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CHAPTER 13: COMPLEX INTEGRALS and

SERIES

I. Solutions or Hints to Selected Problems:

1. Let f(z) be an analytic function within and on a simple closed curve C
and let z0 be a point not on C.

If

I1 =

I
C

f 0(z)dz

(z − z0)
(0.1)

and

I2 =

I
C

f(z)dz

(z − z0)2
, (0.2)

then show that I1 = I2 and evaluate I1 in terms of z0.

Solution:

When z0 is within C, using the Cauchy integral theorem [Eqs. (13.6)
and (13.19)] we can write

f(z0) =
1

2πi

I
C

f(z)dz

(z − z0)
(0.3)

and

2πi

n!
f (n)(z0) =

I
C

f(z)dz

(z − z0)n+1
, (0.4)

hence

I1 = I2 = 2πif
0(z0). (0.5)
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When z0 is outside of C and
f 0(z)
(z−z0) and

f 0(z)
(z−z0)2 are analytic within and

on C, then

I1 = I2 = 0. (0.6)

2. Evaluate the integral

I =

I
C

zmz∗ndz, m, n are integers, (0.7)

over the unit circle.

Solution:

Over the unit circle we write

z = eiθ, dz = izdθ, (0.8)

hence

I = i

Z 2π

0

ei(m+1−n)θdθ, (0.9)

=
i

i(m+ 1− n) e
i(m+1−n)θ

¯̄̄2π
0
, (0.10)

=

⎧⎨⎩ 2πi, m+ 1 = n

0, m+ 1 6= n
. (0.11)

3. If a function has an isolated pole of order m :

f(z) =
∞X
n=0

an(z − z0)n +
b1

(z − z0)
+ · · ·+ bm

(z − z0)m
, (0.12)

first show that its residue at z0 can be given as

Res[f(z0)] =
1

(m− 1)! limz→z0

dm−1

dzm−1
[(z − z0)mf(z)] (0.13)

and then find the residues of

f(z) =
z

(z + 1)2(z − 1) . (0.14)

Finally, evaluate the integral

I =

I
C

z dz

(z + 1)2(z − 1) (0.15)
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Fig. 0.1 Contours for Problem 0.3.

over the contours, C1 and C2, shown in Figure (0.1).

Solution:

If f(z) has a pole of order m, then

g(z) = (z − z0)mf(z) (0.16)

is analytic at z0 :

g(z) =
∞X
n=0

an(z − z0)n+m + bm + bm−1(z − z0) + · · ·+ b1(z − z0)m−1,

(0.17)

hence

lim
z→z0

dg(z)

dz
= bm−1, (0.18)

lim
z→z0

d2g(z)

dz2
= 2!bm−2, (0.19)

...

lim
z→z0

dm−1g(z)

dzm−1
= (m− 1)!b1. (0.20)

Since

Res[f(z0)] = b1, (0.21)

we can write

Res[f(z0)] =
1

(m− 1)! limz→z0

dm−1g(z)

dzm−1
, (0.22)

thus proving the desired result.

The given function:

f(z) =
z

(z + 1)2(z − 1) (0.23)
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has a second-order isolated pole at z = −1 and a first-order isolated
pole z = 1, hence we can write its residues as

Res[f(1)] =
1

0!
lim
z→1

d1−1

dz1−1

∙
(z − 1) z

(z + 1)2(z − 1)

¸
(0.24)

=
1

4
(0.25)

and

Res[f(−1)] = 1

(2− 1)!
d2−1

dz2−1
lim
z→−1

∙
(z + 1)2

z

(z + 1)2(z − 1)

¸
(0.26)

= −1
4
. (0.27)

We can now evaluate the integral for path C1 as

I =

I
C1

z dz

(z + 1)2(z − 1) = 2πi
∙
1

4
− (−1

4
)

¸
= πi (0.28)

and for C2 as

I =

I
C2

z dz

(z + 1)2(z − 1) = 2πi
∙
1

4
+ (−1

4
)

¸
= 0. (0.29)

4. (Problem 13.10) The Jacobi polynomials P
(a,b)
n (x), where n = positive

integer, x = cos θ and a, b are arbitrary real numbers are defined by the
Rodriguez formula

P (a,b)n (x) =
(−1)n

2nn!(1− x)a(1 + x)b
dn

dxn
£
(1− x)n+a(1 + x)n+b

¤
, |x| < 1.

(0.30)

Find a contour integral representation for this polynomial valid for |x| <
1 and use this to show that the polynomial can be expanded as

P (a,b)n (cos θ) =
nX
k=0

A(n, a, b, k)

µ
sin

θ

2

¶2n−2k µ
cos

θ

2

¶2k
. (0.31)

Determine the coefficients A(n, a, b, k) for the special case, where a and
b are both integers.

Solution:

Using the Cauchy Theorem [Eq. (13.19)] we obtain

P (a,b)n (x) =
(−1)n
2nn!

1

(1− x)a(1 + x)b
n!

2πi

I
C

(1− z0)n+a(1 + z0)n+b
(z0 − x)n+a dz0,

(0.32)
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Fig. 0.2 Contour for P
(a,b)
n (x).

where C is a closed contour as shown in Figure (0.1).

To evaluate the contour integral we need to write (1− z0)n+a and (1 +
z0)n+b in powers of (z0 − x). When a = integer, we use the binomial
formula to write

(1− z0)n+a = (1− x)n+a
∙
1− (z

0 − x)
(1− x)

¸n+a
(0.33)

= (1− x)n+a
n+aX
k=0

(−1)k (n+ a)!

(n+ a− k)!k!

∙
(z0 − x)
(1− x)

¸k
, (0.34)

= (1− x)n+a
n+aX
k=0

(−1)k (n+ a)k
k!

∙
(z0 − x)
(1− x)

¸k
, (0.35)

where

(n+ a)k = (n+ a)(n+ a− 1)(n+ a− 2) · · · (n+ a+ 1− k). (0.36)

When a 6= integer, we have an infinite sum:

(1− z0)n+a = (1− x)n+a
∞X
k=0

(−1)k (n+ a)k
k!

∙
(z0 − x)
(1− x)

¸k
, (0.37)

which can also be written as

(1− z0)n+a = (1− x)n+a
∞X
k=0

[−(n+ a)]k
k!

∙
(z0 − x)
(1− x)

¸k
, (0.38)

where

[−(n+ a)]k = [−(n+ a)][−(n+ a− 1)][−(n+ a− 2)] · · · [−(n+ a− k + 1)].
(0.39)

Note that when a is an integer, for k > (n+ a) we have

[−(n+ a)]k = 0, (0.40)
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hence we can use Equation (0.38) for all a. Similarly, we write

(1 + z0)n+b = (1 + x)n+b
∞X
j=0

[−(n+ b)]j
j!

∙
(z0 − x)
(1 + x)

¸j
(−1)j . (0.41)

Using the result I
C

(z0 − x)k+j
(z0 − x)n+1 dz

0 = 2πi δk+1,n, (0.42)

which the reader should show, and for a, b integers, we can now write

P (a,b)n (x) =
(−1)n
2n

(1− x)n(1 + x)n
n+aX
k=0

n+bX
j=0

(−1)2k(n+ a)!
(n+ a− k)!k!

(−1)j(n+ b)!
(n+ b− j)!j!

(0.43)

× 1

(1− x)k(1 + x)j δk+j,n.

Simplification of the above expression yields

P (a,b)n (x) =
nX
k=0

(1− x)n−k(1 + x)k(−1)n+k
2n

(n+ a)!(n+ b)!

k!(n+ a− k)!(b+ k)!(n− k)!
(0.44)

or

P (a,b)n (θ) =
nX
k=0

µ
sin

θ

2

¶2n−k µ
cos

θ

2

¶2k
(−1)n+k(n+ a)!(n+ b)!

k!(n+ a− k)!(b+ k)!(n− k)! .

(0.45)

Note that j = n− k but j + k ≤ n, where j ≥ 0, hence the upper limit
of the sum in Equation (0.44) is n.

An important application of this result is to the reduced rotation matrix
[Eq. (11.276)] as

djm0m(β) =

∙
(j +m0)!(j −m0)!

(j +m)!(j −m)!

¸1/2
×
µ
sin

β

2

¶m0−mµ
cos

β

2

¶m0+m

P
(m0−m,m+m0)
(j−m0) (β). (0.46)

5. (Problem 13.16 and Problem 9.11) First use the factorization method
to show that the spherical Hankel functions of the first kind:

h
(1)
l = jl + inl, (0.47)
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can be expressed as

h
(1)
l (x) = (−1)lxl

∙
1

x

d

dx

¸l
h
(1)
0 (x) (0.48)

= (−1)lxl
∙
1

x

d

dx

¸lµ−ieix
x

¶
. (0.49)

and then use the above result to define h
(1)
l (x) by a contour integral in

the j0-plane, j0 = t0 + is0, where

d

dt
=
1

x

d

dx
. (0.50)

Indicate your contour by carefully showing the singularities to be avoided.

Solution:

Using the substitution

yl(x) = xh
(1)
l (x) (0.51)

in Equation (6.43), it is easy to show that yl(x) satisfies the differential
equation

y00l +

∙
1− l(l + 1)

x2

¸
yl(x) = 0. (0.52)

We now solve the above differential equation via the factorization method
(Chapter 9). Since

r(x, l) = − l(l + 1)
x2

, (0.53)

λ = 1, (0.54)

using the table in Infeld and Hull (Bayin, 2006) for type C, we find

K(x, l) =
l

x
, (0.55)

μ(l) = 0. (0.56)

This gives the ladder operators as

O± = ±
d

dx
− l

x
. (0.57)

The normalized ladder operators yield

yl+1 =
1p

λ− μ(l + 1)

∙
d

dx
− l + 1

x

¸
yl, (0.58)

yl−1 =
1p

λ− μ(l)

∙
− d
dx
− l

x

¸
yl. (0.59)
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Using Equations (0.55) and (0.56) we write Equation (0.58) as

yl+1 =
−1√
1− 0

∙
d

dx
− l + 1

x

¸
yl, (0.60)

where an extra minus sign is introduced for convention. We now sub-
stitute

ul(x) =
yl(x)

xl+1
(0.61)

to write

xl+2ul+1 = −
½
d

dx
− l + 1

x

¾
ulx

l+1, (0.62)

= −
½
dul
dx
xl+1 + (l + 1)xlul −

(l + 1)

x
ulx

l+1

¾
, (0.63)

= −xl+1 dul
dx
. (0.64)

Iterating the above result:

ul+1 = −
1

x

dul
dx
, (0.65)

as

ul+1 = (−1)2
1

x

d

dx

µ
1

x

d

dx
ul−1

¶
= (−1)3 1

x

d

dx

µ
1

x

d

dx

¶µ
1

x

d

dx
ul−2

¶
· · · .

(0.66)

we eventually reach

ul+1 = (−1)l+1
µ
1

x

d

dx

¶l+1
u0. (0.67)

Since

y0 = xh
(1)
0 = −ieix, (0.68)

which comes from the solution of Equation (0.52), we can also write

y0
x
=
−ieix
x

, (0.69)

y1 = xh
(1)
1 = −

µ
d

dx
− 1
x

¶
y0, (0.70)

y2 = xh
(1)
2 = (−1)2

µ
d

dx
− 2
x

¶µ
d

dx
− 1
x

¶
y0, (0.71)

...

yl = xh
(1)
l . (0.72)
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Fig. 0.3 The dotted line indicates the branch cut and t is any point on the real axis
of the complex j0-plane within C.

Using Equations (0.61) and (0.72) in Equation (0.67), we obtain the
desired result as

h
(1)
l (x) = (−1)lxl

µ
1

x

d

dx

¶lµ−eix
x

¶
. (0.73)

To find the contour integral representation we let

1

x

d

dx
=
d

dt
, (0.74)

dt = xdx, (0.75)

hence

t =
x2

2
, (0.76)

x =
√
2t, (0.77)

to write Equation (0.67) as

ul = −(−1)li
dl

dtl

Ã
ei
√
2t

√
2t

!
(0.78)

=
−i(−1)ll!
2πi

I
C

ei
√
2j0dj0√

2j0(j0 − t)l . (0.79)

That is,

h
(1)
l (x) =

−i(−1)ll!
2πi

xl
I
C

ei
√
2j0dj0√

2j0(j0 − t)l , (0.80)

where C is as shown in Figure (0.3).

6. (Extra problem) Using the integral definition of h
(1)
l (x) found in the

previous problem and the transformation

z00 = − [2j
0]1/2

x
, (0.81)
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show that an even more useful integral definition can be obtained as

h
(1)
l (x) =

(−1)l2ll!
πxl+1

I
Cz00

e−ixzdz00

[(z00 − 1)(z00 + 1)]l+1 .

Compare the two contours, C and Cz00 .

7. (Problem 13.9) Using contour integral techniques evaluateZ +∞

−∞

sin2 x dx

x2(1 + x2)
. (0.82)

Solution:

First note that z = 0 is not a pole and then show that

I =
n π

4
(e−2 − 1) + π

4
(e−2 − 1) + π

o
, (0.83)

=
π

2
[e−2 + 1]. (0.84)

II. Integral Representation of Bessel Functions

Using the generating function definition of Jn(x), which is derived in Bayin
(2008):

exp

∙
x

2

µ
t− 1

t

¶¸
=
∞X
n=0

tnJn(x) (0.85)

we can write the integral definition

Jn(x) =
1

2πi

I
C

exp
£
x
2

¡
t− 1

t

¢¤
tn+1

dt, (0.86)

where t is now a point on the complex t-plane and C is a closed contour
enclosing the origin. We can extend this definition to the complex z-plane as

Jn(z) =
1

2πi

I
C

exp
£
z
2

¡
t− 1

t

¢¤
tn+1

dt, |arg z| < π

2
, (0.87)

where Jn(z) satisfies the differential equation [Eq. (6.21)]∙
z2
d2

dz2
+ z

d

dz
+ (z2 − n2)

¸
Jn(z) = 0. (0.88)

One can check this by substituting Equation (0.87) into (0.88). To extend
this definition to the noninteger values of n, we write the integral

gn(z) =
1

2πi

Z
C0

exp
£
z
2

¡
t− 1

t

¢¤
tn+1

dt, |arg z| < π

2
, (0.89)
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Fig. 0.4 Path for 1
2H

(1)
n (z).

Fig. 0.5 Path for 1
2
H
(2)
n (z).

where C 0 is a path in the complex t-plane. We operate on gn(z) with the
Bessel’s differential operator to get∙
z2
d2

dz2
+ z

d

dz
+ (z2 − n2)

¸
gn(z) (0.90)

=
1

2πi

Z
C0

dt

tn+1
exp

∙
z

2

µ
t− 1

t

¶¸(
z2

4

µ
t− 1

t

¶2
+
z

2

µ
t− 1

t

¶
+ z2 − n2

)
(0.91)

=
1

2πi

Z
C0
dt
d

dt

(
exp

£
z
2

¡
t− 1

t

¢¤
tn

∙
z

2

µ
t+

1

t

¶
+ n

¸)
(0.92)

=
1

2πi
[Gn(z, t2)−Gn(z, t1)] , (0.93)

where

Gn(z, t) =
exp

£
z
2

¡
t− 1

t

¢¤
tn

∙
z

2

µ
t+

1

t

¶
+ n

¸
(0.94)

and t1 and t2 are the end points of the path C
0. Obviously, for a path that

makes the difference in Equation (0.93) zero, we have a solution of the Bessel’s
equation. For the integer values of n, choosing C 0 as a closed path that encloses
the origin does the job, which reduces to the Schläfli definition [Eq. (0.87)].
For the noninteger values of n, we have a branch cut, which we choose to be
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Fig. 0.6 Contour for Jn(z) =
1
2 [H

(1)
n (z) +H

(2)
n (z)].

Fig. 0.7 For the integer values n there is no need for the branch cut, hence the path
for the integral definition of Jn(z) can be deformed into C.

along the negative real axis. Along the real axis, Gn(z, t) has the limits

Gn(z, t)→ 0 as t→ 0+ and t→ −∞. (0.95)

Hence, the two paths, C1 and C2, shown in Figures (0.4) and (0.5) give two

linearly independent solutions corresponding to H
(1)
n (z) and H

(2)
n (z), respec-

tively. Their sum gives

1

2
[H(1)

n (z) +H(2)
n (z)] = Jn(z). (0.96)

We can now write Jn(z) for general n as

Jn(z) =
1

2πi

Z
C

exp
£
z
2

¡
t− 1

t

¢¤
tn+1

dt, |arg z| < π

2
, (0.97)

where the contour is given in Figure (0.6). For the integer values of n there
is no need for a branch cut, hence the contour can be deformed into C as
shown in Figure (0.7). Furthermore, since the integrand is now single valued,
we can also collapse the contour to one enclosing the origin (Fig. 0.8).
In Equation (0.97) we now make the transformation

t =
2s

z
(0.98)
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Fig. 0.8 Path for Jn(z), where n takes integer values can be taken as any closed path
enclosing the origin.

to write

Jn(z) =
1

2πi

³z
2

´n Z
C

ds
exp

h
s− z2

4s

i
sn+1

. (0.99)

Expanding e−z
2/4s :

e−z
2/4s =

∞X
r=0

(−1)r
r!

z2r

22rsr
, (0.100)

we write

Jn(z) =
³z
2

´n ∞X
r=0

(−1)r
r!

³z
2

´2r 1

2πi

Z
C

ds ess−n−r−1. (0.101)

The integral is nothing but one of the integral representations of the gamma
function (see the next section of this supplement):

1

Γ(z)
=

1

2πi

Z
C

dt ett−z, (0.102)

which the reader can show to lead to the series expression

Jn(z) =
³z
2

´n ∞X
r=0

(−1)r
r!Γ(n+ r + 1)

³z
2

´2r
. (0.103)

An other useful formula can be obtained by using the contour integral
representation in Equation (0.87) and the substitution

t = eiθ, (0.104)

which allows us to write

Jn(z) =
1

2πi

Z 2π

0

eiz sin θ

e(n+1)iθ
ieiθdθ (0.105)

=
1

2π

Z 2π

0

ei(z sin θ−nθ)dθ. (0.106)
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Fig. 0.9 Contour for the Hankel definition of Γ(z).

This yields the Bessel’s integral [Eq. (6.48)] as

Jn(z) =
1

π

Z π

0

cos(nθ − z sin θ)dθ. (0.107)

III. Analytic Continuation of the Gamma Function

We have seen that the gamma function with real argument is defined as
[Eq. (13.133)]

Γ(x) =

Z ∞
0

dt e−ttx−1, x > 0. (0.108)

This formula can be analytically continued to the right-hand side of the z-
plane easily as

Γ(z) =

Z ∞
0

dt e−ttz−1, Re z > 0. (0.109)

The above integral is convergent only for Re z > 0. A definition valid in the
entire z-plane exists and has been given by Hankel as

Γ(z) =
1

2i sinπz

Z
C

dt e−ttz−1, (0.110)

where the integral is now taken in the complex t-plane over the contour shown
in Figure (0.9). In this definition, the branch cut of tz−1 is located along the
negative real axis as

tz−1 = e(z−1) ln t = e(z−1)(ln|t|+iθ), − π ≤ θ < π. (0.111)

As we deform the contour without touching either the branch point or crossing
over the branch cut, the integral in Equation (0.110) reduces to two integrals
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over straight paths; one just over the branch cut and the other just below:Z
C

dt e−ttz−1 =

Z
C

dt e−te(z−1)(ln|t|+iθ) (0.112)

=

Z −∞
0

dt e−te(z−1)(ln|t|+iπ) −
Z 0

−∞
dt e−te(z−1)(ln|t|−iπ)

(0.113)

=

Z ∞
0

dt e−te−(z−1) ln|t|
h
e(z−1)iπ − e−(z−1)iπ

i
(0.114)

= 2i sinπz

Z ∞
0

dt e−te−(z−1) ln|t|. (0.115)

Substituting this into Equation (0.110) gives Equation (0.109), thus proving
their equivalence.
Equation (0.110) tells us that Γ(z) has simple poles located at

z = −n, n = 0, 1, 2, . . . . (0.116)

We now write

sinπz = (−1)n sinπ(z + n) (0.117)

' (−1)nπ(z + n), (0.118)

hence at z = −n, we can collapse the contour in Equation (0.110):Z
C

dt e−ttz−1, (0.119)

to a closed contour about the origin. Considering that near the origin t−n−1

is single valued, thus we obtain the integralZ
C

dt e−tt−n−1 =
1

n!
2πi. (0.120)

In other words,

Γ(z) ' (−1)n
n!

1

z + n
, (0.121)

that is, the residue of Γ(z) at z = −n is

(−1)n
n!

. (0.122)

Finally, we use Equation (13.146):

B(u, v) =
Γ(u)Γ(v)

Γ(u+ v)
(0.123)
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and the definition of the beta function [Eq. (13.149)]:

B(u, v) =

Z ∞
0

dt
tu−1

(1 + t)u+v
, (0.124)

in conjunction with the integral representation we obtained [Eq. (0.110)] with
the identifications

u = z, (0.125)

v = 1− z, (0.126)

we obtain the following useful property of the gamma functions [Eq. (13.161)]:

Γ(z)Γ(1− z) = Γ(1)B(z, 1− z) (0.127)

=

Z ∞
0

dt
tz−1

1 + z
(0.128)

=
π

sinπz
. (0.129)

Writing the above result as

1

Γ(z)
=
sinπz

π
Γ(1− z) (0.130)

and substituting Equation (0.110) for Γ(1− z), one obtains Equation (0.102):

1

Γ(z)
=

1

2πi

Z
C

dt ett−z, (0.131)

used to derive Equation (0.103).

IV. Useful Sites and Sources

For the introductory topics of complex analysis and additional examples,
we recommend Essentials Mathematical Methods in Science and Engineering:

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470343796.html.

For the biography of Cauchy we refer to

http://en.wikipedia.org/wiki/Cauchy

and

http://scienceworld.wolfram.com/biography/Cauchy.html.

On complex analysis we recommend the websites

http://en.wikipedia.org/wiki/Complex_analysis
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and

http://mathworld.wolfram.com/Cauchy-RiemannEquations.html.

In particular, we recommend the website by Prof. J.A. Mathews, where
many interesting examples with computer graphics and applications with
Mathematica and Maple, along with links to other useful internet sources
can be found:

http://mathews.ecs.fullerton.edu/c2000/,

Selçuk Bayin (December, 2008)


