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3.A  Appendix: Integrated-Circuit Doubly Balanced Mixer—Details 
 
To understand the IC BM we begin with the bipolar-transistor differential pair in Fig. 
3.14.  For small excursions of the base voltage, the collector current I1 can be expressed 
as 
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where re is the differential emitter resistance, obtained be differentiating I with respect to 
v in Eq. (3.7), re = VT/I.  The objectives will be to make one signal proportional to v1, 
which is easily done,  and the other proportional to I0, a little more difficult, and to 
eliminate all but the product term.  To this end we generate I0 for the differential pair in 
which the multiplication will occur by creating it in another differential pair.  The current 
so  generated, I1 in Fig. 3.14, is proportional to v1 and becomes the total emitter current 
for the second pair, as shown in Fig. 3.A.1.  The collector current I21 can then be written 
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 (3.A.1) 
 

 
= 

I
0

4
1 +  

v
1

V
T

 + 
v

2

V
T

 +  
v

1

V
T

 
v

2

V
T  . (3.A.2) 

 

Note that I22 could be represented by a similar equation except that the terms involving v2 
would be negative.  To eliminate the undesired terms, we generate I22 and two more 
currents like I21 but with terms having different signs, as shown in Fig. 3.A.2.  Table 
3.A.1 shows the signs of the various terms as they appear in the various currents.  From 
the table can be seen that the differential output voltage contains only the desired product.   
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Fig. 3.A.1  Two Basic Circuits Interconnected for the IC Doubly Balanced Mixer. 
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Fig. 3.A.2  The IC Doubly Balanced Mixer 
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 I21 + + + + 
 I22 + + - - 

 I23 + - + - 

 I24 + - - + 

 Ia  = I21 + I24 +2 0 0 +2 

 Ib = I22 + I23 +2 0 0 -2 

 vb  - va 0 0 0 +4 

 
 

Table 3.A.1  Signs of the Currents and Voltages in Fig. 3.A.2 showing  
 cancellation of undesired components and reinforcement of desired components. 
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While the preceding has been a small-signal analysis, it is not difficult to see how a large 
signal into the lower stage could alternately turn off the left and right upper stages, thus 
inverting the polarity of the part of the output current that is proportional to v2.  This is 
similar to what happens in the diode DBM.  Similarly, with both v1 and v2 large, the 
circuit could act like an ExOR gate, as was true for the diode circuit.  Consider the 
relationship between the collector currents I11 and I12 and the input voltage v1 under the 
large signal condition, v1, v2 >> VT. 
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The currents are either equal to I0 or to zero, depending on v1.  Let us call the condition 
where they equal I0 the one state and the other condition the zero state.  Then we can 
represent the state of the currents I11 and I12 by their "logic" states, L(I11) and L(I12).  Let 
us also define the logic state of v1, L(v1), to be one when the sign is positive and zero 
when it is negative.  Then Eq.(3.A.3) can be written in shorthand notation as 

 L I 11  = L v1  ; L I 12  = L v1  . (3.A.4) 

This says that if v1 is positive (large being understood), I11 is on and I12 is off.  
Continuing in the same manner, we can describe the state of the other current as a 
function of the large input voltages: 

   

 L I 21  = L I 11  •L v2   = L v1  •L v2  , (3.A.5) 

 L I 22  = L I 11  •L v2   = L v1  •L v2  , (3.A.6) 

 L I 23  = L I 11  •L v2  = L v1  •L v2  , (3.A.7) 

 L I 24  = L I 11  •L v2  = L v1  •L v2  , (3.A.8) 

 L I a  = L I 21  +L I 24  = L v1  !L v2  , (3.A.9) 

 L I a  = L I 22  +L I 23  = L v1  !L v2  , (3.A.10) 
 
where + and ! represent logical OR and ExOr respectively.  The algebraic sum of 
currents at Ia and Ib is equivalent to an OR function because, for the assumed large 
signals, only one of the constituent currents I2i can be on at a time.  Thus we see that both 
the IC- and diode-type DBMs act like ExOR circuits under large signal conditions, 
although the latter requires square-wave inputs to give a true triangular characteristic. 
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3.B Appendix: Op-Amps In Loop Filters 

3.B.1 The Op Amp 
The traditional op amp is a high-gain, high-input-impedance, amplifier intended for use 
in circuits in which part of the output signal is fed back to the input (as in Fig. 3.25).  
 
At low frequencies the gain is very high, often more than 100 dB. If it were 
uncompensated, its transfer gain and phase would be as shown in Fig. 3.26, curves 1 and 
2. Unfortunately, it would tend to oscillate when feedback was applied because the gain 
would be too high when the multiple, unavoidable, poles within its circuitry produced 
180° of excess phase shift (at fx). To control this, a single-pole roll-off is incorporated 
within the op-amp, beginning at perhaps a few Hz and producing the gain and phase 
shown in curves 3 and 4. Thus the gain can be reduced to a tolerable level while 
maintaining phase margin relative to -360°. 
 
Besides the inverting input shown at v in Fig. 3.25, op amps have a non-inverting input. 
The output depends on the difference between the two inputs. For now we assume zero at 
the non-inverting input. 
 
A current-feedback op-amp differs in that it is a transimpedance amplifier, producing an 
output voltage proportional to the current into the inverting (-) input [Franco, 1989; 
Little, 1990].  (The non-inverting input is not shown in Fig. 3.25.) The input impedance 
into the inverting input is low but that point is virtual ground in the configurations that we 
will study anyway.  We will begin with the traditional op-amp. 
 

3.B.2 General Equations, Voltage Feedback  
 
The active filter is shown in Fig. 3.25 in generic form with the feedback impedance ZFB 
as yet unspecified. We will begin by assuming only that the amplifier has ideal infinite 
input impedance and develop the equations for that rather general case. We will then 
proceed to simplify the equations by making various other assumptions that apply in 
many practical situations. While the simpler equations will commonly be most useful, we 
will thus be aware of the modifications that will be necessary under conditions where 
they do not apply.  
 
The output voltage can be expressed in terms of the op-amp input voltage as 

 u2 = !Gav  . (3.B.1) 

Since the same current flows through all the passive components, the voltage drops are 
proportional to their impedances: 

 u2 ! v

v ! u1

=
ZFB

R1

 . (3.B.2) 
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From these last two equations we can eliminate v to obtain 
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From this we now obtain the ratio u2/u1 : 
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 !KLFF s( ) "
u2 s( )
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=

GaFd

1+Ga ! Fd
 , (3.B.7) 

where Fd is the desired response, 

 
 

Fd ! !
FFB s( )

R1

. (3.B.8) 

The minus sign in (3.B.7) implies that part of the filter transfer function KLFF(s) is an 
inversion somewhere else in the loop. This detail allows KLFF(s) to represent both active 
and passive filters. 

Equation (3.B.7) can be rearranged as  

 Ga

!KLFF s( )
=
1+Ga( )

Fd

!1  (3.B.9) 

to show that, if the amplifier's gain is much greater than the magnitude of the desired 
transfer function, then 
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 (3.B.10) 

so that 
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If, also, |Ga|>>1, then 

 !KLF F s( )
1+G

a
>> F

d
,!G

a
>>1

" Fd  . (3.B.12) 

 

When (1+Ga) drops well below Fd, Eq. (3.B.9) shows that  

 !KLF F s( )
1+G

a
<< F

d

" !Ga . (3.B.13) 

 

That is, the filter transfer function becomes the op amp's open-loop gain. We can see the 
transition in Fig. 3.26. 

3.B.3 General Equations, Current Feedback 

The current feedback op amp is a more recent version of the traditional op amp. Refer 
again to Fig. 3.25.  In this case v = 0 (it has the same DC value as the non-inverting input 
— the input appears to be shorted). The output voltage equals the current out of the 
inverting port multiplied by the op-amp's transimpedance, Z21. Thus we can write the 
current out of the inverting port as 

 u2
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u2
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 , (3.B.14) 

which we solve as 
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where Ga = Z21/ZFB.  This has the same form as Eq. (3.B.11) but an advantage claimed 
for these amplifiers is that the gain can be changed by varying R1 without affecting the 
bandwidth. In the previous type of op amp, the input resistor R1 forms part of a voltage 
divider that is the feedback circuit (Eq. (3.B.2). The closed-loop bandwidth (Fig. 3.27) 
depends on the gain, which depends on R1. In this type, the effective short at the input 
isolates the feedback from R1. If |Ga|>>1 then KLFF(s) ≈ Fd and if |Ga|<<1 then  
KFF(s) ≈ -Z21/R1 so, much as with voltage feedback, the desired transfer function Fd is 
obtained until the frequency increases to the point where the gain drops too much and 
then the closed-loop transfer function becomes equal to the open-loop transfer function. 
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3.B.4 High-Frequency Poles 

The filter will normally be designed using Eq. (3.B.12) but the transition from (3.B.12) to 
(3.B.13) at fy in Fig. 3.27 represents an additional pole in the transfer function. Likewise, 
additional poles in various parts of the op-amp circuitry cause phase shift to accumulate, 
often quite rapidly once a critical frequency is reached, as shown at fx. These frequencies 
must be high enough compared to the bandwidth of the PLL that they do not have a 
significant detrimental effect. 

 

3.B.5 Filter Stability 

While the filter characteristics are important to the performance and stability of the PLL, 
the stability of the active filter itself is also important. Stability considerations for the 
filter loop are similar to those for the PLL so they may be more easily understood after 
loop stability has been studied in Chapter 5. Nevertheless, the material is presented here 
because it is an essential part of loop-filter design. 

The open-loop G of the active-filter loop (through the op amp and back through ZFB) 
with a voltage-feedback op-amp can be obtained from Eq. (3.B.1) and (3.B.2). If a 
voltage v = v' is applied at the input, by (3.B.1) it will cause an output  

 u2 = -Gav' . (3.B.16) 

By (3.B.2), with u1 = 0, the value of v =v'' resulting from this value of u2 is given by 

 !Gav '! v ''

v '
=
ZFB

R1

, (3.B.17) 

from which can be obtained the open-loop transfer function, 

 v ''

v '
= !

Ga

ZFB

R1

+1

=
Ga

Fd !1
 . (3.B.18) 

 
Unity open-loop gain occurs when the numerator and denominator have the same 
magnitude.  For a general lag-lead filter and |Fd| >> 1, this corresponds to point x in Fig. 
(3.B.1). The phase of Fd will be approximately 0° in this flat-gain region so the open-
loop phase will be the phase of Ga and this should be more than -360° for stability (much 
more if the filter is to be well behaved). Otherwise the open-loop gain will be greater than 
one when the phase shift reaches -360°, which will very likely cause instability.  
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Fig. 3.B.1  Op-amp open-loop and desired closed-loop gains. 

If the closed-loop filter characteristic is low-pass, as shown by the dashed line, then the 
denominator of Eq. (3.B.18) will approach -1 as Fd becomes small compared to one. 
Then the open-loop gain becomes equal to -Ga. Many op-amps are designed to be stable 
with unity feedback, so circuits using such op-amps will be stable. 

The open-loop G of the current-feedback op-amp can be obtained beginning with an 
input current I- that produces an output voltage u2'', 

 u2'' = Z21I- = Z21u2'/ZFB , (3.B.19) 

where I- is derived from the output voltage u2' through the feedback impedance ZFB. The 
open-loop transfer function is thus  

 !!u2

!u2

= "
Z21

ZFB

= "Ga . (3.B.20) 

This differs from Eq. (3.B.18) in that the denominator lacks a minimum value of one. 
Therefore, if a lag filter (Fig. 3.23e) is used with a current-feedback op-amp there is a 
danger of instability because |Ga| = 1 can occur in the region where Ga has developed 
considerable excess phase shift. Physically, the impedance of the feedback capacitor 
continues to decrease as frequency increases so the output voltage is converted to ever 
increasing current, which maintains the open-loop gain as |Z21| falls. If a lead 
configuration is used (Fig. 3.23c), if ωz is much less than the frequency where Ga 
acquires a phase of -360°, and if R2 is in the recommended range of feedback resistances 
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for the op-amp, the circuit should be stable. 

Example 3.1, Active Filter 

Requirement: Integrator-and-lead filter with fp <10 Hz, fz = 5000 Hz, KLFF(f >> fz) = 20. 

A solution: Use Fig. 3.23c.  Choose a convenient value of R2 = 10 kΩ.  From Eq. (3.39),  

 
C =

1

R2!z

=
1

104 V A( ) 2" # 5 #103 sec( )
= 3.18 #10$9 C V % 3300pF .  

High-frequency gain is R2/R1 so R1 = 500 Ω to give 20. The op-amp must have more than 
the desired gain at 10 Hz if the pole is to be lower than 10 Hz. Using Eq. (3.20), the value 
of k  = 1/(R1C) can be obtained from the high-frequency gain and the gain at 10 Hz can 
then be obtained using k. 

 KLFF f >> 5000Hz( ) = 20 !
k

"z

=
k

2#5000 rad sec
; 

 k = 2! "10
5
rad sec ; 

 KLFF f =10Hz( ) =
k

s
=
2! "10

5
rad sec

2! "10 rad sec

=10
4
# 80dB . 

The DC gain of the op-amp must exceed 80 dB, therefore.  For stability of the op amp, its 
open-loop phase-shift must be >> -360° when its open-loop gain is 20 (Fig. 3.B.1). In 
addition, the frequency at which that gain is 20 must be high enough that the additional 
pole at that frequency will not be of importance to the loop, certainly much higher than 
5000 Hz. 
 

3.B.6 Non-Inverting Input 
 
We can extend our development of active filter performance to the non-inverting case. 
The op amp responds to the difference between the inverting (-) and non-inverting (+) 
inputs. We now allow a voltage v+ to be present on the + input to the op amp. We can 
treat this as a change in voltage reference from ground to v+ and write the input and 
output voltages relative to this new reference.  Equation (3.23) then becomes 
 

 
 

u2 ! v+

u1 ! v+

=
GaFd

1+Ga ! Fd

! !Ha  , (3.B.21) 

 
which gives 
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  u2 = v+ 1+ Ha( ) ! u1Ha . (3.B.22) 
 
Thus the response to a signal on the op amp's + input equals unity minus the response 
from u1. 
 
How might we obtain a differential response, the same response from two inputs except 
that one is the negative of the other?  From (3.B.22) we can see that such a response can 
be obtained from a voltage u1' if it is related to v+ by 
 

 v+ =
Ha

1+ Ha

!u1 . (3.B.23) 

 
Thus we want to introduce !u1  to the op amp by means of a voltage divider that gives Eq. 
(3.B.23). However, Ha is a function of frequency. Nevertheless, for large Ga, Eq. 
(3.B.21) becomes 
 

 Ha ! "Fd =
ZFB s( )

R1

, (3.B.24) 

 
which describes the voltage divider that we actually use and with which Eq. (3.B.23) 
becomes  
 

 v+ = ! "u1
Fd

1! Fd

. (3.B.25) 

 
The divider is illustrated in Fig. 3.B.2.  Equation (3.B.22) now becomes 
 

 u2 = ! "u1Fd
1+ Ha

1! Fd

! u1Ha , (3.B.26) 

 
which gives the desired results as long as Ga is large enough so Ha ≈ -Fd . 
 
Under the assumed conditions, the common mode response is zero. That is, if u1 = u1', u2 
= 0. To the degree that the impedances (R1 and ZFB) on the two sides of the op amp are 
not equal, however, the circuit will have a non-zero common-mode response [Endres and 
Kirkpatrick, 1992].   
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Fig. 3.B.2  Op-amp using both inputs. 


