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Supplements to Mathematical Methods in Science and
Engineering

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470041420.html

CHAPTER 12: COMPLEX VARIABLES and

FUNCTIONS

I. Solutions or Hints to Selected Problems:

1. Discuss the analyticity and the differentiability of

f(z) =
x2y2(x+ iy)

x2 + y2
. (0.1)

Solution:

We first write the u and v functions as

u(x, y) =
x3y2

x2 + y2
, (0.2)

v(x, y) =
x2y3

x2 + y2
(0.3)

and then evaluate the following partial derivatives:

∂u

∂x
=
x2y2(x2 + 3y2)

(x2 + y2)2
, (0.4)

∂u

∂y
=

2x5y

(x2 + y2)2
, (0.5)

∂v

∂x
=

2xy5

(x2 + y2)2
, (0.6)

∂v

∂y
=
x2y2(3x2 + y2)

(x2 + y2)2
. (0.7)

Substituting these into the Cauchy-Riemann conditions:

∂u

∂x
=

∂v

∂y
, (0.8)

∂v

∂x
= −∂u

∂y
, (0.9)
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we obtain

x2y2(x2 + 3y2)

(x2 + y2)2
=
x2y2(3x2 + y2)

(x2 + y2)2

2xy5

(x2 + y2)2
= − 2x5y

(x2 + y2)2
.

(0.10)

These two conditions can be satisfied simultaneously only at the origin.
In conclusion, the derivative exists at the origin but the function is
analytic nowhere. This is also apparent from the expression of f(z) as

f(z) = − z

16(zz∗)
(z + z∗)2(z − z∗)2, (0.11)

which depends on z∗ explicitly.

Important:

Cauchy-Riemann conditions are necessary for the derivative to exist at
a given point z0. It is only when the partial derivatives of u and v are
continuous at z0 that they become both necessary and sufficient. In this
case one should check that the partial derivatives of u and v are indeed
continuous at z = 0, hence the derivative of f(z) [Eq. (0.1)] exists at
z = 0 (Bayin, 2008).

2. Check the differentiability and the analyticity of the function

f(z) =

⎧⎪⎪⎨⎪⎪⎩
x3 − y3
x2 + y2

+ i
x3 + y3

x2 + y2
, |z| 6= 0.

0, z = 0.

(0.12)

Solution:

Follow the steps of the previous question and also check the continuity
of the partial derivatives. Also see Example 7.2 in Bayin (2008).

3. (Problem 12.8) Find the Riemann surface on which

w = 3
p
(z − 1)(z − 2)(z − 3) (0.13)

is a single valued function, analytic except at z = 1, 2, 3.

Solution:

We have discussed the square root function,

w =
√
z, (0.14)
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Fig. 0.1 Branch cuts for the branch points at z = 1, 2, 3.

in Chapter 12 in detail (Bayin, 2006), which has a branch point at z = 0
and two branch values

w =
√
re
i

⎛⎝ θ + 2πk

2

⎞⎠
, (0.15)

where 0 ≤ θ < 2π and k = 0, 1. In general,

w = z1/n (0.16)

has a single branch point at z = 0, but n branch values given by

w = n
√
re
i

⎛⎝ θ + 2πk

n

⎞⎠
, 0 ≤ θ < 2π, k = 0, 1, . . . , n− 1. (0.17)

In the case of the square root function, there are two Riemann sheets
connected along the branch cut (Fig. 12.9 in Bayin (2006). For both of
the above cases [Eqs. (0.15) and (0.17)], branch cuts are chosen to be
along the positive real axis. For w = z1/n, there are n Riemann sheets
connected along cut line (Bayin, 2006). For the function

w = n
√
z − z0, (0.18)

the situation is not very different. There are nRiemann sheets connected
along a suitably chosen branch cut, which ends at the branch point z0.
For the function

w = 3
√
z − z0, (0.19)

for a full revolution about z0 in the z-plane, where θ goes from 0 to
2π, the corresponding point in the w-plane completes only 1/3 of a
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revolution, where φ changes from 0 to 2π/3. In other words, for a single
revolution in the w-plane, one has to complete three revolutions in the
z-plane. In this case the three branch values are given as

w = 3
√
re
i

⎛⎝ θ + 2πk

3

⎞⎠
, 0 ≤ θ < 2π, k = 0, 1, 2, (0.20)

where r = |z − z0| . To avoid multiple revolutions in the z-plane, we
need three Riemann sheets.

For the function at hand:

w = 3
p
(z − 1)(z − 2)(z − 3), (0.21)

we have three branch points located at the points

z1 = 1, z2 = 1, z3 = 1. (0.22)

We choose the branch cuts to be along the real axis and to the right of
the corresponding branch point as shown in Figure (0.1). We can now
write

z − 1 = r1eiθ1 , (0.23)

z − 2 = r2eiθ2 , (0.24)

z − 3 = r3eiθ3 , (0.25)

where 0 ≤ θ1, θ2, θ3 < 2π. The corresponding branch values for the
cube root function are now given as

3
√
z − 1 = 3

√
r1 e

i

⎛⎝ θ1 + 2πk

3

⎞⎠
, 0 ≤ θ1 < 2π, k = 0, 1, 2, (0.26)

3
√
z − 2 = 3

√
r2 e

i

⎛⎝ θ2 + 2πl

3

⎞⎠
, 0 ≤ θ2 < 2π, l = 0, 1, 2, (0.27)

3
√
z − 3 = 3

√
r3 e

i

⎛⎝ θ3 + 2πm

3

⎞⎠
, 0 ≤ θ3 < 2π, m = 0, 1, 2. (0.28)

Hence, for

w = 3
p
(z − 1)(z − 2)(z − 3) = ρeiφ, (0.29)

where

ρ = 3
√
r1r2r3, φ = (θ1 + θ2 + θ3)/3, (0.30)

the branch values are given as

w = 3
√
r1r2r3 e

i

⎛⎝ θ + 2π(k + l +m)

3

⎞⎠
, (0.31)
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where k, l,m take the values

k = 0, 1, 2, (0.32)

l = 0, 1, 2, (0.33)

m = 0, 1, 2. (0.34)

For points on a closed path, C0, that does not include any of the branch
points, the function [Eq. 0.21] is single valued and takes its first branch
value, that is, k = l = m = 0. For the path C1 only one of the branch
points, z = 1, is within the path, hence there are three branch values
corresponding to the (k, l,m) values

(k, l,m) =

⎧⎨⎩ (0, 0, 0)
(1, 0, 0)
(2, 0, 0)

. (0.35)

For the path C2, both z = 1 and z = 2 are within the path, hence when
we complete a full circuit, we cross over both of the branch cuts. In this
case, the three branch values are given by

(k, l,m) =

⎧⎨⎩ (0, 0, 0)
(1, 1, 0)
(2, 2, 0)

. (0.36)

For the third circuit, C3, all three of the branch points are within the
path, hence to complete a full circuit, one has to cross over all three of
the branch cuts. In this case, the function is single valued and (k, l,m)
take the values

(k, l,m) =

⎧⎨⎩ (0, 0, 0)
(1, 1, 1)
(2, 2, 2)

. (0.37)

In other words, for the points to the right of z = 3, the three branch
cuts combine to cancel each others effect, thus producing a single valued
function (Fig. 0.2). To see the situation along the real axis, where the
branch cuts overlap, we construct the following table, where the points
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Fig. 0.2 Points below the real axis, which are symmetric to A,B,C,D,E,F, are
A0, B0, C0,D0, E0, F 0, respectively.

are defined as in Figure (0.2):

point\angle θ1 θ2 θ3 φ
A π π π π
B 0 π π 2π/3
C 0 π π 2π/3
D 0 0 π π/3
E 0 0 π π/3
F 0 0 0 0
A0 π π π π
B0 2π π π 4π/3
C0 2π π π 4π/3
D0 2π 2π π 5π/3
E0 2π 2π π 5π/3
F 0 2π 2π 2π 6π/3

, (0.38)

which gives

A,A0 Same pt. in the w-plane
B,B0 Not single valued
C,C0 Not single valued
D,D0 Not single valued
E,E0 Not single valued
F,F 0 Same pt. in the w-plane

(0.39)

From this table we see that the 3 Riemann sheets are sawn together
along the dotted lines between the points z = 1 and z = 3 as shown in
Figure (0.2).
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4. (i) Show that the transformation

w =
z + 1

1− z , (0.40)

maps the following region:

x ≤ 0 and −∞ < y <∞, (0.41)

onto the unit disc in the w-plane.

(ii) Find the image of the unit disc centered at the origin in the z-plane,
under the transformation

z =
i− w
i+ w

. (0.42)

Solution:

(i) We first use the general expression

w =
az + b

cz + d
(0.43)

and its inverse

z =
dw − b
−cw + a (0.44)

to write

z =
w − 1
w + 1

. (0.45)

Using Equation (0.42) we write

x+ iy =
(u− 1) + iv
(u+ 1) + iv

.
(u+ 1)− iv
(u+ 1)− iv

=
(u2 + v2 − 1) + i(2v)

(u+ 1)2 + v2
(0.46)

and obtain the relations

x =
(u2 + v2 − 1)
(u+ 1)2 + v2

, (0.47)

y =
2v

(u+ 1)2 + v2
. (0.48)

For x ≤ 0 these imply

u2 + v2 ≤ 1, (0.49)
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which is the unit disc with its center located at the origin.

(ii) Follow similar steps to find the solution.

5. Show that the transformation

w = i
1− z
1 + z

, (0.50)

maps the upper half of the unit disc,

y ≥ 0 and x2 + y2 ≤ 1, (0.51)

onto the first quadrant, u ≥ 0, v ≥ 0, of the w-plane.
Solution:

We first write the mapping [Eq. (0.50)] as

u+ iv = i
1− x− iy
1 + x+ iy

=
2y + i(1− x2 − y2)
(1 + x)2 + y2

, (0.52)

which for y ≥ 0 implies u ≥ 0 and for (1− x2 − y2) ≥ 1 gives v ≥ 0.
We now show that the diameter of the unit circle, −1 < x < 1, y = 0, is
mapped onto the positive v-axis with v < 1. Using Equation (0.52) for
y = 0, we write

u+ iv =
0 + i(1− x2)
(1 + x2)

, (0.53)

which implies

u = 0 (0.54)

and

v > 0. (0.55)

Since 1− x2 < 1 + x2, we also have v < 1.

6. Determine the image of the horizontal strip

−π/2 < Im z < π/2 (0.56)

under the transformation

w =
ez − 1
ez + 1

. (0.57)
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Fig. 0.3 Mappings.

Solution:

We first write the inverse of above mapping:

ez =
w + 1

1− w, (0.58)

as

exeiy =
(u+ 1) + iv

(1− u)− iv , (0.59)

ex(cos y + i sin y) =
(1− u2 − v2) + 2iv
(1− u)2 + v2 . (0.60)

For y = ±π/2 this gives

±iex = (1− u2 − v2) + 2iv
(1− u)2 + v2 , (0.61)

which implies the unit circle:

1 = u2 + v2. (0.62)

Similarly, we can find the images of the points A,B,C,D,E, F as
A0, B0, C0,D0, E0, F 0, respectively (Fig. 0.3).

7. Find the Schwarz-Christoffel transformation that maps the semi-infinite
strip: −π/2 < x < π/2, onto the upper half w-plane, v > 0. Use this
result to solve the Laplace equation within the given strip satisfying the
boundary conditions

V (x, 0) = 1 and V (−π/2, y) = V (π/2, y) = 0. (0.63)
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Fig. 0.4 Schwarz-Christoffel transformations.

Solution:

We map the points (±π/2, 0) in the z-plane to (±1, 0) in the w-plane,
respectively (Fig. 0.4). We also map the point z3 to ∞. Schwarz-
Christoffel transformation can now be written as

dz

dw
= A(w + 1)−k1(w − 1)−k2(w −∞)−k3 , (0.64)

where

k1 = k2 = 1/2, k3 = 1. (0.65)

We again absorb ∞ into the arbitrary constant A and define a new
constant C0 to write

dz

dw
= C0(w

2 − 1)−1/2, (0.66)

which upon integration yields

z = C0 cosh
−1w + C1. (0.67)

Since

z1 = (−π/2, 0) → w1 = (−1, 0),
z2 = (π/2, 0) → w2 = (1, 0),

(0.68)

we determine C0 and C1 as

C0 = i, (0.69)

C1 = π/2 (0.70)
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and write

z = i cosh−1w + π/2. (0.71)

From the electromagnetic theory, solution of the Laplace equation in
the w-plane is given as

V (u, v) =
v

π

Z +∞

−∞

V (ξ, 0)dξ

(u− ξ)2 + v2
, (0.72)

which can be integrated to yield

V (u, v) =
1

π
tan−1

∙
2v

u2 + v2 − 1

¸
. (0.73)

One should check that the above V (u, v) does indeed satisfies the Laplace
equation in the w-plane with the following boundary conditions:

V (u, 0) = 1 for − 1 < u < 1, (0.74)

V (u, v) = 0 elsewhere. (0.75)

For the solution in the z-plane, we need the transformation equations
between (u, v) and (x, y). Using Equation (0.71) we write

w = cosh

µ
z − π/2

i

¶
,

= sinx cosh y + i sinh y cosx, (0.76)

thus obtaining the needed relations as

u = sinx cosh y, (0.77)

v = sinh y cosx. (0.78)

The solution in the z-plane can now be written as

V (x, y) =
1

π
tan−1

∙
2 sinh y cosx

sin2 x cosh2 y + sinh2 y cos2 x− 1

¸
. (0.79)

Note:

The transformation we obtained [Eq. (0.71)]:

z = i[cosh−1w + π/2] (0.80)

can in general be written as

z = i[A cosh−1w +B], (0.81)
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where the constants depend on the orientation of the strip in the z-
plane. If you compare this with the horizontal strip used in Example
12.13, the factor i is essentially rotating the domain by π/2.

8. Find the Schwarz-Christoffel mapping that transforms the bent line,
A,B,C,D, in the w-plane with the points

(−2, 1), (−1, 0), (1, 0), (2,−1), (0.82)

respectively, into a straight line along the real axis in the z-plane.

Solution:

We map point B to (−1, 0) and C to (1, 0) as shown in Figure (0.5).
Differential form of the transform is written as

dw

dz
= A(z − z1)−k1(z − z2)−k2 , (0.83)

where k1 and k2 are determined as

k1π = π/4→ k1 = 1/4, (0.84)

k2π = −π/4→ k2 = −1/4. (0.85)

Equation (0.83) now becomes

dw

dz
= A(z + 1)1/4(z − 1)−1/4

= A

µ
z − 1
z + 1

¶1/4
, (0.86)

which upon integration yields

w = A

Z µ
z − 1
z + 1

¶1/4
dz +B

= A

∙
−2u
u4 − 1 +

1

2
ln

¯̄̄̄
u− 1
u+ 1

¯̄̄̄
− tan−1 u

¸
+B, (0.87)

where

u =

µ
z − 1
z + 1

¶1/4
. (0.88)

Using the fact that

z = 1→ w = 1, (0.89)

z = −1→ w = −1 (0.90)
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Fig. 0.5 Schwarz-Christoffel transfomation

we obtain two equations

1 = B +Aπ/2, (0.91)

−1 = B +Aπ/2, (0.92)

hence determine the integration constants A and B as

A =
4

π(i− 1) , B =
1 + i

1− i . (0.93)

9. (Problem 12.10) Show that the transformation

w

2
= tan−1

iz

a
(0.94)

or

w = −i ln
1 + z

a

1− z
a

(0.95)

maps the v =constant lines into circles in the z-plane.

Solution:

Use Equation (0.94) to show that

x = a
sinh v

cosh v + cosu
, (0.96)

y = −a sinu

cosh v + cosu
(0.97)

and than use these to show that v =constant lines are mapped to circles
with radius

r = a csch(v) (0.98)
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and centered at

x = a coth v, (0.99)

y = 0. (0.100)

II. Interesting Sites

In 1956 a Dutch artist Maurits Cornelis Escher (1898-1972) produced a
lithograph that intrigued mathematicians. In 2003 Lenstra and his group at
Leiden University succeeded in deciphering the mathematical secrets of this
lithograph in terms of complex mappings. This article can be found in their
web site:
http://escherdroste.math.leidenuniv.nl/,
which includes many other images and animations. Mathematical accuracy

of the Escher’s image was uncanny, since he was not trained in mathematics.
A step by step description of the Lenstra’s method and its applications to
other images is given by Leys in the site
http://www.josleys.com/articles/printgallery.htm.
A gallery of other images produced by Escher along with other interesting

material can be found in Leys’s home page:
http://www.josleys.com/.
An overview of the Esher Droste effect can be found in Wikipedia:
http://en.wikipedia.org/wiki/Droste_effect.
If you are comfortable with Mathmap-For Windows and Photoshop, you

can produce such images yourself by using the tutorial in the web site
http://www.flickr.com/photos/joshsommers/sets/72157594515046947/

and then submit them to Escher’s Droste Print Galley group.

Selçuk Bayin (December, 2008)


