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CHAPTER 2: LEGENDRE POLYNOMIALS

I. Solutions or Hints to Selected Problems:

1. (Problem 2.11) Show the integral

Z 1

−1
dxxlPn (x) =

2n+1l!

µ
l + n

2

¶
!

(l + n+ 1)!

µ
l − n
2

¶
!

, (0.1)

where

(l − n) = |even integer| . (0.2)

Solution:

We show the solution for the special case where n = l :

Inn =

Z 1

−1
dxxnPn (x) . (0.3)

Using the Rodriguez formula [Eq. (2.60)] we write the integral

Inn =
1

2nn!

Z 1

−1
xn

dn

dxn
(x2 − 1)n, (0.4)

which after n−fold integration by parts gives

Inn =
1

2n

Z 1

−1
(1− x2)ndx. (0.5)

Comparing with the beta function [Eq. (13.151)]:

B(r, s) =
Γ(r)Γ(s)

Γ(r + s)
=

Z 1

0

tr−1(1− t)s−1dt, (0.6)
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we finally obtain the desired result as

Inn =
2n+1(n!)2

(2n+ 1)!
. (0.7)

For the general case, follow the same procedure and use the properties
of gamma functions [Eqs. (13.136) and (13.155)].

2. Using the Cauchy integral formula:

dnf(z0)

dzn0
=
n!

2πi

I
C

f(z)dz

(z − z0)n+1
, (0.8)

where f(z) is analytic on and within the closed contour C, and z0 is a
point within C, obtain an integral representation of Pl(x) and P

m
l (x).

Solution:

Using any closed contour C enclosing the point z0 = x on the real axis
and the Rodriguez formula for Pl(x) [Eq (2.60)]:

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l, (0.9)

we can write

Pl(x) =
2−l

2πi

I
C

(z2 − 1)l
(z − x)l+1 dz. (0.10)

Using the definition [Eq. (2.162)]:

Pml (x) = (1− x2)m/2
dm

dxm
Pl(x), (0.11)

we also obtain

Pml (x) =
1

2l2πi

(l +m)!

l!
(1− x2)m/2

I
C

(z2 − 1)l
(z − x)l+m+1 dz. (0.12)

3. In Equation (0.8) C is any closed contour enclosing the point x. Let C
be a unit circle centered at x with the parametrization

z = cos θ + i sin θeiφ. (0.13)

Using φ as the new integration variable, show the following integral
representation:

pml (cos θ) =
(−1)mim
2π

(l +m)!

m!

Z π

−π
[cos θ + i sin θ cosφ]le−imφdφ.

(0.14)
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The advantage of this representation is that the definite integral is taken
over the real domain.

Solution:

Using Equation (0.13) we first write the following relations:

(z − cos θ)l+m+1 = il+m+1 sinl+m+1 θei(l+m+1)φ,
(z2 − 1) = 2i sin θeiφ[cos θ + i sin θ cosφ], (0.15)

dz = − sin θeiφdφ,

which when substituted into Equation (0.12) gives the desired result
[Eq. (0.14)]. Note that x = cos θ.

4. Show that the function

V (x, y, z) = [z + ix cosu+ i sinu]l, (0.16)

where (x, y, z) are the Cartesian coordinates of a point and u is a real
parameter, is a solution of the Laplace equation. Next show that an
integral representation of Pml (cos θ) given in terms of the angles, θ and
φ, of the spherical polar coordinates also yields Equation (0.14) up to a
proportionality constant.

Solution:

First evaluate the derivatives Vxx, Vyy, and Vyy to show that

−→∇ 2V = Vxx + Vyy + Vzz = 0. (0.17)

Since u is just a real parameter,Z π

−π
[z + ix cosu+ i sinu]neimudu (0.18)

is also a solution of the Laplace equation. We now transform x, y, z to
spherical coordinates and let φ− u = ψ, to obtain

rleimφ

Z +π

−π
[cos θ + i sin θ cosψ]le−imψdψ. (0.19)

Comparing with the solution of the Laplace equation: rleimφPml (cos θ),
we see that the integralZ +π

−π
[cos θ + i sin θ cosψ]le−imψdψ, (0.20)

must be proportional to Pml (cos θ). Inserting the proportionality con-
stant gives

Pml (cos θ) =
(−1)mim
2π

(l +m)!

l!

Z +π

−π
[cos θ + i sin θ cosψ]le−imψdψ.

(0.21)
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If we write e−imψ = cosmψ − im sinψ, from symmetry the integral
corresponding to −im sinψ vanishes, thus allowing us to write

Pml (cos θ) =
(−1)mim
2π

(l +m)!

l!

Z +π

−π
[cos θ + i sin θ cosψ]l cosmψdψ.

(0.22)

5. (Problem 2.12)Using the above expression for Pml (cos θ), find P
−m
l (cos θ).

Solution:

The differential equation that Pml (x) satisfies [Eq. (2.21)], where λ =
l(l + 1), depends on l as l(l + 1), which is unchanged when we let l →
−l− 1. In other words, if we replace l with −l− 1 in the right-hand side
of Equation (0.22) we should get the same solution. Under the same
replacement

(l +m)!

l!
= (l +m)(l +m− 1) · · · (l + 1) (0.23)

becomes (−l− 1 +m)(−l− 1 +m− 1) · · · (−l) = (−1)m l!

(l −m)! , hence
we can write

Pml (x) =
(−1)m(−i)ml!
2π(l −m)!

Z +π

−π

cosmψ

[cos θ + i sin θ cosψ]l+1
. (0.24)

Since m appears in the differential equation [Eq. (2.21)] as m2, we can
also replace m by −m in Equation (0.22), thus allowing us to write

P−ml (x) =
(−1)mi−m

2π

(l −m)!
l!

Z +π

−π
[cos θ + i sin θ cosψ]l cosmψdψ

(0.25)

=
(−1)m(i)ml!
2π(l +m)!

Z +π

−π

cosmψ

[cos θ + i sin θ cosψ]l+1
. (0.26)

Comparing Equation (0.26) with Equation (0.24) we obtain

P−ml (x) = (−1)m (l −m)!
(l +m)!

Pml (x). (0.27)

6. (Problem 2.20) Find solutions of the differential equation

2x(x− 1)d
2y

dx2
+ (10x− 3)dy

dx
+

∙
8 +

1

x
− 2λ

¸
y(x) = 0, (0.28)

satisfying the condition

y(x) = finite (0.29)
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in the entire interval x ∈ [0, 1] .Write the solution explicitly for the third
lowest value of λ.

Hint: First check the recursion relation and observe that it is a three-
term recursion relation, then find a transformation that reduces the
differential equation into an equation with a two-term recursion relation.
Next, find a series solution and impose the boundary conditions, which
will give you the allowed values of λ.

II. Additional Discussions

i) Other Recursion Relations For Pml (x)

Operating on the recursion relation [Prob. (2.9b)]:

(l + 1)Pl+1(x)− (2l + 1)xPl(x) + lPl−1(x) = 0 (0.30)

with

(1− x2)m/2 d
m

dxm
(0.31)

and using the relation

(1− x2)m/2 d
mPl
dxm

= Pml , (0.32)

we obtain another recursion relation for Pml as

(l + 1)Pml+1(x)− (2l + 1)xPml (x) + lPml−1(x)

+m(2l + 1)
p
1− x2Pm−1l−1 (x) = 0. (0.33)

Two other useful recursion relations for Pml can be obtained as

(l + 1−m)Pml+1(x)− (2l + 1)xPml (x) + (l +m)Pml−2(x) = 0 (0.34)

and

Pm+2l +
2(m+ 1)x√
1− x2

Pm+1l (x) + (l −m)(l +m+ 1)Pml (x) = 0. (0.35)

To prove the first recursion relation [Eq. (0.34)] we write

d

dx
[Pl+1(x)− Pl−1(x)] =

lX
k=0

akPk(x), (0.36)
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which follows from the fact that the left-hand side is a polynomial of order l.
Using the orthogonality relation of the Legendre polynomials [Eq. (2.118)],
we can evaluate ak as

ak =
2k + 1

2

Z 1

−1
Pk(x)

d

dx
[Pl+1(x)− Pl−1(x)] dx. (0.37)

After integration by parts and using the special values [Eq. (2.86)]:

Pl(1) = 1, Pl(−1) = (−1)l, (0.38)

we obtain

ak = −
2k + 1

2

Z 1

−1
P 0k(x) [Pl+1(x)− Pl−1(x)] dx. (0.39)

In this expression, P 0k(x) is of order k−1. Since Pl+1(x) and Pl−1(x) are orthog-
onal to all polynomials of order l− 2 or lower, ak = 0 for k = 0, 1, . . . , (l− 1).
Hence, we obtain

al = −
2l + 1

2

Z 1

−1
P 0l (x) [Pl+1(x)− Pl−1(x)] dx (0.40)

=
2l + 1

2

Z 1

−1
P 0l (x)Pl−1(x)dx (0.41)

=
2l + 1

2

∙
Pl(x)Pl−1(x)|1−1 −

Z 1

−1
Pl(x)P

0
l−1(x)dx

¸
(0.42)

= 2l + 1. (0.43)

A result, when substituted into Equation (0.36) yields

d

dx
[Pl+1(x)− Pl−1(x)] = (2l + 1)Pl(x). (0.44)

Operating on this with
dm−1

dxm−1
and multiplying with (1 − x2)m/2, we finally

obtain the desired result:

(l + 1−m)Pml+1(x)− (2l + 1)xPml (x) + (l +m)Pml−2(x) = 0. (0.45)

The second recursion relation [Eq. (0.35)] can be obtained by using the
Legendre equation [Eq. (2.22)]:

(1− x2)P 00l − 2xP 0l + l(l + 1)Pl = 0, (0.46)

and by operating on it with

(1− x2)m/2 d
m

dxm
. (0.47)
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ii) Addition Theorem for Spherical Harmonics

Spherical harmonics are defined as [Eq. (2.177)]

Y ml (θ,φ) = (−1)m
s
(2l + 1)

4π

(l −m)!
(l +m)!

eimφPml (cos θ), (0.48)

where the orthogonality relation is given as

Z 2π

0

Z π

0

dφ0dθ0 sin θ0Y m∗l (θ0,φ0)Y m
0∗

l0 (θ0,φ0) = δmm0δll0 . (0.49)

Since spherical harmonics form a complete and an orthonormal set, any suf-
ficiently smooth function, g(θ,φ), can be represented as the series

g(θ,φ) =
∞X
l=0

lX
m=−l

AlmY
m
l (θ,φ), (0.50)

where the expansion coefficients are given as

Alm =

Z 2π

0

Z π

0

dφdθ sin θg(θ,φ)Y m∗l (θ,φ). (0.51)

Substituting Alm back into g(θ,φ) we write

g(θ,φ) =

Z 2π

0

Z π

0

dφ0dθ0 sin θ0g(θ0,φ0)
∞X
l=0

lX
m=−l

Y ml (θ,φ)Y
m∗
l (θ0,φ0). (0.52)

Substituting the definition of spherical harmonics, this also becomes

g(θ,φ) =

Z 2π

0

Z π

0

dφ0dθ0 sin θ0g(θ0,φ0)

×
∞X
l=0

lX
m=−l

(2l + 1)

4π

(l −m)!
(l +m)!

eimφPml (cos θ)e
−imφ0Pml (cos θ

0), (0.53)

g(θ,φ) =

Z 2π

0

Z π

0

dφ0dθ0 sin θ0g(θ0,φ0)

×
∞X
l=0

(2l + 1)

4π

lX
m=−l

(l −m)!
(l +m)!

eim(φ−φ
0)Pml (cos θ)P

m
l (cos θ

0). (0.54)
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Fig. 0.1 Addition Theorem.

In this equation angular coordinates, (θ,φ), give the orientation of the
position vector, −→r = (r, θ,φ), which is also called the field point and −→r 0 =
(r0, θ0,φ0) represents the source point. We now orient our axes so that the
field point, −→r , aligns with the z−axis of the new coordinates. Hence, θ in
the new coordinates is 0 and the angle, θ0, that −→r 0 makes with the z−axis is
γ (Fig. 0.1). We first make a note of the following special values:

Pl(cos 0) = Pl(1) = 1, (0.55)

Pml (cos 0) = P
m
l (1) = 0, m > 0. (0.56)

From spherical trigonometry the angle, γ, between the vectors −→r and −→r 0, is
related to θ,φ, θ0 and φ0 as

cos γ = cos θ cos θ0 + sin θ sin θ0 cos(φ− φ0). (0.57)

In terms of the new orientation of our axes, we now write Equation (0.54) as

g(0,−) =
Z 2π

0

Z π

0

dφ0dθ0 sin θ0g(θ0,φ0)
∞X
l=0

(2l + 1)

4π
{P 0l (cos 0)P 0l (cos θ0)

+
lX

m=1

(l −m)!
(l +m)!

e−imφ0Pml (cos 0)P
m
l (cos θ

0)

+
−1X

m=−l

(l −m)!
(l +m)!

e−imφ0Pml (cos 0)P
m
l (cos θ

0)}. (0.58)

Note that in the new orientation of our axes we are still using primes to denote
the coordinates of the source point −→r 0. That is, the angular variables, θ0 and
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φ0, in Equation (0.58) are now measured in terms of the new orientation of
our axes. Naturally, rotation does not affect the magnitudes of −→r and −→r 0.
Since g(θ,φ) is a scalar function on the surface of a sphere, it’s numerical
value at a given point on the sphere is independent of the orientation of our
axes. Hence, in the new orientation of our axes, the numerical value of g, that
is g(0,−), is still equal to g(θ,φ), where in g(θ,φ) the angles are measured in
terns of the original orientation of our axes. Hence we can write

g(θ,φ) = g(0,−) =
Z 2π

0

Z π

0

dφ0dθ0 sin θ0g(θ0,φ0)
∞X
l=0

(2l + 1)

4π
{Pl(1)Pl(cos γ)

+
lX

m=1

(l −m)!
(l +m)!

e−imφ0Pml (1)P
m
l (cos γ) +

1X
m=−l

(l −m)!
(l +m)!

e−imφ0Pml (1)P
m
l (cos γ)}.

(0.59)

Substituting the special values in Equations (0.55) and (0.56), this becomes

g(θ,φ) =

Z 2π

0

Z π

0

dφ0dθ0 sin θ0g(θ0,φ0)
∞X
l=0

(2l + 1)

4π
Pl(cos γ), (0.60)

Comparison of Equations (60) and (52) gives us the addition theorem of
spherical harmonics:

(2l + 1)

4π
Pl(cos γ) =

lX
m=−l

Y ml (θ,φ)Y
m∗
l (θ0,φ0). (0.61)

Sometimes we need the addition theorem written in terms of Pml (cos θ) as

Pl(cos γ) = Pl(cos θ)Pl(cos θ
0) + 2

m=lX
m=−l

(l −m)!
(l +m)!

Pml (cos θ)P
m
l (cos θ

0) cosm(φ− φ0).

(0.62)

If we set γ = 0, the result is the sum rule

(2l + 1)

4π
=

lX
m=−l

|Y ml (θ,φ)|
2 . (0.63)

Another derivation of the addition theorem using the rotation matrices is
given in Section (11.11.12).
Note: In spherical coordinates a general solution of Laplace equation,−→∇ 2Φ(r, θ,φ) = 0, can be written as

Φ(r, θ,φ) =
∞X
l=0

m=lX
m=−l

[Almr
l +Blmr

−(l+1)]Ylm(θ,φ), (0.64)
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where Alm and Blm are to be evaluated using the appropriate boundary con-
ditions and the orthogonality condition of the spherical harmonics. The fact
that under rotations Φ(r, θ,φ) remains to be solution of the Laplace operator

follows from the fact that the Laplace operator,
−→∇ 2 =

−→∇ · −→∇ , is invariant
under rotations. That is,

−→∇ 2 =
−→∇ 02. On the surface of a sphere, r = R, the

angular part of the Laplace equation reduces to∙
1

sin θ

∂

∂

µ
sin θ

∂

∂θ

¶
+

1

sin2 θ

∂2

∂φ2

¸
Ylm(θ,φ) + l(l + 1)Ylm(θ,φ) = 0, (0.65)

which is the differential equation that the spherical harmonics satisfy.

iii) Asymptotic Forms

In many applications and in establishing the convergence properties of Leg-
endre series, we need to know the asymptotic forms of the Legendre polyno-
mials for large l. For this, we first write the Legendre equation [Eq. (2.22)]
as

P 00l (cos θ) + cot θP
0
l (cos θ) + l(l + 1)Pl(cos θ) = 0 (0.66)

and then substitute

Pl(cos θ) =
u(θ)√
sin θ

, (0.67)

to obtain

u00(θ) +

"µ
l +

1

2

¶2
+

1

4 sin2 θ

#
u(θ) = 0. (0.68)

For sufficiently large values of l, we can neglect the term 1/4 sin2 θ and write
the above equation as

u00(θ) +

µ
l +

1

2

¶2
u(θ) ≈ 0, (0.69)

solution of which can be written immediately as

Pl(cos θ) ≈
Al cos

£¡
l + 1

2

¢
θ + δl

¤
√
sin θ

. (0.70)

In this asymptotic solution, the amplitude, Al, and the phase, δl, may depend
on l. To determine Al, we use the asymptotic solution in the normalization
condition [Eq. (2.105)]:Z π

0

sin θ[Pl(cos θ]
2dθ =

2

2l + 1
, (0.71)
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to find

Al ≈
r
2

πl
. (0.72)

To determine the phase, we make use of the generating function definition
[Eq. (2.65)] for θ = π/2 :

1√
1 + t2

=
∞X
l=0

Pl(0)t
n. (0.73)

If we use the binomial expansion for the left-hand side, for the odd values of
l we find Pl(0) = 0 and for the even values of l the sign of Pl(0) alternates.
This allows us to deduce the value of δl as −π/4, thus allowing us to write
the asymptotic solution as

Pl(cos θ) ≈
r

2

lπ sin θ
cos

∙µ
l +

1

2

¶
θ − π

4

¸
(0.74)

for the sufficiently large values of l for a given θ.

iv) Real Spherical Harmonics

As in “spherical harmonic lighting”, in some applications we require only
the real valued spherical harmonics:

yml =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
2Re(Y ml ) =

√
2Nm

l cos(mφ)Pml (cos θ), m > 0,

Y 0l = N
0
l P

0
l (cos θ), m = 0,

√
2 Im(Y ml ) =

√
2N

|m|
l sin(|m|φ)P |m|l (cos θ), |m| < 0,

(0.75)

where

Nm
l =

s
2l + 1

4π

(l −m)!
(l +m)!

. (0.76)

As can be investigated in the following site:
http://www.quantum-physics.polytechnique.fr/en/pages/p0500.html,

the spherical harmonics with m = 0 define zones parallel to the equator on
the unit sphere. Hence, they are called zonal harmonics. Spherical har-
monics of the form Y m|m| are called sectoral harmonics, while all the other
spherical harmonics are called tesseral harmonics, which usually divide the
unit sphere into several blocks in latitude and longitude.

III. Applications to Computer Graphics and Useful
Sites
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Aside from applications to classical physics and quantum mechanics, spher-
ical harmonics have found interesting applications in computer graphics and
cinematography in terms of a technique called the “spherical harmonic light-
ing”. For the details we refer the reader to Robin Green’s article: Spherical
Harmonic Lighting: The Gritty Details, SCEA Research and Development,
2003. This interesting article can be obtained from the site
http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.

pdf.
More references and other useful information about spherical harmonics

and Legendre polynomials can be found in the following sites:
http://en.wikipedia.org/wiki/Spherical_harmonics,
http://mathworld.wolfram.com/SphericalHarmonic.html.

Selçuk Bayin (October, 2008)


