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10.B APPENDIX: COSTAS LOOP FOR N PHASES 

 
A general representation of a loop for carrier recovery with an n-phase signal is shown in 

Fig. 10.B.1. The biphase Costas loop of Fig. 10.7 is a special case of this loop. 

 

 
Fig. 10.B.1  N-phase Costas Loop 

 

The number of multiplications of the incoming signal and the VCO output is n, the 

number of equally spaced phases (usually 2, 4, or 8) in the code, and the phase shifts 

given to the n VCO outputs are multiples of  

 

 θ = π/n.  (10.B.1) 

 
After low passing, all of the multiplier outputs are multiplied together to produce vx, as 

shown. The derivative of vx with respect to the phase difference is 
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where, as before, 

 
  ∆ϕ ≡ ϕin - ϕv . (10.B.3) 

 
In order to concentrate on regions near the zero crossings of vx, we define γ as the phase 

change from such a point, where i = k for that point, 

 
 ! = !" + k# $ % 2 . (10.B.4) 
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Then the derivative near such a point is 
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The approximation of Eq. (10.B.5) is valid because, near γ = 0, one of the terms in the 

summation of (10.B.2) approaches infinity; that is the term for which the denominator is 
sin γ. Even though this term is much larger than the other terms in the summation, vx does 

not approaching infinity because the denominator term is identical to a term within the 

preceding product of terms. Normally n is some power of 2 (2, 4, 8, 16) so the first factor 

in (10.B.6) is then equal to 1. Therefore, we will drop (-1)n from Eq. (10.B.6) at this 

point. 

 

Note that, if k = 0, the first term in the product in Eq. (10.B.6) cancels the denominator on 

the right and the expression can then be written 
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If k = 1, the second term in the product in (10.B.6) cancels the right term, producing a 

form similar to (10.B.7) except sin[γ + (n-1)θ] is replaced by sin[γ -θ], equivalent to a 

phase change of nθ = π in that term and resulting in the expression being multiplied by 

-1.  This occurs each time we advance k by 1 so we can write 
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Thus the same sign occurs at the zero crossing whenever k is advanced by 2, that is for a 

change in the lock point of 2θ = 2π/n . For biphase, as we saw in Section 10.3, this is 
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every 180°. For quadraphase there is a lock point each 90° and there is a lock point each 

45° for eight phase. Thus changes between the allowed phases in a phase coded signal 

will not change the tuning voltage and we can lock to the carrier in spite of the lack of a 

spectral line there. 

 

Just as a decoded biphase signal is available from one of the PDs in Fig. 10.7 (or Fig. 

10.B.1 when n=1), so too can decoded QPSK be obtained from two of the four PDs in 

Fig. 10.B.1 when n=2. These outputs are proportional to the projections of the four 

possible vectors in Fig. 10.8 on the horizontal and vertical axes respectively. In both 

cases, which PD or PDs provide the decoded signal(s) is arbitrary so provision must be 

made for selection or control of the proper output. 

 
Values of Cx are easily computed from (10.B.8) and are shown in Table 10.B for several 

values of n. 

n Cx 

2 1 

4 0.5 

8 0.066 

16 0.00052 

 
Table 10.B Factor in Kp For Several Values of n 
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10.C APPENDIX: SYMBOL CLOCK RECOVERY 

 

Once a digital signal has been demodulated and changed to binary levels, a clock is 

needed that is synchronized with the rate of change of the symbols. For a QPSK signal, 

for example, two binary streams will be generated and the values of the two streams at 

any given time represent a four-level signal. While each binary stream will change less 

often than the symbol rate, the basic (highest) frequency in each stream will equal the 

symbol frequency. A clock at this frequency is required for use in sampling the bit 

streams. Since the bit patterns of the streams are essentially random, there is no spectral 

line in these streams at the desired bit rate. As with carrier recovery, one can be created. 

A circuit for doing this is shown in Fig. 10.C.1. 

 

 
Fig. 10.C.1  Symbol Recovery 

 

The incoming bit stream is represented at a. In the time domain, it consists of a series of 

data bits of unknown (random) value, usually 0 or 1 with equal probability. In the 

frequency domain, the power spectral density S has the shape characteristic of a single 
pulse of width Tb. There is no discrete spectral line since the stream is random. In order 

to develop a spectral line, the stream is delayed by Td, approximately equal to half of Tb, 

and then enters an exclusive-or gate having an inverted output (ExNOR) with the 

undelayed version. (An analog multiplier can also be used.) During the delay period after 

the beginning of the pulse, the output from the ExNOR is the product of the two adjacent 
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bits and is unknown (random). But, after Td has passed, a one is produced since both 

inputs are from the same pulse. The resulting output at b can be decomposed into a pulse 
stream of frequency 1/Tb and a stream of random pulses. The random pulses produce 

"pattern noise" while the regular pulse stream is characterized by a discrete line at the bit 

rate. A PLL is employed to reproduce the bit frequency while filtering out the noise. A 

narrow filter could be employed to do this but would not be able to accommodate 

changes in bit rate. The PLL output, after an appropriate delay, can be used to drive the 

sample-and-hold circuit to sample the original pulse stream  
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10.D APPENDIX: ADPLL BY PULSE ADDITION AND REMOVAL, 

ADDITIONAL MATERIAL 

 

10.D.1 Implementation of the Increment/Decrement Circuit 

  

The ÷M to ÷2 interface is actually mechanized as shown in Fig. 10.D.1. When counting 
up, if the counter exceeds its modulus (capacity) it outputs a carry signal, which is an 
increment command to the ÷2. Conversely, when counting down, it can output a borrow 
signal, which is a decrement input. 
 
10.D.2 Stability 
 
Since the analog first-order loop is inherently stable, we look for stability problems due 
to the sampling effect that has been added by the digital implementation, such as we 
found with the simple loop of section 10.7.1.  
 
We can identify three sampling processes: clocking at frequencies FM and FN and phase 
detection. Phase detection with an ExOR gate can be considered a sampling process 
because phase information is only acquired at the transitions of the output waveform 
(twice a cycle); no phase information is available between transitions. The sampling 
process at frequency fs will not appreciably affect stability if  
 
 fs >> ωL = K . (10.D.1) 
 
From Eq. (10.45), this requires that 
 
 MN >> 2, (10.D.2) 
 
in order that FM >> ωL cycle/rad, and that 
 
 MN >> 2FM/FN , (10.D.3) 

 
in order that FN >> ωL cycle/rad. 
 
From Eqs. (10.45) to (10.47), the lowest input sampling frequency is 
 



Appendices Ch. 10  page 7 of 16 
 

Partly from William F. Egan, Phase-Lock Basics.  Reprinted with permission of John Wiley and Sons, Inc. 
 

 2 fin ! 2 fc " FH( )=
FN

N
"
FM

MN
=
#L
2

FN

FM
M "1

$

%
&

'

(
) . (10.D.4) 

 
This is much greater than ωL if  
 
 M >> 2FM/FN. (10.D.5) 
 
 
Thus (10.D.2), (10.D.3), and (10.D.5) are sufficient to guarantee stability and, since M 
and N are usually large numbers (to reduce ripple), these conditions should be easily met 
if FM is not too much greater than FN. 
 
10.D.3 Ripple Control 
 
Ripple refers to jitter on the loop output due to variations in instantaneous frequency. 
Although the loop controls average frequency, it does so by removing pulses so, 
depending on the sequence in which this is done, different cycles may be of different 
lengths, even though the average frequency is correct. The loop can be designed so it will 
not produce a jitter of more than 1/N cycles at the output.  
 
Assume initially that the output is at fc so the PD duty factor is 50%, in the center of its 
range. The time during which the PD output is at a single state is one quarter of an output 
cycle (Fig. 3.2b) so, using Eq. (10.47), 
 
 TPD = 1/(4fc ) = N/(2FN) . (10.D.6) 
 
We can prevent more than one increment or decrement pulse from occurring at I during 
this period if we make the duration of the M count at least as long as TPD. Thus we 
require 
 
 M /FM ≥ TPD . (10.D.7) 
 
Combining these last two expressions, we obtain 
 
 M ≥ NFM/(2FN) . (10.D.8) 
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If we meet this restriction, we limit the unnecessary outputs from the M divider to one in 
each direction during lock at center frequency. When the frequency is offset from center, 
increments or decrements are required but (10.D.8) will limit the number of ÷M outputs 
that are in the "wrong" direction to one because the width of the PD output during the 
time such outputs are generated is narrower than what is given by Eq. (10.D.6) and 
therefore Eq. (10.D.7) is still met by that period. 
 
Additional circuitry can also be used for ripple control. The circuit in Fig. 10.D.2a 
inhibits up and down counting when the two inputs are in phase, the zero-error 
relationship for this circuit. As the phase moves away from this center value, up or down 
counting occurs in ÷M, but for short times when the deviation from center is small. When 
v(ϕin) and v(ϕout) are in phase, the ExOR output is zero and the ÷M is not enabled. If 
v(ϕout) becomes delayed, as in Fig. 10.D.2b, the enable occurs when the second least 
significant bit of the counter is 1 and its inverse causes the ÷M to count up. Conversely, 
in the case shown at Fig. 10.D.2c, it counts down. However, it only counts during the 
enable pulse, which would be narrow near band center, as opposed to counting all the 
time with the original realization. This scheme, however, reduces Kp and the tuning 
range1 by 2. 

                                                
1 The application note [Troha, 1994] indicates that the range is reduced by (2 + 1/M), 
perhaps due to the details of how the enable and up/down functions work. 
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(a) 

 
v(!   )

in

v(!     )out  

enable

2nd LSB

 
 (b) (c) 

Fig. 10.D.2  Ripple inhibiting circuit. 
 

10.D.4 Second-Order ADPLLs 
 
Second- and higher-order loops are also possible using this general design.  Figure 10.D.3 
is another representation of the system of Fig. 10.33. This time we have shown FN as a 
second input. Previously we had ignored it because it was a constant. Now, however we 
wish to use that point to inject a signal. We have redefined Kp and Kv to accommodate 
this; but K is not affected by the redefinition and so neither is the loop response. 
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Fig. 10.D.3  Mathematical block diagram rearranged. 

 
10.D.4.1 Transfer Function 
 
We will feed fout(s) through a second loop like this one and back to FN to create a loop 
filter. We have added subscripts to Fig. 10.D.3 to differentiate this main loop (1) from the 
second loop that is used to generate the filter. FN now changes from a constant clock to a 
function of s. The transfer function of the second loop is given by Eq. (2.25b) and we will 
multiply this by a constant, γ, giving 
 
 H
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This will create a transfer function, between the PD output and fout, of 
 

 K
v1

K
LF

F s  = 
K

v1

1 - K
v1

H
2

s
 = K

v1
 

1 + s

K
2

1 - K
v1
!  + s

K
2

  (10.D.10) 

 

 = 
K

v1

1 - K
v1
! 

   

1 + s

K
2

1 + s

1 - K
v1
! K

2

 . (10.D.11) 

 
Here we have used Eq. (2.22) with a minus sign on the feedback because the standard 
diagram has a minus at the summer but this implementation does not.  By the way 
Eq. (10.D.10) is written, we are effectively abstracting Kv from the response to use for 
VCO gain constant.) From this, and our definition of Kv1 in Fig. 10.D.3, we can see the 
following equivalencies to our standard parameters for a loop with a lag-lead filter. 
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 Kv1 = 1/(2N1 ) (10.D.13) 
 
 ωz = K2 (10.D.14) 
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Using K1, ωp, ωz, and ωn from above, ζ and α can be obtained from Eqs.  (4.9) and (6.5).  
(That may be more efficient than expanding those expressions directly in terms of the 
circuit parameters.) 
 
If we want an integrator-and-lead filter, we set γ = 1/Kv1 = 2N1 and obtain a filter transfer 
function, from (10.D.10),  of 
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where primes are used to designate this particular choice of γ.  The terms Κv1 and ωz are 
still given by (10.D.13) and (10.D.14).  By comparing Kp1Kv1K'LFF'(s)/s to Eq. (4.23), 
we find 
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which is the same as Eq. (10.D.18). The damping factor is 
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 . (10.D.21) 

 
Responses for either type of loop (with lag-lead or integrator-and-lead filter) can be 
obtained from the equations in Table 4.1 or the graphs of Chapters 6 and 7 using the 
parameters computed above. 
 
Notice, in Eq. (10.D.11), that, if γ should exceed 1/Kv, the pole would move to the right 
half plane and the filter would be unstable. However, because we are using numbers 
rather than analog components, the value of γ can be set precisely so we can obtain an 
integrator-and-lead filter without drifting into the right half plane. In fact, here is the first 
time we have met a true type-2 loop, one that really does have a second pole at zero 
rather than at some frequency small enough to be approximated as zero. 
 
10.D.4.2 Realization 
 
The multiplying factor γ can be realized by taking the output from the second loop before 
the final ÷N, effectively multiplying the output frequency by N2, the value of N in loop 2.  
A ÷L circuit is also placed at the input to the second loop, giving γ = N2/L. The final 
structure is shown in Fig. 10.D.4. 
 



Appendices Ch. 10  page 13 of 16 
 

Partly from William F. Egan, Phase-Lock Basics.  Reprinted with permission of John Wiley and Sons, Inc. 
 

 
 

Fig. 10.D.4  Second-order ADPLL using pulse removal. 
 
10.D.4.3 Tuning Range 
 
The center frequency depends on the center value of FN1(s), which depends on FN2.   
From Fig. 10.D.4, we can see this to be 
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The hold-in range could be set by either loop. From the expression for the output 
frequency (Fig. 10.D.4), a change in output frequency of ∆fout is accompanied by  
 
 ∆f1 = ∆fout2N1 - ∆FN1 = ∆fout2N1 - γ∆fout = ∆fout(2N1 - γ). (10.D.23) 
 
 The corresponding phase change in loop 1 is 
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so we can see immediately that, for a type-2 loop, where γ = 2N1, there is no phase 
change at the main-loop (loop 1) phase detector, as we would expect for such a loop. 
 
Referring again to Fig. 10.D.4,  
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Neither ∆ϕ1 nor ∆ϕ2 can exceed one-quarter cycle, leading to a maximum value of ∆fout 
given by the smaller of the frequency changes with ∆ϕ = 1/4 in Eq. (10.D.24) and 
(10.D.26), 
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10.T  APPENDIX: COMBINED PLL AND DLL 
 
The combination of DLL and PLL discussed in Section 10.6 is illustrated in Fig. 10.T.1 
[Lee, 1992]. 
 

 
 

Fig. 10.T.1 Simultaneous synchronization of the data and extraction of its clock. 
 
Now the mathematical block diagram must again show the reference clock input to the 
PD, something that we dropped in going from Fig. 10.23 to 10.24.  The mathematical 
representation of Fig. 10.T.1 is shown in Fig. 10.T.2a.  The feedback path in the inner 
loop represents the VCO, which is controlled by v3.  Its phase output is subtracted from 
ϕdata-out in the PD.  By adding the two paths from v3 to ϕe we obtain the loop shown in 
Fig. 10.T.2b.  (The variables from the original loop, ϕdata-out and ∆ϕdata, no longer 
appear in the loop so they must be synthesized from other variables that do appear.) 
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"e

 -Kvd
#"data
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+
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b 

Fig. 10.T.2  Mathematical block diagram of combined DLL and PLL at a with equivalent 
diagram shown at b.  (Dashed connections are external to the loop.) 
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The right-most block in the loop in Fig. 10.T.2.b is an integrator-and-lead element of the 
same form as Eq. (3.20).  Assuming GLFd(s) consists only of an integrator (i.e., F(s) = 1 
sec-1 in Eq. 10.20), Fig. 10.T.2 becomes Fig. 10.T.3, where  
 
 ωz = Kv / Kvd. (10.T.1) 
 

! Kp
-

+
"data-in

"e
Kv(           )s

1 +s/#z 1/s
KLF 
sec

 
Fig. 10.T.3  Combined DLL and PLL with integrator loop filter. 

 
Here 1/C in Eq. (3.20) becomes KLF sec-1, so the natural frequency (see column c in 
Table 4.1) is given by 
 

 ωn2 = KLFKpKv sec-1 (10.T.2) 
 
and the damping factor is 
   

 

  

! = 0.5
KLFK p

Kv sec
Kvd  .   (10.T.3) 

 
This circuit has the response of a PLL with an integrator-and-lead filter.  Thus we can use 
the stability requirements in Chapter 5.  However, the responses in Chapters 6 and 7 do 
not describe directly the response of the recovered clock or the retimed data.  
 
 

 

 


