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CHAPTER 9: STURM-LIOUVILLE

SYSTEMS ANDTHEFACTORIZATIONMETHOD

I. Solutions or Hints to Selected Problems:

1. (Problem 9.1) Starting from the first canonical form of the Sturm-
Liouville equation:

d

dx

∙
p(x)

dΨ(x)

dx

¸
+ q(x)Ψ(x) + λw(x)Ψ(x) = 0, x ∈ [a, b] , (0.1)

derive the second canonical form:

d2ymλ (z)

dz2
+ {λ+ r(z,m)} ymλ (z) = 0, (0.2)

where

r(z,m) =
q

w
+
3

16

∙
1

w

dw

dz
+
1

p

dp

dz

¸2
− 1
4

∙
2

pw

dp

dz

dw

dz
+
1

w

d2w

dz2
+
1

p

d2p

dz2

¸
, (0.3)

by using the transformations

y(z) = Ψ(x) [w(x)p(x)]1/4 (0.4)

and

dz = dx

∙
w(x)

p(x)

¸1/2
. (0.5)

Solution:
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First write the differential operator

d

dx

∙
p(x)

d

dx

¸
(0.6)

in terms of z as

d

dx

∙
p(x)

d

dx

¸
= w

d2

dz2
+
1

2

∙r
w

p

dp

dx
+

r
p

w

dw

dx

¸
d

dz
. (0.7)

Next operate with this on Ψ(z) :

w
d2Ψ

dz2
+
1

2

∙r
w

p

dp

dx
+

r
p

w

dw

dx

¸
dΨ

dz
. (0.8)

Using

Ψ(z) = [w(x)p(x)]−1/4 y(z) (0.9)

and considering p, q,w and y as functions of z, evaluate the derivatives
and simplify. Finally, use these in Equation (0.1) to obtain the desired
result as

d2ymλ (z)

dz2
+ {λ+ r(z,m)} ymλ (z) = 0. (0.10)

2. (Problem 9.2) Derive the normalization constants in

Y ml (θ,φ) =

s
2l + 1

2

(l −m)!
(l + 1)!

1

2π
[L+]

m
Pl(cos θ) (0.11)

and

Y −ml (θ,φ) =

s
2l + 1

2

(l −m)!
(l + 1)!

1

2π
[L−]

m
Pl(cos θ). (0.12)

Check these formulas by writing Y2m(θ,φ), where m = −2,−1, 0, 1, 2,
explicitly.

Solution:

We show only the first formula [Eq. (0.11)]. First write [Eq. (9.173)]

Yl,m+1(θ,φ) =
1p

(l −m)(l +m+ 1)
L+Ylm(θ,φ), (0.13)

where [Eq. (9.171)]

L+ = e
iφ

∙
∂

∂θ
+ i cot θ

∂

∂φ

¸
. (0.14)
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Next we operate m−fold on Yl0 with L+ to write

Ylm(θ,φ) = Nlm(L+)
mYl0(θ,φ). (0.15)

We finally evaluate Nlm as

Nnm =
1p

l(l − 1) · · · (l −m+ 1)(l + 1)(l + 2) · · · (l +m)
(0.16)

=

s
(l −m)!l!
(l +m)!l!

(0.17)

=

s
(l −m)!
(l +m)!

. (0.18)

Note that

Yl0 =

r
2l + 1

2
Pl(cos θ)

ei(0)φ√
2π

(0.19)

=

r
2l + 1

2

1

2π
Pl(cos θ). (0.20)

For the second equation [Eq. (0.12)], use the relations given in Equations
(9.177) and (9.178).

3. (Problem 9.4) Derive Equation (9.195), which is given as

d2V (z)

dz2
+

∙
λ+

l(l + 1)

cosh2 θ

¸
V (z) = 0. (0.21)

Solution:

Start with Equation (9.193):

d2Θ

dθ2
+ cot θ

dΘ

dθ
+

∙
l(l + 1)− m2

sin2 θ

¸
Θ(θ) = 0 (0.22)

and make the transformations

z = ln [tan(θ/2)] , Θ(θ)→ V (z), (0.23)

to write the derivatives

d

dθ
=

1

sin θ

d

dz
, (0.24)

d2

dθ2
=

1

sin2 θ

d2

dz2
− 1

sin2 θ cos−1 θ

d

dz
. (0.25)

Finally, substitute into Equation (0.22) and simplify.
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4. (Problem 9.11) Use the factorization method to show that the spher-
ical Hankel functions of the first kind:

h
(1)
l = jl + inl (0.26)

can be expressed as

h
(1)
l (x) = (−1)lxl

∙
1

x

d

dx

¸l
h
(1)
0 (x) (0.27)

= (−1)lxl
∙
1

x

d

dx

¸lµ−ieix
x

¶
. (0.28)

Hint: Introduce

ul(x) = yl(x)/x
l+1 (0.29)

in

y00l +

∙
1− l(l + 1)

x2

¸
yl = 0. (0.30)

Solution:

Helmholz equation:

∇2Ψ+ k2Ψ = 0, (0.31)

in spherical polar coordinates can be separated by the substitution

Ψ(r, θ,φ) = Rl(r)Ylm(θ,φ), (0.32)

where Ylm(θ,φ) are the spherical harmonics and Rl(r) satisfies

d2Rl
dr2

+
2

r

dRl
dr

+

∙
k2 − l(l + 1)

r2

¸
Rl(r) = 0. (0.33)

If we substitute

Rl(r) =
gl(r)√
r

(0.34)

we obtain

r2g00l + rg
0
l +

∙
k2r2 − (l + 1

2
)2
¸
gl(r) = 0. (0.35)

Since the spherical Bessel functions, jl(kr), nl(kr), (kr), satisfy the same
differential equation with Rl(kr) [Eq. (6.43) and Eq. (0.33)], we can
write

Rl(r) =
gl(r)√
r
=

r
π

2

Jl+1/2(kr)√
kr

= jl(kr). (0.36)
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Since they all satisfy the same differential equation, similar expressions
for the other spherical Bessel functions [Eq. (6.41)] can be written. We
now substitute

Rl(kr) =
yl(kr)

kr

=
yl(x)

x
, (0.37)

where x = kr, and obtain the differential equation that yl(x) satisfies:

d2yl
dx2

+

∙
1− l(l + 1)

x2

¸
yl(x) = 0. (0.38)

This is in second canonical form. Using the table given in Infeld and
Hull (Bayin, 2006) we can write the normalized ladder operators [Eq.
(9.48)] as

£± = ±
d

dx
− l

x
, (0.39)

which allows us to write

yl+1(x) =

∙
d

dx
− l + 1

x

¸
yl(x), (0.40)

yl−1(x) =

∙
− d
dx
− l

x

¸
yl(x). (0.41)

We now use the substitution

ul(x)x
l+1 = yl(x) (0.42)

to obtain

ul+1 =

∙
1

x

d

dx

¸
ul(x). (0.43)

For l = 0, this gives

u1 =

∙
1

x

d

dx

¸
u0(x). (0.44)

Iterating this formula l times, we obtain

ul =

∙
1

x

d

dx

¸l
u0(x). (0.45)

Since we can write

Rl(x) = h
(1)
l (x), (0.46)
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Equation (0.37) gives

xh
(1)
l (x) = yl(x). (0.47)

Also using Equation (0.42) we have

ul(x) =
xh

(1)
l (x)

xl+1

=
h
(1)
l (x)

xl
, (0.48)

which for l = 0 becomes

u0(x) = h
(1)
0 (x). (0.49)

Finally, substituting Equations (0.48) and (0.49) into Equation (0.45)
we obtain the desired expression:

h
(1)
l (x) = (−1)lxl

∙
1

x

d

dx

¸l
h
(1)
0 (x). (0.50)

We have introduced the factor (−1)l to match the conventional phase.

5. (Problem 9.12) Using the factorization method, find a recursion rela-
tion relating the normalized eigenfunctions y(n, l, r) of the differential
equation

d2y

dr2
+

∙
2

r
− l(l + 1)

r2

¸
y − 1

n2
y = 0 (0.51)

to the eigenfunctions with l ± 1.
Hint: First show that

l = n− 1, n− 2, ..., l = integer

and the normalization is Z ∞
0

y2(n, l, r)dr = 1.

Solution:

First convert to second canonical form and then use the table given in
Infeld and Hull (Bayin, 2006) to find the normalized ladder operators.

6. (Problem 9.15) The spherical Bessel functions jl(x) are related to the
solutions of

d2yl
dx2

+

∙
1− l(l + 1)

x2

¸
yl(x) = 0,
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(regular at x = 0) by

jl(x) =
yl(x)

x
.

Using the factorization technique, derive recursion formulae

i) Relating jl(x) to jl+1(x) and jl−1(x).

ii) Relating j0l(x) to jl+1(x) and jl−1(x) .

Solution:

This is already in second canonical form. First use the table in Infeld
and Hull (Bayin, 2006) to find the normalized ladder operators and then
generate the desired recursion relations.

II. Useful Sites

Additional references and other useful information about the Sturm-Liouville
theory can be found in the following sites:

http://en.wikipedia.org/wiki/Ladder_operators,
http://scienceworld.wolfram.com/physics/LadderOperator.html.

Selçuk Bayin (November, 2008)


