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INTRODUCTION 
Emerging applications in electronic counter measures, radar, communications, 

and imaging require lightweight, low voltage (≤ 12 kV), compact and broadband (∆f/f 
>10 %) sources of high average power (≥ 100 W) at millimeter wave frequencies (f ~ 30-
100 GHz). The folded waveguide traveling wave tube (FWTWT) [1] is an excellent 
candidate for these applications.  This device uses an electric field plane (E plane) bend 
serpentine rectangular waveguide as a slow wave circuit, as illustrated in Fig. 1.  A linear 
electron beam passing through small holes in the broad wall of a rectangular waveguide 
interacts with the co-linear electric field of a propagating, fundamental TE10 mode.  The 
polarity of the electric field reverses at each E-plane bend with respect to the electron 
beam’s velocity vector [2].  Hence, the folded waveguide circuit belongs to the same 
“fundamentally backward” class of circuits as the coupled cavity TWT (CCTWT). 

 



 
Design and analysis of TWTs has been greatly facilitated in the last few years by 

the emergence of new computational software tools [3].  These include generic 
electromagnetic problem solvers and TWT-specific models [4-7, 14].  To date, most of 
the analyses and experimental validation studies have focused on helix-TWTs, and to a 
lesser extent, CCTWTs.  

As a general rule, helix-TWTs are capable of the largest bandwidths, but 
FWTWTs and CCTWTs provide higher average power handling capability.  Compared to 
conventional CCTWTs, FWTWTs can provide larger bandwidth (20-30% versus 10-
15%).  In principle, FWTWT circuits are also easier to fabricate than conventional 
CCTWT circuits.  This latter feature has motivated an investigation of the FWTWT as a 
compact coherent source for the submillimeter or terahertz regime [8,9].  

Because of near-symmetry in the azimuthal dimension, helix TWTs can be 
simulated with 1-, 2-, and 3-dimensional models.  In contrast, FWTWTs have no 
azimuthal symmetries and must therefore be either modeled in one or three dimensions.  
Three-dimensional (3D) models have the attraction of being highly physical, and can 
account for complex configuration effects. However, they can be very time and memory 
intensive, and are therefore of limited utility in early stages of new device design. 1D 
parametric codes [6], on the other hand, have been developed to a sufficient level of 
sophistication as to very accurately predict numerous features of helix TWT performance.  
A review and comparison of helix TWT and FWTWT basic physics [2] leads one to 
expect equally accurate 1D simulations of FWTWTs, provided appropriate and accurate 
characterizations are obtained for the frequency-dependent effective phase velocity and 
interaction impedance parameter functions.  With reference to Fig. 1,  
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Figure 1.  Illustrative sketch of a folded waveguide TWT slow-wave circuit. 



is the effective axial phase velocity of the mth spatial harmonic. ω is the angular 
frequency of the wave (rad/s)  ∆φz,m is the phase difference of the mth spatial harmonic’s 
axial electric field Ez,m between subsequent beam crossings of the waveguide and p is the 
distance between subsequent beam crossings, or the “pitch” of the circuit.  
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is the effective, on-axis interaction impedance of the mth spatial harmonic. Pwg represents 
the power flowing in the TE10 mode associated with a particular on-axis, longitudinal 
electric field strength, Ez,m, and βz,m is the effective axial wavenumber for the mth spatial 
harmonic, 
 

pmzmz ,, φβ ∆= .        (3) 
 
Proper analysis requires determination of these parameters for the space harmonic that is 
synchronous with the electron beam, which in this case is m = 0, as discussed in [2]. 

The types of applications envisaged for FWTWTs  (compact, higher average 
power) lead to large space charge beams. Consequently, accurate design and analyses 
with 1D parametric TWT models are very sensitive to accurate specification (< 0.5 % 
error) of the frequency-dependent effective phase velocity function, vph,m(ω).  Accurate 
knowledge of ( )ωmaxisK ,  is also important, but not as critical as vph,m(ω).  This issue will 
be discussed in later sections. 

In the remainder of this paper, the predictions of vph,m(ω) and Kaxis,m(ω) are 
described and compared, using approximate analytic expressions, equivalent circuit, 3D 
finite difference, and 3D finite element models. The phase velocity predictions are 
compared with experimental measurements of a representative folded waveguide circuit.  
The various model results are also incorporated into the CHRISTINE1D code to obtain 
predictions of small and large signal gain in a 40-55 GHz, 100 W FWTWT [10]. It is 
shown that comparing the gain predictions with experimental measurements of 
frequency-dependent gain provides a sensitive, confirming assessment of the predicted 
parameters’ accuracy. More importantly, these simulations establish that small signal 
gain predictions are more sensitive than saturated gain predictions to the accuracy of 
either parametric function.  Moreover, the small signal gain predictions are significantly 
more sensitive to the accuracy of the phase velocity than the interaction impedance. 

 
Description of the Models and Experimental Methods 

Analytic Models 
For a smooth wall folded waveguide circuit, the apparent axial electric field’s 

phase shift between beam-crossings for the mth spatial harmonic can be estimated to be 
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Here, vz,wave is the axial phase velocity of the wave [2], 
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where c is the speed of light, ωco is the cutoff frequency for the (TE10) propagating mode, 
 

  
a
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L is the path length for the wave between beam-crossings, as shown in Fig. 2, and a is the 
larger transverse dimension of the rectangular waveguide. 
 

 
 

Substitution of Eqs. (4)-(6) into (1) provides an analytic estimate for the FW 
circuit’s effective axial phase velocity seen by the electrons in the beam.  This model 
does not account for the effects of the circuit bends and beam tunnel holes. 
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Note that, νz,wave (Eq. 5) is the projected axial wave velocity of the wave, whereas  

νph,m (Eq. 7) is the effective axial phase-advance velocity seen by the electrons.  The 
electrons see an additional 180 degree phase shift in the wave, based upon the physical 
structure of the folded waveguide and the beam hole.  These two parameters are similar.  

Figure 2.  Folded waveguide circuit sketch 
comparing L and p, the wave and beam 
pathlengths, respectively, between beam-
crossings.  Also indicated are the transverse 
dimensions, a and b of the rectangular guide, 
and the beam hole radius, rc. 



In fact, the only difference results from the incorporation of this 180 degree phase shift 
phenomenon. 

An analytic estimate for the on-axis interaction impedance can also be obtained, 
following the derivation in [2] but accounting for waveguide cutoff effects.  The result is 
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where rb is the beam radius, η0 ≈377 ohms is the “impedance of free space” and Kwg10 is 
the waveguide impedance of the TE10 mode.  I0 is a modified Bessel function. 

Equivalent Circuit Model 
Another method of determining the phase velocity of a folded waveguide is with 

an equivalent circuit model.  The different components of the folded waveguide are 
represented as circuit components, each with their own transmission line transfer matrix.  
The composite folded waveguide is modeled by serial multiplication of the individual 
transfer matrices into a single, cascaded or composite transmission matrix.  Figure 3 
shows a sketch of a section of a folded waveguide.  A, B, C, and D designate the critical 
components: E-plane circular bend, circular bend - straight waveguide junction, straight 
waveguide section, and electron beam hole, respectively. 

 
 
 
 
 
 
 
 
 
 
 

From the “electron beam’s perspective”, there is just a net phase advance between 
subsequent crossings of the waveguide. To mathematically describe the effective 
dispersion properties of this circuit from the electron beam perspective, one would equate 
the multi-component cascaded transmission matrix to a single transmission matrix 
constructed by treating the entire folded waveguide as a single transmission line segment 
[11].  Since the former (cascaded) matrix is solvable, the characteristics of the latter 
single equivalent matrix can be determined. 

Figure 3.  Sketch of a section of the folded 
waveguide circuit indicating the basic components: 
(A) E-plane circular bend (B) circular bend –
straight waveguide junction (C) straight waveguide 
section, and (D) electron beam hole 



For the single equivalent matrix, we can represent the fields in the folded 
waveguide as a transmission line [11], where 
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This can be written as 
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Here, V2 is the voltage (which represents an electric field) at the input of a section 

of the waveguide (usually half of a physical period), V1 is the voltage at the output, κ is 
the phase shift, and Y and Z are the admittance and impedance of the folded waveguide 
equivalent circuit. 

Meanwhile, the individual components of the cascaded matrix model of the 
waveguide (i.e. the straight section, the bend, the hole, etc) can  be treated as individual 
transmission line segments [12]. Specifically the straight waveguide section (C) can be 
modeled as a uniform section of transmission line of length l0 and characteristic 
impedance 10,0 wgKZ = , where Kwg,10 is the TE10 waveguide transverse mode impedance 
of Eq. (9). 

 
 
 
 
 
 
 
 
 
 
 
    
 

The straight-waveguide-to-E-plane-bend junction (B) can be represented by the 
equivalent transmission line circuit of Fig. 5. 

 
 
 

Figure 4.  Equivalent transmission line circuit 
representation of the straight waveguide section (C). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

Expressions for the parameters in Fig. 5 are given as [11]: 
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a and b are the waveguide cross-sectional dimensions, R is the bend radius and λg is the 
wavelength of the wave in the waveguide. 
 

An equivalent transmission line circuit for the E-plane bend (A) is given in Fig. 6. 
 
 
 
 
 
 
 
 
 
 

 
Here l1=1/2πR is the length of the E-plane bend. 

Finally, a simple circuit model of the (cutoff) beam hole (D) was not available 
from [11].  Therefore, the circuit equivalent was obtained from a modification of the 
components of a similar structure provided in [11].  The reference structure is a circular 
waveguide joined orthogonally to the broad wall of a rectangular waveguide through a 
small aperture.  The difference between the reference structure and the structure to be 
modeled is that the circular tunnel of the structure to be modeled is a stub whose diameter 

Figure 5.  Equivalent transmission line 
representation of the junction (B) between the 
straight waveguide segment and the E-plane bend 

Figure 6.  Equivalent transmission line circuit 
representation of an E-plane bend (A). 



equals the aperture diameter and is below the cutoff for propagation and there are two of 
these stubs present.  These differences lead to a modification of the circuit equations of 
the reference structure.  The circuit model of the reference structure [11] is shown in Fig. 
7. 

 
 
 
 
 
 
 
 
 
 
 

The equations for the components Ba and Bb are [11],  
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where Y0 is the admittance of the rectangular waveguide, λg is the waveguide wavelength, 
a and b are the waveguide dimensions, R is the circular waveguide radius (in this case 
R=d as the aperture is the same size as the circular waveguide/beam tunnel), and λ is the 
freespace wavelength.  M and P are 
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where d is the aperture diameter. 
 

To modify the above equations for the structure to be modeled, we observed that 
the aperture is the same size as the circular tunnel (which is cutoff).  Hence, the fringing 
fields that normally exist on both sides of the aperture, and contribute to the shunt 
admittance Bb, only exist on one side.  Therefore, we chose to halve the value of the 
circuit component Bb.  However, because there are two holes and not one, all component 

Figure 7:  Circuit model of 3-way junction of 
rectangular and circular waveguide. 



values were doubled.  This leaves us with the original value of Bb and twice the original 
value of Ba.   

As discussed above, the cascaded product of these individual circuit components 
can be equated to the single equivalent transmission line matrix, [F], 
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Since the right hand side of (17) can be calculated from the circuit equivalent 

models of each of the components, we can solve for κ, which is the effective phase 
advance of the wave as “seen” by the electron beam down the axis of that one section of 
folded waveguide. 

Using a half-period of the structure, the effective axial propagation constant is 
therefore calculated from  
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where p is the pitch, or length of half of a period of the folded waveguide. The extra π 
term accounts for the inherent 180 degree phase shift of the electric field with respect to 
the electrons, due to the folded nature of the waveguide.  

The phase velocity as seen by the electrons is then 
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MAFIA 
MAFIA (Solution of MAxwell's equations by the Finite-Integration-Algorithm) is 

a 3D, electromagnetic, particle-in-cell (PIC) code.  The Finite Integration Technique 
(FIT) algorithm produces a matrix of finite-difference equations for electric and magnetic 
field vectors in the structure under study.  The solution of these equations yields static, 
frequency-domain or time-domain solutions of Maxwell's equations.  The cold-test (beam 
free) dispersion is calculated using MAFIA by simulating a single geometrical period, or 
2p, of the structure as shown in Fig. 8.  As done previously for helical circuits in [13], the 
MAFIA eigenmode solver is used to apply quasi-periodic boundary conditions at the 
longitudinal ends permitting the user to choose a fixed phase shift per turn β0p in the 
axial direction.  This allows the frequency to be obtained at any axial phase shift, and the 
corresponding phase velocity to be calculated using Eq. (1).  The on-axis interaction 
impedance is then calculated at this phase shift directly from Eq. (2), where |Ez,m| is 
obtained by doing a spatial Fourier analysis on the total on-axis axial electric field, and 
the time averaged RF power flow Pwg is calculated by integrating the Poynting vector 
over the circuit cross-section.  



MAFIA has the option of automatically defining the mesh based on the user’s 
input of a maximum number of mesh cells.  The code then discretizes the geometry into 
rectangular and triangular cells, keeping the mesh spacing as uniform as possible.  For the 
modeled structure consisting of 2p, we found that the phase velocity converged for a 
maximum mesh of 300,000 cells.  The impedance is less sensitive to the mesh spacing 
converging with a maximum mesh of 50,000. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HFSS 
Ansoft HFSS is a commercial software program that calculates the 

electromagnetic response of a structure in the frequency domain.  Using the Finite 
Element Method it can calculate S-parameters, near and far fields, eigenmodes of a 
structure, etc.  The mesh used by HFSS is an adaptive mesh consisting of non-regular 
tetrahedral elements.  The program automatically refines the mesh, when and where it is 
necessary, to achieve a user-specified accuracy.  In a method similar to MAFIA, a phase 
shift across the structure is specified and an associated “eigenfrequency” is determined.  
Phase velocity and interaction impedance are determined using the same techniques and 
equations used when simulating with MAFIA. 

Microwave Studio 
CST MICROWAVE STUDIO™ [14] is a specialized tool for the solution of 3D 

EM high frequency problems.  To suit a variety of applications, the software contains 
four different simulation techniques: a Transient Solver, a Frequency Domain Solver, an 
Eigenmode Solver, and a Modal Analysis Solver.  It utilizes the new PBA (Perfect 
Boundary Approximation™) technique to avoid stair step approximations associated with 
other rectangular meshing techniques.  With the PBA, the simulated structure and the 
electromagnetic fields are mapped to a hexagonal mesh, so it allows a good 
approximation of even curved surfaces within the cuboid mesh cells [14].  MWS 
generates an automatic mesh based on the user’s specification of frequency range, and 
mesh per free space wavelength.  For a structure of 2p in length, we found that the phase 

Figure 8. Three-dimensional cutaway view of simulated folded waveguide circuit (maximum 
mesh=300,000 cells) using MAFIA 



velocity converged for a mesh-per-free-space-wavelength of about 80 at 40 GHz, which 
translates to a total volumetric mesh of about 120,000 cells.  Similar to the MAFIA 
results, the impedance was fairly insensitive to the mesh spacing.  Figure 9(a) shows a 
contour plot of the surface currents at about 45 GHz.  The plot demonstrates that the 
inside bends have the strongest surface currents, and thus care must be taken that these 
regions are accurately represented with the mesh. The mesh spacing is also shown in Fig. 
9(b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Experimental Methods 
Phase velocities were measured on an experimental circuit, nominally designed 

for FWTWT operation in the 40-55 GHz range [1].  The measurements used a 
conventional technique of drawing a conductive bead on the end of a dielectric rod along 
the axis of the circuit while launching a wave into one end of the FW circuit. The 
magnitude of the reflected wave was recorded as a function of position of the bead, 
producing a standing wave pattern. In the frequency range of interest to this study, this 
method is known to produce very accurate determinations of the effective axial 
wavenumber, from which the phase velocity can be directly calculated.  In particular, the 
largest error would be bounded by the measurement of the distance between nodes on the 
standing wave plot. Based on a position measurement accuracy of less than 0.5 mm, the 
error in the measured phase velocity values is < 0.2%. 

Small signal gain was measured with thermistor detectors and a Hewlett Packard 
431 power meter.  Input power was supplied with an extended interaction oscillator (EIO).  

 
Results and Discussion 

Phase Velocity 
Figures 10 and 11, below, compare experimental measurements against the 

various models.  Good agreement between measurements and model predictions was 

Figure 9. Simulated contour plot of (a) surface currents and (b) side view of mesh using MWS. 

(a) (b) 



obtained for the circuit model, HFSS [4], MWS, and MAFIA, with a sufficiently resolved 
computational grid. For example, a computational mesh of 50,000 points in the MAFIA 
simulations was found to be inadequate.  As discussed previously, it took approximately 
300,000 mesh cells in the MAFIA simulations to arrive at phase velocity measurements 
in good agreement with the experimental data. 300,000 mesh points corresponded to 
approximately 115 cells-per-free-space-wavelength at 40 GHz.  The MWS simulations 
used 120,000 grid cells, corresponding to approximately 80 cells-per-free-space-
wavelength at 40 GHz.  For the HFSS computations, a convergence specification of 
0.05% on the eigenfrequency was used. 

As can be seen, the simplified theory underestimates the effective axial phase 
velocity, by 1-2 % over the gain bandwidth.  Subsequently, it will be shown that the 
sensitivity to phase velocity of this high space charge device requires a more accurate 
estimation of velocity and therefore, the simplified theory is not sufficiently accurate. 

In contrast, all three of the 3D electromagnetic code predictions replicated the 
experimental results to better than 0.5% accuracy when sufficient grid resolution or 
convergence specifications were used (see above discussion). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  INSERT FIGURE 10 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  Plot of effective axial phase velocity vs. frequency, comparing experimental 
measurements, simplified theory, equivalent circuit and HFSS models. 

Figure 11:  Plot of effective axial phase velocity vs. frequency, comparing 
experimental measurements and MAFIA and MWS models. 



 
 
 

Of the models that accurately calculate the phase velocity, the circuit model 
seems to be one of the most accurate.  Also, since it is analytic, it is easier to work into an 
optimization algorithm and is faster to compute.  This is true, however, only when the 
device modeled has a small beam hole.  The accuracy of the circuit model decreases as 
the beam hole radius increases and for large beam hole radii the circuit model is not 
sufficiently accurate.  This point is illustrated in Figs. 12 and 13.  For small beam radii, 
the circuit model compares favorably to the HFSS model.  For larger beam hole radii, the 
circuit model estimates a significantly higher phase velocity than the HFSS model.   

Based on all examinations to date, the circuit model accuracy is acceptable, i.e., it 
predicts phase velocity to better than 0.5%, comparable to the 3D numerical code (HFSS 
in this case) for rc/b < ~ 85%.  Here rc is the circuit radius and b is the small waveguide 
dimension. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12:  Plot of effective axial phase velocity vs. frequency, comparing 
equivalent circuit and HFSS results for a FWTWT with a small beam hole 
radius: rc/b = 57.6%. 

Figure 13:  Plot of effective axial phase velocity vs. frequency, comparing equivalent 
circuit and HFSS results for a FWTWT with a large beam hole radius: rc/b = 98.8%. 



 
The difference between the circuit and 3D numerical code models in Fig. 13 is 

most likely due to the choice of the equivalent circuit used to represent the beam hole. 
(see Section 2.2) That is, this particular model appears to be accurate for small beam 
holes but suffers from loss of accuracy when rc/b ≥ ~ 1.  A more accurate solution might 
be obtained from using the same equivalent circuit model, but modestly and empirically 
adjusting the values of various coefficients using an adaptive algorithm (e.g., as in [16]) 
to obtain an improved fit for large as well as small hole diameters. Another alternative 
would be to examine the application of cutoff beam hole models for klystron cavities [17]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Interaction Impedance 
Figure 14, above, compares the on-axis interaction impedance of various models.  

As can be seen, there is fairly good agreement between all the models.  The greatest 
variation in estimated impedance seems to be at the lower band edge, and even there the 
difference is less than 13% between any model and the mean value. 

Small and Large Signal Gain 
The experimental small signal and saturated gain are compared to the output of 

CHRISTINE1D [6].  CHRISTINE1D is a one-dimensional physical model, which uses 
phase velocity and beam averaged interaction impedance to estimate the gain of a TWT.  
The beam averaged interaction impedance can be obtained by multiplying the on-axis 
interaction impedance by the factor ( ) ( )2

1
2

0 bcmbcm rIrI κκ −  2 where rb is the beam radius 
and κcm is defined in Eq. (10) [18].  I0 and I1 are modified Bessel functions. For the 
simulations the beam voltage, current (unsaturated) and fill factor (rb/rc) were 21.2 kV, 
200 mA, and 0.5, respectively, consistent with the experimental parameters [1,10]. The 
experiment included a magnetic confinement factor of 1.5 (above Brillioun), ensuring 
good beam confinement. Although the experimental device did not include a sever, it did 

Figure 14:  Plot of on-axis interaction impedance vs. frequency, comparing various models.



use a graphite attenuator between the input and output sections [1, 10].  The effects of 
this attenuator were incorporated into the CHRISTINE1D simulations, based on 
measurements of the frequency-dependent loss. 

Figure 15 compares the experimental small signal gain with the corresponding 
prediction from CHRISTINE1D.  The agreement is remarkably within 4 dB across the 
entire band from 41 – 54 GHz, except at the very low band edge point at 40 GHz 
(discussed further below).  Figures 16 and 17 show the sensitivity of small signal gain 
calculations to variations in phase velocity and interaction impedance. As can be seen 
from the plots, the predictions are extremely sensitive to the specification of phase 
velocity, but significantly less sensitive to the specification of interaction impedance. In 
particular, varying the phase velocity by as little as 0.5% results in changes of up to 8 dB 
in the predicted small signal gain.  In contrast, a 10% variation in the interaction 
impedance results in a more modest 5 dB change in the predicted small signal gain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: Plot of small signal gain vs. frequency, comparing experimental measurements 
with CHRISTINE1D TWT model using experimentally determined effective axial phase 
velocity and the beam averaged interaction impedance from the simplified theory model. 

Figure 16: Plot of small signal gain vs. frequency as beam-averaged phase velocity is 
varied by ± 0.5%. 



 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
There are several explanations for the discrepancy of a much higher experimental 

than predicted small signal gain at the low frequency band edge.  The experimental gain 
was determined from measurements of output power using a broadband detector, (the 
power meter).  Hence, it is possible that the experimental values are higher than predicted 
due to unfiltered second harmonic power.  However, this possibility is unlikely, both 
because the measurements were taken under small signal conditions and because the 
beam-wave velocity mismatch is considerable and the coupling impedance small near 80 
GHz. A more plausible explanation is that 40 GHz is near the waveguide cutoff 
frequency for the circuit (~38 GHz).  This, combined with (or responsible for) coupler 
mismatch could lead to extra feedback (frequency-dependent input-output coupler 
mismatch effects were not included in the simulations). Such extra feedback, while 
insufficient for start oscillation, would be capable of enhancing the measured gain above 
the theoretical single-pass prediction.  

Figure 18 compares CHRISTINE1D predictions of saturated output power to 
experimental measurements.  The agreement is good, being exact near 42 GHz and 
within 4 dB, even at the low frequency band edge at 40 GHz.  Experimental data at 
higher frequencies were not available due to the lack of a power source at higher 
frequencies that was able to saturate the TWT. 

 
 
 
 
 
 
 
 
 
 
 

Figure 17: Plot of small signal gain vs. frequency as beam-averaged 
interaction impedance is varied by ± 10%. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The sensitivity of the saturated performance to phase velocity and interaction 

impedance was also examined.  Table 1 summarizes the results.  In general, it was found 
that the sensitivity of the saturated output power and saturated gain were approximately 
equivalent when specified in dB. As observed with the small signal gain, the accuracy of 
the phase velocity has a much more sensitive effect on the predicted saturated power or 
gain than the accuracy of the interaction impedance.  However, the sensitivity of the 
saturated power or gain is noticeably less than (approximately half) the small signal gain 
to either parameter.  For example, a 10% error in the interaction impedance can result in a 
5 dB error in the small signal gain, but only a 1-3 dB error in the predicted saturated 
power or gain.  Similarly, a 0.5% error in the cold circuit phase velocity can result in as 
much as an 8 dB error in the predicted small signal gain, but only a 2-4 dB error in the 
predicted saturated power or gain. 
 

 
Given these accuracy constraints on phase velocity and interaction impedance, it 

is interesting to examine what physical features of the circuits have the greatest influence 
on both parameters.  It is straightforward to derive the following approximate expressions 
for vp(ω0) and K(ω0)  (the latter evaluated at the edge of the beam hole) from a simplified 
model of the circuit. Here, ω0 is the frequency at which vp is a minimum, which is 

Table 1. Effect of input parameter errors on 
predicted saturated power or gain 
 Input 

paramet
er error 

Saturated 
power or 
gain error 

+ 0.5% + 2-3 dB Phase velocity 
error - 0.5% - 3-4 dB 

+ 10% + 1-2 dB Interaction 
impedance error - 10% - 1-3 dB 

Figure 18:  Plot of saturated gain vs. frequency, comparing experimental measurements with 
CHRISTINE1D TWT model using experimentally determined effective axial phase velocity 
and the beam averaged interaction impedance from the simplified theory model. 



nominally in the “middle” of the operating band of the FWTWT.  While these 
expressions may not provide sufficient quantitative accuracy to meet the 0.5% and 10% 
guidelines for phase velocity and impedance, respectively, they nevertheless provide 
useful scaling properties to understand design sensitivity effects.  Specifically, for the 
phase velocity, 
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The parameters are defined in Fig. 2.  Note, then, that the phase velocity is directly 
proportional to the pitch, p, as expected, and the interaction impedance is proportional to 
the small cross-sectional dimension of the waveguide, b.  Therefore, any errors in p or b, 
will lead directly to proportionate errors in vp or K, respectively.  The factor (1 + L2/a2)1/2 
happens to be equal to the frequency ratio ω0/ωco , where ωco is the cutoff frequency of 
Eq.(6).  For the circuit used for these studies, ω0/ωco = 1.25. 
 
Summary and Conclusions 
 

From this study, we have established that accurate, full bandwidth predictions of 
output power or gain of FWTWT’s are possible with one-dimensional parametric TWT 
models if phase velocity and interaction impedance functions are sufficiently well-
characterized.  The most sensitive performance parameter was observed to be the small 
signal gain.  It was observed that predictions of the small signal gain to within 4 dB of 
experimental measurements on a 40-55 GHz FWTWT could be realized over virtually the 
entire operating band. Similar agreement was observed for saturated gain over a limited 
frequency band for which experimental data was available.   

Sensitivity studies indicate that variations in the phase velocity of 0.5% can result 
in 8 dB of variation in the predicted small signal gain, while a 10% variation in the 
interaction impedance can result in a 5 dB change in the predicted small signal gain.  The 
small signal gain prediction is approximately twice as sensitive to variations in these 
input parameters as the saturated power or saturated gain.  Based on these observations, it 
is indicated that the use of parametric 1D TWT models for accurate, full band predictions 
of small signal gain in FWTWTs requires knowledge of phase velocity and impedance 
functions that are accurate to < 0.5% and < 10%, respectively. Saturated gain predictions, 
being approximately half as sensitive to these parameters, would ostensibly require 
correct specification of phase velocity and interaction impedance to within ~ 1% and 
20% respectively. 

An equivalent transmission line circuit model for the FW structure was observed 
to predict phase velocity very well for smaller beam holes but poorly for large holes, 
while 3D electromagnetics codes were observed to predict phase velocity functions that 



yielded highly accurate TWT gain predictions (e.g., within 4 dB across the band of an 
experimental test device).  To obtain the required accuracy on phase velocity, it was 
necessary to implement aggressive constraints on convergence or mesh resolution. For 
example, using the MAFIA simulation code, a mesh spacing of approximately 115 cells-
per-free-space-wavelength of linear dimension was required.  With MWS, a mesh of 
approximately 80 cells-per-free-space-wavelength of linear dimension at 40 GHz was 
suitable.  With the HFSS finite element code in eigenmode solver mode, a convergence 
specification of 0.05% on the eigenfrequency was found acceptable. The simplified 
analytic model was not acceptable.  All methods examined successfully predicted the 
interaction impedance to within the required 10% tolerance. 
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