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CHAPTER 7: HYPERGEOMETRIC
FUNCTIONS

[. Solutions or Hints to Selected Problems:

1. (Problems 7.1, 7.2, 7.4—7.7) Using the Pochhammer symbol:

(@), =ala+1) - (a+r—1) (0.1)
_ T(a+7)
= 7“&) , (0.2)

where r is a positive integer and (a)p = 1, we can write the hypergeo-
metric function [Eq. (7.12)] as

F(a,b,c;x) —Zw%ﬂi—: (0.3)

r=0 C)T

Hypergeometric functions are also written as 2Fj(a,b, c;x), which fol-
lows from the general definition

mEn(ar,az,. .. am,b1,ba, ...  by;x)
> (al)T ce (am)r x"

= -_— 0.4
7;0 (bl)r e (bn)r 7! ( )

Hypergeometric function o Fy (a, b, ¢; ©) satisfies the hypergeometric equa-
tion [Eq. (7.1)]:

z(1—2)y" +[c— (a+ b+ 1)z]y — aby(z) = 0. (0.5)
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Many of the special functions of physics and engineering can be written
in terms of the hypergeometric function:

1—2x

Pl(x) = QFl(—l,l+1,1; ), (06)
m _(l+m)!(l—x2)m/2 B 1—x
P (x) = (=) 2 2B (m —lm+ 1+ 1m+ 1 ——),
(0.7)
I'(n+2X) 1 1-—=
A _ _ .
C’n(x)—in!r(”\) o F( n,n+2/\,)\—|—2, 5 ), (0.8)
1 _
Un(z) = nv/T— 22 yFy(—n+ 1,n + 1,;; =5, (0.9)
11—
T,(z) = 2F1(—n,n,§;Tx). (0.10)

Similarly, using the confluent hypergeometric function, M (a, ¢; x), which
is also written as

T

g
8]

1Fi(a,c;x) = Z (a)

= (c)y !
we can write
e—i;v T, 1 -
(@) = —= ()" 1Fi(n + 3, 2n + 152ix), (0.12)
2n)! 1
Hap(x) = (*1)"(71—3 1Fi(—n, 5;332), (0.13)
L2020+ 1)lz 3
Hoa @) = (22T 2 )
Ln(z) = 1Fi(—n, L), (0.15)
r k+1
Ly(z) = [ntk+l) 1Fi(—n,k+ 1;2). (0.16)

n!I'(k+ 1)
Show these relations.
Solution:

To prove these relations we can write the series expressions for the hy-
pergeometric functions and then compare with the series representations
of the corresponding function. For example, consider

—). (0.17)




Using
n!
(—n), = (=17 I = (0.19)
0, r>(n+1),
and
(1), = & :'T)!, (1), =7, (0.20)
we obtain
1—z = (n+7r)! ,
2F1(—l,l+1,1;T):;m_—r)!)(r!)2<l’—1) . (021)

To obtain the desired result, we need the Taylor series expansion of
P;(x) around x =1 as

(x— 1)

Px) =3 A7 (), (0.22)
r=0 :

where Pl(r)(l) stands for the 7" derivative of P,(z) evaluated at x =
1. Using the generating function [Eq. (2.65)] we can evaluate these
derivatives as

1 (r+10)!

P = ali—ryr =T (0.23)
0, l<r

which when substituted into Equation (0.22) and compared with Equa-
tion (0.21) yields the desired result. Of course, we can also use the
method in Section (7.2). That is, by making an appropriate transfor-
mation of the independent variable in the hypergeometric equation and
then by comparing the result with the equation at hand to find the
parameters.

. Using the fact that confluent hypergeometric series is convergent for all
x, which can be verified by standard methods, find the solutions of

2
1
2y + {—% + kx + 1 m?}y(x) =0 (0.24)

for the interval x € [0, c0].
Solution:

First obtain the transformation,

y(x) = x(%fm)eﬁ”ﬂw(x), (0.25)



that reduces the above differential equation into a differential equation
with a two-term recursion relation and then find the solution for w(z)
in terms of the hypergeometric functions.

. Show that the transformation
t—1—t (0.26)

transforms the basic integral representation of the hypergeometric func-
tion [Eq. (7.27)]:

I'(c) Lab=1(1 —t)e=b1dt
Fi(a,b,c;x) = 1 16> 0
o F1(a,b, c;x) F(b)F(c—b)/O 0= ta)" , Tealc > realb > 0,
(0.27)
into an integral of the same form and then prove that
oF 1 (a,b,c;2) = (1 —x)~? o F1(a,c — b, ¢ %) (0.28)
Solution:
Substituting ¢ — 1 — ¢ in the integral definition [Eq. (0.27)]:
I'(c) L1 — )b tgeb1dt
Fi(a,b,c;x) = 0.29
2F1(0,0,6.2) = F5pe =) /0 I—(1-Da)e (0.29)
and rearranging terms as
2F1(a7 ba & IE)
L'(c) ! b—1,c—b—1 - at \7°
=" 1—1t)""t° 1-— ‘11— dt
T (c—b) /0 (1-1) (1-2) z -1
(0.30)
yields the desired result.
. Drive the following relation.
F'e)'(c—a—>b
2F1 ((1, b7 & 1) = (C) (C a ) (031)

I'(c—a)T(c—1b)
Solution:

Use the integral definition [Eq. (0.27)] and the definition of the beta
function and the properties of the gamma function given in Problem
7.10.

. (Problem 7.10) Prove the integral representations

F(C) 1 tb71(1 _ t)cfbfl
F jT) = 1 1 .
2 F1(a,b,c;x) T(O)T(c =) /0 = t2)" dt, realc > realb >0
(0.32)



and
F 1
1Fi(a, ¢ x) = %/@ e (1 —t)°7*"1dt, realc > reala > 0.
(0.33)
Solution:

We show the first one. Start with the basic series definition of the
hypergeometric equation and write

oFi(a,b,c;x) = Z (az;)(b),, C:—T (0.34)
r=0 r '
_ Z T(a+ 7T+ r)T(c) :c_r (0.35)

Using the relation between the beta and the gamma functions,

I'(p)l'(q)
B(p,q) = , 0.36
P9 =Ty (0.36)
we write this as
I'(c) > Llc—b)T'(b+r)] a”
Fi(a,b,c;x) = T -
2F1(0.5,62) = ST e =) ; (a+7) [ T(ctr) o
I'(c) > x”
= T B —b)—.
()T ()T (c —b) ;J (a+m)Bl+re=b)5
(0.37)
We now use the integral definition of the beta function:
1
B(p,q) = / P11 — ) dt, p>0, ¢ >0, (0.38)
0
to write
F(C> . ! bdr— _p— x”
F b.c: — T t+T11—th1—.
2Fi(00,0) = sorpre g 2T ”/0 (=g diny
(0.39)
Finally, rearrange and use the binomial expansion
_ T(a+7) (xt)"
1— ¢ = _ .
(1—at) ; @ (0.40)

to get the desired result.



6. (Problem 7.3) Derive the Kummer formula

M(a,c;x) =€e"M(c — a,c; —x). (0.41)

Solution:

We write the integral definition:

1Fi(a, ¢ x) = % /01 e"t (1 — )7 1dt, realc > reala > 0,
(0.42)
and make the transformation
t—1—t¢. (0.43)

Comparing the result with the integral definition above gives the Kum-
mer formula.

Remember that

M(a,c;z) = 1Fi(a,c;x). (0.44)

II. Useful Sites

More references and other useful information about the hypergeometric
functions can be found in the following sites:

http://mathworld.wolfram.com/HypergeometricFunction.html,
http://en.wikipedia.org/wiki/Hypergeometric_series,

For applications with Mathematica® one can use the site
http://functions.wolfram.com/HypergeometricFunctions/.

Selguk Bayin (October, 2008)



