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17.M   APPENDIX: MATLAB SCRIPTS 
 
MATLAB scripts used to generate simulations for this chapter are described here.  They 
can be downloaded for a more complete understanding.  Some scripts have features that 
could be incorporated in others where that is found to be desirable.  

17.M.1 Nonlinear Simulation with Noise 
The MATLAB script NLPhN simulates the non-linear acquisition behavior of a PLL in 
the presence of broadband additive noise.  It is similar to NLPhP but random noise has 
been added to the offset voltage uoff in Fig. 8.21, as shown by un in Fig. 17.M.1. 
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Fig. 17.M.1  Noise Added To Model 

17.M.1.1 Simulating Broadband Noise 
 
The input un is a normally distributed random number with a mean of 0 and a variance of 
σN2.  This produces an equivalent noise power density, as seen in the loop (with noise 

bandwidth Bn << fs ) of Seq = 2!N
2

fs , where fs is the sampling frequency.   That is, 

after sampling, the noise power σN2 is distributed over a band equal to half of the 
sampling frequency, fs/2. 
 
To see this, consider a band of noise of density Seq that extends from 0 to fs/2.  We are 
using one-sided noise density, on which we have standardized, so the two-sided density is 
Seq/2 and extends from -fs/2 to +fs/2.  If this band is sampled at fs, it will be shifted to all 
multiples of fs and replicated, creating a continuous band of noise with density Seq/2.  
The noise at frequency fx + jfs, where j is an integer, will be the same as at fx, so the 
replicated bands will not be independent of the original band.  However, they will be 
attenuated by the response of the hold function, sinx/x, where x = πf/fs, and the loop will 
not respond to them significantly if it is sufficiently narrow (Bn << fs).   
 
This density will be multiplied by (Kp')2 to give the power spectral density after the PD, 
<u1n2>/df from Eq. (13.10).  Thus, the density before the PD is 
 
 σN2/(fs/2) = <u1n2>/[(Kp')2df ] = N0/Pc   (17.M.1) 
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and the variance for the noise generator must be set to 
 
 σN2 = (N0/Pc ) (fs/2) . (17.M.2) 
 
In terms of ρL0, the S/N in the (linear) loop noise bandwidth, this can be written 
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 . (17.M.3) 

 
The correlation between samples numbered j and j + k of un is given by Eq. (13.22).  
These samples are separated by 
 
 T = k cycle/fs (17.M.4) 
 
and the maximum frequency of the noise band is 
 
 ωmax = πfs/cycle (17.M.5) 
 
 producing a correlation of  
 

 
R(T )

R(0)
=
sin k!( )

k!
= 0 , (17.M.6) 

 
That is, the samples are independent, so the single-source model is adequate.  We can, 
however choose to employ dual sources, possibly for comparison. 

17.M.1.2 Observing Cycle Skipping With NLPhN 
 
Fig. 17.M.2 shows the phase output from a run of NLPhN.  (Others are shown in Fig. 
17.1.)  Truncation of the phase display has been turned off so we can observe cycle 
skipping.  Note how the phase tends to stay at a multiple of 1 cycle error for a while and 
then move on to another multiple except at 73 seconds where it passes through -2 cycles 
without pausing. 
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Fig. 17.M.2  Phase in the Presence of Noise,  
ωn = 1, ζ0 = 0.707, α0 = 1, S/N in Bn0 = 1.41 dB 

 
 

17.M.1.3 Changes To NLPhP To Create NLPhN 
 
Fig. 17.M.3 shows the significant changes to NLPhP that add noise to the simulation.  
Changes or additions are in bold among portions retained from NLPhP.  The user sets 
either the noise-to-signal ratio in the loop bandwidth, 1/ρL0 =  NS, or the ratio of noise 
power spectral density to signal, No.  Noise bandwidth, Bn, is computed from Eq. 
(14.10).  A series of random numbers with unity variance is multiplied by the constant Kn 
to produce samples PDn of the noise voltage, un in Fig. 17.M.1, in accordance with the 
theory given above.  During the main simulation loop, a new sample is added to the offset 
each computation cycle.  Output is similar to what is shown in Figs. 8.M.1 through 8.M.5 
except that the plot of phase detector output has been replaced by a plot of sampler 
output, which includes the injected noise. There are some other differences, for example 
changes in graph labels, and sometimes an explanatory note or output may appear in one 
version and not the other. 
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%TIME RESPONSE & PHASE PLANE PLOT IN NOISE 
• • • • • • • • • • • • • • 
% MODIFY PARAMETERS BELOW & GO 
%***************************** 
% Set either of the following parameters and set the other 

to zero. 
NS = .7227; % N/S in Loop Noise Bandwidth 
No = 0; % Noise Power Density, per Hz, to Signal Ratio 
SR = 0; % 1 for step response (if also Phinit=Winit=0 and 

Ap or Af not 0)., 
• • • • • • • • • • • • • • 
%  op=3:  Frequency + Sampler Output vs. Time 
%****************************** 
fprintf('\nWn = %g rad/sec; zeta = %g; alpha = 

%g',Wn,z,alpha) 
Bn = Wn*(1/(2*z) + 2*z*alpha^2)/4; % Noise BW in Hz 
fprintf('\nNoise Bandwidth = %g Hz\n',Bn) 
% Compute multiplier of noise distribution having unity 

power. 
if NS == 0, 
 Dn = No; 
 fprintf('Noise Density to Signal Ratio = %g /Hz\n',No) 
else 
 Dn = NS/Bn; 
  fprintf('Signal/Noise in Loop Bandwidth = %g\n',1/NS) 
end 
Kn = sqrt(Dn*SmpPerOut/(OutInc*2));  
• • • • • • • • • • • • • • 
 NL = sin(PhIn - y); % <<<<<<<<<<<< THE NON-LINEARITY  
 PDn = Kn*randn; 
 PDnoise(i+1) = PDn; 
 u1(1) = NL + Offset + PDn; % initial input to sampler 
  u1(2) = u1(1); %  constant Hold output -> same at 

beginning and end of dt 
• • • • • • • • • • • • • • 
 if op == 3, % selecting Sampler Output vs. time 
  subplot(212); 
 else, 
  subplot(224), 
 end % if op==3  
 plot(t,sin(er)+PDnoise,'+') 
  title('Sampler Output') 
end % if ()|() 

 
Fig. 17.M.3  Significant Changes To NLPhP To Create NLPhN 
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17.M.1.4 Gathering Phase Statistics and Plotting Probability 
 
The script erdis can be used to plot the probability distribution function for 1001 points 
generated by a run of NLPhN.   If NLPhN is set to produce 1001 or more values of the 
phase error er with truncation, erdis will produce the distribution function when run 
subsequently.  It can be easily modified to operate on a different number of points of er.  
The curves in Fig. 17.9 used 10,001 points.  We could also use the MATLAB function 
hist(er) to build a histogram of the phase error er after running NLPhN.  That would 
be an approximation (using a finite set of data points) to the probability density function.  
 

17.M.2 Generating Statistics of Output Phase and Cycle Skips 

Nstat1 and Nstat2 simulate first- and second-order loops respectively in the presence 
of noise while measuring the phase variance and the rate of cycle skipping.  After 
observing graphs showing how the statistics change with time (Fig. 17.M.4), the user can 
command additional simulation points.  This might be done to come closer to a steady-
state value, that is, to reduce variations in the accumulated averages by gathering more 
data. 

 
Fig. 17.M.4 Graphical output from Nstat1.   
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Either a single noise source or two sources (Fig. 13.5) can be used.  This enables us to 
show that the single source is adequate for these broadband noise simulations. 
 
Nstat1 can also be set to produce a time response.  Because there is no filter in the 
first-order loop, the matrix functions that are used in NLPhP and NLPhN are not 
necessary in Nstat1.  [Information about simulating higher-order loops without matrix 
manipulation can be found in Egan (2000, p. 538)].  
 

17.M.3 Obtaining mean time to first cycle skip. 
 
Skip1 and Skip2i provide mean time to first cycle skip statistics for first-order and 
second-order loops.  The latter is designed to iterate three loop parameters, providing a 
sequence of outputs.  This is most useful for long unattended runs and does not provide 
the opportunity for the user to modify or read parameters on the run or to lengthen the 
simulation interactively.  Thus, each of these scripts has a different set of features, 
including the simulation of differing loop types.  New scripts (e.g., a Skip2, simulating 
a type-2 loop interactively or a version of Skip1 with iterated variables) can be created 
by using these as guides. 
 

17.M.4 Simulating Phase Modulation 
 
Sig1i and SigOff2i simulate the effects of phase modulation at a rate too high to be 
followed by the loop, using a square wave of phase, for first- and second-order loops, 
respectively.   Both scripts are iterative but only SigOff2i writes to a file 
(runrec.txt in MATLAB work directory).  Output data is normally available from 
the MATLAB Command Window after a series of iterated runs but writing to a file can 
be more convenient, especially if a long run should be interrupted by some problem that 
causes the Command-Window data to be lost. 
 
Both scripts give the number of cycles skipped and the mean phase but Sig1i does not 
give an output variance if there is a finite offset (or no noise).  However, if there is 
additive noise, SigOff2i gives both the mean square output phase and its sample 
variance (i.e., an unbiased estimate of the variance of the underlying data) in the presence 
of an offset.  SigOff2i can also produce time responses. 
 
Sig2 also simulates a second-order loop but is not iterative and has some restrictions 
like Sig1i.  (Note: Some scripts use sig2 as a variable so typing sig2 might cause 
that variable to display if it has been left in the MATLAB environment.  Therefore, it 
may be necessary to type clear first or to use the proper script name Sig2 to execute 
the script.) 
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17.M.5 Controlling Iteration 
Scripts whose names end in "i.m" iterate between two and four variables using "for 
loops."  The initial and final values and step size may be given or an array of values may 
be used for the iterated (loop counter) variable in the loop control line.  (Some such 
arrays that have been commented out can still be seen.)  Use of a single value for the 
iterated variable effectively defeats the loop.  An iterated variable x can be changed to 
another variable y by the following procedure.  Change x to y in the loop control line.  
Remove the comment designator % from before the line below that sets x (thus making it 
active)) and give x the desired value in that line.  Place a comment designator % before 
the line that had set y (to make it inactive). 

17.M.6 Control of Interactive Simulations 

If a negative number is entered when requesting additional points from Nstat1 or 
Nstat2, program execution is paused and commands can be entered, so some of the 
simulation control parameters can be changed or data can be read.  When the word 
return is typed and entered, the program continues and additional points, equal in 
number to the absolute value of the negative number that had been entered, are computed.  
This sort of control is common to scripts that are interactive.   

 
As an  example, when execution is paused, we might set strtplt to a value greater 
than 1 (e.g., by typing strtplt = 1000) to inhibit the initial points, with their large 
excursions, from being plotted, allowing the plot scale to expand vertically in subsequent 
plots.  (The effect of this feature can be observed in Fig. 17.M.4.)  Or, we might read 
some parameter's value before continuing the simulation.  For example, typing 
Fsum(last) at the point where Fig. 17.M.4 is being displayed, would produce ans = 
0.0039, the last value of the red curve in the lower-right plot.  Of course, greater 
familiarity with the script is required to use these features.     
 


