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10.M APPENDIX: MATLAB SIMULATIONS 

 

10.M.1 Higher-Order Responses Using MATLAB 

 

While it is difficult to solve for the transient response for third- and higher-order loops 

using classical or transform techniques, we can easily obtain their responses using 

MATLAB. The program Ord3spcl will produce any of the curves in Fig. 10.A.4 , 

10.A.6, 10.A.7 and 10.A.8 and more. It uses Eq. (10.A.8) and the error response 1-H 

derived from it. As before, the ramp error response is obtained by taking the step 

response of the integral of 1-H and the integration is performed simply by shifting the 

elements of the numerator vector.  

 

While Ord3spcl is instructive, in that we can see how MATLAB can be used to 

produce the same results that were obtained in Section 10.A, we would often like to get 

the transient and frequency responses for higher-order loops without finding H explicitly. 

During the design process, we will usually work with the open-loop singularities and gain 

so we would like to obtain closed-loop responses given the open loop poles and zeros and 

gain. The program Open2cls does this. It begins by specifying vectors containing the 

coefficients of power of s (descending order, as before) for the open-loop poles and zeros. 

Then it uses a MATLAB function zp2tf to convert these vectors to the numerator and 

denominator vectors we have used before — except these are for the open-loop transfer 

function G. However, we can easily obtain the closed-loop H and 1-H from them as 

follows. 
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G=
nopen

dopen
.
 

(10.M.3) 

 

As a starting point, Open2cls has been written to apply directly to the special third-

order loop described in Section 10.A.  A gain value is employed that places unity gain at 

the geometric mean of the zero and added pole, as in Section 10.A. We can interactively 
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chose r and then can, if we wish, apply a multiplier to the gain to shift it relative to the 

nominal value. The resulting closed loop time and frequency responses can be plotted as 

can the open-loop response. By varying the gain multiplier we can observe the effects of 

inaccuracies in setting up the optimum loop described in Section 10.A.  

 

As before, the numerator vector elements of 1-H are shifted to the right to obtain the 

ramp response but, since we do not have the numerator explicitly (having derived it from 

G), we use matrix multiplication to accomplish the shift.   

 

We can modify Open2cls to obtain responses corresponding to arbitrary open-loop 

configurations. Open2c4 is an example of such a modification to accommodate a fourth-

order loop with two poles at zero frequency and two other real poles, pole1 and 

pole2, plus one zero. The finite poles are input interactively, as is the zero indirectly. 

The matrix that is used for integration in obtaining the ramp response is increased in size; 

a 5×5 matrix is required to shift the coefficients of s0 through s4. The time and frequency 

ranges have been set for a particular set of frequencies, to be given below, so the t and w 

vectors will require modification for different loop bandwidths. 

 

Here is a suggestion for the beginning of an investigation of the properties of the kind of 

loop represented by Open2c4.  Execute Open2c4 and enter r1z = 4 followed by 

pole1 = 1000. (We are entering the negative of the pole frequencies for simplicity — 

for reasons of stability we certainly cannot have poles with positive real parts).  This will 

set the zero (= pole1/r1z) to 250. (Frequency units are in rad/sec.) Enter pole2 = 

4000 and a gain constant of 0 dB. Enter b for plot type and thus obtain a Bode plot. Note 

the frequency where excess phase shift is the least and the gain change necessary to give 

0 dB there, thus giving maximum phase margin. (You may want to right click on the plot 

and choose "grid," since a grid has not been commanded by the script.)  Retain the same 

r1z, pole1 and pole2 as before by using the "return" or "enter" key in response to 

a request for value. Change the gain to the value that will give maximum phase margin 

and then check the Bode plot to insure that unity gain occurs at minimum phase lag. At 

the same time note the gain margin (at -180° phase). Then check the error response and 

observe the degree of overshoot. Now change the gain to give about 3 to 5 dB of gain 

margin and observe how the overshoot changes. 

 

Now change the pole2 frequency to 1000, placing the two poles on top of each other. 

Adjust gain for maximum phase margin again and compare the overshoot to what 
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previously occurred at maximum phase margin. 

 

Open2c4x is similar to Open2c4 but the zero frequency is entered explicitly. Step 

through the default values by pressing the return or enter key. You should get the same 

defaults as in Open2c4, which are just slightly different from what you entered above. 

Now try entering a pair of complex poles corresponding to a 2-pole (1 complex pair) 

Butterworth low-pass filter. For the first pole, enter 1414+1414*i and for the second enter 

1414-1414*i. Compare the resulting performance to the case with two poles at 2000 

rad/sec. Both filters have the same high-frequency gain so they will be equally desirable 

for that parameter where it is important (e.g., many frequency synthesizer applications). 

Compare Bode plots. Which can give the greatest phase margin? 

 

10.M.2 Simulation of the ADPLL Using MATLAB 

The program ADPLL simulates the loop in Fig. 10.26. It will plot Nout and show where 

the output was sampled, as a result of the input transition, to produce a new value of !N2 . 

It will also show instantaneous frequency versus time and the average frequency for the 

simulation. Try Example 10.1 using ADPLL. Use Phin = 0.5 and Tmaximum = E-4 

(10-4 seconds). Set the initial values of Nout and N2 to their theoretical steady-state 

values, which will be displayed when the program is run and which should minimize the 

initial transient. Note how the sampled values of  Nout vary above and below the 

theoretical steady-state value. Compare the average output frequency to the input 

frequency. You might want to try a longer simulation to see if the difference is reduced. 

 

Then use an offset of Noff = 100 with an input frequency of 600 kHz. (Use q = 4, nv = 

12, Fclock = 8.192E6.) Set the initial values of Nout and N2 to the given steady-state 

values. Now retain those initial values and halve the input frequency. (This simulates 

stepping the input to 300 kHz after a steady-state lock at 600 kHz.) You should obtain a 

false lock. The program will also compute new steady-state values of Nout and N2 that 

correspond to the 300 kHz-input frequency. Change the initial values to those final values 

and note that a correct lock is obtained. You might want to experiment with how far off 

the initial conditions can be without producing false lock. How do the instantaneous 

frequency excursions about the average change with input frequency? 

 
Note that the minimum value of fin for stability, to keep C <2 in Eq. (10.32), is 256 kHz. 
Set Tmaximum = 2E-4 and try an input frequency of 250 kHz, setting the initial 
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conditions at steady-state values. Is the response stable? Is the average output frequency 
correct? Increase the input frequency to 260 kHz. (Leave the other conditions alone.) 
This meets our stability criterion but what do you see? — perhaps the results of 
quantization effects. Try 270 kHz. That should be better. You might repeat this with 
Noff = 0. This puts the sampled value of Nout closer to mid-range and allows you to 
watch the instability grow. 


