
Appendix i17.M page 1 of 7

Partly from William F. Egan, Phase-Lock Basics. Reprinted with permission of John Wiley and Sons, Inc.

17.M APPENDIX: MATLAB SCRIPTS

MATLAB scripts used to generate simulations for this chapter are described here. They
can be downloaded for a more complete understanding. Some scripts have features that
could be incorporated in others where that is found to be desirable.

17.M.1 Nonlinear Simulation with Noise
The MATLAB script NLPhN simulates the non-linear acquisition behavior of a PLL in
the presence of broadband additive noise. It is similar to NLPhP but random noise has
been added to the offset voltage uoff in Fig. 8.21, as shown by un in Fig. 17.M.1.

sin(•)! HOLD G(s)
+

-

" !

" sin(") u

+

+

in

off u
in

"
out

sampler

e e

!

u

+

+

n

Fig. 17.M.1 Noise Added To Model

17.M.1.1 Simulating Broadband Noise

The input un is a normally distributed random number with a mean of 0 and a variance of
σN2. This produces an equivalent noise power density, as seen in the loop (with noise

bandwidth Bn << fs) of Seq = 2!N
2

fs , where fs is the sampling frequency. That is,

after sampling, the noise power σN2 is distributed over a band equal to half of the
sampling frequency, fs/2.

To see this, consider a band of noise of density Seq that extends from 0 to fs/2. We are
using one-sided noise density, on which we have standardized, so the two-sided density is
Seq/2 and extends from -fs/2 to +fs/2. If this band is sampled at fs, it will be shifted to all
multiples of fs and replicated, creating a continuous band of noise with density Seq/2.
The noise at frequency fx + jfs, where j is an integer, will be the same as at fx, so the
replicated bands will not be independent of the original band. However, they will be
attenuated by the response of the hold function, sinx/x, where x = πf/fs, and the loop will
not respond to them significantly if it is sufficiently narrow (Bn << fs).

This density will be multiplied by (Kp')2 to give the power spectral density after the PD,
<u1n2>/df from Eq. (13.10). Thus, the density before the PD is

 σN2/(fs/2) = <u1n2>/[(Kp')2df] = N0/Pc (17.M.1)

Appendix i17.M page 2 of 7

Partly from William F. Egan, Phase-Lock Basics. Reprinted with permission of John Wiley and Sons, Inc.

and the variance for the noise generator must be set to

 σN2 = (N0/Pc) (fs/2) . (17.M.2)

In terms of ρL0, the S/N in the (linear) loop noise bandwidth, this can be written

 !
N
2 =

N
0
B

N0

P
c
B

N0

f
s

2
 = 1

"
L0

f
s

2B
N0

 . (17.M.3)

The correlation between samples numbered j and j + k of un is given by Eq. (13.22).
These samples are separated by

 T = k cycle/fs (17.M.4)

and the maximum frequency of the noise band is

 ωmax = πfs/cycle (17.M.5)

 producing a correlation of

R(T)

R(0)
=
sin k!()

k!
= 0 , (17.M.6)

That is, the samples are independent, so the single-source model is adequate. We can,
however choose to employ dual sources, possibly for comparison.

17.M.1.2 Observing Cycle Skipping With NLPhN

Fig. 17.M.2 shows the phase output from a run of NLPhN. (Others are shown in Fig.
17.1.) Truncation of the phase display has been turned off so we can observe cycle
skipping. Note how the phase tends to stay at a multiple of 1 cycle error for a while and
then move on to another multiple except at 73 seconds where it passes through -2 cycles
without pausing.

Appendix i17.M page 3 of 7

Partly from William F. Egan, Phase-Lock Basics. Reprinted with permission of John Wiley and Sons, Inc.

-4

-3

-2

-1

0

1

0 20 40 60 80 100

Phase Error

seconds

p
h
as

e
(c

y
cl

es
)

Fig. 17.M.2 Phase in the Presence of Noise,
ωn = 1, ζ0 = 0.707, α0 = 1, S/N in Bn0 = 1.41 dB

17.M.1.3 Changes To NLPhP To Create NLPhN

Fig. 17.M.3 shows the significant changes to NLPhP that add noise to the simulation.
Changes or additions are in bold among portions retained from NLPhP. The user sets
either the noise-to-signal ratio in the loop bandwidth, 1/ρL0 = NS, or the ratio of noise
power spectral density to signal, No. Noise bandwidth, Bn, is computed from Eq.
(14.10). A series of random numbers with unity variance is multiplied by the constant Kn
to produce samples PDn of the noise voltage, un in Fig. 17.M.1, in accordance with the
theory given above. During the main simulation loop, a new sample is added to the offset
each computation cycle. Output is similar to what is shown in Figs. 8.M.1 through 8.M.5
except that the plot of phase detector output has been replaced by a plot of sampler
output, which includes the injected noise. There are some other differences, for example
changes in graph labels, and sometimes an explanatory note or output may appear in one
version and not the other.

Appendix i17.M page 4 of 7

Partly from William F. Egan, Phase-Lock Basics. Reprinted with permission of John Wiley and Sons, Inc.

%TIME RESPONSE & PHASE PLANE PLOT IN NOISE
• • • • • • • • • • • • • •
% MODIFY PARAMETERS BELOW & GO
%*****************************
% Set either of the following parameters and set the other

to zero.
NS = .7227; % N/S in Loop Noise Bandwidth
No = 0; % Noise Power Density, per Hz, to Signal Ratio
SR = 0; % 1 for step response (if also Phinit=Winit=0 and

Ap or Af not 0).,
• • • • • • • • • • • • • •
% op=3: Frequency + Sampler Output vs. Time
%******************************
fprintf('\nWn = %g rad/sec; zeta = %g; alpha =

%g',Wn,z,alpha)
Bn = Wn*(1/(2*z) + 2*z*alpha^2)/4; % Noise BW in Hz
fprintf('\nNoise Bandwidth = %g Hz\n',Bn)
% Compute multiplier of noise distribution having unity

power.
if NS == 0,
 Dn = No;
 fprintf('Noise Density to Signal Ratio = %g /Hz\n',No)
else
 Dn = NS/Bn;
 fprintf('Signal/Noise in Loop Bandwidth = %g\n',1/NS)
end
Kn = sqrt(Dn*SmpPerOut/(OutInc*2));
• • • • • • • • • • • • • •
 NL = sin(PhIn - y); % <<<<<<<<<<<< THE NON-LINEARITY
 PDn = Kn*randn;
 PDnoise(i+1) = PDn;
 u1(1) = NL + Offset + PDn; % initial input to sampler
 u1(2) = u1(1); % constant Hold output -> same at

beginning and end of dt
• • • • • • • • • • • • • •
 if op == 3, % selecting Sampler Output vs. time
 subplot(212);
 else,
 subplot(224),
 end % if op==3
 plot(t,sin(er)+PDnoise,'+')
 title('Sampler Output')
end % if ()|()

Fig. 17.M.3 Significant Changes To NLPhP To Create NLPhN

Appendix i17.M page 5 of 7

Partly from William F. Egan, Phase-Lock Basics. Reprinted with permission of John Wiley and Sons, Inc.

17.M.1.4 Gathering Phase Statistics and Plotting Probability

The script erdis can be used to plot the probability distribution function for 1001 points
generated by a run of NLPhN. If NLPhN is set to produce 1001 or more values of the
phase error er with truncation, erdis will produce the distribution function when run
subsequently. It can be easily modified to operate on a different number of points of er.
The curves in Fig. 17.9 used 10,001 points. We could also use the MATLAB function
hist(er) to build a histogram of the phase error er after running NLPhN. That would
be an approximation (using a finite set of data points) to the probability density function.

17.M.2 Generating Statistics of Output Phase and Cycle Skips

Nstat1 and Nstat2 simulate first- and second-order loops respectively in the presence
of noise while measuring the phase variance and the rate of cycle skipping. After
observing graphs showing how the statistics change with time (Fig. 17.M.4), the user can
command additional simulation points. This might be done to come closer to a steady-
state value, that is, to reduce variations in the accumulated averages by gathering more
data.

Fig. 17.M.4 Graphical output from Nstat1.

Appendix i17.M page 6 of 7

Partly from William F. Egan, Phase-Lock Basics. Reprinted with permission of John Wiley and Sons, Inc.

Either a single noise source or two sources (Fig. 13.5) can be used. This enables us to
show that the single source is adequate for these broadband noise simulations.

Nstat1 can also be set to produce a time response. Because there is no filter in the
first-order loop, the matrix functions that are used in NLPhP and NLPhN are not
necessary in Nstat1. [Information about simulating higher-order loops without matrix
manipulation can be found in Egan (2000, p. 538)].

17.M.3 Obtaining mean time to first cycle skip.

Skip1 and Skip2i provide mean time to first cycle skip statistics for first-order and
second-order loops. The latter is designed to iterate three loop parameters, providing a
sequence of outputs. This is most useful for long unattended runs and does not provide
the opportunity for the user to modify or read parameters on the run or to lengthen the
simulation interactively. Thus, each of these scripts has a different set of features,
including the simulation of differing loop types. New scripts (e.g., a Skip2, simulating
a type-2 loop interactively or a version of Skip1 with iterated variables) can be created
by using these as guides.

17.M.4 Simulating Phase Modulation

Sig1i and SigOff2i simulate the effects of phase modulation at a rate too high to be
followed by the loop, using a square wave of phase, for first- and second-order loops,
respectively. Both scripts are iterative but only SigOff2i writes to a file
(runrec.txt in MATLAB work directory). Output data is normally available from
the MATLAB Command Window after a series of iterated runs but writing to a file can
be more convenient, especially if a long run should be interrupted by some problem that
causes the Command-Window data to be lost.

Both scripts give the number of cycles skipped and the mean phase but Sig1i does not
give an output variance if there is a finite offset (or no noise). However, if there is
additive noise, SigOff2i gives both the mean square output phase and its sample
variance (i.e., an unbiased estimate of the variance of the underlying data) in the presence
of an offset. SigOff2i can also produce time responses.

Sig2 also simulates a second-order loop but is not iterative and has some restrictions
like Sig1i. (Note: Some scripts use sig2 as a variable so typing sig2 might cause
that variable to display if it has been left in the MATLAB environment. Therefore, it
may be necessary to type clear first or to use the proper script name Sig2 to execute
the script.)

Appendix i17.M page 7 of 7

Partly from William F. Egan, Phase-Lock Basics. Reprinted with permission of John Wiley and Sons, Inc.

17.M.5 Controlling Iteration
Scripts whose names end in "i.m" iterate between two and four variables using "for
loops." The initial and final values and step size may be given or an array of values may
be used for the iterated (loop counter) variable in the loop control line. (Some such
arrays that have been commented out can still be seen.) Use of a single value for the
iterated variable effectively defeats the loop. An iterated variable x can be changed to
another variable y by the following procedure. Change x to y in the loop control line.
Remove the comment designator % from before the line below that sets x (thus making it
active)) and give x the desired value in that line. Place a comment designator % before
the line that had set y (to make it inactive).

17.M.6 Control of Interactive Simulations

If a negative number is entered when requesting additional points from Nstat1 or
Nstat2, program execution is paused and commands can be entered, so some of the
simulation control parameters can be changed or data can be read. When the word
return is typed and entered, the program continues and additional points, equal in
number to the absolute value of the negative number that had been entered, are computed.
This sort of control is common to scripts that are interactive.

As an example, when execution is paused, we might set strtplt to a value greater
than 1 (e.g., by typing strtplt = 1000) to inhibit the initial points, with their large
excursions, from being plotted, allowing the plot scale to expand vertically in subsequent
plots. (The effect of this feature can be observed in Fig. 17.M.4.) Or, we might read
some parameter's value before continuing the simulation. For example, typing
Fsum(last) at the point where Fig. 17.M.4 is being displayed, would produce ans =
0.0039, the last value of the red curve in the lower-right plot. Of course, greater
familiarity with the script is required to use these features.

