
1

Supplements to Mathematical Methods in Science and
Engineering

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470041420.html

CHAPTER 16: INTEGRAL TRANSFORMS

For additional discussions and examples on Fourier series, Fourier analysis
and integral transforms we recommend Essentials of Mathematical Methods
in Science and Engineering :

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470343796.html.

I. Solutions or Hints to Selected Problems:

1. Show that the Fourier sine, Fs, and the Fourier cosine, Fc, transforms
satisfy:

Fc {f 0(t)} = ωFs {f(t)}−
r
2

π
f(0), (0.1)

Fs {f 0(t)} = −ωFc {f(t)} , (0.2)

where

Fs {f(t)} =
r
2

π

Z ∞
0

f(t) sinωt dt, (0.3)

Fc {f(t)} =
r
2

π

Z ∞
0

f(t) cosωt dt (0.4)

and f(t)→ 0 when t→ ±∞. Using these results also find

Fc {f 00(t)} and Fs {f 00(t)} . (0.5)

Solution:
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Using integration by parts we obtain the first relation:

Fc {f 0(t)} =
r
2

π

Z ∞
0

df(t)

dt
cosωt dt (0.6)

=

r
2

π

∙
f(t) cosωt|∞0 −

Z ∞
0

f(t)
d cosωt

dt
dt

¸
(0.7)

=

r
2

π

∙
−f(0) + ω

Z ∞
0

f(t) sinωt dt

¸
(0.8)

= ωFs {f(t)}−
r
2

π
f(0). (0.9)

For the second relation we follow similar steps. For the remaining two
relations we obtain

Fc {f 00(t)} = −ω2Fc {f(t)}−
r
2

π
f 0(0) (0.10)

and

Fs {f 00(t)} = −ω2Fs {f(t)}+ ω

r
2

π
f(0). (0.11)

2. Using the results established in the first problem, evaluate the Fourier
sine transform

Fs
©
e−at

ª
. (0.12)

Solution:

Since

f(t) = e−at, f 0(t) = −af(t), f 00(t) = a2f(t), (0.13)

we write

Fs {f 00(t)} = Fs
©
a2f(t)

ª
= a2Fs {f(t)} . (0.14)

We now write the Fourier sine transform of the second derivative of f(t)
[Eq. (0.11)] as

Fs {f 00(t)} = −ω2Fs {f(t)}+ ω

r
2

π
f(0), (0.15)

which when combined with equation (0.14) gives

Fs
©
e−at

ª
=

r
2

π

ω

a2 + w2
. (0.16)



3

3. Fourier transformations in three dimensions are defined as [Eqs. (16.68)
and (16.69)]

Φ(
−→
k ) =

1
3
√
2π

Z ∞
−∞

Z ∞
−∞

Z ∞
−∞

d3−→r f(−→r ) ei
−→
k ·−→r , (0.17)

f(−→r ) = 1
3
√
2π

Z ∞
−∞

Z ∞
−∞

Z ∞
−∞

d3
−→
k Φ(

−→
k ) e−i

−→
k ·−→r . (0.18)

Write the Fourier transform of a spherically symmetric function, that
is,

f(−→r ) = f(r). (0.19)

Solution:

For spherically symmetric problems we write

−→
k ·−→r = kr cos θ (0.20)

and use the volume element:

d3−→r = r2 sin θ drdθdφ, (0.21)

to write the Fourier transform F {f(−→r )} as

F {f(−→r )} = 1

(2π)3/2

Z 2π

0

dφ

Z ∞
0

f(r)

∙Z π

0

e−ikr cos θ sin θ dθ

¸
r2dr

(0.22)

=
1

(2π)3/2

Z ∞
0

f(r)

∙Z π

0

1

ikr
e−ikr cos θ

¸π
0

r2dr (0.23)

=

r
2

π

1

k

Z ∞
0

f(r)r sin kr dr, (0.24)

which is now a one dimensional integral.

4. Evaluate the integral

I =

Z ∞
−∞

sin2 x

x2
dx. (0.25)

Solution:

We first find the Fourier transform of a square wave:

Π(t) =

½
1, |t| ≤ 1,
0, |t| > 1. , (0.26)
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as

g(ω) = F {Π(t)} = 1√
2π

Z ∞
−∞
Π(t)eiωtdt (0.27)

=
1√
2π

Z 1

−1
eiωtdt (0.28)

=
1√
2π

2 sinω

ω
. (0.29)

We also note that Z ∞
−∞

|Π(t)|2 dt = 2. (0.30)

We now write Z ∞
−∞

|g(ω)|2 dω = 4

2π

Z ∞
−∞

sin2 ω

ω2
dω (0.31)

and use the Parceval’s theorem (16.71):Z ∞
−∞

|Π(t)|2 dt =
Z ∞
−∞

|g(ω)|2 dω, (0.32)

to write

2 =
4

2π

Z ∞
−∞

sin2 ω

ω2
dω, (0.33)

which yields the desired result asZ ∞
−∞

sin2 ω

ω2
dω = π. (0.34)

5. Solve the inhomogeneous Helmholtz equation,

y00 − k20y0(t) = f(t), (0.35)

with the following boundary conditions:

y(t)→ 0, f(t)→ 0 as t→ ±∞. (0.36)

Solution:

We first take Fourier transform of the differential equation as

F
©
y00 − k20y0(t)

ª
= F {f(t)} . (0.37)

Since Fourier transforms are linear, we can write this as

F {y00(t)}− k20F {y(t)} = F {f(t)} . (0.38)
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We now utilize the formula [Eq. (16.50)] which gives the transformation
of a derivative, to write

−(ω2 + k20)F {y(t)} = F {f(t)} . (0.39)

Assuming that the Fourier transforms by(ω) and bf(ω) of y(t) and f(t),
respectively, exist, we obtain

by(ω) = − bf(ω)
(ω2 + k20)

. (0.40)

This is the Fourier transform of the needed solution. For y(t), we need
to find the inverse transform:

y(t) = F−1 {by(ω)} (0.41)

=
1√
2π

Z ∞
−∞

by(ω)e−iωtdω (0.42)

=
1√
2π

Z ∞
−∞
−

bf(ω)
(ω2 + k20)

e−iωtdω. (0.43)

In this expression the inverse Fourier transforms of bf(ω) and − 1
(ω2+k20)

can be written immediately as

F−1
nbf(ω)o = f(t) (0.44)

and

F−1
½
− 1

(ω2 + k20)

¾
= − 1

2k0
e−k0|t|. (0.45)

To find the inverse Fourier transform of their product, we utilize the
convolution Theorem [Eq. (16.64)]:Z ∞

−∞
a(t0)b(t− t0)dt0 =

Z ∞
−∞

A(ω)B(ω)e−iωtdω, (0.46)

where A(ω) and B(ω) are the Fourier transforms of two functions, a(t)
and b(t), respectively. In Equation [Eq. (0.46)] we take

B(ω) = − 1

(ω2 + k20)
, (0.47)

A(ω) = bf(ω), (0.48)

along with their inverses:

b(t) = − 1

2k0
e−k0|t|, (0.49)

a(t) = f(t), (0.50)
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to obtain the desired solution as

− 1

2k0

Z ∞
−∞

f(t0)e−k0|t−t
0|dt0 =

Z ∞
−∞
−

bf(ω)
(ω2 + k20)

e−iωtdω (0.51)

= y(t). (0.52)

This gives the solution in terms of an integral which can be evaluated
for a given f(t).

6. (Extra): Show the following integral by using the Fourier transforms:Z ∞
0

sin3 x

x
dx =

π

4
(0.53)

II. Conventions and Properties of Fourier Trans-
forms
We have defined the Fourier transform as

g(ω) = F {f(t)} = 1

(2π)1/2

Z ∞
−∞

f(t)eiωtdt, (0.54)

where the inverse Fourier transform is defined as

f(t) = F−1 {g(ω)} = 1

(2π)1/2

Z ∞
−∞

g(ω)e−iωtdω. (0.55)

In some books the sign of iωt in the exponential is reversed. In applications
the final result is not affected. For the coefficients of the integrals sometimes
the following asymmetric convention is adopted:

g(ω) = F {f(t)} = 1

2π

Z ∞
−∞

f(t)eiωtdt, f(t) = F−1 {g(ω)} =
Z ∞
−∞

g(ω)e−iωtdω,

(0.56)

where the factor of 1
2π can also be taken to be in front of the second integral

in Equation (0.56):

g(ω) = F {f(t)} =
Z ∞
−∞

f(t)eiωtdt, f(t) = F−1 {g(ω)} = 1

2π

Z ∞
−∞

g(ω)e−iωtdω.

(0.57)

In spectral analysis instead of the angular frequency ω, we usually prefer to
use the frequency, ν = ω

2π , to write

g(ν) = F {f(t)} =
Z ∞
−∞

f(t)e2πiνtdt, (0.58)

f(t) = F−1 {g(ν)} =
Z ∞
−∞

g(ν)e−2πiνtdν. (0.59)
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Note that the factors in front of the integrals have disappeared all together.
We have already mentioned that both the Fourier transform and its inverse

are linear, that is,

F {c1f1(t) + c2f2(t)} = c1F {f1(t)}+ c2F {f2(t)} , (0.60)

F−1 {c1g1(ω) + c2g2(ω)} = c1F−1 {g1(ω)}+ c2F−1 {g2(ω)} , (0.61)

where c1 and c2 are in general complex constants. In addition to linearity,
the following properties, which can be proven by direct substitution, are very
useful:
Shifting:
If the time parameter t is shifted by a positive real constant, a, we get

F {f(t− a)} = eiωag(ω). (0.62)

Note that shifting changes only the phase, not the magnitude of the transfor-
mation. Similarly, if the frequency is shifted by a, we obtain

F−1 {g(ω − a)} = e−iatf(t). (0.63)

Scaling:
If we rescale the time variable as

t→ at, a > 0, (0.64)

we get

F {f(at)} = 1

a
g(
ω

a
). (0.65)

Rescaling ω as ω → aω gives

F−1 {g(aω)} = 1

a
f(
t

a
). (0.66)

Transform of an integral:
Given the integral Z t

−∞
f(t0)dt0, (0.67)

we can write its Fourier transform as

F
½Z t

−∞
f(t0)dt0

¾
= − 1

iω
F {f(t)} . (0.68)

Modulation:
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For a given real number, ω0, we have [Eq. (0.62)]

F
©
f(t)e−iω0t

ª
= g(ω − ω0),

F
©
f(t)eiω0t

ª
= g(ω + ω0), (0.69)

which allows us to write

F {f(t) cos(ω0t)} =
1

2
g(ω − ω0) +

1

2
g(ω + ω0), (0.70)

F {f(t) sin(ω0t)} =
1

2i
g(ω + ω0)−

1

2i
g(ω − ω0). (0.71)

These are called the modulation relations.

III. Discrete Fourier Transform

Fourier series, also called the trigonometric Fourier series, are extremely
useful in analyzing a given signal, f(x), in terms of sinusoidal waves. In
exponential form the Fourier series are given as

f(x) =
∞X

n=−∞
cne

2πinx/l, 0 < x < l, (0.72)

where the expansion coefficients, cn, also called the Fourier coefficients, are
given as

cn =
1

l

Z l

0

f(x)e−2πinx/ldx. (0.73)

This series can either be used to represent a piecewise continuous function
in the bounded interval [0, l], or a periodic function with the period l. From
the above equations everything looks straight forward. Given a signal, f =
f(x), we first evaluate the definite integral in Equation (0.73) to find the
Fourier coefficients, cn, which are then used to construct the Fourier series
in Equation (0.72). This gives us the composition of the signal in terms of
its sinusoidal components. However, in realistic situations there are many
difficulties. First of all, in most cases the input signal, f, can only be given
as a finite sequence numbers with N terms, f = {f1, f2, . . . , fN} , which may
not always be possible to express in terms of a smooth function. Besides, even
if we could find a smooth function, f(x), to represent the data, the definite
integral in Equation (0.73) may not be possible to evaluate analytically. In
any case, to crunch out a solution we need to develop a numerical theory of
Fourier analysis so that we can feed the problem into a digital computer.
We now divide the interval [0, l] by introducing N evenly spaced points,

xk, as

xk =
kl

N
, 0 ≤ k ≤ N − 1, (0.74)
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where each subinterval has the length

∆xk =
l

N
∆k (0.75)

=
l

N
. (0.76)

We approximate the integral in Equation (0.73) by the Riemann sum:

efn = 1

l

N−1X
k=0

f(xk)e
−2πinxk/l∆xk (0.77)

=
1

l

N−1X
k=0

f(
kl

N
)e−2πikn/N∆xk, (0.78)

where we have written the left hand side as efn. In general, we can define the
discrete Fourier transform of any sequence of N terms,

f = {fj}
= {f0, f1, . . . , fN−1} , (0.79)

as the set ef = nefjo
=
nef0, ef1, . . . , efN−1o , (0.80)

where

efj = 1

N

N−1X
k=0

fke
−2πikj/N , j = 0, 1, . . . , N − 1. (0.81)

The inverse discrete Fourier transform can be written similarly as

fk =
N−1X
j=0

efje2πikj/N , k = 0, 1, . . . , N − 1. (0.82)

To prove the inverse discrete Fourier transform we substitute efj [Eq. (0.81)]
into Equation (0.82):

fk =
N−1X
j=0

"
1

N

N−1X
l=0

fle
−2πilj/N

#
e2πikj/N (0.83)

=
1

N

N−1X
j=0

N−1X
l=0

fle
2πi(k−l)j/N (0.84)

=
1

N

N−1X
l=0

fl

⎡⎣N−1X
j=0

³
e2πi(k−l)/N

´j⎤⎦ . (0.85)
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For the inverse discrete transform to be true we need

fk =
N−1X
l=0

fl

⎡⎣ 1
N

N−1X
j=0

³
e2πi(k−l)/N

´j⎤⎦ (0.86)

=
N−1X
k=0

flδlk, (0.87)

where

δlk =
1

N

N−1X
j=0

³
e2πi(k−l)/N

´j
. (0.88)

When l = k, we have Equation (0.88) becomes

δkk =
1

N

N−1X
j=0

(1)j (0.89)

Since the sum in the above equation is the sum of N 1’s, we obtain the desired
result, that is,

δlk = 1, l = k. (0.90)

When k 6= l, since k and l are integers, k − l is also an integer satisfying
|k − l| < 1, hence

¯̄
e2πi(k−l)/N

¯̄
< 1, thus we can use the geometric sum

formula:

MX
n=0

xn =
xM+1 − 1
x− 1 , |x| < 1, (0.91)

to write

δlk =
1

N

N−1X
j=0

e2πi(k−l)N/N − 1
e2πi(k−l)/N − 1 , l 6= k, (0.92)

=
1

N

N−1X
j=0

e2πi(k−l) − 1
e2πi(k−l)/N − 1 (0.93)

= 0, (0.94)

thus proving the inverse discrete Fourier transform formula.
In the discrete Fourier transform, the set

{f0, f1, . . . , fN−1} (0.95)

defines a function, f(x),whose domain is the set of integers

{0, 1, 2, . . . , N − 1} , (0.96)
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and the range of which is

{f(0) = f0, f(1) = f1, . . . , f(N − 1) = fN−1} . (0.97)

In other words, in the discrete Fourier transform we either describe a function
in terms of its discretization:

f(x) =

½
f(0.

l

N
), f(1.

l

N
), . . . , f((N − 1). l

N
)

¾
, (0.98)

or deal with phenomena that can only be described by a sequence of numbers:

f(j) = {fj} = {f0, f1, . . . , fN−1} . (0.99)

The discrete Fourier transform can also be viewed as an operation that maps
the set of numbers,

{f0, f1, . . . , fN−1} , (0.100)

onto the set nef0, ef1, . . . , efN−1o , (0.101)

which is composed of the transformed variables.
For example, consider the set composed of two numbers (N = 2) :

f(i) = {3, 1} , i = 0, 1. (0.102)

The discrete Fourier transform of this set can be found as

ef(0) = 1

2

h
f(0)e−2πi0.0/2 + f(1)e−2πi1.0/2

i
= 2, (0.103)

ef(1) = 1

2

h
f(0)e−2πi0.1/2 + f(1)e−2πi1.1/2

i
= 1, (0.104)

that is,

ef(j) = {2, 1} , j = 0, 1. (0.105)

Using the inverse discrete Fourier transform [Eq. (0.82)] we can recover the
original set as

f(0) =
h ef(0)e2πi0.0/2 + ef(1)e2πi0.1/2i = 3, (0.106)

f(1) =
h ef(0)e2πi1.0/2 + ef(1)e2πi1.1/2i = 1. (0.107)

This result is true in general for arbitrary N and it is usually quoted as
the reciprocity theorem. In other words, the discrete Fourier transform
possesses a unique inverse.



12

With the discrete Fourier transform, we now have an algorithm that can
be handled by a computer. If we store the numbers f(j), j = 0, 1, . . . ,N − 1,
and e−2πikj/N , k = 0, 1, . . . , N − 1, into two separate registrars, R1 and R2,
as

R1 = f1 f2 · · · fN−1 (0.108)

and

R2 = e−2πi0j/N e−2πi1j/N · · · e−2πi(N−1)j/N , (0.109)

so that they can be recalled as needed, we can find how many basic operations,
additions, multiplications and divisions, that a computer has to do to compute
a discrete Fourier transform, that is, to completely fill a third register R3 with
the Fourier transformed values:

R3 = ef1 ef2 · · · efN−1 .
From Equation (0.81) it is seen that to find the jth element, efj , we recall the
kth entry, fk,of R1 and then multiply it with the kth entry, e−2πikj/N , of the
second registrar R2. This establishes only one of the terms in the sum [Eq.
(0.81)]. This means one multiplication for each term in the sum. Since there
are N terms in the sum, the computer performs N multiplications. Then we
add these N terms, which requires N − 1 additions. Finally, we divide the
result by N, that is, one more operation. All together, to evaluate the jth
term, we need

N + (N − 1) + 1 = 2N (0.110)

basic operations. There areN such terms to be calculated, hence the computer
has to perform

2N2 (0.111)

basic operations to find the discrete Fourier transform of a set with N terms.
Since each basic operation takes a certain amount of time for a given computer,
this is also a measure of how fast the computation will be carried out.

IV. Fast Fourier Transform

We start with a sequence of N terms, {f(j)}, with the discrete Fourier
transform, { ef(j)}, where j = 0, 1, . . . , N −1. Let us assume that N is even so
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that we can write N
2 = M, where M is an integer. We now split {f(j)} into

two new sequences

{f1(j)} = {f(2j)} (0.112)

and

{f2(j)} = {f(2j + 1)}, (0.113)

where j = 0, 1, . . . ,M − 1. Note that both {f1(j)} and {f2(j)} are periodic
sequences with the period M. We can now use Equation (0.81) to write their
discrete Fourier transforms as

{ ef1(j)} = 1

M

M−1X
k=0

f1(k)e
−2πikj/M , j = 0, 1, . . . ,M − 1, (0.114)

{ ef2(j)} = 1

M

M−1X
k=0

f2(k)e
−2πikj/M , j = 0, 1, . . . ,M − 1. (0.115)

We now return to the discrete Fourier transform of the full set {f(j)} and
write

{ ef(j)} = 1

N

N−1X
k=0

f(k)e−2πikj/N , (0.116)

which can be rearranged as

{ ef(j)} = 1

N

M−1X
k=0

f(2k)e−2πi(2k)j/N +
1

N

M−1X
k=0

f(2k + 1)e−2πi(2k+1)j/N .

(0.117)

Using the relations

e−2πi(2k)j/N = e−2πikj/M , (0.118)

e−2πi(2k)j/N = e−2πikj/Me−2πij/N , (0.119)

which the reader should show, we write Equation (0.117) as

{ ef(j)} = 1

N

M−1X
k=0

f1(k)e
−2πikj/M +

e−2πij/N

N

M−1X
k=0

f2(k)e
−2πikj/M , (0.120)

where j = 0, 1, . . . , N − 1. This is nothing but

{ ef(j)} = { ef1(j)}
2

+
e−2πij/N{ ef2(j)}

2
, j = 0, 1, . . . , N − 1. (0.121)
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Since both { ef1(j)} and { ef2(j)} are periodic with the period M , that is,
{ ef1or2(j +M)} = { ef1or2(j)}, (0.122)

we have extended the range of the index j to N − 1.
We have seen that the sum in Equation (0.81) requires 2N2 basic operations

to yield the discrete Fourier transform { ef(j)}. All we have done in Equation
(0.121) is to split the original sum into two parts. Let us see what advantage

comes out of this. In order to compute the discrete Fourier transform, { ef(j)},
via the rearranged expression [Eq. (0.121)], we first have to construct the

transforms { ef1(j)} and { ef2(j)}, each of which requires 2M2 basic operations.
Next, we need M multiplications to establish the product of the elements of
{ ef2(j)} with e−2πij/N , which will be followed by the M additions of the ele-

ments of the sets { ef1(j)} and e−2πij/N{ ef2(j)}, each of which hasM elements.

Finally, each element of the sum, { ef1(j)}+ e−2πij/N{ ef2(j)} has to be divided
by 2, that is, N divisions to yield the final result:

{ ef(j)} = 1

2

h
{ ef1(j)}+ e−2πij/N{ ef2(j)}i , j = 0, 1, . . . ,N − 1. (0.123)

All together, this means

2M2 + 2M2 +M +M +N = N2 + 2N (0.124)

operations, where we have substituted N =M/2 in the last step.

In summary, calculating { ef(j)}, j = 0, 1, . . . ,N − 1, directly requires 2N2

basic operations, while the new approach, granted that N is even, requires
N2 +2N operations. The fractional reduction in the number of operations is

N2 + 2N

2N2
=
1

2
+
1

N
, (0.125)

which approaches to 1
2 as N gets very large. Since each operation takes a

certain time in a computer, a reduction in the number of operations by half
implies a significant reduction in the operation time of the computer.
Wait! we can do even better with this divide and conquer strategy. If N

is divisible by 4, we can further subdivide the sequences {f1(j)} and {f2(j)}
into 4 new sequences with M/2 terms each. This will reduce the number of
operations further. In fact, it can be shown that when N is divisible by 2p,
p > 0 integer, we can reduce the number of elementary operations to

(4p− 1)N = 4N log2N −N. (0.126)

For large N , compared to 2N2, this is remarkably small, hence will result
in significant reduction of the running time of our computer. In cases where
our sequence do not have the desired number of terms, we can always add
sufficient number of zeros to match the required number.
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Fig. 0.1 A narrow beam going through a homogeneous material of thickness ∆s.

This procedure which tremendously shortens the number of operations
needed to compute a discrete Fourier transform was first introduced by Tukey
and Cooley in 1965. It is now called the fast Fourier transform and it is
considered to be one of the most significant contributions to the field of nu-
merical analysis.

V. Radon Transforms
Radon transforms were introduced by an Austrian mathematician, Johann

Radon, in 1917. They are extremely useful in medical technology and establish
the mathematical foundations of computational axial tomography, that is,
CAT scanning. Radon transforms are also very useful in electron microscopy
and reflection seismology.
To introduce the basic properties of the two-dimensional Radon transforms,

consider a narrow beam of X-ray travelling along a straight line (Fig. 0.1).
As the beam passes through a homogeneous material of length ∆s, the initial
intensity, I0, will decrease exponentially according to the formula

I = I0e
−αρ∆s, (0.127)

where, ρ is the linear density along the direction of propagation and α is a
positive constant depending on other physical parameters of the medium. If
the beam is going through a series of parallel layers described by αi, ρi, and
∆si, where the index, i = 1, 2, . . . , n, denotes the ith layer, we can write the
final intensity as

I = I0e
−[α1ρ1∆s1+α2ρ2∆s2+···+αnρn∆sn]. (0.128)

In the continuum limit we can write this as

I = I0e
−
R
l
α(−→x )ρ(−→x )ds−→x , (0.129)

where −→x = (x, y) is a point on the ray l, andZ
l

α(−→x )ρ(−→x )ds−→x (0.130)
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Fig. 0.2 Reference axes s and r, projection angle θ and the detector plane d.

is a line integral taken over a straight line representing the path of the X-ray.
We usually write

f(x, y) = α(−→x )ρ(−→x ), (0.131)

where f(x, y) represents the attenuation coefficient of the object, hence Equa-
tion (0.129) becomes

− ln
µ
I

I0

¶
=

Z
l

f(x, y)dsl. (0.132)

The line integral on the right-hand side is called the Radon transform of
f(x, y). Along the path of the X-ray, which is a straight line with the equation
yl = yl(x), f(x, yl(x)) represents the attenuation coefficient along the path of
the X-ray.
The method used in the first scanners was to use a system of parallel lines

that represents the X rays that scan a certain slice of a three dimensional
object, where f(x, y) represents the attenuation coefficient of the slice. For a
mathematical description of the problem, we parametrize the parallel rays in
terms of their perpendicular distances to a reference line, s, and the projection
angle θ (Fig. 0.2). Now the scanning data consists of a series of Radon
transforms of the attenuation coefficient, f(x, y), projected onto the plane
of the detector (Fig. 0.3). The projection-slice theorem says that given
an infinite number of one-dimensional projections of an object taken from
infinitely many directions, one could perfectly reconstruct the original object,
that is, f(x, y).
The Radon transform for a family of parallel lines, l, is shown as

R2[f ](l) =

Z
l

f(x, yl)dsl, (0.133)

where the subscript 2 indicates that this is a two-dimensional Radon transform
and R2[f ] is a function of lines. In general, f(x, y) is a continuous function
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Fig. 0.3 Projection of f(x, y) onto the detector surface d.

on the plane that vanishes outside a finite region. For a given ray, l, we
parametrize a point on the ray as

x = s cos(π/2 + θ) + r cos(π + θ), (0.134)

y = s sin(π/2 + θ) + r sin(π + θ), (0.135)

or as

x = −s sin θ − r cos θ, (0.136)

y = s cos θ − r sin θ. (0.137)

Hence, we can write Equation (0.133) as

R2[f ](θ, r) =

Z ∞
−∞

f(−s sin θ − r cos θ, s cos θ − r sin θ)ds. (0.138)

Note that on a given ray, that is, a straight line in the family of parallel lines,
r is fixed and s is the variable.
To find the desired quantity that represents the physical characteristics

of the object, f(x, y), we need to find the inverse Radon transform. This
corresponds to integrating the Radon transform at (x, y) for all angles:

f(x, y) =

Z 2π

0

R2[f ](θ,−x cos θ + y sin θ)dθ, (0.139)

where using Figure (0.3) we have substituted

r = −x cos θ + y sin θ, (0.140)
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|−→x | = x, |−→y | = x. (0.141)

This method of inversion is proven to be rather noisy and unstable with
respect to noisy data, hence in applications an efficient algorithm in terms
of its dicretized version, called the filtered back-projection, is preferred. A
lot of research has been done in improving the performance of CAT scanners
and improving the practical means of inverting Radon transforms. Radon
transforms can also be defined in dimensions higher than two (Walker).

V. Additional References and Useful Links

For an interesting application of the fast Fourier transforms to financial
mathematics, we recommend the paper entitled Option Pricing and Fast
Fourier Transform by Peter Carr and Dilip Madan (Journal of Computa-
tional Finance, Summer 1999, 2, no 4, pp. 61-73), where more references to
papers on applications of Fourier transforms to determine option prices can
be found. A pdf file of this article can be found in Prof. Carr’s website:

http://www.math.nyu.edu/research/carrp/research.html.

Other useful information and links to relevant sites on integral transforms
can be found in the following sites:

http://www.intmath.com/Laplace-transformation/Intro.php,
http://en.wikipedia.org/wiki/Integral_transform,

http://mathworld.wolfram.com/IntegralTransform.html,
http://eqworld.ipmnet.ru/en/auxiliary/aux-inttrans.htm,

http://en.wikipedia.org/wiki/Filtered_back_projection#Filtered_

back-projection,
http://en.wikipedia.org/wiki/Tomographic_reconstruction,

http://mathworld.wolfram.com/RadonTransform.html.

We also recommend the following books:
Stade, E., Fourier Analysis, Wiley, Hoboken, NJ, 2005.
Tang, K.T.,Mathematical Methods for Engineers and Scientists 3, Springer,

Berlin, 2007.
Walker, J.S., Fourier Analysis, Oxford University Press, New York, 1988.
Weaver, H.J., Applications of Discrete and Continuous Fourier Analysis,

Wiley, New York, 1983.
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