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14.A Appendix: Integration of Eq. 6.4a 
 
We will use indefinite integrals from a table by Bois (1961, pp. 17 and 20) and evaluate 
them from zero to infinite frequency. (A shorter solution can probably be obtained using 
complex integration in the s plane.) Starting with Eq. (6.4a) we obtain   
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For ζ<1, I1 and I2 are each of the form1 
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k4 equals k41 or k42 for I1 or I2 respectively.  For I2,  
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For I1,  
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Combining Eq. (14.A.2) through (14.A.8), we obtain 

                                                
1 Because of the pole at ω = k6, evaluate the tan-1( ) from ω = 0 to ω = k6 - δ and from ω = k6 + δ to ω = 
∞, where δ approaches 0. 
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This is Eq. (14.10). 
 
Bois (1961) does not give Eq. (14.A.2) for ζ ≥ 1. We will not bother with ζ = 1, since it 
applies to a zero-width interval and we expect continuity, but we will demonstrate that 
Eq. (14.A.9) is valid also for ζ > 1. For ζ > 1, Bois gives 
 

 I = k
1
tan-1  k

2
!  + k

3
tan-1  k

4
!  

"

0
= #

2
k

1
 + k

3
 ,  (14.A.10) 

where, for I1, 
 

 
k
11

 = 2

k
5
2 k

6
 - k

5

  ;  k
31

 = -2

k
5
2 k

6
 + k

5  (14.A.11) 
 
so 
 

 
 k
11

 + k
31

 = 2
k
6
 + k

5
 - k

6
 - k

5

k
5

k
6

2 - k
5

2

  = 1

2!
n

2
 

k
6
 + k

5
 - k

6
 - k

5

k
5  . (14.A.12) 

 
Here,  
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For I2,  
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and 
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Substituting Eq. (14.A.12) and (14.A.15) each into Eq. (14.A.10) and then the two 
resulting versions of (14.A.10) into (14.A.2), we obtain 
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Although the equivalence between Eq. (14.A.9) and (14.A.17) is not apparent, evaluation 
for 1<ζ ≤3 showed the same values from each to within a relative error of one part in 
1015. Therefore, Eq. (14.A.9) will be used for all ζ.
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14.B APPENDIX: LOOP OPTIMIZATION IN THE PRESENCE OF NOISE 
 
This appendix endeavors to provide a theoretical basis for paragraph 14.3. 
 
Rather than attempting to repeat Jaffe and Rechtin's (1955) rather lengthy mathematical 
development, we will base our discussion on two other procedures, minimization using 
Lagrange multipliers and the Weiner filter , which will be summarized but not derived 
here. In that way the results will be made available and a theoretical basis provided. 
However, those who are most familiar with these procedures will undoubtedly achieve a 
better understanding of the process. 

 
14.B.1 Background 
 
14.B.1.1 Minimization Under Constraint — Use of Lagrange Multipliers 
To minimize a function f(x,y,...) subject to the constraint that another function has a given 
value, g(x,y,...) = g', minimize [f(x,y,...) + λ2g(x,y,...)], where λ2 is called the Lagrange 
multiplier.  And λ2 can be selected, perhaps subsequent to the minimization and perhaps 
implicitly, such that g(x,y,...) = g'. Then both the constraint and the minimization will 
occur simultaneously. 
 
14.B.1.2 Weiner Filter.  The Weiner filter is the name sometimes given to a filter that 
minimizes the mean square error between the actual output and the desired output. The 
procedure includes safeguards to insure that the filter is theoretically realizable in that it 
has no right-half-plane (RHP) poles. 
 
Let S(f) be the phase power spectral density (PSD) of the input (signal plus noise). Since 
PSD is an absolute value, it will be of the form S(f) = N0/Pc + X(f)X*(f), where X(s) is the 
desired input (equal to the desired output in our development). It is possible to write S(f) 
in the form S(f) = [Ψ(s)Ψ(-s)]s=j2πf where Ψ(s) has only left-half-plane (LHP) poles and 
zeroes while Ψ(-s) has only RHP poles and zeros1. Then the optimum filter for minimum 
mean square error in reproduction of the desired input has transfer function 
 

                                                
1 Symmetry about the real axis is necessary for transforms of real functions of time and symmetry about the 
imaginary axis corresponds to zero phase shift, which is necessary for an absolute value.  
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where [ ]+ indicates the realizable parts from the Heaviside expansion of [ ], that is, those 
parts having LHP poles. In other words, the term in the [ ] is formed by taking the 
indicated ratio and removing any RHP poles. Here |X(s)|2 means X(s) X(-s) [Truxal, 1955, 
pp. 469-471]. 
 
14.B.2 Explanation of Jaffe and Rechtin's Procedure 
 
We wish to minimize !",out

2  under the constraint that E = E0, the value that we are 

willing to accept for the integrated square error. Therefore, according to paragraph 
14.B.1.1, we minimize [σϕ,out2 + λ2E2], choosing λ such that E = E0 with the values of 
the parameters that occur at the minimum. But this is what the Wiener filter would do if 
the input were λΦ(s), where Φ(s) is the Laplace transform of ϕin(t). It would minimize 
the total square error, consisting of the mean square filter response to the input noise plus 
the integrated square difference between output and input, λ2E2.2 The solution is given 
by Eq. (14.B.1) with X(s) → λΦ(s). 
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This will give the optimum filter shape, but not all the parameters are determined; λ is 
still to be chosen. We will probably do that implicitly by writing σϕ,out2 and E2 for the 
loop and choosing a parameter (e.g., ωn) to give the allowed value of E2 or σϕ,out2. 
 
14.B.3 Detailed Calculation for a Phase Step 
 
For a Phase Step, θ/s  
 X(s) = λθ/s . (14.B.3) 
 
                                                
2 Jaffe & Rechtin (1955) use a more fundamental development, which is related to Wiener filter theory, 
whereas this presentation attempts to make use of the developed filter theory more directly. Here E is an 
energy related to the Fourier transform of a single event (e.g., a step). In the usual Wiener filter, E is a 
power related to the Fourier transform-in-the-limit of a continuous process. In both cases noise power is 
minimized. 
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The two-sided PSD of a signal plus noise is 
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The 2 in the denominator of the noise term is because we use two-sided density with 
Fourier or Laplace transforms. From this we obtain 
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We begin substituting into Eq. (14.B.2). 
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The expression on the right, obtained by a Heaviside expansion, has an RHP pole, which 
is dropped in Eq. (14.B.2), 
 

 !2
" s( )

2

# $s( )

%

&

'
'

(

)

*
*
+

= !
+
s

;  (14.B.7) 

 

 H s( )
opt

= 
1

N0

2Pc
+ !"

s

!"
s

#
$
%

&
'
(  = 

!" N0

2Pc

s + !" N0

2Pc

 = 
K

s + K
, (14.B.8) 

where 
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Having obtained this general form, we then write the mean square error E and the phase 
variance σϕ,out in terms of K and choose K to give the best tradeoff between E and σϕ,out.  
One could solve for λ but it would only be of value in determining K in terms of E and 



Appendices Ch. 14   page 7 of 7 
 

From William F. Egan, Phase-Lock Basics.  Reprinted with permission of John Wiley and Sons, Inc. 
 

σϕ,out and it is simpler to do that directly. 
 
 
14.B.4 A Simplified Formula for H(jω)|opt 

 
Blanchard (1976, p. 162) gives 
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Apparently this is equivalent to Eq. (14.B.2) for the group of waveforms that are 
considered here, which have Laplace transforms of the form (k/s)n with n≤3. 
 
 


