the
name of this method. Click on the Browse button that is next to the Return Type combo
box and type the list on the List Name field from the Find Type dialog to scan the
available type list. Select the item List(java.util) from the list and click on the OK
button in the Find Type dialog to select this type. Your finished Add Business Method
dialog should match one that is shown in Figure K.9.

Click on the OK button to close this adding method process.

 package com.javaeedbfaculty.ejb;
import javax.ejb.Stateless;
import javax.ejb.LocalBean;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
@Stateless
@LocalBean
public class FacultySession {
 @PersistenceContext(unitName = "JavaEEDBFaculty-ejbPU")
 private EntityManager em;

 public void persist(Object object) {
 em.persist(object);
 }

 // Add business logic below. (Right-click in editor and choose
 // "Insert Code > Add Business Method")
}

7

Now let’s develop the codes for this Retrieve() methods to implement the intended
function. Edit this method by adding the codes that are shown in Figure K.10 into this method.

The edited codes have been highlighted in bold, and let’s have a closer look at this piece of
codes to see how it works.

A. Inside the Retrieve() method, first we create a Java Persistence API query instance

query and execute a named or static query to pick up all columns from the Faculty
entity. The query result is returned and stored to the query instance.

B. The getResultList() method is executed to get the query result and return it to the
List object.

Figure K.9 The finished Add Business Method dialog box.

Figure K.10 The edited coding for both business methods.

After you finish adding this piece of codes into the Retrieve() method, you may encounter
some in-time compiling errors for some class and interface, such as the Faculty class and Query

A
B

 @Stateless
@LocalBean
public class FacultySession {
 @PersistenceContext(unitName = "JavaEEDBFaculty-ejbPU")
 private EntityManager em;

 public void persist(Object object) {
 em.persist(object);
 }

 public List<Faculty> Retrieve() {
 Query query = em.createNamedQuery("Faculty.findAll");
 return query.getResultList();
 }

8

interface. The reason for that is because those classes and interfaces are defined in the different
packages and you need to involve those packages into this project file. Perform the following
import operations to add those packages to the top of this project file:

import javax.persistence.Query;
import com.javaeedbfaculty.entity.Faculty;

Your complete code window for this CustomerSession class file should match one that is

shown in Figure K.11. The new inserted codes have been highlighted in bold.

Figure K.11 The complete codes for the FacultySession class.

Now you can build and compile the project files so far we have developed by clicking on the

Clean and Build Main Project button. Up to this point, we have completed the tasks
required to be done in the EJB project, and we will move on to the next tier, JSF pages.

K.4 Using JavaServer Faces (JSF) 2.0

Before we can create the Web pages for this project, ensure that the JavaServer Faces

framework is added to the Web project, JavaEEDBFaculty-war. Perform the following
operations to confirm this addition.

1. In the Projects window, right-click on the Web project, JavaEEDBFaculty-war, and

select the Properties menu item from the popup menu.
2. Under the Categories items, select Frameworks, and ensure that the JavaServer

Faces has been added into the Used Frameworks list. If not, click on the Add button to
open the Add a Framework dialog to add the JavaServer Faces to the project by

 package com.javaeedbfaculty.ejb;

import java.util.List;
import javax.ejb.Stateless;
import javax.ejb.LocalBean;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.Query;
import com.javaeedbfaculty.entity.Faculty;

@Stateless
@LocalBean
public class FacultySession {
 @PersistenceContext(unitName = "JavaEEDBFaculty-ejbPU")
 private EntityManager em;

 public void persist(Object object) {
 em.persist(object);
 }

 public List<Faculty> Retrieve() {
 Query query = em.createNamedQuery("Faculty.findAll");
 return query.getResultList();
 }

 // Add business logic below. (Right-click in editor and choose
 // "Insert Code > Add Business Method")

}

9

selecting it and clicking on the OK button. Your finished Project Properties window
should match one that is shown in Figure K.12. Click on the OK button to complete this
confirmation process.

Now we need to create the JSF pages to present the screens to perform the Read function. To
achieve this, we will be creating 2 Web pages:

 FacultyList – listing of all Faculty records in our sample database in a tabular form
 FacultyDetails – view/edit the details of the selected Faculty record

Figure K.12 The finished Project Properties window.

However, before creating the JSF pages, we first need to create the managed bean that will be

providing the required services for the JSF pages that will be created later.

K.5 Creating the Faculty Managed Bean

Perform the following operations to create the managed bean that provides message
communications between the Web pages and the Java persistence API.

1. In the Projects window, right-click on the Web project, JavaEEDBFaculty-war, and
select the New > JSF Managed Bean item by clicking on it to open the New JSF
Managed Bean dialog.

2. Specify the FacultyMBean as the Class Name, and com.javaeedbfaculty.web as the
Package Name, faculty as the Name, and the Scope to be session. Your finished New
JSF Managed Bean dialog should match one that is shown in Figure K.13. Click on the
Finish button to complete this creation of a new JSF managed bean process.

3. Open the code window of the newly created class, FacultyMBean.java, by double
clicking on this file folder in the Projects window, right-click inside the constructor of
this class and select the Insert Code menu item, and select the Call Enterprise
Bean item under the Generate list.

4. In the opened Call Enterprise Bean dialog, expand the JavaEEDBFaculty-ejb
project and select the FacultySession and select the No Interface option. Also
disable the Local and Remote options because we created the Session Bean with no
interface for Referenced Interface, and then click on the OK button.

5. Notice the automatically generated variable, facultySession, which represents an
instance of the session bean, at the beginning of the class declaration.

10

Figure K.13 The finished New JSF Managed Bean dialog.

Now let’s do the coding jobs for this class file.
First we need to add the following import packages statements into this class to enable the

compiler to correctly locate and identify related objects we will use in this class:

import com.javaeedbfaculty.entity.Faculty;
import java.util.List;

Second let’s add the rest of the methods, properties and action handlers, and its

implementations to the class as shown in Figure K.14, which will be used by the JSF pages later.
The new added codes have been highlighted in bold.

Let’s have a closer look at this new added piece of codes to see how it works.

A. Two packages have been added into this class file since we need to use the Faculty

entity and the List class in this file and both of them are defined in those two different
packages.

B. In order to use the Faculty entity to access the Faculty table in our sample database, we
need to create a new instance of this class, faculty.

C. The getFaculties()method is defined to pick up a list of faculty objects to be displayed
in the data table. Exactly the Retrieve()method defined in our FacultySession bean
will be executed to perform this retrieving operation.

D. The getDetails()method is defined to return the selected Faculty object.
E. The showDetails()method is exactly a handler to handle the users’ selection from the

list.

11

F. The list()method is a event handler used to direct this event to open the Faculty List
page we will create in the next section.

At this point, we have finished editing and modifying the codes for our Faculty Managed

Bean code window. Your finished code window should match one that is shown in Figure K.14.

Figure K.14 The modified Faculty Managed Bean code window.

Now, let’s create the first web page that lists the Faculty records in the database in a tabular

form.

K.6 Creating the Faculty Listing Web Page

Perform the following operations to create this Faculty Listing Web page:

1. In the Projects window, right-click on our Web project, JavaEEDBFaculty-war, and
select the New > JSF Page item from the popup menu. On the opened the New JSF

A

B

C

D

E

F

 package com.javaeedbfaculty.web;

import com.javaeedbfaculty.ejb.FacultySession;
import javax.ejb.EJB;
import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import com.javaeedbfaculty.entity.Faculty;
import java.util.List;

@ManagedBean(name="faculty")
@SessionScoped
public class FacultyMBean {
 @EJB

 private FacultySession facultySession;
 private Faculty faculty;

 /** Creates a new instance of FacultyMBean */
 public FacultyMBean() {

 }
 /* Returns list of faculty objects to be displayed in the data table */
 public List<Faculty> getFaculties() {
 return facultySession.Retrieve();
 }

 /* Returns the selected Customer object */
 public Faculty getDetails() {
 //Can either do this for simplicity or fetch the details again from the
 //database using the Faculty ID
 return faculty;
 }

 /* Action handler - user selects a faculty record from the list */
 public String showDetails(Faculty faculty) {
 this.faculty = faculty;
 return "DETAILS";
 }

 /* Action handler - goes to the Customer listing page */
 public String list(){
 System.out.println("###LIST###");
 return "LIST";
 }
}

12

File dialog, specify FacultyList as the File Name and check the JSP File radio
button under the Options group. Your finished New JSF File dialog should match one
that is shown in Figure K.15. Click on the Finish button to continue.

2. In the opened code window, drag the item, JSF Data Table from Entity from the
Palette window and drop it in between the <body> </body> tags of the newly
generated file, FacultyList.jsp, as shown in Figure K.16. If the Palette window is
not opened, go to the Window menu item and click on the Palette item to open it.

Figure K.15 The finished New JSF File dialog box.

Figure K.16 The inserted JSF Data Table from Entity item.

13

You can use this dragged JSF Data Table from Entity item to replace the original
instruction:

<h1><h:outputText value="Hello World!"/></h1>

Or you can leave the original instruction at the bottom of this new inserted item.

3. A dialog with the title, JSF Table from Entity appears; from the Entity combo box,
select the com.javaeedbfaculty.entity.Faculty as the Entity Bean, and the
faculty.faculties as the Managed Bean Property, as shown in Figure K.17, and
click on the OK button.

Figure K.17 The finished JSF Table From Entity dialog box.

Notice that the results of this operation are lines of codes automatically generated to display a

default list of the Faculty objects.
At this point, we are ready to see the result of the first web page created so far. However,

before we can do that, first we need to add the jdbc driver for Microsoft SQL Server database to
our project to enable the project to know the location of this driver as the project runs.

K.7 Add the JDBC Driver for the SQL Server Database into the Project

To enable our Java EE 6 project to load and connect to our sample SQL Server database,
CSE_DEPT we built in Chapter 2, we need to:

1. Download this driver from the site http://msdn.microsoft.com/data/jdbc/
2. Configure the TCP/IP protocol and setup for the SQL server
3. Setup a SQL Server database connection using NetBeans 6.8 IDE

Refer to section 6.2.1.2 in Chapter 6 to complete these steps.
When we finished downloading this jdbc driver sqljdbc4.jar, the default location of this driver

is at: C:\Program Files\Microsoft SQL Server JDBC Driver 2.0|sqljdbc_2.0|enu. To add this jdbc
driver to our project JavaEEDBFaculty, right click on the Web project JavaEEDBFaculty-war
and select the Properties item from the popup menu. On the opened Project Properties
dialog, select the Libraries item from the Categories list. Then click on the Add JAR/Folder
button to open the Add JAR/Folder dialog.

Click on the dropdown arrow in the Look in combo box and browse to the location where
our downloaded jdbc driver sqljdbc4.jar is located, which is C:\Program Files\Microsoft SQL Server

14

JDBC Driver 2.0|sqljdbc_2.0|enu. Then select this driver and click on the Open button. Your
finished Project Properties dialog box should match one that is shown in Figure K.18.

Click on the OK button to complete this adding process.

Figure K.18 The finished Project Properties dialog box.

Now we are ready to build and run our first JSP Web page, FacultyList.jsp.

K.8 Building and Running the First Java EE 6 Web Page

Perform the following operations to build and run this JSP Web page:

1. In the Projects window, right-click on our JavaEEDBFaculty project and select the
Clean and Build menu item from the popup menu to build our project. If everything
is fine, right click on our project JavaEEDBFaculty again and select Deploy. Enter the
username and password you used when you installed the Java Glassfish v3 Server in
section 5.3.5.2.1 in Chapter 5 to the Authentication Required dialog box if it is
displayed. In this application, we used admin and reback as the username and
password for the Java Glassfish v3 Server in this installation.

2. To confirm that the deployment is successful, navigate to the Applications folder in
the Glassfish server under the Services view, as shown in Figure K.19, and check if
the application JavaEEDBFaculty exists.

Now open the browser and go to URL: http://localhost:8082/JavaEEDBFaculty-
war/faces/FacultyList.jsp and you should see the opened Faculty data table in the sample
database, which is shown in Figure K.20. The port we have used for our Glassfish v3 server is
8082 since the default port 8080 has been occupied in the current machine.

15

Figure K.19 The deployed JavaEEDBFaculty project.

Figure K.20 The opened Web page contained the Faculty data table.

One issue to be noted here is: the screen is very raw and without any beautification. We will

discuss this issue and find solutions in the following section. This means that we will build a
FacultyDetails JSF page to display the selected faculty information based on the facyltyId.

K.9 Creating the Faculty Details Web Page

Now we will handle the issue to create the page where the details of the selected faculty are
displayed. Perform the following operations to complete this displaying:

1. In the Projects window, right-click on the Web project, JavaEEDBFaculty-war, and

select New > JSF Page, specify FacultyDetails as the File Name and JSP File
under the Options. Click on the Finish button to complete this process.

2. In the code window, drag the item, JSF Form from Entity from the Palette window
and drop it in between the <body> </body> tags of the newly generated file,
FacultyDetails.jsp, as shown in Figure K.21.

16

Figure K.21 Drag the JSF Form From Entity from the Palette window.

3. In the JSF Form From Entity dialog, select our Faculty entity class file

com.javaeedbfaculty.entity.Faculty from the Entity combo box and
faculty.details from the Managed Bean Property combo box, as shown in Figure
K.22. Click on the OK button to complete this process. Notice the result of this are lines
of codes automatically generated to display label and input field of all the attributes in
Faculty object in a 2 columns grid.

To enable the navigation from the Listing page to the Details and vice versa, we need to

create and edit the faces-config.xml with the PageFlow editor and connect these 2 pages
together.

Figure K.22 The finished JSF Form From Entity dialog box.

17

First let’s have a clear picture and idea about the faces-config.xml file and the PageFlow
editor.

K.10 Creating and Editing the faces-config.xml Configuration File

When you create a new Java EE Web application with JSF, the JSF also creates some
configuration files, and all Web-related and JSF-related components are included in the
following two configuration files:

 web.xml – Contains general Web application configuration file.
 faces-config.xml - Contains the configuration of the JSF application.

The detailed functions for these two configuration files are:

 web.xml: JSF requires the central configuration list web.xml in the directory WEB-INF of

the application. This is similar to other web-applications which are based on Servlets.
You must specify in web.xml that a FacesServlet is responsible for handling JSF
applications. FacesServlet is the central controller for the JSF application and it
receives all requests for the JSF application and initializes the JSF components before the
JSP is displayed.

 faces-config.xml: The faces-config.xml file allows the JSF to configure the
application, managed beans, convertors, validators, and navigation.

The NetBeans IDE provides two distinct views for the faces-config.xml file: the XML

View, which displays the XML source code, and the PageFlow view, which is a graphical
interface that depicts JSF navigation rules defined in the faces-config.xml file.

The PageFlow view displays the navigation relationships between JSF pages, indicating that
a navigation from one JSF page to another JSF page occurs when response is passed to JSF's
NavigationHandler.

Double-clicking on components in the PageFlow view enables you to navigate directly to
the source file. Likewise, if you double-click on the arrow between the two components, the
editor will focus on the navigation rule defined in the faces-config.xml XML view.

Now let’s first create a faces-config.xml file for our JavaEEDBFaculty application.
Perform the following operations to create this configuration file:

1. Right click on our Web application JavaEEDBFaculty-war and select the New > Other

item from the popup menu to open the New File dialog.
2. Select the JavaServer Faces from the Categories list and JSF Faces

Configuration from the File Types list, as shown in Figure K.23. Click on the Next
button to continue.

3. In the opened New JSF Faces Configuration dialog, enter faces-config into the
File Name field as the name of this file, and click on the Finish button.

18

Figure K.23 The New File dialog box.

The new created faces-config.xml file is opened and shown in Figure K.24.

Figure K.24 The created faces-config.xml file.

First let’s add our managed bean into this faces-config.xml file by perform the following

operations:

1. Right click on any location inside the opened faces-config.xml file, and select Insert

> Managed Bean item from the popup menu. In some cases, you may need to close and
re-open the NetBeans IDE to have this Insert menu item available.

2. In the opened Add Managed Bean dialog, enter faculty into the Bean Name field, and
click the Browse button to open the Find Type dialog. Type Faculty to the Type Name
field and select the FacultyMBean item from the list, and click on the OK button.

3. Select the session from the Scope combo box.
4. You can enter some description for this managed bean into the Bean Description box if

you like.

Your finished Add Managed Bean dialog box should match one that is shown in Figure K.25.

19

Figure K.25 The finished Add Managed Bean dialog box.

Click on the Add button to add this FacultyMBean as our managed bean into this

configuration file. Now click on the XML tag to open this configuration file in the XML view, and
you can find that the related XML tags have been added into this faces-config.xml file, which
is shown in Figure K.26. The new added codes have been highlighted in bold.

Figure K.26 The added managed bean to the faces-config.xml file.

Let’s have a closer look at this piece of new added codes to see how it works.

A. The name of our managed bean, faculty, is added to the managed-bean-name tag.
B. The class of our managed bean, FacultyMBean, with its namespace, is added under the

managed-bean-class tag to indicate the managed bean class used in this application.
C. The scope of this managed bean is session and has been added under the managed-bean-

scope tag.

Note: This faces-config.xml file may be located at two locations: 1) under the Web
Pages\WEB-INF folder, and 2) under the Configuration Files folder. It is the same file
that just resides at the different locations.

A
B
C

 <?xml version='1.0' encoding='UTF-8'?>

<!-- =========== FULL CONFIGURATION FILE ================================== -->

<faces-config version="2.0"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd">

 <managed-bean>
 <managed-bean-name>faculty</managed-bean-name>
 <managed-bean-class>com.javaeedbfaculty.web.FacultyMBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>

</faces-config>

20

To setup navigation relationship between JSF pages, especially between the FacultyList
and FacultyDetails pages in this application, we need to edit this configuration file using the
PageFlow editor.

Now click on the Clean and Build Main Project button to build our modified project to
cover the new added faces-config.xml file.

Then double click on our new added and edited faces-config.xml file from either location
to open this file. Click on the PageFlow button to open its page flow view.

 Note: In some cases, you may need to close and restart the NetBeans to make this new
added faces-config.xml to have the PageFlow view.

In the opened PageFlow view, totally there are four JSF pages are displayed in this

configuration view: index.jsp, index.xhtml, FacultyList.jsp and FacultyDetails.jsp,
as shown in Figure K.27.

Figure K.27 The opened PageFlow view of the faces-config.xml file.

To setup the navigation relationships between the FacultyList and FacultyDetails JSF

pages, perform the following operations:

1. Move your cursor to the starting arrow location as shown in Figure K.27 until a square

appears in the FacultyList.jsp page object. Then click on this square and drag this
stating arrow and point to and stop at the center of the FacultyDetails.jsp, as shown
in Figure K.27 box-1. A navigation link is established with the default name case1, as
shown in Figure K.28.

2. Double click on the default navigation link case1 and change its name to DETAILS.
3. Perform a similar operation to create another navigation link from the FacultyDetails

to the FacultyList, as shown in Figure K.27 box-2.

1. Drag the starting arrow
and stop at the center of
the FacultyDetails

2. Drag the starting arrow
and stop at the center of
the FacultyList

21

Figure K.28 The established default navigation link.

4. Double click on the new established link and change its name to LIST. Your finished

PageFlow view of two JSF page objects should match one that is shown in Figure K.29.

Figure K.29 The finished PageFlow view of the JSF page objects.

Now if you click on the XML button to open the XML view of this faces-config.xml file,

you can find that the navigation rules shown in Figure K.30 have been added into this file. The
new added codes have been highlighted in bold.

As shown in Figure K.30, two navigation rules, which are indicted by A and B, have been
added into this configuration file. The first one is from the FacultyList to the FacultyDetails
and the second is from the FacultyDetails to the FacultyList.

Notes: the <from-outcome> strings LIST and DETAILS must match the return String of
the list() and showDetails() methods defined in the FacultyMBean.

22

Figure K.30 The new added navigation rules.

K.11 Editing the General Web Application Configuration File web.xml

As we mentioned in the last section, the web.xml file contains the central configuration list
including all configuration descriptions about the JSF pages built in the project. To include our
new added faces-config.xml configuration file into our project, we need to add some XML
tags to this web.xml file to enable system to know that a new edited faces-config.xml file has
been added and will be implemented in this project.

Perform the following operations to complete this addition process:

1. Open the web.xml file by double clicking on it from the Projects window. Regularly
this file should be located at the WEB-INF folder or the Configuration Files folder.

2. On the opened web.xml file, add the XML tags that are shown in Figure K.31 into this
configuration file. The new added XML tags have been highlighted in bold.

Your completed web.xml configuration file should match one that is shown in Figure K.31
To setup a relationship between our two JSF pages, FacultyList.jsp and

FacultyDetails.jsp, and enable a switching between these two pages, we need to add some
JSF tags to both page files.

Next let’s modify our FacultyList.jsp page to setup a connection relationship with our
FacultyDetails.jsp page.

A

B

 <?xml version='1.0' encoding='UTF-8'?>
<!-- =========== FULL CONFIGURATION FILE ================================== -->
<faces-config version="2.0"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd">
 <!-- a normal Managed Bean -->
 <managed-bean>
 <managed-bean-name>CustomerMBean</managed-bean-name>
 <managed-bean-class>view.CustomerMBean</managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 </managed-bean>
 <navigation-rule>
 <from-view-id>/FacultyList.jsp</from-view-id>
 <navigation-case>
 <from-outcome>DETAILS</from-outcome>
 <to-view-id>/FacultyDetails.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>
 <navigation-rule>
 <from-view-id>/FacultyDetails.jsp</from-view-id>
 <navigation-case>
 <from-outcome>LIST</from-outcome>
 <to-view-id>/FacultyList.jsp</to-view-id>
 </navigation-case>
 </navigation-rule>
</faces-config>

23

Figure K.31 The modified general Web configuration file web.xml.

K.12 Modifying the FacultyList and FacultyDetails Pages to Perform Page Switching

In the last section, we have established the navigation relationships between the

FacultyList and the FacultyDetails JSF pages using the navigation rules in the faces-
config.xml file. In order to trigger those rules and switch from the FacultyList to the
FacultyDetails page, we need to modify some part of the FacultyList page to accomplish
this navigation. We want to use the facultyID as a connection key or link to display the detailed
record for only one faculty record based on the facultyID.

To do this modification, open the FacultyList.jsp page from the Projects window and
replace the coding line

<h:outputText value="#{item. facultyId}"/>

With the following coding lines

<h:commandLink action="#{faculty.showDetails(item)}"
 value="#{item.facultyId}"/>

Your modified part on the FacultyList.jsp is shown in Figure K.32.

 <?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
 <context-param>
 <param-name>javax.faces.PROJECT_STAGE</param-name>
 <param-value>Development</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.CONFIG_FILES</param-name>
 <param-value>/WEB-INF/faces-config.xml</param-value>
 </context-param>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>
 30
 </session-timeout>
 </session-config>
 <welcome-file-list>
 <welcome-file>faces/index.xhtml</welcome-file>
 </welcome-file-list>
</web-app>

24

Figure K.32 The modified codes in the FacultyList.jsp page.

Next open the FacultyDetails.jsp page and add one JSF tag to the end of this page, as

shown in Figure K.33. The new added tag has been highlighted in bold. This command button
will enable users to switch back from the FacultyDetails page to the FacultyList page, and it
has a similar function as that of Back button on a Web browser.

Figure K.33 The modified codes for the FacultyDetails page.

Now we can build and run the project to test the functions of this project.

K.13 Building and Running the Entire Java EE 6 Project

At this point, we have completed all coding jobs for this project. To see the running result,

first let’s build the application by right clicking on our project JavaEEDBFaculty and select the
Clean and Build item, and deploy the application by right clicking on our project
JavaEEDBFaculty and select the Deploy item.

 <f:view>
 <html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>JSP Page</title>
 </head>
 <body>
 <h:form>
 <h1><h:outputText value="Faculty Listing"/></h1>
 <h:dataTable value="#{faculty.faculties}" var="item">
 <h:column>
 <f:facet name="header">
 <h:outputText value="FacultyId"/>
 </f:facet>

 <h:outputText value="#{item.facultyId}"/>

 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="FacultyName"/>
 </f:facet>
 <h:outputText value="#{item.facultyName}"/>
 </h:column>
 …………

Using the following codes to replace the outputText to navigate
to the FacultyDetails page
<h:commandLink action="#{faculty.showDetails(item)}"
 value="#{item.facultyId}"/>

 …………
 <h:outputLabel value="Title:" for="title" />
 <h:inputTextarea rows="4" cols="30" id="title" value="#{faculty.details.title}" title="Title" />
 <h:outputLabel value="Email:" for="email" />
 <h:inputTextarea rows="4" cols="30" id="email" value="#{faculty.details.email}" title="Email" />
 </h:panelGrid>
 <h:commandButton id="list" value="List" action="#{faculty.list}" />
 </h:form>

 <h1><h:outputText value="Hello World!"/></h1>
 </body>
 </html>
</f:view>

25

If everything is fine, open a Web browser and go to the Customer listing page at URL,
http://localhost:8082/JavaEEDBFaculty-war/faces/FacultyList.jsp. You can find that all faculty
IDs have been underscored. Click on the Faculty ID on the first row in the table to open the
FacultyDetails page to query and display the detailed record for this faculty ID only.

A running result of this project with a faculty ID of B78880 is shown in Figure K.34. You
can click on the List button to return to the FacultyList page and re-select some other
facultyID to see more results.

A complete Java EE 6 Database-related project JavaEEDBFaculty can be found from the
folder DBProjects\Chapter 5 that is located at the site: ftp://ftp.wiley.isbn/JavaDB.

You can download this project from that site and run on your computer. However, you have
to make sure that you have installed all required software before you can run this project on your
computer:

1. Java Enterprise Edition 6
2. Glassfish v3
3. NetBeans 6.8 IDE or higher version of IDE.
4. The JDBC Driver for SQL Server database has been installed in your computer and

has been added into the Web page JavaEEDBFaculty-war as a JAR file.

Figure K.34 A running result of the project JavaEEDBFaculty.

