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INTRODUCTION 

There are several reasons why an examination of basic 1D analytic linear TWT 
theory is pertinent to current research and technology development.  For example, 
ultrawideband TWT development for ECM applications requires careful attention to what 
happens at the band edges [1].  Teasing out additional performance at these band edges is 
a very high priority for some recent applications.  Also, recent research shows that the 
level of harmonic distortion and harmonic injection for linearization depend on the linear 
growth rate of the frequency corresponding to the harmonic [2]. Therefore it is useful to 
have a good understanding of TWT growth rate behavior, even at the edges of positive 
gain.  As the discussion in this paper illustrates, accurate theoretical predictions of gain 
near band edges requires a highly precise knowledge of the TWT circuit’s phase 
velocities and space charge characteristics.  In a related issue, accurate evaluation of the 
space charge reduction factor, RSC, used in 1D TWT modeling [3-5] requires an a priori 
choice of using either the “cold circuit” wavenumber,  
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or the “electronic” wavenumber 
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as an approximate substitute for the “hot” wavenumber, Re(βz) of the growing wave on 
the TWT circuit.  Above, vcc(ω) is the phase velocity of a wave at frequency ω, in the 
absence of the electron beam. v0 is the initial velocity of the electron beam.  The results 
discussed in this paper provide guidance for the best choice of approximation for Re(βz). 
A third point relates to appreciating the tradeoffs between the approximated but 



analytically accessible versus more exact but computationally solved solutions for small 
signal gain. 
 
Background Discussion 
 

Virtually all 1D TWT models share a common conceptual framework.  This 
includes a beam-current-sourced wave equation for the slow-wave-circuit guided wave 
and a force law equation for the effect of the wave’s longitudinal electric field component 
on the electrons’ velocities [6].  A complete review of the previously published 1D TWT 
models is beyond the scope of this paper.  However, we briefly review a subset of typical 
model equations, variable definitions, and conceptual assumptions in order to facilitate 
subsequent discussions. 

First, we will assume a 1D electron force law of the form 
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Ew and Esc are the axial components of the wave’s electric field and the beam space 
charge fields, respectively.  Rsc  =  ωq/ωp is the 1D “plasma frequency reduction” factor.  
It accounts for reductions in the magnitude of the axial component of space charge 
electric field due to either finite beam radius or close proximity to surrounding 
conducting walls [3-5]. 

Next, as discussed in many references, a traveling wave interaction requires the 
electron and wave velocities to remain approximately equal, or synchronous, for net 
energy transfer.  For amplification of the wave, the electrons need to be traveling slightly 
faster than the wave, so that as they decelerate and the wave grows they don’t 
immediately fall back into the accelerating phase and start taking energy back out of the 
wave.  The difference between the electrons’ (initial) velocity and the wave velocity is 
referred to as velocity detuning.  One useful parameter to characterize the relationship 
between wave growth and velocity detuning is the cold circuit velocity detuning 
parameter 
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where C is the Pierce gain parameter (see below).   

It is convenient to a priori assume that the wave will have a unique (complex) 
wavenumber β , i.e., pure harmonic in space Ew  ~ zje β , and to express β in terms of the 
amount that it differs from the electronic wavenumber, i.e., 
 
  ξββδβββ Ceee +=+= .     (5) 
 

The final piece of mathematical apparatus needed is to describe the electron beam 
charge density in terms of the normalized beam plasma frequency 
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where RSC  is the space charge reduction factor discussed above, ωp is the usual plasma 
frequency, 0

2 ερω mep = , ρ is the volume charge density of the beam, and C is the 
Pierce gain parameter 
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Vb0 is the dc beam voltage, numerically given by emvVb 22

00 = , and   K is the beam-
averaged “interaction impedance” [4], 
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where Sb is the beam cross-sectional area and Pw is the power in the wave.  To compare 
with traditional Pierce parameters, QCp 42 =Ω , called a “space charge parameter”.  This 
equivalence is demonstrated in numerous texts [7,8].  We will use both notations 
interchangeably, since the 2

pΩ  is more indicative of the physical meaning, while the 4QC 
representation has become universally adopted throughout the TWT literature and within 
the minds of most TWT designers and researchers. 
 
One-Dimensional TWT LInearized Growth Rate 
 

With the above parameter definitions, one can derive a determinantal equation for 
the assumed wavenumber β  [7].  Substituting with variable definitions such as Eqs. (1), 
(2), (4) and (5), that equation takes the form 
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Equation (9) is a quartic equation for ξ,from which one can obtain four distinct solutions 
(roots) for the assumed wavenumber β through the use of Eq. (5). As discussed in many 
texts, it turns out that the general solution for the TWT wave propagating along the 
circuit at frequency ω is not pure harmonic in space. However, it can be described using a 
superposition of four harmonic functions using all four pure harmonic roots [3,6,7], e.g., 
of the form: 
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In practice, one is usually not interested in the full general solution, and so certain 

simplifications are acceptable.  First, one of the four roots represents a backwards-
traveling disturbance, while the other three represent forward-traveling disturbances.  It is 
therefore common to assume an idealized circuit on which the backwards-traveling 
disturbance is never excited, and consequently neglect it.  The second assumption is to 
focus attention on the region after the beam has been bunched and the wave is growing 
(i.e., the “exponential small signal growth” region).  In this region, the disturbance is 
well-approximated by a spatially pure harmonic solution, and the wave is described in 
terms of a single complex root, βz, of Eq. (9), i.e., the root associated with spatial growth.  
There are two other assumptions that are commonly employed for mathematical 
convenience.  Specifically, one assumes that ee βββ <<− , or, using Eq. (5), 1<<ξC , and  

cccc vvv <<−0 , or, using Eq. (4) 1<<Cb . These two assumptions reduce the quartic Eq. (9) 
to a more easily solved cubic equation 
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The exponentially growing wave is thus described as  
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where ( ) ( ) jxyj +=+= ξξξ ImRe .  The reason that assuming ee βββ <<−  coincides with 
reducing the quartic equation to a cubic one is that this assumption implicitly excludes 
the backwards-traveling root from consideration. 
 
The three roots of Eq. (11) can be expressed analytically [9]: 
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It can be shown that positive growth only occurs when D > 0, and that the exponentially 
growing mode root is ξ2 when D > 0. 

Figure 1 compares the normalized growth rate, x, for the growing root solution 
calculated using both Eqs. (9) and (11) versus the cold circuit velocity detuning 
parameter, bcc.  For these results, it has been assumed that C = 0.l and a range of values of 
the space charge parameter QCp 42 =Ω  have been examined spanning negligible to very 
large space charge regimes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
There are several things to be learned from this figure.  First, the simplified cubic 

solution always underestimates the growth rate of the growing wave, except in the 
unrealistic idealized case of 02 =Ω p , and even there, only for negative values of bcc < -1.  
A second observation is that the magnitude of this underestimate can be quite significant 
for situations where total small signal gain of the device is of interest. This is because 
small signal gain scales as ~ CxLeeβ , where L is the TWT circuit length.  To provide a 
quantitative context, the underestimate in maximum growth rate varies from a minimum 
of ~ 5% for the 02 =Ω p case to as much as 17% for 442 ==Ω QCp .  Therefore, for a TWT 
with nominal gain of 20 dB and 44 =QC , the cubic root underestimates the overall gain 
by as much as 3.5 dB. This is not an insignificant error from the point of view of final 
stage design specifications.  On the other hand, this reveals that even for large space 
charge TWTs, the error of the cubic solution are within bounds acceptable for draft 
design efforts.  This is interesting because the cubic solution is available in analytic 

Fig.1.  Normalized growth rate versus cold circuit velocity detuning parameter.   In this example 
C = 0.1.  Notice that the quartic root solution is generally always slightly greater than the cubic 
root solution, except for the unrealistic case of zero space charge and 1−<ccb . 



closed form.  Therefore it offers advantages for incorporation into closed-form, derived 
expressions for optimized design points and for appreciation of scaling relationships 
between device parameters and growth rates..  Finally, the cubic and quartic solutions are 
in quite good overall qualititative agreement, especially with regard to the value of 
velocity detuning bcc for which one obtains maximum gain.  In this regard, the agreement 
improves with higher space charge. 

The reason that the cubic solution underestimates the growth rate compared to the 
quartic derives from the errors implicit in assuming eββ ≈  and ccvv ≈0 . As will be seen 
in later discussion, the assumption eββ ≈  is only a good approximation for large and 
negative values of 1~ −<ccb .  Thus, the cubic approximate solution always underestimates 
the growth rate for 0>ccb  where the assumption eββ ≈  is not a good approximation.  
Meanwhile, for the example shown with C = 0.1, the assumption ccvv ≈0  requires 

1~<ccb . In fact, for the case of C = 0.1, the two assumptions eββ ≈  and ccvv ≈0 are 
simultaneously very accurate in the vicinity of 1−≈ccb .  This is supported by the 
observation in Fig. 1 that the cubic and quartic solutions are equal for 1−≈ccb  for both 
4QC = 0 and 4QC= 1.0.  For 2−<ccb and 4QC = 0, the eββ ≈  assumption is very accurate, 
but ccvv ≈0  is not a good assumption.  Consequently, the cubic solution overestimates the 
growth rate in comparison to the more accurate quartic solution in this region. 

The next insight one can glean from Fig. 1 is that accurate prediction of gain for 
some frequencies will be considerably more challenging than for other frequencies.  The 
“inverted-U” shape of the growth rate versus velocity detuning means that the prediction 
of growth rate (and thus device gain) for frequencies with velocity detuning close to 
maximum growth rate (top of the “inverted-U”) will be relatively insensitive to errors in 
either velocity or space charge parameters.  In contrast, accurate prediction of gain for 
frequencies with velocity detuning corresponding to the edges of the “inverted-U” will be 
extremely sensitive to accurate and precise knowledge of the cold circuit phase velocity 
and the space charge parameter 4QC.  This issue is depicted in Fig. 2.   Since all modern 
TWTs have non-negligible space charge (4QC ranges from ~ 0.4 for space TWTs to as 
high as ~ 4 for TWTs used in electronic counter measures), this issue is a general 
challenge.    

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2 Illustration of how the sensitivity of growth rate predictions and gain to errors in space



 
 
 
 
 
 
 
 
 

It is useful to examine which frequencies within the positive growth rate regime 
of a typical TWT correspond to maximum versus marginal growth rates.  For this 
purpose, the XWING TWT [10] serves as a useful illustration, as it corresponds to a 
fairly high space charge device with 4QC ~ 4.  The measured small signal gain of the 
XWING TWT is plotted in Fig. 3.  Figure 4 shows the (quartic) growth rate solution 
versus bcc corresponding to the XWING’s characteristics at 1, 3, and 5 GHz.  Also shown 
by “lines” are the typical operating values of bcc for 1, 3, and 5 GHz, respectively. As the 
frequency increases, the interaction increasingly becomes one of marginal growth.  
Hence, Fig. 4 illustrates the general principle that excessive velocity detuning determines 
the upper frequency limit to the gain bandwidth in a typical TWT. Extensive research 
experience confirms that accurate predictions of gain at 4-6 GHz in the XWING device 
are extremely sensitive to the values of 4QC and vcc.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 3.    Measured small signal gain versus frequency for the XWING TWT. 

Figure 4:  Normalized wave growth rate, x, versus cold circuit velocity detuning 
parameter bcc for 1,3, and 5 GHz in XWING. 



 
 
 
 
 
 
 

There are several situations that can frustrate the ability of a 1D TWT model to 
accurately predict the gain at these sensitive, upper frequency bandwidth edges.  First, 
conventional experience indicates that a precise and accurate knowledge of the cold 
circuit phase velocity is not a trivial matter.  Batch variations in helix rod permittivities or 
helix distortions arising during circuit assembly can result in cold circuit velocities that 
are not accurately predicted by three-dimensional electromagnetic simulations using 
original design parameter values.  An alternative is to measure the phase velocities of 
every circuit prior to TWT assembly, but this introduces considerable labor and cost.  
Meanwhile, accurate knowledge of the space charge parameter 2

pΩ requires accurate 
knowledge of the space charge reduction factor, RSC, which requires accurate knowledge 
of the beam radius.  It is impractical to incorporate beam radius measurements of each 
TWT during manufacture, so that 3D electron optics simulations must be relied upon.  
The accuracy of these simulations relies on assuming that the electron gun and magnetic 
circuit of each TWT performs according to original design specifications. Not only is the 
beam radius not typically measured, but only inferred through optics simulations, but the 
beam is assumed to be of constant density for simplicity in most interaction models.  This 
condition is only approximately true, even for a ‘good’ optics design, and any increased 
current at the beam edge might be expected to play a disproportionate role in the actual 
TWT gain.  Cold phase velocities are easily characterized for benchmarking purposes, 
but the beam size (including ripple and effects due to PPM stack errors) are not typically 
well known.  Hence, prediction of small signal gain at the upper edge of the positive gain 
band in high space charge TWTs is more challenging for 1D models than predicting the 
gain near the center of the operating bandwidth. 

While discussing the physics of gain at the edge of the TWT bandwidth, it is 
interesting to ask what determines the lower frequency limit of gain in a typical TWT.  
From Fig. 4, it is apparent that velocity detuning does not determine the low frequency 
limit of the bandwidth in the same way that it determines the high frequency limit.  For 
example, in Fig. 3, 1 GHz clearly corresponds to the low frequency limit of the gain 
bandwidth yet in Fig. 4, the 1 GHz operating point is close to the maximum growth rate. 
The explanation to this apparent contradiction is that at low frequencies (< 1 GHz in 
XWING), the wave’s wavelength becomes too long for significant bunching within the 
TWT’s length.  For example, at 1 GHz, the helix circuit in the XWING TWT is only 
approximately 5 wavelengths long.  This does not allow for significant bunching and 
therefore negligible gain is observed at frequencies below 1 GHz 

 
Velocity Detuning and Gain 
 

Examination of Fig. 1 inspires a fundamental question.  If the condition of wave 
growth requires the beam velocity to be greater than the wave velocity, how is it that low 



space charge TWTs with small values of 2
pΩ  or 4QC  have positive gain (x > 0) for 

negative values of velocity detuning, bcc < 0?  The answer is that bcc only characterizes 
the velocity detuning between the beam velocity and the cold circuit wave phase velocity 
at frequency ω.  The velocity detuning between the beam and the actual, beam-loaded, 
“hot” wave phase velocity vh,  is generally very different from bcc.  To illustrate this point, 
Eq. (9) was solved for ξ  (and thus for βz ) as a function of bcc . bcc  was allowed to vary 
between –5 and 5 and the five values of 0.0, 1, 2, 4, and 8 were considered for 4QC.   
Then the beam-loaded hot phase velocity was calculated as 
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from which a “hot” velocity detuning parameter was calculated 
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The results for normalized growth rate x have been plotted against both bh and bcc 

in Fig. 5 for comparison.  It is immediately evident that positive gain always corresponds 
to positive velocity detuning, bh > 0, i.e., a beam velocity that is greater than the wave 
phase velocity, vh. Although this point is intuitively reasonable, it has never (to the 
authors’ knowledge) been previously demonstrated in a publication. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
Approximating βhot for space charge reduction 
parameter calculations 
 

There are additional, timely, insights that can be extracted from this re-
examination of 1D Pierce theory for TWTs.  Discussion above shows that an accurate 1D 
model prediction of  TWT gain, especially at the upper frequency edge of the gain 
bandwidth, requires an accurate estimate of  2

pΩ and thus RSC.  On the other hand, 
derivations of space charge reduction coefficient expressions all result in equations which 
require a priori knowledge of the hot wavenumber for the circuit wave, βhot = Re(βz).  
Since a determination of βz requires an a priori knowledge of RSC, while determination of 
RSC  requires a priori knowledge of Re(βz), one is faced with a paradox.  The 
conventional resolution is to calculate an estimate for RSC by substituting an 
approximation for Re(βz), either βe, or βcc.  To determine which of these approximations 
are more accurate, Eq. (9) has been solved for C = 0.01 and 0.1, and for the same choices 
of 4QC as in previous calculations.  In Fig. 6 both the normalized growth rate, x and the 
normalized wavenumber, 1+Cy, have been plotted versus bcc for C = 0.1.  In addition, 
curves have been plotted for normalized βe and βcc.  Careful study of this figure shows 
that for all values of space charge, in the region of positive gain the hot wavenumber of 
the growing wave is better approximated by the cold circuit wavenumber 
 
  ( ) ccz ββ ≈Re ,  
 
for frequencies inside the positive growth rate band, while the circuit wave’s beam-
loaded wavenumber is better approximated by βe for frequencies outside the positive 
growth rate band,  
 
  ( ) ez ββ ≈Re . 
 
The exception to this latter statement is that for unusually high space charge beams 

442 >=Ω QCp ,  
 



  ( ) ccz ββ ≈Re ,  
 
for frequencies outside the positive growth rate band. However, such cases would be 
extremely rare in practical TWTs, because they would imply the need for a very strong 
focusing magnetic field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The results for C = 0.01 are shown in Fig. 7, and show that similar conclusions 
can be drawn for both large and small C values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig.6. Normalized βcc, βe, growth rate Im(βz), and hot wavenumber Re(βz) for C = 0.1. 
Normalizations are  Im(βz/Cβe) =Im(ξ) = x , hot wavenumber Re(βz/βe) = 1+CRe(ξ) = 1+ 
Cy, cold circuit wavenumber βcc/βe, and electronic wavenumber βe/βe. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Maximum gain and the slow space charge wave 
 

Finally, it is instructive to re-examine a conventional wisdom regarding the 
condition for maximum gain in a TWT.  Figure 8 plots the normalized hot wavenumber 
of the growing mode (calculated from the quartic equation) versus bcc for 4 values of 

==Ω QCp 42  0.0, 0.4, 2.0, and 4.0.  On each of the four curves, a filled shape (circle, 
square, diamond, pentagon) has been placed, showing the point of intersection of the 
slow space charge wave’s wavenumber (normalized) and the growing mode’s 
wavenumber. The slow space charge wave’s wavenumber is defined to be 
 

( ) ( )peepesscw CQCC Ω+=+=+= 141 βββββ    (16) 
 
where oqp vωβ = and ωq is the reduced plasma frequency [6].  Hence, these four circles 
represent the points at which the hot phase velocity of the growing wave and the phase 
velocity of the slow space charge wave are equal.  At the top of the figure are four 
labeled arrows, indicating the positions of peak gain (maximum x) for each of the four 
values considered for QCp 42 =Ω .  These particular results were computed for C = 0.01, 
but the conclusion proves to be generally true for any realistic value of C.  Specifically, it 
is often stated as a “rule-of-thumb” that the peak gain corresponds to the condition where 
the hot phase velocity of the growing wave equals the phase velocity of the slow space 
charge wave.  What Fig. 8 clarifies, however, is that this statement is only valid for 
values of 4QC > 0.4.  From the results calculated here, in fact, the rule-of-thumb is 
reasonably accurate for 1~42 >=Ω QCp  (or QC > ~0.25).  This is also consistent with the 
results in Fig. 10-14 of [7].  Obviously, for 4QC = 0, βsscw = βe (i.e., there are no space 
charge waves), so it is clearly not appropriate to apply the rule-of-thumb in that case.  
However, for values of 4QC< 1, such as might be encountered in many space TWTs, this 
rule-of-thumb is not a good approximation for intuitive reasoning or simplified initial 
design steps.    



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Using the approximate cubic solutions, Eqs.(13), one can confirm and explain the 
observation illustrated by Fig. 8.  First, it can be shown from Eqs. (13) that the 
normalized growth rate,  
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is always maximized under the condition that 22

pb Ω≈ , for all values of 2
pΩ  .  This is also 

revealed in graphical form in Fig. 10-14 of Ref. [7].  Further algebra then reveals for the 
maximum growth rate condition 22
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In the limit that ( ) 2132 3 >>Ω p , then py Ω≈ , and ( ) ( )pe CΩ+≈ 1Re ββ , i.e., indeed 

the slow space charge wave.  In the limit that ( ) 2132 3 <<Ω p , then 21≈y , and 

( ) ( )21Re Ce +≈ ββ , in agreement with the classic Pierce solution for space charge 
free  and synchronous (b = 0) conditions [6,7].  The demarcation between these two 
extremes occurs approximately when ( ) 2132 3 ≈Ω p , or 14.12 ≈≈Ω p .  This is in good 

Fig. 8. Normalized βcc, βe, and Re(βz) for C = 0.01.  Normalizations are cold circuit 
wavenumber βcc/βe, electronic wavenumber βe/βe and hot wavenumber Re(βz/βe) = 1+ Cy . 
The arrows at the top indicate the values of bcc corresponding to maximum gain (x) for the 
indicated values of QC.  The four filled shapes indicate the locations where the slow space 
charge wave velocity equals the hot phase velocity of the growing waves corresponding to 
the four values of 4QC.  Specifically, circle for 4QC = 0.0, square for 4QC = 0.4, diamond 
for 4QC = 1.0, and pentagon for 4QC = 2.0 



agreement with the main point of Fig. 8, especially considering the approximation of 
neglecting the contribution of Q3 to D, and the fact that the maximum growth rate point 
does not precisely correspond to 22

pb Ω= .  Implicit in this result is the point that when 

142 <=Ω QCp , the space charge wave model of TWT interaction begins to lose meaning 
as the fast and slow modes of the coupled beam-circuit disturbance are no longer closely 
associated with the fast and slow beam space charge waves. 
 
Conclusions 
 

In summary, this re-examination of 1D linearized TWT theory leads to the 
following conclusions: 
 

1) The assumptions ee βββ <<−  and cccc vvv <<−0 produce qualitatively accurate 
predictions of the growth rate, but can result in quantitative errors in gain of ~ 3 
dB for high space charge TWTs with 4QC ~ 4 and nominal gain ~ 20 dB.  The 
error increases for higher gain devices and decreases for lower space charge. On 
the other hand, the errors are sufficiently bounded to justify the use of the analytic 
cubic solution in deriving closed-form expressions for optimized design starting 
points. 

2) Prediction of the gain at the high frequency end of the gain bandwidth by 1D 
models is very sensitive to precise and accurate knowledge of the wave’s cold 
circuit phase velocity and the normalized plasma frequency or effective (reduced) 
space charge parameter, ( )22 ωω CR pSCp =Ω = 4QC.  This sensitivity is greatest for 
high space charge beams with 4QC > 2. 

3) Regardless of the value of 4QC, positive gain occurs when the dc beam velocity is 
faster than the “hot” circuit phase velocity of the wave, v0 > vh, 

4) For 4QC > 1, maximum gain occurs when the hot phase velocity equals the slow 
space charge wave velocity, vh = vsscw.  For 4QC < 1, the space charge wave 
interaction model begins to lose meaning as the fast and slow modes are no longer 
easily identified with the beam space charge waves. 

5) For purposes of evaluating the 1D model’s space charge reduction coefficient, it 
is recommended to use the approximation that ( ) ccz ββ ≈Re , for frequencies inside 
the gain bandwidth, and ( ) ez ββ ≈Re , for frequencies outside the gain bandwidth.  
The exception to this latter statement is that for unusually high space charge 
beams 4QC > 4, it is recommended to use ( ) ccz ββ ≈Re , for frequencies both inside 
and outside the gain bandwidth. 
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