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Supplements to Mathematical Methods in Science and
Engineering

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470041420.html

CHAPTER 6: BESSEL FUNCTIONS

For additional examples, problems, and derivations of the properties of
Bessel functions see Bayin (Wiley, 2008).

I. Solutions or Hints to Selected Problems:

1. (Problem 6.2) Write the wave equation,

¤Φ(t, r, θ,φ) = 0, (0.1)

in flat spacetime using the spherical polar coordinates and find its sep-
arable solutions.

Solution:

D’Alembert (wave) operator, ¤, is defined as

¤ ≡ gμν∇μ∇ν , μ, ν = 0, 1, 2, 3, (0.2)

where ∇μ stands for the covariant derivative. The ¤ operator can also
be written as [Eq. (10.225)]

¤ ≡ g1/2 ∂

∂xμ

∙
g1/2gμν

∂

∂xν

¸
, (0.3)

where g stands for the absolute value of the determinant of the metric
tensor [Eq. (10.238)]. Note that we use the Einstein summation con-
vention, that is, the repeated indices are summed over (Chapter 10). In
flat spacetime the metric tensor is defined by the line element

ds2 = gμνdx
μdxν

= dt2 − dr2 − r2dθ2 − r2 sin2 θdφ2, (0.4)

where

g = r4 sin2 θ. (0.5)
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Using the summation convention and the identification

x0 = t, x1 = r, x2 = θ, x3 = φ, (0.6)

Equation (0.1) with Equation (0.2) can be written as∙
1

2g

∂g

∂xμ
gμν∂ν +

∂gμν

∂xμ
∂ν + g

μν∂μ∂ν

¸
Φ = 0, (0.7)

which eventually leads to

∂2Φ

∂t2
− ∂2Φ

∂r2
− 1

r2
∂2Φ

∂θ2
− 1

r2 sin2 θ

∂2Φ

∂φ2
− 2
r

∂Φ

∂r
− cos θ

r2 sin θ

∂Φ

∂θ
= 0.

(0.8)

We now use the separation of variables method and substitute a solution
of the form

Φ(t, r, θ,φ) = T (t)R(r)Y (θ,φ), (0.9)

to get

1

T

∂2T (t)

∂t2
=
1

R

∙
2

r

∂R

∂r
+

∂2R

∂r2
] +

1

Y r2
[
∂2Y

∂θ2
+

1

sin2 θ

∂2Y

∂φ2
+
cos θ

sin θ

∂Y

∂θ

¸
.

(0.10)

Introducing two separation constants, ω2 and λ = −l(l + 1), we obtain
three ordinary differential equations:

1

T

∂2T (t)

∂t2
= −ω2, (0.11)

∂2R

∂r2
+
2

r

∂R

∂r
+

∙
ω2 − l(l + 1)

r2

¸
R(r) = 0, (0.12)

∂2Y

∂θ2
+

1

sin2 θ

∂2Y

∂φ2
+
cos θ

sin θ

∂Y

∂θ
+ l(l + 1)Y (θ,φ) = 0. (0.13)

For the radial equation we substitute

R(r) =
g(r)√
r

(0.14)

to get

r2g00 + rg0 + [ω2r2 − (l + 1
2
)2]R(r). (0.15)
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Comparing with Equation (6.42), the general solution can be written
immediately as

R(r) =
1√
ωr
[C0Jl+1/2(ωr) + C1J−(l+1/2)(ωr)]. (0.16)

Solution for the angular part is given as the spherical harmonics [Eq.
(2.182)] and the time dependence is given as

T (t) = C0e
−iwt, (0.17)

thus yielding the complete solution as

Φωlm(t, r, θ,φ) =
1√
ωr
[C0Jl+1/2(ωr) + C1J−(l+1/2)(ωr)]Y

m
l (θ,φ)e

−iwt.

(0.18)

Depending on the boundary conditions we could also use

Φωlm(t, r, θ,φ) =
1√
ωr
[C0Jl+1/2(ωr) + C1Nl+1/2(ωr)]Y

m
l (θ,φ)e

−iwt,

(0.19)

or

Φωlm(t, r, θ,φ) =
1√
ωr
[C0H

(1)
l+1/2(ωr) + C1H

(2)
l+1/2(ωr)]Y

m
l (θ,φ)e

−iwt.

(0.20)

2. Using the generating function definition [Eq. (6.47)]:

e
x
2 (t−

1
t ) =

∞X
n=−∞

Jn(x)t
n, (0.21)

show that

Jn(x) = (−1)nJn(−x).

Solution:

We write
∞X

n=−∞
Jn(−x)tn = exp{

1

2
[−x(t− 1

t
)]} (0.22)

= e
x
2 [−t−

1
−t ] (0.23)

=
∞X

n=−∞
Jn(x)(−t)n (0.24)

=
∞X

n=−∞
(−1)nJn(x)tn, (0.25)
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which yields the desired result.

3. Prove that

Jn(x+ y) =
∞X

r=−∞
Jr(x)Jn−r(x). (0.26)

Solution:

Use the generating function definition,

e
x
2 (t−

1
t ) =

∞X
n=−∞

Jn(x)t
n, (0.27)

to write

e
x
2 (t−

1
t )e

y
2 (t−

1
t ) =

∞X
n=−∞

Jn(x+ y)t
n. (0.28)

Rewrite the left-hand side asÃ ∞X
r=−∞

Jr(x)t
r

!Ã ∞X
s=−∞

Js(y)t
s

!
=

∞X
n=−∞

Jn(x+ y)t
n, (0.29)

and let

s = n− r (0.30)

to write

∞X
n=−∞

" ∞X
r=−∞

Jr(x)Jn−r(y)

#
tn =

∞X
n=−∞

Jn(x+ y)t
n, (0.31)

which yields the desired result.

4. Show the following integral:Z π/2

0

J0(x cos t) cos tdt =
sinx

x
. (0.32)

Solution:

Use the expansion

J0(x cos t) =
∞X
r=0

(−1)r
(r!)2

µ
x cos t

2

¶2r
(0.33)
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to obtainZ π/2

0

J0(x cos t) cos tdt =
∞X
r=0

Z π/2

0

(−1)r
(r!)2

µ
x cos t

2

¶2r
cos t dt

=
∞X
r=0

(−1)r
(r!)2

³x
2

´2r Z π/2

0

(cos t)
2r+1

dt

=
∞X
r=0

(−1)r
(r!)2

³x
2

´2r (2r)(2r − 2) . . . 4.2
(2r + 1)(2r − 1) . . . 3.1

=
∞X
r=0

(−1)r
(r!)2

³x
2

´2r 2rr!r!

(2r + 1)!

=
1

x

∞X
r=0

(−1)r x2r+1

(2r + 1)!

=
sinx

x
. (0.34)

5. (Problem 6.1) Drive the following recursion relations:

Jm−1 (x) + Jm+1 (x) =
2m

x
Jm (x) (0.35)

and

Jm−1 (x)− Jm+1 (x) = 2J 0m (x) . (0.36)

Solution:

For the first one, differentiate the generating function [Eq. (6.47)] with
respect to t and than equate the coefficients of the equal powers of t.
Similarly, for the second recursion relation [Eq. (0.36)] differentiate with
respect to x.

II. Transformations of the Bessel’s Equation

Sometimes we encounter differential equations, solutions of which can be
written in terms of Bessel functions. For example, consider the function

y(x;α,β, γ) = xαJn(βx
γ), (0.37)

where α,β, γ are three constant parameters. To find the differential equation
that y(x;α,β, γ) satisfies, we substitute

g =
y

xα
, w = βxγ , (0.38)
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to write

g(w) = Jn(w). (0.39)

Hence, g(w) satisfies the Bessel’s equation [Eq. (6.21)]:

w2
d2g

dw2
+ w

dg

dw
+ (w2 − n2)g(w) = 0, (0.40)

which can also be written as

w
d

dw

µ
w
dg

dw

¶
+ (w2 − n2)g(w) = 0. (0.41)

We now write

w
dg

dw
= w

dg/dx

dw/dx
=
x

γ

dg

dx
, (0.42)

hence the first term in Equation (0.41) becomes

w
d

dw

µ
w
dg

dw

¶
=
1

γ2
x
d

dx

µ
x
dg

dx

¶
. (0.43)

Using Equation (0.38) we can also write

x
dg

dx
=

y0

xα−1
− αy

xα
, (0.44)

which leads to

x
d

dx

µ
x
dg

dx

¶
= x

d

dx

µ
x
d

dx

∙
y0

xα−1
− αy

xα

¸¶
=

y00

xα−2
− (2α− 1)y

0

xα−1
+

α2y

xα
. (0.45)

Using Equations (0.43) and (0.45) in Equation (0.41), we obtain the differen-
tial equation that y(x;α,β, γ) satisfies as

d2y

dx2
−
µ
2α− 1
x

¶
dy

dx
+

µ
β2γ2x2γ−2 +

α2 − n2γ2
x2

¶
y(x) = 0. (0.46)

Thus, the general solution of this equation can be written as

y(x) = xα [C0Jn(βx
γ) + C1Nn(βx

γ)] . (0.47)

Critical Length of a Vertical Rod:
When a thin uniform vertical rod is clamped at one end, its vertical position

is stable granted that its length is less than a critical length. When the rod has
the critical length, the vertical position is only a neutral equilibrium position.
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Fig. 0.1 Bending of a rod.

That is, the rod stays in the displaced position after it has been displaced
slightly (Greenhill, Proc. Camb. Phil. Soc., IV, 1881. Also see, F. Bowman,
Introduction to Bessel Functions, Dover, 1958).
Let the rod be in equilibrium when deviating slightly from the vertical

position (Fig. 0.1). Let l be the length of the rod, a be the radius of its cross
section and ρ0 be the uniform density. Let P be an arbitrary point on the
rod and P 0 be a point above it (Fig. 0.1). We now consider the part of the
rod in equilibrium above the point P. If we take a mass element, ρ0dx

0, at P 0,
the torque acting on it due to the weight of the upper part of the rod will be
will be the integral

Z x

0

ρ0g(y
0 − y)dx, (0.48)

where g is the acceleration of gravity. This will be balanced by the torque
from the elastic forces acting on the rod. From the theory of elasticity, this
torque is equal to

EI
d2y

dx2
, (0.49)
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where E is the Young’s modulus and we take I = 1
4πa

2. Equating the two
torques we get

EI
d2y

dx2
=

Z x

0

ρ0g(y
0(x0)− y(x))dx0, (0.50)

Differentiating this with respect to x gives (use Eq. (18.5))

EI
d3y

dx3
= −ρ0gx

dy

dx
. (0.51)

We rewrite this as

d3y

dx3
+ k2

dy

dx
= 0, (0.52)

where

k2 =
ρ0g

EI
. (0.53)

Comparing with Equation (0.46) we see that the solution for dydx can be written
in terms of Bessel functions as

dy

dx
=
√
x

µ
C0J−1/3

µ
2k

3
x2/3

¶
+ C1J1/3

µ
2k

3
x2/3

¶¶
. (0.54)

For the desired solution we have to satisfy the following boundary conditions:
i) Since there is no torque at the top, where x = 0, we need to haveµ

d2y

dx2

¶
x=0

= 0. (0.55)

ii) At the bottom, where the rod is fixed and vertical, we need to satisfyµ
dy

dx

¶
x=l

= 0. (0.56)

To satisfy the first boundary condition we set C1 = 0, thus obtaining

dy

dx
= C0

√
xJ−1/3

µ
2k

3
x2/3

¶
. (0.57)

The second condition can be satisfied with C0 = 0, which is the trivial solution.
For a nontrivial solution, C0 6= 0, we set

J−1/3

µ
2k

3
l2/3

¶
= 0 (0.58)

and take the smallest root as the physical solution:

2k

3
l3/2 = 1.8663. (0.59)
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For a steel rod of radius 0.15 cm, E = 84, 000 tons/cm2 and density 7.9
g/cm3, we find l ∼= 1.15m.
Question: Can you use this as an example for spontaneous symmetry

breaking and how? Below are some useful sites on symmetry breaking:

http://superstringtheory.com/experm/exper3a.html,
http://en.wikipedia.org/wiki/Spontaneous_symmetry_breaking,
http://cosmicvariance.com/2005/10/24/hidden-symmetries/.

III. Useful Sites

More references and other useful information about Bessel functions can
be found in the following sites:

http://en.wikipedia.org/wiki/Bessel_function,
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html.

Selçuk Bayin (October, 2008)


