Appendix K: Build a Java EE 6 Database Application with SQL Server Database

K.1
K.2
K.3
K.4
K.5
K.6
K.7
K.8
K.9
K.10
K.11
K.12
K.13

CONTENT

Creating a Java EE 6 Web Application Projectooovviiiiii i e
Creating the Entity Classes from the Databaseccooiiiiiiiiiii
Creating the Enterprise Java BEaNSc.vieiir e e e
Using JavaServer Faces (JSF) 2.0ouuiuiie it e e e

Creating the Faculty Managed Bean .
Creating the Faculty Listing Web Page

Add the JDBC Driver for the SQL Server Database |nt0 the PrOJect

Building and Running the First Java EE 6 Web Page ..
Creating the Faculty Details Web Page .. .
Creating and Editing the faces-config. me Conflguratlon F|Ie

Editing the General Web Application Configuration File web. me
Modifying the FacultyList and FacultyDetails Pages to Perform Page Switching
Building and Running the Entire Java EE 6 Projectcccooiiiiii i,

K.1 Creating a Java EE 6 Web Application Project

Perform the following operations to create a new Java EE 6 Web application project named
JavaEEWebDBFaculty:

Launch the NetBeans 6.8 IDE.

Choose File > New Project (Ctr1-Shift-N) from the main menu.

Select Enterprise Application from the Java EE category and click on the Next.
Type JavaEEDBFacul ty for the project name and set the desired project location.
Deselect the Use Dedicated Folder option, if selected. Click on the Next.

Set the server to GlassFish v3 and set the Java EE Version to Java EE 6. Keep all
other default settings and click on the Finish button.

U wWNE

Your finished New Enterprise Application window should match one that is shown in
Figure K.1.

® New Enterprise Application

Steps Server and Settings

1. Choose Project Server! |GIassFish v3 V| [add. .,]
2. Mame and Location

3. Server and Settings Use dedicated library Folder For server JAR files

Java EE Yersion: [JavaEEG »

Enable Context and Dependency Injection

Create EJB Maodule: |JavaEEDBFacuIty-ejb

Create Web Application Madule: |JavaEEDBFacuIty-war|

|
|
[Create Application Client Module: | |
|

Main Class: |

Mext = [Finish H Cancel H Help

Figure K.1 The finished New Enterprise Application window.

NetBeans will create three projects namely JavaEEDBFaculty (Enterprise Application
project), JavaEEDBFaculty-ejb (EJB project) and JavaEEDBFaculty-war (Web project), as
shown in Figure K.2.

:Projects =

Elﬂ JavaEEDBFaculty ~
. @03 JavaEE Modules B
-IC& Configuration Files
[E Server Resources
% JawvaEEDBFaculty-ejb
@ JawaEEDBFaculty-war w

Figure K.2 Created three projects by NetBeans IDE.

Next let’s create our entity classes to map our sample database and tables since the Session
Beans are responsible for manipulating the data and they will be created in the EJB project.

K.2 Creating the Entity Classes from the Database
Perform the following operations to create our entity classes for our sample database:

1. Inthe Projects window, right-click on the JavaEEDBFaculty-ejb project and select
the New > Entity Classes from Database.. item from the popup menu.

2. Check the bata Source Radio button, click on the dropdown arrow and select the New
Data Source from the corresponding dropdown list.

3. Onthe opened Create Data Source dialog, enter CSE_DEPT into the JNDI Name field
and click on the dropdown arrow on the Database Connection combo box, and select
our sample database CSE_DEPT connection URL jdbc:sglserver://
localhost\SQLEXPRESS:5000;databaseName=CSE_DEPT [ybai on dbo]. Click on
the OK button to close this dialog box.

9 Note: Make sure that you have installed the JDBC Driver for our sample SQL Server
X database CSE_DEPT we built in Chapter 2 and connected it with the NetBeans 6.8 IDE
in the Services window. Refer to section 6.2.1.2 in Chapter 6 to complete these steps.

4. Under the Available Tables list box, select Faculty and click on Add button so that
it appears in the Selected Tables list box. Your New Entity Classes from
Database window should match one that is shown in Figure K.3. Click on the Next
button to continue.

¥ New Entity Classes from Database EI

Steps Database Tables

Choose File Type Bt
Database Tables @ Data:
Entity Classes

Mapping Options

CSE_DEPT b

BN

Mvailable Tables: Selected Tables:

Course Faculty
LogIn

Student

StudentCourse

Add All =
<= Remove all

Include Relsted Tables

Figure K.3 The New Entity Classes from Database window.

5. Click on the Create Persistence Unit button and select CSE_DEPT as the Data
Source. Leave the rest as default as shown in Figure K.4 and click on the Create
button to continue.

6. Provide a package name, com. javaeedbfaculty.entity in the Package field and
click on the Next button.

7. Change the Collection Type to java.util.List and click on the Finish button to
complete this entity class creation process.

® Create Persistence Unit...

Persistence Unit Name: |JavaEEDBFacuItv—eijU |

Specify the persistence provider and database For entity classes.

Persistence Praovider: |Ec|ipseLink(JP.ﬂ. 2.00{default) w |

Diabs Source: |jdbc,|'cse_dept 3 |

Use Jawa Transaction APIs
Table Generation Strategy: () Create () Drop and Create (3) Mone

I Create H Cancel]

Figure K.4 The Create Persistence Unit dialog.

You can find that one entity class, Faculty . java has been created under the Source
Packages, com.javaeedbfaculty.entity, in the Projects window, which is shown in Figure
K.5.

¥

: Projects

:& JavaEEDBFaculty
A Java EE Madules
F& L8 Configuration Files
lL@ Server Resources
:-% JavaEEDBFaculty-ejb
=8 ._E] Source Pa-:kages

2] x [)__{]

|§|&Faculty java
15 Test Packages b
i@ Libraries
0@ Test Libraries
f#-[C5 Enterprise Beans
11L& Configuration Files
- [F@ Server Resources

b

Figure K.5 The new created entity class Faculty.java.

Next let’s create the Java Beans to perform communication functions between the JSF pages
and Java Persistence API to make the data actions against our sample database.

K.3 Creating the Enterprise Java Beans

Now that we have the Entity classes, the next step is to create the Session (Stateless) Bean,
FacultySession that will manipulate and provide the Retrieving functionality on the Faculty

4

object. In this application, the client that uses this function is the JSF pages. One of the benefits
of doing this (i.e. to provide the functionalities in the EJB layer) is reusability because the same
functions can be used by more than one JSF pages, other EJBs, Enterprise Application Clients
and Web Services Clients when exposed as Web services. Other benefits include scalability
because the EJB container can easily be tuned and scaled up when load increases.

Perform the following operations to create this Enterprise Java Bean:

1. From the Projects window, right-click on the JavaEEDBFaculty-ejb project and
select the New > Session Bean menu item.

2. Inthe opened New Session Bean dialog, specify the EJB Name as FacultySession,
the Package as com. javaeedbfaculty.ejb, the Session Type as Stateless and
leave two Create Interface checkboxes unchecked. Your finished New Session
Bean dialog box should match one that is shown in Figure K.6. Click on the Finish
button to complete this creation of Session Bean process.

® New Session Bean @

Steps Name and Location

1. Choose File Type EJB Narme: .FacultySession
2. Name and Location :

Project: iJavaEEDBFacuIty—eib
Locakion: | Source Packages ~
Package: .c-om..j-avaeeciE-FécLlity.e.jiJ |

Session Type:
(%) Stateless

() Skateful
() Singletan

Create Interface:
[] Remate

£ - : [Lacal

I [Finish][Cancel][Help

Figure K.6 The finished New Session bean dialog box.

3. From the Projects window, navigate to the source of the newly created Session
Bean (skeleton) by double clicking on the FacultySession item that is under the
Enterprise Beans folder, as shown in Figure K.7.

4. In the opened code window, right-click in any place in this window and select the
Persistence > Use Entity Manager menu item from the popup menu, and then you
can find that the @PersistenceContext notation is inserted automatically into this
code window, so now the EntityManager, with variable name em, is ready to be used.
The auto-created codes by the NetBeans have been highlighted in bold and shown in
Figure K.8.

JavaEEDBFaculty
- '_E; Jawva EE Modules
-|IL&) Configuration Files
|l Server Resources
'%. JawaEEDBFaculty-ejb
-IL8 source Packages

(53 Test Packages
-Il& Ubraries

(& TestLibraries
L@ Enterprise Beans

=] FacultySession
#-{7% Bean Methods
L& Configuration Files
-lIL@ Server Resources
+U_JJ JavaEEDBFaculty-war bt

Figure K.7 The new created FacultySession Bean.

5. Create a business method for the Session Bean: Retrieve() since we need to use this
method to perform data query from the Faculty table later; right-click in the Insert
Code > Add Business Method section in the code window, and select the Insert Code
menu item from the popup menu, under the Generate list, select the Add Business

Method menu item.

package com.javaeedbfaculty.ejb;

import javax.ejb.Stateless;

import javax.ejb.LocalBean;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

@Stateless
@LocalBean
public class FacultySession {
@PersistenceContext(unitName = "JavaEEDBFaculty-ejbPU™)
private EntityManager em;
public void persist(Object object) {
em.persist(object);
}

/1 Add business logic below. (Right-click in editor and choose
// "Insert Code > Add Business Method")

Figure K.8 The inserted codes for the Entity Manager.

In the opened Add Business Method dialog, provide Retrieve to the Name field as the
name of this method. Click on the Browse button that is next to the Return Type combo
box and type the Iist on the List Name field from the Find Type dialog to scan the
available type list. Select the item List(java.util) from the list and click on the oK
button in the Find Type dialog to select this type. Your finished Add Business Method
dialog should match one that is shown in Figure K.9.

Click on the ok button to close this adding method process.

Now let’s develop the codes for this Retrieve() methods to implement the intended
function. Edit this method by adding the codes that are shown in Figure K.10 into this method.

The edited codes have been highlighted in bold, and let’s have a closer look at this piece of
codes to see how it works.

A. Inside the Retrieve() method, first we create a Java Persistence API query instance
query and execute a named or static query to pick up all columns from the Faculty
entity. The query result is returned and stored to the query instance.

B. The getResultList() method is executed to get the query result and return it to the
List object.

Add Business Method... E3
Mame: |Retrieve
Return Type: |java kil List Browge
Parameters | Exceptions
ame Type Fin
[[o]4] [Cancel]

Figure K.9 The finished Add Business Method dialog box.

@Stateless

@LocalBean

public class FacultySession {
@PersistenceContext(unitName = "JavaEEDBFaculty-ejbPU")
private EntityManager em;

public void persist(Object object) {
em.persist(object);

}

public List<Faculty> Retrieve() {
A Query query = em.createNamedQuery("'Faculty.findAll"");
B return query.getResultList();

}

Figure K.10 The edited coding for both business methods.

After you finish adding this piece of codes into the Retrieve() method, you may encounter
some in-time compiling errors for some class and interface, such as the Faculty class and Query
7

interface. The reason for that is because those classes and interfaces are defined in the different
packages and you need to involve those packages into this project file. Perform the following
import operations to add those packages to the top of this project file:

import javax.persistence.Query;
import com.javaeedbfaculty.entity.Faculty;

Your complete code window for this CustomerSession class file should match one that is
shown in Figure K.11. The new inserted codes have been highlighted in bold.

package com.javaeedbfaculty.ejb;

import java.util.List;

import javax.ejb.Stateless;

import javax.ejb.LocalBean;

import javax.persistence.EntityManager;

import javax.persistence.PersistenceContext;
import javax.persistence.Query;

import com.javaeedbfaculty.entity.Faculty;

@Stateless

@LocalBean

public class FacultySession {
@PersistenceContext(unitName = "JavaEEDBFaculty-ejbPU")
private EntityManager em;

public void persist(Object object) {
em.persist(object);

}

public List<Faculty> Retrieve() {
Query query = em.createNamedQuery(*'Faculty.findAll"");
return query.getResultList();

}

/1 Add business logic below. (Right-click in editor and choose
// "Insert Code > Add Business Method")

Figure K.11 The complete codes for the FacultySession class.

Now you can build and compile the project files so far we have developed by clicking on the
Clean and Build Main Project button. Up to this point, we have completed the tasks
required to be done in the EJB project, and we will move on to the next tier, JSF pages.

K.4 Using JavaServer Faces (JSF) 2.0

Before we can create the Web pages for this project, ensure that the JavaServer Faces
framework is added to the Web project, JavaEEDBFaculty-war. Perform the following
operations to confirm this addition.

1. Inthe Projects window, right-click on the Web project, JavaEEDBFacul ty-war, and
select the Properties menu item from the popup menu.

2. Under the Categories items, select Frameworks, and ensure that the JavaServer
Faces has been added into the Used Frameworks list. If not, click on the Add button to
open the Add a Framework dialog to add the JavaServer Faces to the project by

8

selecting it and clicking on the oK button. Your finished Project Properties window
should match one that is shown in Figure K.12. Click on the oK button to complete this
confirmation process.

Now we need to create the JSF pages to present the screens to perform the Read function. To
achieve this, we will be creating 2 Web pages:

» FacultyList - listing of all Faculty records in our sample database in a tabular form
» FacultyDetails — view/edit the details of the selected Faculty record

¥ Project Properties - JavaEEDBF aculty-war @

Categories:
- @ Sources ~ | Used Frameworks:
i @ Framewarks

JavaServer Faces

i @ Libraries
=~ @ Buid
. e O Compiling -

[[a]:4 l[Cancel][Help

Figure K.12 The finished Project Properties window.

However, before creating the JSF pages, we first need to create the managed bean that will be
providing the required services for the JSF pages that will be created later.

K.5 Creating the Faculty Managed Bean

Perform the following operations to create the managed bean that provides message
communications between the Web pages and the Java persistence API.

1. Inthe Projects window, right-click on the Web project, JavaEEDBFacul ty-war, and
select the New > JSF Managed Bean item by clicking on it to open the New JSF
Managed Bean dialog.

2. Specify the FacultyMBean as the Class Name, and com. javaeedbfaculty.web as the
Package Name, faculty as the Name, and the Scope to be session. Your finished New
JSF Managed Bean dialog should match one that is shown in Figure K.13. Click on the
Finish button to complete this creation of a new JSF managed bean process.

3. Open the code window of the newly created class, Facul tyMBean. java, by double
clicking on this file folder in the Projects window, right-click inside the constructor of
this class and select the Insert Code menu item, and select the call Enterprise
Bean item under the Generate list.

4. Inthe opened Call Enterprise Bean dialog, expand the JavaEEDBFaculty-ejb
project and select the Facul tySession and select the No Interface option. Also
disable the Local and Remote options because we created the Session Bean with no
interface for Referenced Interface, and then click on the oK button.

5. Notice the automatically generated variable, facultySession, which represents an
instance of the session bean, at the beginning of the class declaration.

® New JSF Managed Bean E|

Skeps Name and Location

1. Choose File Type . Class Mame: |FaculbyMBean
2. Mame and Location

Project: JavaEEDBFaculty-war
Location: Source Packages R
Package: com.javaeedbfaculty.weﬂ A

Created File: |DBFaculty!JavaEEDBFaculty-warisrcijavalcomijavaeedbfacultyywebiFacultyMBean. java

Configuration File;

Mane: Faculty

Scope: SESSi0n s

s Bean Descripkion: -

[Firish H Cancel ” Help

Figure K.13 The finished New JSF Managed Bean dialog.

Now let’s do the coding jobs for this class file.
First we need to add the following import packages statements into this class to enable the
compiler to correctly locate and identify related objects we will use in this class:

import com.javaeedbfaculty.entity.Faculty;
import java.util.List;

Second let’s add the rest of the methods, properties and action handlers, and its
implementations to the class as shown in Figure K.14, which will be used by the JSF pages later.
The new added codes have been highlighted in bold.

Let’s have a closer look at this new added piece of codes to see how it works.

A. Two packages have been added into this class file since we need to use the Faculty
entity and the List class in this file and both of them are defined in those two different
packages.

B. In order to use the Faculty entity to access the Faculty table in our sample database, we
need to create a new instance of this class, faculty.

C. The getFaculties()method is defined to pick up a list of faculty objects to be displayed
in the data table. Exactly the Retrieve(Qmethod defined in our FacultySession bean
will be executed to perform this retrieving operation.

D. The getDetails(Q)method is defined to return the selected Faculty object.

E. The showDetails()method is exactly a handler to handle the users’ selection from the
list.

10

F. The rist()method is a event handler used to direct this event to open the Faculty List
page we will create in the next section.

At this point, we have finished editing and modifying the codes for our Faculty Managed
Bean code window. Your finished code window should match one that is shown in Figure K.14.

package com.javaeedbfaculty.web;

import com.javaeedbfaculty.ejb.FacultySession;
import javax.ejb.EJB;

import javax.faces.bean.ManagedBean;

import javax.faces.bean.SessionScoped;

A || import com.javaeedbfaculty.entity.Faculty;
import java.util.List;

@ManagedBean(name="faculty")

@SessionScoped

public class FacultyMBean {
@EJB

private FacultySession facultySession;
B private Faculty faculty;

/** Creates a new instance of FacultyMBean */
public FacultyMBean() {

}

/* Returns list of faculty objects to be displayed in the data table */
C public List<Faculty> getFaculties() {

return facultySession.Retrieve();

3

/* Returns the selected Customer object */

D public Faculty getDetails() {

//Can either do this for simplicity or fetch the details again from the
//database using the Faculty ID

return faculty;

¥

/* Action handler - user selects a faculty record from the list */
E public String showDetails(Faculty faculty) {
this.faculty = faculty;

return "DETAILS",;

¥

/* Action handler - goes to the Customer listing page */
F public String list(){
System.out.printin("###LISTHH#H");
return “LIST™;
¥
}

Figure K.14 The modified Faculty Managed Bean code window.

Now, let’s create the first web page that lists the Faculty records in the database in a tabular
form.

K.6 Creating the Faculty Listing Web Page
Perform the following operations to create this Faculty Listing Web page:

1. Inthe Projects window, right-click on our Web project, JavaEEDBFacul ty-war, and
select the New > JSF Page item from the popup menu. On the opened the New JSF

11

File dialog, specify FacultyList as the File Name and check the JSP File radio
button under the options group. Your finished New JSF File dialog should match one
that is shown in Figure K.15. Click on the Finish button to continue.

2. In the opened code window, drag the item, JSF Data Table from Entity from the
Palette window and drop it in between the <body> </body> tags of the newly
generated file, FacultyList.jsp, as shown in Figure K.16. If the Palette window is
not opened, go to the window menu item and click on the Palette item to open it.

® New JSF File X
Steps Mame and Location
1. Chaoaose File Type File: Name: !FacultyList |
2. Name and Location —
Projeck: EJavaEEDBFaculty-war |
Location: iWeb Pages w |
Folder: ! | [Browse. .,]

Created File; E:'l,Bookg'l,DBProjects'l,Chapter 5\ JavaEEDBFaculty! JavaEEDBFaculty-wariwebiFacultyList jsp i

Options:

() Eacelets

[] Create as a 15P Segment

Descripkion:
iA JSP file using JSP standard syntax,

Figure K.15 The finished New JSF File dialog box.

® JavaEEDBFaculty-war - NetBeans IDE 6.8 (=13
Eile Edit Yiew MNavigate Source Refactor Run Debug Profile Team Tools ‘Window Help
oF L SRC TR =] - - -
RS 9D =R TI MO ®Q |
Start Page x]@ FacultySession.java x]@ Faculty.java x“@ FacultyMBean.java xI['T_E] FacultyList.jsp x] |IZ|E]@ :Palette I =
¥] s
e -5 - =0 B | gEoE | g E e
KB-B- QTSR FE% | & eH (©) Radio Button 7
html body hl e
e o [l
5 |2K| Butkon
7 «<%@page contentType="text/html” pageEncoding="TTF-5"%> =l ISP
g) Use Bean
9 «<%@taglib prefix="f" uri="http://Jjava.sun.comd jsf/core"e> D Get Bean Property
10 <#Ataglib prefix="h" uri="http://java.sun.com jsf/ html "> 59 Set Bean P ;
et Bean Property
11
1z <!DOCTYPE HTML PUBELIC "-//W3iC//DTD HTML 4.01 Transitional//EN" 51571 choose
13 "http:/Suww. w3, org/ TR/ htmld/ loose . ded™ > I:‘ﬁJSTL If
14 (2 15TL For Each
15] <f:view:> 2 35F
16 [<htmls @M —_—
- etadata
17 [<head:>
15 <meta http-equiv="Content-Type” content="text/htrml; charset=UTF-3"/> E‘JSFFD”'“
19 <title>JSP Page</titlex EIJSFFDrmFromEntity
20 </ head> [35F Data Table
21 [<hody>
- i ¢|] 15F Data Table From Entity
23 khis<h?outputText value="He=llo Torld!"f></hi> &= Database
24 </body> | ||EoBquery [C]DBReport
23|15 | INS

Figure K.16 The inserted JSF Data Table from Entity item.
12

You can use this dragged JSF Data Table from Entity item to replace the original
instruction:

<hl><h:outputText value="Hello World!"/></h1>

Or you can leave the original instruction at the bottom of this new inserted item.

3. A dialog with the title, JSF Table from Entity appears; from the Entity combo box,
select the com. javaeedbfaculty.entity.Faculty as the Entity Bean, and the
faculty.faculties as the Managed Bean Property, as shown in Figure K.17, and
click on the oK button.

® ISF Table From Entity X

Entkity: com. javasedbfaculty.entiby Faculty w

Managed Bean Property: |Faculby.Faculties L
[the managed bean vou are referendng must conkain & method
that rebuvns & Lisk <oom, javacsedbf aculby, entity, Faculby =

Customize Template

[Ok l[Cancel]

Figure K.17 The finished JSF Table From Entity dialog box.

Notice that the results of this operation are lines of codes automatically generated to display a
default list of the Faculty objects.

At this point, we are ready to see the result of the first web page created so far. However,
before we can do that, first we need to add the jdbc driver for Microsoft SQL Server database to
our project to enable the project to know the location of this driver as the project runs.

K.7 Add the JDBC Driver for the SQL Server Database into the Project

To enable our Java EE 6 project to load and connect to our sample SQL Server database,
CSE_DEPT we built in Chapter 2, we need to:

1. Download this driver from the site http://msdn.microsoft.com/data/jdbc/
2. Configure the TCP/IP protocol and setup for the SQL server
3. Setup a SQL Server database connection using NetBeans 6.8 IDE

Refer to section 6.2.1.2 in Chapter 6 to complete these steps.

When we finished downloading this jdbc driver sqljdbe4.jar, the default location of this driver
is at: C:\Program Files\Microsoft SQL Server JDBC Driver 2.0 | sqljdbc_2.0 | enu. To add this jdbc
driver to our project JavaEEDBFacul ty, right click on the Web project JavaEEDBFacul ty-war
and select the Properties item from the popup menu. On the opened Project Properties
dialog, select the Libraries item from the Categories list. Then click on the Add JAR/Folder
button to open the Add JAR/Folder dialog.

Click on the dropdown arrow in the Look in combo box and browse to the location where
our downloaded jdbc driver sqljdbe4.jar is located, which is C:\Program Files\Microsoft SQL Server

13

JDBC Driver 2.0 | sqlijdbe_2.0 | enu. Then select this driver and click on the Open button. Your
finished Project Properties dialog box should match one that is shown in Figure K.18.
Click on the oK button to complete this adding process.

® Project Properties - JavaEEDBF aculty-war

Categories:

..... o Sources Jawa Platfarm: | DK 1.6 (Default) M
----- @ Frameworks
_____ o Framew
= & Buid Compile | Compile Tests | Run Tests

s @ Compiling

, @ Packaging Compile-time Libraries:

----- @ Run

----- < Debug

= @ 1AX-RPC Web Services
> @ Web Services

L O Web Service Clients “
----- & Formatting

Mowe Up

L @ Documenting Marme Packag Add Project. ..
JavaEEDEFaculby-eib - dist)d add Library,..

[Add JARJFalder |

B <:\Program FilesiMicrosofk 5

< >

Coampile-time libraries are propagated to all library categaries.

[QK][Cancel][Help

Figure K.18 The finished Project Properties dialog box.
Now we are ready to build and run our first JSP Web page, FacultyList.jsp.
K.8 Building and Running the First Java EE 6 Web Page
Perform the following operations to build and run this JSP Web page:

1. Inthe Projects window, right-click on our JavaEEDBFaculty project and select the
Clean and Build menu item from the popup menu to build our project. If everything
is fine, right click on our project JavaEEDBFaculty again and select Deploy. Enter the
username and password you used when you installed the Java Glassfish v3 Server in
section 5.3.5.2.1 in Chapter 5 to the Authentication Required dialog box if it is
displayed. In this application, we used admin and reback as the username and
password for the Java Glassfish v3 Server in this installation.

2. To confirm that the deployment is successful, navigate to the Applications folder in
the Glassfish server under the Services view, as shown in Figure K.19, and check if
the application JavaEEDBFaculty exists.

Now open the browser and go to URL.: http://localhost:8082/JavaEEDBFaculty-
war/faces/FacultyL.ist.jsp and you should see the opened Faculty data table in the sample
database, which is shown in Figure K.20. The port we have used for our Glassfish v3 server is
8082 since the default port 8080 has been occupied in the current machine.

14

e X/
| Services x
#-E Databases
Java Card Runtimes
2@. Weh Services
E| SErvers

EJ(':D GlassFish v3

E Eluj applications
CoE
Ef‘ Resources
i----hngelenium Server

Figure K.19 The deployed JavaEEDBFaculty project.

File Edit Miew Favorites Tools Help

GBa\:k A > | \ﬂ IEL‘ .;\J /-" Search ‘j‘_"\?Favunbes &) A - ,J.S;F_f ﬁ @ i“

Address | &] http: /localhost: 8082 avaEEDBF aculty-war /faces FacultyList. jsp v Beo

~

Faculty List

Facultyld FacultyName Office Phone College Title Email

A52990 i::::rson ;u;rsc- ;gg??s- Virginia Tech Professor bandersoniZcollege.edu

ATTIS8T Debby Angles gl_:nc- 222230- University of Chicago Associate Professor dangles@college.edu

B66750 Alice Brown 2‘:76- Zg:;ﬁiﬂ- University of Florida Assistant Professor abrown@college.edu

- - MTC- 750-378- Florida Atlantic - .

BE78880 Ying Bai 241 1148 University Associate Professor ybai@@college.edu

B86590 Satish Bhalla MTC- 750-378- University of Notre Associate Professor sbhalla@@college.edu
214 1061 Dame

H99118 Jeff Henry ;ll:;l'sc- ;g:;ﬁw- Ohio State University Associate Professor jhenry@college.edu
MTC- 750-330- - - Distinguished -

J33486 Steve Johnson 118 1116 Harvard University Professor sjohnson@college.edu

v
&) Dona %J Local intranat

Figure K.20 The opened Web page contained the Faculty data table.

One issue to be noted here is: the screen is very raw and without any beautification. We will
discuss this issue and find solutions in the following section. This means that we will build a
FacultyDetai I's JSF page to display the selected faculty information based on the facyltyld.

K.9 Creating the Faculty Details Web Page

Now we will handle the issue to create the page where the details of the selected faculty are
displayed. Perform the following operations to complete this displaying:

1. Inthe Projects window, right-click on the Web project, JavaEEDBFaculty-war, and
select New > JSF Page, specify FacultyDetails as the File Name and JSP File
under the options. Click on the Finish button to complete this process.

2. In the code window, drag the item, JSF Form from Entity from the Palette window
and drop it in between the <body> </body> tags of the newly generated file,
FacultyDetails. jsp, as shown in Figure K.21.

15

® JavaEEDBF aculty-war - NetBeans IDE 6.8 IQIIEIFZI

Eile Edit Yiew MNavigate Source Refactor Run Debug Profile Team Tools Window Help
o L SRC o B - - -
PEES D¢ T DER-G @ [Q |
Ldsp web.xml x l @ FacultySession.java x l @ Faculty java x I@ FacultyDetails.jsp x] EZ| E] @ :Palette o =
T LIk &0 MiEta oara
(=) =3 = g =
GR-8- AT SE FeD & e H =l HTML Forms B
gtmi. PB.;‘E F‘_—I Farrm Text Input
Allm
& - Multi-line Input [[=) Drop-down List
7 <%@page contentType="text/html"™ pageEncoding="UTF-5"%> Checkbox @Radio Buttan
g = —
File Select 0K Bukks
9 <%@taglib prefix="f" uri="http://java.sun.com jsE/core"sx ' SeeC 0w Button
10 <%@taglib prefix="h" uri="http://Jjava.sun. comd 55/ html "S> =I5k
11) Use Bean
1z <!DOCTYPE HTML PFUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" @Get Bean Property
13 "http:/Swww. w3 orgd TR/ htmld/ loose . ded™s @Set Biean Property
14
LolE <f:views 4 35TL Choose
165 <html> G BT
17| <head> || =<2 25TL For Each
18 <meta http-equiv="Content-Type"” content="text/html; charsec=UTF-8", = JSF
19 <title>JSP Page</title> =] Metadata
z0 </ head:] 15 R
21 [<hodys arm
22 il [] 35F Farm From Entity 0
23 <hi><h:outputText value="Hello Horld!"f></hls [15F Data Table
e </hody> ¥ || 15F Data Table From Entity
< | > T X
22|13 |INS

Figure K.21 Drag the JSF Form From Entity from the Palette window.

3. Inthe JSF Form From Entity dialog, select our Faculty entity class file
com. javaeedbfaculty.entity.Faculty from the Entity combo box and
faculty.details from the Managed Bean Property combo box, as shown in Figure
K.22. Click on the ok button to complete this process. Notice the result of this are lines
of codes automatically generated to display label and input field of all the attributes in
Faculty object in a 2 columns grid.

To enable the navigation from the Listing page to the Detai Is and vice versa, we need to
create and edit the faces-config.xml with the PageFlow editor and connect these 2 pages
together.

® JSF Form From Entity]
Enkity: |com.javaeedbfaculty.entity.FacuItv - |
Managed Bean Properky: |Facultv.details L |

[the managed bean you are referancing must conbain a method
that reburns & comn javasedbfaoulby. ankify. Faoulby)

[[] Generate read only wiew

Customize Template

I Ok][Cancel]

Figure K.22 The finished JSF Form From Entity dialog box.

16

First let’s have a clear picture and idea about the faces-config.xml file and the PageFlow
editor.

K.10 Creating and Editing the faces-config.xml Configuration File

When you create a new Java EE Web application with JSF, the JSF also creates some
configuration files, and all Web-related and JSF-related components are included in the
following two configuration files:

= web.xml — Contains general Web application configuration file.
= faces-config.xml - Contains the configuration of the JSF application.

The detailed functions for these two configuration files are:

= web.xml: JSF requires the central configuration list web.xml in the directory WEB-INF of
the application. This is similar to other web-applications which are based on Servlets.
You must specify in web.xml that a FacesServlet is responsible for handling JSF
applications. FacesServlet is the central controller for the JSF application and it
receives all requests for the JSF application and initializes the JSF components before the
JSP is displayed.

= faces-config.xml: The faces-config.xml file allows the JSF to configure the
application, managed beans, convertors, validators, and navigation.

The NetBeans IDE provides two distinct views for the faces-config.xml file: the XvL
View, which displays the XML source code, and the PageFlow view, which is a graphical
interface that depicts JSF navigation rules defined in the faces-config.xml file.

The PageFlow view displays the navigation relationships between JSF pages, indicating that
a navigation from one JSF page to another JSF page occurs when response is passed to JSF's
NavigationHandler.

Double-clicking on components in the PageFlow view enables you to navigate directly to
the source file. Likewise, if you double-click on the arrow between the two components, the
editor will focus on the navigation rule defined in the faces-config.xml XML view.

Now let’s first create a faces-config.xml file for our JavaEEDBFaculty application.
Perform the following operations to create this configuration file:

1. Right click on our Web application JavaEEDBFacul ty-war and select the New > Other
item from the popup menu to open the New File dialog.

2. Select the JavaServer Faces from the Categories list and JSF Faces
Configuration from the File Types list, as shown in Figure K.23. Click on the Next
button to continue.

3. Inthe opened New JSF Faces Configuration dialog, enter faces-config into the
File Name field as the name of this file, and click on the Finish button.

17

Steps Choose File Type

1. choose File Type Project! |9 JavaEEDBADp-war &~

5% =5
Categories: Eile Types:

| |l&| 15F Managed Bean
Fe-M 1SF Faces Configuration

!
E‘l J5F Composite Component
]
€]

él---’-'- JavaServer Faces

i "j 2 J5F Pages from Entity Classes

| £ | > @| Farelets Template bt
Description:

Creates a new Faces-config.xml.

Figure K.23 The New File dialog box.

The new created faces-config.xml file is opened and shown in Figure K.24.

® faces-config.xml - Editor

Faces-corfig.xml x| (=]
RE-F- QSR PR g% 08 | v¥8 9
1| kesmi version='1.0' encoding='UTF-8' 2> A
2 i
3 IS Saaamaasaa= S FHLT, FATTON FILE sss=ssonoanoabntsoonobaosoanonaoas Ly
4
5 <faces-config version="2.0"
3 ¥mlns="http://java.sun.com/ xml/ ns/ javace”
it xmlns:xsi="http://www, wi.org/ 2001/ XML3chema-instance™
] xsi:schemalocation="hrtop://java.sun.com’ xmwl/ns/ javase htop://Jjava.sun. com/xml/ ns/ javase/veh-facescontig 2_0.xsd">
a
10
11 </ faces-config>
Ak e
4 | [>
171 JiNs]

Figure K.24 The created faces-config.xml file.

First let’s add our managed bean into this faces-config.xml file by perform the following
operations:

1. Right click on any location inside the opened faces-config.xml file, and select Insert
> Managed Bean item from the popup menu. In some cases, you may need to close and
re-open the NetBeans IDE to have this Insert menu item available.

2. Inthe opened Add Managed Bean dialog, enter faculty into the Bean Name field, and

click the Browse button to open the Find Type dialog. Type Faculty to the Type Name

field and select the FacultyMBean item from the list, and click on the oK button.

Select the session from the Scope combo box.

4. You can enter some description for this managed bean into the Bean Description box if
you like.

w

Your finished Add Managed Bean dialog box should match one that is shown in Figure K.25.
18

® Add Managed Bean X

Bean Mame: Faculky
Bean Class: Forn. javasedbFaculty web, Faculky
Scope: sEssion w

Bean Description:

[Add l[Cancel][Help]

Figure K.25 The finished Add Managed Bean dialog box.

Click on the Add button to add this FacultyMBean as our managed bean into this
configuration file. Now click on the XvL tag to open this configuration file in the XML view, and
you can find that the related XML tags have been added into this faces-config.xml file, which
is shown in Figure K.26. The new added codes have been highlighted in bold.

<?xml version="'1.0"' encoding="UTF-8'?>

<I|-- =========== FULL CONFIGURATION FILE -

<faces-config version="2.0"
xmlns="http://java.sun.com/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd">

<managed-bean>
<managed-bean-name>faculty</managed-bean-name=>
<managed-bean-class>com.javaeedbfaculty.web.FacultyMBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

O w>

</faces-config>

Figure K.26 The added managed bean to the faces-config.xml file.
Let’s have a closer look at this piece of new added codes to see how it works.

A. The name of our managed bean, faculty, is added to the managed-bean-name tag.

B. The class of our managed bean, Facul tyMBean, with its namespace, is added under the
managed-bean-class tag to indicate the managed bean class used in this application.

C. The scope of this managed bean is session and has been added under the managed-bean-
scope tag.

@ Note: This faces-config.xml file may be located at two locations: 1) under the Web
Pages\WEB-INF folder, and 2) under the Configuration Files folder. It is the same file
that just resides at the different locations.

19

To setup navigation relationship between JSF pages, especially between the FacultyList
and FacultyDetai Is pages in this application, we need to edit this configuration file using the
PageF low editor.

Now click on the Clean and Build Main Project button to build our modified project to
cover the new added faces-config.xml file.

Then double click on our new added and edited faces-config.xml file from either location
to open this file. Click on the PageFlow button to open its page flow view.

? Note: In some cases, you may need to close and restart the NetBeans to make this new
added faces-config.xml to have the PageFlow view.

In the opened PageFlow view, totally there are four JSF pages are displayed in this
configuration view: index. jsp, index.xhtml, FacultyList.jsp and FacultyDetails. jsp,
as shown in Figure K.27.

1. Drag the starting arrow

® faces-config.xml * - Editor E@@
=

[t Faces-config.xml * = (=] and stop at the center of
PageFlow WML Project v I= the FacultyDetails
EE] index.jsp

[index.xhtml /

(] FacultyListisp 2. Drag the starting arrow
and stop at the center of

the FacultyList

[F| FacultyDetailsjsp /

Figure K.27 The opened PageFlow view of the faces-config.xml file.

To setup the navigation relationships between the FacultyList and FacultyDetails JSF
pages, perform the following operations:

1. Move your cursor to the starting arrow location as shown in Figure K.27 until a square

appears in the FacultyList.jsp page object. Then click on this square and drag this

stating arrow and point to and stop at the center of the FacultyDetails. jsp, as shown

in Figure K.27 box-1. A navigation link is established with the default name case1, as

shown in Figure K.28.

Double click on the default navigation link case1 and change its name to DETAILS.

3. Perform a similar operation to create another navigation link from the FacultyDetails
to the FacultyList, as shown in Figure K.27 box-2.

no

20

® faces-config.xml * - Editor |:||E|g|

E}- Faces-config.x<ml * =

PageFlow | wML |Pr0ject Vl Ii'rl:l

] index.jsp
[@ index.xhtmi

EE] FacultyList.jsp

casel

[[F] FacultyDetails.jsp l

Figure K.28 The established default navigation link.

4. Double click on the new established link and change its name to LIST. Your finished
PageFlow view of two JSF page objects should match one that is shown in Figure K.29.

=13

PageFlow | HML |Project v| Ta

® faces-config.xml * - Editor

| E} Faces-config.xml * x

EEl index.jsp

[@] index.xhtml

[P FacultyList.jsp

DETAILS

" LsT

[F] FacultyDetails jsp

Figure K.29 The finished PageFlow view of the JSF page objects.

Now if you click on the XML button to open the XML view of this faces-config.xml file,
you can find that the navigation rules shown in Figure K.30 have been added into this file. The
new added codes have been highlighted in bold.

As shown in Figure K.30, two navigation rules, which are indicted by A and B, have been
added into this configuration file. The first one is from the FacultyList to the FacultyDetails
and the second is from the FacultyDetai Is t0 the FacultyList.

? Notes: the <from-outcome> strings LIST and DETAILS must match the return String of
the list() and showDetails() methods defined in the FacultyMBean.

21

<?xml version="'1.0' encoding="UTF-8'?>
<l-- =========== FULL CONFIGURATION FILE >
<faces-config version="2.0"

xmlns="http://java.sun.com/xml/ns/javaee"

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd">

<I-- a normal Managed Bean -->
<managed-bean>
<managed-bean-name>CustomerMBean</managed-bean-name>
<managed-bean-class>view.CustomerMBean</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>
<navigation-rule>
<from-view-id>/FacultyList.jsp</from-view-id>
<navigation-case>
<from-outcome=>DETAILS</from-outcome>
<to-view-id>/FacultyDetails.jsp</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/FacultyDetails.jsp</from-view-id>
<navigation-case>
<from-outcome=>LIST</from-outcome>
<to-view-id>/FacultyList.jsp</to-view-id>
</navigation-case>
</navigation-rule>
</faces-config>

Figure K.30 The new added navigation rules.

K.11 Editing the General Web Application Configuration File web.xml

As we mentioned in the last section, the web.xml file contains the central configuration list

including all configuration descriptions about the JSF pages built in the project. To include our
new added faces-config.xml configuration file into our project, we need to add some XML
tags to this web.xml file to enable system to know that a new edited faces-config.xml file has
been added and will be implemented in this project.

Perform the following operations to complete this addition process:

1. Open the web.xml file by double clicking on it from the Projects window. Regularly
this file should be located at the WEB- INF folder or the Configuration Files folder.

2. On the opened web.xml file, add the XML tags that are shown in Figure K.31 into this
configuration file. The new added XML tags have been highlighted in bold.

Your completed web.xml configuration file should match one that is shown in Figure K.31
To setup a relationship between our two JSF pages, FacultyList. jsp and

FacultyDetails. jsp, and enable a switching between these two pages, we need to add some
JSF tags to both page files.

Next let’s modify our FacultyList. jsp page to setup a connection relationship with our

FacultyDetails.jsp page.

22

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" xmIns="http://java.sun.com/xml/ns/javaee" xmins:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:schemalocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
<context-param>
<param-name>javax.faces.PROJECT_STAGE</param-name>
<param-value>Development</param-value>
</context-param>
<context-param>
<param-name=>javax.faces.CONFIG_FILES</param-name>
<param-value=>/WEB-INF/faces-config.xml</param-value>
</context-param>
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>/faces/*</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout>
30
</session-timeout>
</session-config>
<welcome-file-list>
<welcome-file>faces/index.xhtml</welcome-file>
</welcome-file-list>
</web-app>

Figure K.31 The modified general Web configuration file web.xml.
K.12 Modifying the FacultyList and FacultyDetails Pages to Perform Page Switching

In the last section, we have established the navigation relationships between the
FacultyList and the Facul tyDetails JSF pages using the navigation rules in the faces-
config.xml file. In order to trigger those rules and switch from the FacultyList to the
FacultyDetai Is page, we need to modify some part of the FacultyList page to accomplish
this navigation. We want to use the facultyID as a connection key or link to display the detailed
record for only one faculty record based on the facultyID.

To do this modification, open the FacultyList.jsp page from the Projects window and
replace the coding line

<h:outputText value="#{item. facultyld}"/>

With the following coding lines

<h:commandLink action="#{faculty.showDetails(item)}"
value="#{item.facultyld}"/>

Your modified part on the FacultyList. jsp is shown in Figure K.32.

23

<f:view>
<html|>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>

<title=>JSP Page</title> . . .
9 Using the following codes to replace the outputText to navigate

</head> .
<body> to the FacultyDetails page
<h-form> <h:commandLink action="#{faculty.showDetails(item)}"

value="#{item.facultyld}"/>

<hl><h:outputText value="Faculty Listing’

<h:dataTable value="#{faculty.faculties}" var="iterp*
<h:column>
<f:facet name="header">
<h:outputText value="Facul
</f:facet>

<h:outputText value="#{item.facultyld}"/>

</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="FacultyName"/>
</f:facet>
<h:outputText value="#{item.facultyName}"/>
</h:column>

Figure K.32 The modified codes in the FacultyList.jsp page.

Next open the FacultyDetai ls. jsp page and add one JSF tag to the end of this page, as
shown in Figure K.33. The new added tag has been highlighted in bold. This command button

will enable users to switch back from the FacultyDetai Is page to the FacultyList page, and it

has a similar function as that of Back button on a Web browser.

<h:outputLabel value="Email:" for="email" />
<h:inputTextarea rows="4" cols="30" id="email" value="#{faculty.details.email}" title="Email" />
</h:panelGrid>
<h:commandButton id="list" value="List" action="#{faculty.list}" />
</h:form>

<hl><h:outputText value="Hello World!"/></h1>
</body>
</html>
</f:view>

Figure K.33 The modified codes for the FacultyDetails page.
Now we can build and run the project to test the functions of this project.
K.13 Building and Running the Entire Java EE 6 Project

At this point, we have completed all coding jobs for this project. To see the running result,
first let’s build the application by right clicking on our project JavaEEDBFaculty and select the
Clean and Build item, and deploy the application by right clicking on our project
JavaEEDBFaculty and select the Deploy item.

24

If everything is fine, open a Web browser and go to the Customer listing page at URL,
http://localhost:8082/JavaEEDBFaculty-war/faces/FacultyL.ist.jsp. You can find that all faculty
IDs have been underscored. Click on the Faculty 1D on the first row in the table to open the
FacultyDetai Is page to query and display the detailed record for this faculty 1D only.

A running result of this project with a faculty ID of B78880 is shown in Figure K.34. You
can click on the List button to return to the Facul tyList page and re-select some other
facultyID to see more results.

A complete Java EE 6 Database-related project JavaEEDBFaculty can be found from the
folder DBProjects\Chapter 5 that is located at the site: ftp://Fftp.wiley. isbn/JavaDB.

You can download this project from that site and run on your computer. However, you have

to make sure that you have installed all required software before you can run this project on your
computer:

Java Enterprise Edition 6

Glassfish v3

NetBeans 6.8 IDE or higher version of IDE.

The JDBC Driver for SQL Server database has been installed in your computer and
has been added into the Web page JavaEEDBFaculty-war as a JAR file.

A JSP Page - Microsoft Internet Explorer g@g‘
'l::

File Edit “iew Favorites Tools Help

APwnh e

QBack A > | |£| \gl ;\J /-\‘Search “_:'_“\';’Favorites £ v & %2 ,J&?J ﬁ Q ‘i‘i
Adrrass | &] http://lncalhost:B0E2,lavaEEDBF aculty-war ffaces Facultyl ist, jsp v B
~
-
Create/Edit
Facultyld: 578880

FacultyName: Ying Bai

MTC-211
Office:

750-378-1148
Phone:

Florida Atlantic University

College:

Assaciate Professor

Title:

ybaificollege. edu
Email:

List

&] Done %J Local intranet

Figure K.34 A running result of the project JavaEEDBFaculty.

25

