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i8.M APPENDIX: NON-LINEAR SIMULATION 

 

The MATLAB script NLPhP simulates the non-linear acquisition behavior of a phase-

locked loop (PLL). With this script we can reproduce the loci in Fig. 8.20 and obtain 

other enlightening results. The output is an approximation whose degree of accuracy 

improves as we allow more computer operations for a given problem..  It is more complex 

than previous programs but employs the same basic techniques.   

 

From this point on, the scripts tend to offer more flexibility and therefore require us to 

choose values for more variables.  These variables are located near the beginning of each 

script.  Values that exist when the script is downloaded should produce reasonable 

results, but not necessarily those of most interest.   

 

8.M.1 Sampling and Simulation 

 

Rather than performing computations on the closed-loop response, we will use MATLAB 

to compute the open loop response and we will close the loop explicitly on a sampled 

basis. That will permit us to introduce the non-linear characteristic of the PD, one sample 

at a time. The process is represented by Fig. 8.21. 

 
The output phase ϕout is subtracted from the input phase ϕin and the error ϕe is processed 

by the non-linear PD characteristic. This modified phase error is sampled and held at a 
regular sampling rate. The HOLD output that depends on the value of ϕout at the end of 

sampling period j provides the input for the open-loop transfer function G(s) during 

sampling period j+1. The methods described in Section 6.10 are used to compute the 

output from G(s) at the end of each period. The difference between this simulation and 

the true case is that G(s) is excited by a stair-step waveform rather than a continuous 

waveform but, as the sampling period shrinks, so does the inaccuracy. A good 

approximation of the effect of the added sampler and HOLD, for frequencies that are low 

compared to the sampling frequency, is that it introduces a phase shift that is linear with 

frequency and reaches -π radians at the sampling frequency [Egan: 1981, pp. 123-127; 
2000, pp. 304-306] .  NLPhP computes this phase shift at ωL and displays its value.  

 

For reasons of accuracy, a high sampling rate must be maintained but we need not plot 

every point (e.g., every fifteenth computed point was plotted for the figures in this 

section).  



Appendix i8.M page 2 of 16 

Mostly from William F. Egan, Phase-Lock Basics.  Reprinted with permission of John Wiley and Sons, Inc. 
 

 

Continuity of phase and frequency out of G(s) requires that their values at the beginning 

of each period equal their values at the end of the previous period. The theory developed 

in Section 6.10.2 is used for this purpose.  

 

8.M.2 Comparing Phase-Plane Plots 

 

Fig. 8.M.1 is output from NLPhP under the same conditions that apply to the phase-plane 
plot of Fig. 8.19. Note that ∆ϕ = ϕe - π/2 so the stable points in Fig. 8.19 are at -π/2 

radians whereas they are at 0 in Fig. 8.M.1. Frequency in Fig. 8.M.2 is normalized to ωn, 

as it is in Fig. 8.19, since we set Wn =∆ ωn = 1. Here we have chosen to plot ωout(ϕout) 

rather than ωe(ϕe) but the trajectories are the same, as can be seen from the symmetry of 

Fig. 8.19 or by changing variables in Eq. (6.50), (6.51) and (6.48) with ϕin  = 0.  
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Fig. 8.M.1  Phase plane and transient, phase truncated.  ζ = 0.707, α = 1, ωn = 1, 15 

samples per plotted point, point each 0.05 sec. 

 
In both plots, the locus that peaks near 4 rad/sec passes through final phase [i.e., ϕe = 0, 

∆ϕ = -π/2 rad/sec] with a frequency of about 2.8 rad/sec, goes through zero frequency at 

a phase of slightly less than 2 rad above the final phase, undershoots by about 1.2 rad/sec, 

then rapidly moves to the final phase and frequency. However, in both cases, the locus 

that is at final phase and 3.5 rad/sec (i.e., the starting point in Fig. 8.M.1) is above the 

separatrix and so skips a cycle, peaking at about 4 rad/sec in the process. (The curve 

drawn in Fig. 8.19 is slightly above 3.5 rad/sec at final phase.  It is apparent that a curve 

drawn through 3.5 rad/sec would separate further from that curve while moving to the 

right so it would come closer to peaking at 4 rad/sec than does the existing curve.) In 
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other words, the program output closely matches the phase-plane plot of Fig. 8.19. 
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Fig. 8.M.2  Transient and phase plane, phase not truncated.   

Same responses as in Fig. 8.M.1 

 

8.M.3 Truncating Phase 

 

We have the choice of truncating phase so it is restricted to a ±π range (i.e., throwing 

away phase changes in whole cycle increments) or of showing multiple cycles of phase. 

Figures 8.M.1 and 8.M.2 represent the same responses (from 3.5 rad/sec initial frequency, 

zero initial phase, ζ = 0.707, α = 1, zero phase input) but phase in Fig. 8.M.1 is restricted 

to the range ±π rad whereas in Fig. 8.M.2 it is not. This is only a matter of how we plot 

the responses; both pairs of figures represent the same transient. 
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Fig. 8.M.3  Response for same conditions as for Figs. 8.M.1 and 8.M.2 but α = 0. 

 

 

8.M.4 The Effect of α  

 

Our experimentation with linear loops showed that, if the excitation and initial conditions 

were the same for two loops that differed only in α, the responses were identical. Figure 

8.M.3 is the response of the same loop whose response is represented by Fig. 8.M.1 

except that α differs between the two.  Apparently, in the non-linear case, α does make a 

difference. In fig. 8.M.3, with α = 0, the phase goes just past the peak of the PD 
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characteristic at 90° = 1.57 rad and then turns back. With α = 1, the initial frequency 

error must be reduced from 3.5 to 2.8 rad/sec before the initial overshoot is the same as in 

Fig. 8.M.3. However, if we reduce the initial frequency offset from 3.5 to 0.35 rad/sec, so 

the response becomes almost linear, it looks very much like that in Fig. 8.M.3 scaled 

down by a factor of 10, regardless of α. 

 

8.M.5 Observing Pull-In 

 

Figure 8.M.4 shows various kinds of output that are available from NLPhP to help us 

understand the pull-in process and confirm what we have learned in this chapter. The 

parameters here are the same as for Fig. 8.M.1 and 8.M.2 except the initial frequency 

error has been increased from 3.5 to 4.5 rad/sec.  Note also that a different set of phase 

and frequency units has been selected. 

 

In Figs. 8.M.4a and b the phase plane and the time transient of the phase error are shown 

without truncation. The same are shown in Figs. 8.M.4c and d with truncation.1 The 

frequency and PD outputs are shown as a function of time in Figs. 8.M.4e and f.  

                                                
1 These plots have been modified slightly for print.  In particular, the program will not 
deemphasize the retrace in the phase-plane plot as has been done here.  The somewhat 
irregular starting and ending points for the retrace in the phase plane and the extremes in 
the phase-versus-time plot are due to the finite time steps in the program. 
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Fig. 8.M.5 (a)
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Fig. 8.M.5(c)
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Fig. 8.M.4  (a)-(f) Phase and frequency plots.   
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Initial frequency error increased from 3.5 to 4.5. 
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Note how the beat frequency (Fig. 8.M.4f) slowly decreases at first and how the 

distortion of the beat note develops an average value in the loop filter that causes the 

output frequency to decrease toward lock (Fig. 8.M.4e).  Observe what happens 10 

seconds into the transient. The plot in Fig. 8.M.4d shows that the phase just passes a point 

of minimum PD output at -0.25 cycle when it turns around and moves toward the lock 

value. This can be seen in the PD output (Fig. 8.M.4f), which takes a slight inverted dip 

before going again to a minimum on the way to its final value. Note how the frequency 

error  (Fig. 8.M.4e) goes to zero at 10 seconds, corresponding to the zero slope of the 

phase (8.M.4d) and of the PD output (Fig. 8.M.4f). We can also correlate this minimum 

phase error (8.M.4d) at 10 seconds with the loop-back at freq = 0 and phase = 0.31 cycles 

(8.M.4c).  

 

Note the similarity between Figs. 8.M.4e and f and Fig. 8.3. Understandable difference 

can be seen, due to the effect of the low-pass filter associated with Fig. 8.3 and the 

integrator-and-lead filter with Fig. 8.M.4c, in the ripple magnitude as the beat frequency 

decreases. 

 

These plots have been for one set of loop parameters and initial conditions. An infinite 

number of other combinations can be obtained using NLPhP. 

 

8.M.6 Introducing a Phase Offset 

 

NLPhP permits us to introduce an offset at the PD output so we can see how acquisition 

proceeds when the final PD output is not zero. This differs from an input phase step. For 

example, with α = 1 (integrator and lead), the input to G(s) must settle to zero. With an 

offset, the corresponding final phase error will be established somewhere on the 

sinusoidal characteristic where the slope (gain) is less than maximum whereas, with a 

phase step input (and no offset), the final value from the PD would be at the maximum 

gain point. 

 

8.M.7 Introducing a Frequency Step 

 
A phase step is provided by giving ϕin a steady value during the simulation and a 

frequency step is provided by increasing ϕin at a constant rate. These functions can be 
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present when initial conditions are specified but, when a step response (SR) is selected2, 

the initial conditions are overridden so the loop can begin at steady state. Other driving 

functions can be provided at the input by following a similar procedure. 

 

A phase step has no discernible effect on the final state of a loop (unless it causes the 

loop to break lock and remain out of lock). The output phase changes by the same 

amount as the input phase. But, with a type-1 loop, a frequency step changes the final 

phase error. The response can be affected by both the initial phase error and the final 

phase error, since both affect the region of operation in the nonlinearity. We can choose a 

combination of phase offset and frequency step to simulate any initial and final state for a 

frequency step. 

 

8.M.8 Customizing the Nonlinearity 

 

The nonlinearity has been explicitly stated (i.e., broken out) at two places in NLPhP to 

make it easy to find so we can replace it with other nonlinearities. For example, we might 

create a saw-tooth PD characteristic by replacing the sine nonlinearity by its argument 

and using truncation, like NLPhP employs on the variable e (see the region marked by 

"<<<TRUNCATION").  

 

Fig. 8.M.5 shows the results of changing to a sawtooth PD characteristic in NLsaw.3  The 

initial frequency error has been increased to 8 rad/sec because of the greater seize range 

with the sawtooth PD. The sampling period and period between outputs has also been 

halved because that happens to allow us to see an anomaly, which is marked by the 

dashed line in the phase-plane plot. It results from an unfortunate lack of synchronization 

between the occurrence of the sharp nonlinearity in the sawtooth PD characteristic and 

the occurrence of truncation in the plot (the anomaly would not be apparent in 

untruncated plots). The plot truncation occurs as soon as 0.5 cycle is exceeded but the 

frequency does not respond until the end of the next sample period, during which the 

value from the HOLD circuit reflects the severe change in PD output. Moreover, the 

                                                
2 Other requirements, in order to obtain this type of simulation: Initial phase and 
frequency zero and a nonzero input phase or frequency. 
3 The PD output display (lower right) has also been changed to be more suitable to the 
new PD characteristic, but it is the same as the phase error plot when phase is displayed 
in cycles.  We can see that the displayed time has been halved.  The period between 
samples has also been halved. 
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display of the frequency change is delayed 14 samples (for this simulation) until the next 

displayed point. Usually this anomaly occurs at one of the 14 undisplayed points between 

displayed points, in which case it is not seen. In this case, however, the phase plane 

shows one occurrence of a step in phase due to truncation followed by a step in frequency 

due to the loop response, rather than showing both at the same time. This anomalous 

display could be prevented at the cost of program complexity. 
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Fig. 8.M.5  Simulation of a PLL having a sawtooth PD.  α = 1, ζ = 0.707, ωn = 1 rad/sec.  

Dashed lines in phase plane illustrate plotting anomaly associated with truncation. 

 

8.M.9 Verifying Acquisition Equations 

 

NLPhP gives us a tool to verify the acquisition formulas in Section 8.3 and their limits of 

applicability. After modifying the nonlinearity, we can do the same for loops employing 

other PD characteristics [Egan: 1981, pp. 211-220; 2005, pp. 408-418]. 
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8.M.10 Some Experiments 

 

Here are some suggested experiments using NLPhP. The spreadsheets in Appendix 8.S 

can be helpful in computing theoretical acquisition parameters for comparison to 

simulations. 

 

8.M.10.1 Type-1 Loop with Low-Pass Filter, Pull-In  Use SR = Winit = Ap = 
alpha = Offset = 0, Wn = 1, z = 0.2, OutInc = 0.05/Wn, ending = 
40/Wn, and SmpPerOut = 15. Winit = 0 means that the output frequency is initially 

zero, the steady-state frequency at the center of the PD characteristic. Ap = 0 means that 

the input phase is not stepped. We will set certain values for Phinit, the initial output 

phase, and certain values for Af, implying a reference frequency other than zero, that is, 

mistuning. 

 

If we had chosen Af = 0 and Winit ≠ 0, we would be moving from some mistuning to 

zero mistuning. The responses would be different because our locus on the PD 
characteristic and the corresponding Kp would change with time in a different manner in 

the two cases. 

 

Ap = 0 and Phinit = k gives the same results as Ap = -k and Phinit = 0. A step 

response (SR = 1) with Ap = -k would also give the same results when alpha is zero 

since the initial output will not be influenced by a step when the filter is low-pass. 
 

What is the theoretical pull-in frequency? Try a simulation with Af = 1.15 and Phinit 
= 3.14. Do the results agree with the theoretical prediction? Change Af to 1.1. Try 

various values for Phinit. Is the predicted value as accurate as you had expected? 

 

8.M.10.2 Type-1 Loop with Low-Pass Filter, Hangup  Use SR = Winit = Ap = 
alpha = Offset = 0, Wn = 1, z = 0.2, Phinit = 3.14, OutInc = 0.1/Wn, 

ending = 25/Wn, and SmpPerOut = 5. Observe the very slow start of the transient. 

What would happen if Phinit were set closer to π? 

 

8.M.10.3 Type-2 Loop, Integrator-and-Lead Filter, Seize and Speed  Use SR = Ap= 
Af = Offset = 0, alpha = 1, z = 2, OutInc = 0.05/Wn, ending = 

40/Wn, and SmpPerOut = 15, Winit = -10. 
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Since the DC gain is infinite, Winit = k produces the same results as Af = -k. In either 

case the steady-state phase error at start and end of transient is zero. 

 

We computed pull-in frequency for the previous loop. For this type-2 loop we will 

compute and measure seize frequency and pull-in time. (Recall that a loop with a low-

pass filter has no seize frequency and a type-2 loop has theoretically infinite pull-in 

frequency.) 

 

We will measure seize frequency by looking for the highest initial frequency error from 

which the loop locks without skipping a cycle at any initial phase. We will be simulating 

the case in which the PD output is initially zero because there is no reference and then a 

reference of a given frequency and phase suddenly appears.  

 

We can also estimate seize frequency from the phase plane plot. When that plot goes 

through a phase of zero or π radians, the frequency error is the same as is the mistuning 

when a reference is suddenly applied, if the phase of that reference is such as to produce 

zero PD output.4 The seize frequency, which is for arbitrary phase, occurs between the 

                                                
4 Justification for the seize frequency being between the next-to-last zero-phase crossings 

and the subsequent π radians point in the phase plane of a Type-2 Loop: In the phase-

plane, the mistuning can only be observed at zero or π radians phase error in a Type-2 

loop. No current flows in the filter at zero PD output so the state is determined entirely by 

phase and frequency or, equivalently, filter capacitor charge. If the reference were 

removed the PD output would not change, nor would the output frequency, so the 

frequency error under this condition is the mistuning, the value of frequency error before 

a connection is made.  

 
We identify the last time when the phase error is zero before lock as T-1 and the next 

previous such time as T-2. All phases occur between T-2 and T-1.  Moreover, since stable 

equilibrium occurs at zero phase error, as the locus leaves such a point (T-2+), the filter 

capacitor charges in such a direction as to reduce the error. When π error is reached (at 
Tπ), it will begin charging in the opposite direction and continue to do so until T-1 but the 

minimum error will have occurred at Tπ  Therefore, between T-2 and T-1 the capacitor 

will always have a charge between its values at T-2 and Tπ so the corresponding 

mistuning is between the mistunings at T-2 and at Tπ. Thus, the locus between T-2 and T-

1 contains all possible phases and each point corresponds to a mistuning between the 
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frequency at the next-to-last crossing of zero phase and the frequency at the subsequent 

point where the phase is π, so it will be somewhat uncertain. (If the resolution of the 

plotted points were fine enough, the frequency at π radians could be read where the 

retrace crosses zero phase. When the step size of the plotted phase is significant, that 

point must be estimated. The estimate could be helped by choosing not to truncate the 

phase [truncatePh ⇒ 0] so a smooth curve exists between points on either side of π 

radians.) By observing this range from the phase plane produced under various initial 

conditions we could estimate the seize frequency. 

 

Start with Phinit = 3.14 (rad). At this phase, determine the boundary between a value 

of Winit that will allow lock without cycle skipping ("seizing") and one that will not. 

Winit = 5.2 (rad/sec) is suggested as a starting point. With Winit set to that highest 

value, try several other phases to show that the loop will lock without skipping at the 

highest frequency at which it did so with Phinit = 3.14 rad. Does this frequency 

compare well with the predicted seize frequency? Are the conditions of validity for Eq. 

(8.23) met? 

 

Set Winit = -10 and estimate the seize frequency from the phase plane. Start with 

Phinit = 1.57. Observe also the pull-in time, estimating the time at which the 

frequency error equals the seize frequency for the end of the pull-in period. Now try 

Phinit = -1.57. Notice how much the time to seize can vary. The longest time at any 

phase is the required value. You can try some other initial phases. How does the pull-in 

time obtained here compare with theory. How does the seize frequency compare between 

the two methods and with theory. Are the conditions of Eq. (8.26) and (8.27) well met?  

 

8.M.10.4 Type-1 Loop, Lag-Lead Filter, Seize  Use Winit = Phinit =Offset 
= 0, SR = 1, Af = 9, Wn = 1.0005, alpha = 0.99701, z = 1.6725, OutInc = 
0.05/Wn, ending = 50/Wn, and SmpPerOut = 30. 

 

Set Ap to 3.14 and various other phases. Show that the seize frequency is between 4.45  

                                                                                                                                            
mistuning at T-2 and Tπ, both of which can be read from the phase-plane plot. Therefore, 

the mistuning that will allow lock without cycle skipping regardless of phase lies between 
the mistunings at T-2 and at Tπ, both of which can be read from the phase plane plot.  

Therefore, the mistuning that will allow lock without cycle skipping regardless of phase 
lies between the mistuning at T-2 and at T-π, which are observable in the phase plane. 
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and 4.5 rad/sec. To do this, show that Af = 4.45 (rad/sec) seizes at all phases and 4.5 

fails at some initial phase. What is the theoretical value and how well are the conditions 

met? 

 

Observe the phase planes with Ap = 0 and various values of Phinit. How would an 

estimate of seize frequency based on the phase plane, as for α = 1, compare to the value 

obtained by trying various frequency steps. The theory that supports the equivalence for 

α = 1 does not do so for α < 1.5  Nevertheless, if we take the pull-in time to end when the 

average frequency over a cycle equals the seize frequency, the frequency at zero phase is 

a good estimate of that average, at least in this case. What is the estimated pull-in time 

from the plots? How do these values compare to theory and how well are conditions met? 

 

8.M.10.5 Type-1 Loop, Lag-Lead Filter, Offset  For an offset of 0.15 radians, Eq. 

(8.76) gives an optimum value of x = 0.0225. By Eq. (8.24), this implies a ratio of pole to 
zero frequency of 0.045. Choose ωp = 4.5 rad/sec, ωz = 100 rad/sec, and ωL = 1000 

rad/sec. Using Acqpz, we obtain, from these parameters, K = 22,112 sec-1, ζ = 

1.584351299, α = 0.995497962, ωn = 315.444 rad/sec and ΩPI = 6559 rad/sec. Enter 

alpha, z, and Wn in NLPhP.  

 

The development of the equations of section 8.7 is based on the idea that an offset 

amounts to a mistuning and thus reduces the (additional) mistuning allowed for lock to be 

assured. Unfortunately, a simulation to show pull-in range can be very time consuming 

because the pull-in time grows as the pull-in limit is reached. Instead, we will observe 

that the offset is effectively added to the initial mistuning. We will do this by obtaining 

the same pull-in time for a given mistuning with zero offset and for a mistuning that is 

reduced by the effective mistuning when an offset exists. Initially, set Offset = 0, Ap = -

1.57, and Af equal to 80% of the pull-in frequency, 5247 rad/sec. Also set SR = 1, 

Phinit = Winit = 0, OutInc = 0.05/Wn, ending = 200/Wn, and 
SmpPerOut = 7. Determine how long the loop takes to seize. By Eq. (8.75), ωPI will be 

reduced by ωL×0.15 rad/(2|ϕos|) = 3333 rad/sec in the presence of the offset. Reduce the 

initial frequency by 3333 rad/sec to give Af = 1914 rad/sec. Rerun NLPhP with Offset 
= -0.15 and the reduced value of Af. How close is the time to seize to what was obtained 

before.  

                                                
5 Zero phase does not imply steady state. The frequency does not uniquely identify the 
state. Even with zero phase error, the filter capacitor could be discharging. 
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8.M.11 Simulation Using Approximate Method 

 

The MATLAB program NLPhx performs the same function as NLPhP but uses the 

approximate algorithm described in Section 6.11 for the repeated computations. In some 

tests, outputs appeared to be the same as obtained with NLPhP and the simulations were 

faster, but only by about 9%. Probably its main value would be for use when the matrix 

manipulation programs, such as are contained in MATLAB, are not available. (Because 

they are available, MATLAB's matrix mathematics are used where appropriate in 

NLPhx). 

 
 


