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CHAPTER 10: COORDINATES and TENSORS

I. Cartesian Tensors and the Theory of Elastic-
ity:

Strain Tensor:
All bodies deform under stress, where every point, −→r , of the undeformed

body is translated into another point, −→r 0 (Fig. 0.1):

−→r → −→r 0, (0.1)
−→r 0 = −→r +−→η (−→r ). (0.2)

We can also write

x0i = xi + ηi, i = 1, 2, 3. (0.3)

The distance between two infinitesimally close points is given as

d−→r 2 = (dx21 + dx22 + dx23)1/2, (0.4)

which after deformation becomes

d−→r 02 = (dx021 + dx022 + dx023 )1/2. (0.5)

Using Equation (0.3) we can write

dx0i = dxi + dηi, (0.6)

= dxi +
3X

k=1

∂ηi
∂xk

dxk. (0.7)

From hereafter we adopt the Einstein summation convention, where the re-
peated indices are summed over. We can now ignore the summation sign in
Equation (0.7) to write

dx0i = xi +
∂ηi
∂xk

dxk, (0.8)
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Fig. 0.1 In a general deformation, every point is displaced.

which allows us to write the distance between two infinitesimally close points
after deformation as

d−→r 02 = dx0idx0i (0.9)

=

µ
dxi +

∂ηi
∂xk

dxk

¶µ
dxi +

∂ηi
∂xl

dxl

¶
(0.10)

= dxidxi +
∂ηi
∂xl

dxidxl +
∂ηi
∂xk

dxidxk +
∂ηi
∂xk

∂ηi
∂xl

dxkdxl. (0.11)

This can also be written as

d−→r 02 = d−→r 2 + 2ekldxkdxl, (0.12)

where

ekl =
1

2

µ
∂ηk
∂xl

+
∂ηl
∂xk

+
∂ηi
∂xk

∂ηi
∂xl

¶
. (0.13)

For small deformations, ηi ¿ xi, we can ignore the second-order terms to
define the strain tensor as

ekl =
1

2

µ
∂ηk
∂xl

+
∂ηl
∂xk

¶
, (0.14)

which is a second-rank symmetric tensor:

ekl = elk. (0.15)

Stress tensor:
Let
−→
F be the force per unit volume and

−→
F dV be the force acting on an

infinitesimal portion of the body, which when integrated over a given volume:Z
V

−→
F dV, (0.16)
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gives the total force acting on that volume of the body. We now assume that
the force

−→
F can be written as the divergence of a second-rank tensor, σik, as

Fi =
∂σik
∂xk

. (0.17)

Using the divergence theorem we can write the ith component of the force asZ
V

FidV =

Z
V

∂σik
∂xk

dV =

I
S

σikdsk, (0.18)

where S is a surface that encloses the volume V and such that the area
element, d−→s , is oriented in the direction of the outward normal to S. The
second-rank tensor, σik, is called the stress tensor. In the above equation,
σikdsk gives the ith component of the force acting on the surface element
when the normal to the surface points in the kth direction. In other words,
σik is the ith component of the force acting on a unit test area when the
normal points in the kth direction.
We now write the torque, Mik, acting on a volume V of the body due to−→

F as the integral

Mik =

Z
V

mikdV (0.19)

=

Z
V

µ
∂σil
∂xl

xk −
∂σkl
∂xl

xi

¶
dV, (0.20)

where the torque per unit volume, mik, is defined as

mik = Fixk − Fkxi (0.21)

=

µ
∂σil
∂xl

xk −
∂σkl
∂xl

xi

¶
. (0.22)

We can also write Mik as

Mik =

Z
V

∂(σilxk − σklxi)

∂xl
dV −

Z µ
σil

∂xk
∂xl
− σkl

∂xi
∂xl

¶
, (0.23)

which after using the partial derivatives:

∂xk
∂xl

= δkl,
∂xi
∂xl

= δil (0.24)

and the divergence theorem for the first integral, yields

Mik =

I
S

(σilxk − σklxi)dsl +

Z
V

(σki − σik)dV. (0.25)
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Assuming that the stress tensor is symmetric (Problem 0.2), we now obtain
Mij as

Mik =

Z
V

mijdV, (0.26)

=

I
S

(σilxk − σklxi)dsl. (0.27)

Thermodynamics and Deformations:
Under external stresses all bodies deform. However, for sufficiently small

strains, when the stresses are removed they all return to their original shapes.
Such deformations are called elastic. When a body is strained beyond its elas-
tic domain, there is always some residual deformation left when the stresses
are removed, which is called plastic deformation.
In practice, we are interested in the stress-strain relation. To find such

a relation we confine ourselves to the elastic domain. Furthermore, we assume
that the deformation is performed sufficiently slowly, so that the entire process
is reversible. Hence we can write the first law of thermodynamics as

dU = TdS − dW, (0.28)

where the infinitesimal work done, dW, for infinitesimal deformations can be
written as

dW =

µ
∂σik
∂xk

¶
δηidV. (0.29)

For a finite deformation, we integrate over the region of interest:Z
V

dW =

Z
V

µ
∂σik
∂xk

¶
δηidV, (0.30)

which after integration by parts becomesZ
V

dW =

I
S

σikδηidsk −
Z
V

σik
∂(δηi)

∂xk
dV. (0.31)

We let the surface, S, be at infinity. Assuming that there are no stresses on
the body at infinity, the surface term in the above integral vanishes. Also
using the symmetry of the strain tensor, we can writeZ

V

dW = −1
2

Z
V

σik

µ
∂(δηi)

∂xk
+

∂(δηk)

∂xi

¶
dV (0.32)

= −1
2

Z
V

σikδ

µ
∂ηi
∂xk

+
∂ηk
∂xi

¶
dV (0.33)

= −
Z
V

σikδeikdV. (0.34)
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In other words, the work done per unit volume, w, is

w = −σikδeik. (0.35)

From now on we consider all thermodynamic quantities like the entropy, s,
work, w, internal energy, u, etc. in terms of their values per unit volume of
the undeformed body and denote them with lower case letters. Now the first
law of thermodynamics becomes

du(s, eik) = Tds+ σikdeik, (0.36)

where the scalar function u(s, eik) is called the thermodynamic potential.
Helmholtz free energy, f(T, eik), is defined as

f(T, eik) = u− Ts, (0.37)

which allows us to write the differential

df = −sdT + σikdeik. (0.38)

Similarly, we write the Gibbs free energy, g(T,σik), as

g(T,σik) = u− Ts− σikeik (0.39)

= f − σikeik, (0.40)

which gives the differential

dg = −sdT − eikdσik. (0.41)

We can now obtain the stress tensor using the partial derivative

σik =

µ
∂u(s, eik)

∂eik

¶
s

, (0.42)

or

σik =

µ
∂f(T, eik)

∂eik

¶
T

. (0.43)

Similarly, the strain tensor can be obtained as

eik = −
µ
∂g(T,σik)

∂σik

¶
T

. (0.44)

In these expressions the subscripts outside the parentheses indicate the vari-
ables held constant.
Connection Between the Shear and the Strain Tensors :
Pure shear is a deformation that preserves the volume but alters the shape

of the body. Since the fractional change in volume is (Problem 0.2)

∆V

V
= tr (eij) = eii, (0.45)
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for pure shear the strain tensor is traceless. In hydrostatic compression, bod-
ies suffer equal compression in all directions, hence the corresponding strain
tensor is proportional to the identity tensor:

eik ∝ δik, (0.46)

and the stress tensor is given as

σik = −Pδik, (0.47)

where P is the hydrostatic pressure. A general deformation can be written as
the sum of pure shear and hydrostatic compression as

eik =

µ
eik −

1

3
δikell

¶
+
1

3
δikell. (0.48)

Note that the first term on the right-hand side is traceless, hence represents
pure shear while the second term corresponds to hydrostatic compression. We
consider isotropic bodies deformed at constant temperature, thus eliminat-
ing the contribution due to thermal expansion. To obtain a relation between
the shear and the stress tensors we first need to find the Helmholtz free energy,
f(T, eik), and then expand it in powers of eik about the undeformed state of
the body, that is, eik = 0. Since when the body is undeformed the stresses
vanish,

σik|eik=0 =
µ
∂f(T, eik)

∂eik

¶
T

¯̄̄̄
eik=0

= 0, (0.49)

there is no linear term in the expansion of f(T, eik). Also, since f(T, eik) is a
scalar function, the most general expression for f(T, eik) valid up to second-
order can be written as

f(T, eik) =
1

2
λ(eii)

2 + μ(eik)
2, (0.50)

where λ and μ are called the Lamé coefficients and e2ii and e
2
ij = eikeki are

the only second-order scalars composed of the strain tensor. We now write
the differential of f(T, eik) as

df = λeiideii + 2μeikdeik (0.51)

and substitute

deii = δikdeik (0.52)

to get

df = λeiiδikdeik + 2μeikdeik (0.53)

= (λeiiδik + 2μeik) deik. (0.54)
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Fig. 0.2 Hydrostatic compression.

This gives the partial derivativeµ
∂f(T, eik)

∂eik

¶
T

= λeiiδik + 2μeik, (0.55)

which is also equal to the stress tensor [Eq. (0.43)]:

σik = λeiiδik + 2μeik. (0.56)

We can also obtain a formula that expresses the strain tensor in terms of
the stress tensor. Using Equation (0.56) we first write the following relation
between the traces:

σii = 3λeii + 2μeii (0.57)

= (3λ+ 2μ)eii, (0.58)

which when substituted back into Equation (0.56) gives

σik = λ
σii

(3λ+ 2μ)
δik + 2μeik (0.59)

and then yields the desired expression as

eik =
1

2μ
σik −

λσii
2μ(3λ+ 2μ)

δik. (0.60)

By considering specific deformations it is possible to relate the Lamé coeffi-
cients to the directly measurable quantities like the bulk modulus, K, shear
modulus, G, Young’s modulus, Y, etc. For example, the bulk modulus is
defined as (Fig. 0.2)

P = −K∆V
V
, (0.61)

where P is the hydrostatic pressure and ∆VV is the fractional change in volume.

Using ∆VV = eii and σii = −3P, which follows from the stress tensor, σik =
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Fig. 0.3 Longitudinally stretched bar.

−P δik, for hydrostatic compressions, we can write [Eq. (0.58)]

−3P = (3λ+ 2μ)∆V
V
, (0.62)

P = −(λ+ 2
3
μ)
∆V

V
, (0.63)

thus obtaining the relation

K = (λ+
2

3
μ). (0.64)

We now consider a long bar of length L with the cross sectional area A
pulled longitudinally with the force (Fig. 0.3)

T = σ33A. (0.65)

Note that σ33 is the only non-zero component of the stress tensor. Young’s
modulus is defined as

σ33 = Y
∆L

L
. (0.66)

As the bar stretches along the longitudinal direction, it gets thinner along the
transverse directions by the relation⎛⎝ ∆x1/x1

or
∆x2/x2

⎞⎠ = −σ∆L
L
, (0.67)

where σ is called the Poisson’s ratio. We now write the displacements as

η1 = x1

µ
−σ∆L

L

¶
, (0.68)

η2 = x2

µ
−σ∆L

L

¶
, (0.69)

η3 = x3

µ
∆L

L

¶
, (0.70)



9

which yields the nonzero components of the strain tensor as

e11 = e22 = −σ
∆L

L
(0.71)

= −σe33, (0.72)

e33 =
∆L

L
. (0.73)

Using Equation (0.56) for σ33 :

σ33 = λekk + 2μe33, (0.74)

we obtain the relation

Y = (−2σ + 1)λ+ 2μ. (0.75)

Similarly, using σ11 = σ22 = 0, Equation (0.56) gives another relation as

0 = (−2σ + 1)λ+ 2μ(−σ). (0.76)

We now consider a metal plate sheared as shown in Figure 0.4 (left), where
the deformations are given as

η1 =
θ

2
x2, η2 =

θ

2
x1, η3 = 0. (0.77)

In this case the only nonvanishing components of the strain tensor [Eq. (0.14)]
are

e12 = e21 = θ/2. (0.78)

Inserting these into Equation (0.56) we obtain

σ12 = μ

µ
θ

2
+

θ

2

¶
= μθ. (0.79)

In engineering shear modulus, G, is defined in terms of the total angle of
deformation (Fig. 0.4 (right)) as σ12 = Gθ, hence

μ = G. (0.80)

Using Equations (0.64), (0.75) and (0.76) we can express the Lamé coefficients,
λ and μ, and the Poisson’s ratio, σ, in terms of the Bulk modulus, K, Young’s
modulus, Y, and the shear modulus, G, which are experimentally easy to
measure.
Hook’s law:
We can also obtain the relation between the stress and the strain tensors

[Eq. (0.56)] by writing the Hook’s law in covariant form as

σij = Eijklekl, (0.81)
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Fig. 0.4 Pure shear.

where Eijkl is a fourth-rank tensor called the elasticity tensor. It obeys the
following symmetry properties:

Eijkl = Eklij = Ejikl = Eijlk. (0.82)

For an isotropic body the most general tensor with the required symmetries
can be written as

Eijkl = λδijδkl + μ(δikδjl + δilδjk), (0.83)

where λ and μ are the Lamé coefficients. Substituting Equation (0.83) into
(0.81) gives

σij = λδijδkk + 2μeij , (0.84)

which is Equation (0.56).
Problem 0.1: Show that

∆V

V
= eii = tr(eij). (0.85)

Problem 0.2: We have written the moment (torque) of the force acting
on a portion of a body as

Mik =

I
S

(σilxk − σklxi)dsl +

Z
V

(σki − σik)dV. (0.86)

When the stress tensor is symmetric, σki = σik, obviously the volume integral
on the right-hand side is zero. However, even when the stress tensor is not
symmetric, under certain conditions it can be made symmetric.
Show that if a stress tensor can be written as the divergence of a third-rank

tensor antisymmetric in the first pair of indices:

σik − σki = 2
∂Ψikl
∂xl

, Ψikl = −Ψkil, (0.87)
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then a third-rank tensor, χikl:

χikl = Ψkli +Ψilk −Ψikl, (0.88)

antisymmetric in the last pair of indices, χikl = −χilk, can be found to trans-
form σik into symmetric form via the transformation

σ0 = σ +
∂χikl
∂xl

(0.89)

as

σ0ik =
1

2
(σik + σki) +

µ
∂Ψilk
∂xl

+
∂Ψkli
∂xl

¶
, σ0ik = σ0ki. (0.90)

Also, show that the forces corresponding to the two stress tensors, σ0and σ,
are identical.
Problem 0.3: Write the components of the strain tensor in cylindrical

and spherical coordinates.

II. Interpretation of the Metric Tensor:

In classical physics space is an endless continuum, in which everything in
the universe exists. In other words, space is the arena on which all processes
take place. We use coordinate systems to assign numbers called coordinates
to every point in space, which in turn allow us to study physical processes in
terms of separations and directions. Obviously, there are infinitely many pos-
sibilities for the coordinate system that one may choose to use. In this regard,
tensors, which are defined in terms of their transformation properties under
coordinate transformations, have proven to be very useful in physics. Since it
contains crucial information regarding the intrinsic properties of the physical
space, the metric tensor plays a fundamental role in physics. However, this
information is not easily revealed by the metric tensor.
Let us consider a two dimensional universe with two dimensional intelligent

bugs living in it. Some of the bugs in this universe use a coordinate system,
which allows them to write the line element as

ds2 = dx2 + dy2, (x, y) ∈ (−∞,∞), (0.91)

while the others prefer to work with a different coordinate system, where the
line element is

ds2 = dr2 + r2dθ2, r ∈ [0,∞), θ ∈ [0, 2π]. (0.92)

In the first coordinate system the metric tensor is obviously the identity
tensor:

gij = I =

µ
1 0
1 1

¶
, (0.93)
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Fig. 0.5 Cartesian and plane polar coordinates.

while in the second coordinate system it is given as

gij =

µ
1 0
0 r2

¶
. (0.94)

A path connecting two points in space can be written in the first coordinate
system as y = y(x), while in the second coordinate system it can be expressed

as r = r(θ). Since the path length, l =
R 2
1
ds, is a scalar, its value does not

depend on the coordinate system used. Since l is basically the length that the
bugs will measure by laying their rulers end to end along the path, it is also
called the proper length. One can also calculate l. The first group of bugs
using the first coordinate system [Eq. (0.91)] will use the formula

l =

Z 2

1

ds =

Z 2

1

dx

s
1 +

µ
dy

dx

¶2
, (0.95)

while the second group of bugs using the second coordinate system [Eq. (0.92)]
will use

l =

Z 2

1

ds =

Z 2

1

dθ

s
r2 +

µ
dr

dθ

¶2
. (0.96)

A group of bugs immediately set out to investigate the properties of their
space by taking direct measurements using rulers and protractors. They draw
circles of various sizes at various locations in their universe and measure their
circumference to radius ratios. Operationally, this is a well defined procedure;
first they pick a point and connect all points equidistant from that point and
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then they measure the (proper) circumference by laying their rulers end to
end along the periphery. To measure the (proper) radius, they lay their rulers
from the center onwards along one of the axes. Their measurements turn out
to be in perfect agreement with their calculations. For the first group of bugs
using the first coordinate system [Eq. (0.91)], equation of a circle is given by

x2 + y2 = r20, r0 = radius. (0.97)

For the second group using Equation (0.92), a circle is simply written as

r = r0. (0.98)

In the first coordinate system, the circumference is calculated as

c =

Z
ds(x2+y2=r20) (0.99)

=

Z
dx

s
1 +

µ
dy

dx

¶2
(0.100)

=

Z
dx³

1− x2

r20

´1/2 (0.101)

= 2πr0, (0.102)

while in the second coordinate system it is found as

c =

Z
ds(r=r0) (0.103)

=

Z
dθ

s
r2 +

µ
dr

dθ

¶2
(0.104)

= r0

Z 2π

0

dθ (0.105)

= 2πr0. (0.106)

On the other hand, in the first coordinate system the radius is calculated as

radius =

Z
ds(y=0) (0.107)

=

Z r0

0

dx

r
1 +

dy

dx
(0.108)

=

Z r0

0

dx (0.109)

= r0, (0.110)
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while in the second coordinate system it is found as

radius =

Z
ds(θ=θ0) (0.111)

=

Z r0

0

dr

r
1 + r2

dθ

dr
(0.112)

=

Z r0

0

dr (0.113)

= r0. (0.114)

In conclusion, no matter how large or small a circle the bugs draw and re-
gardless of the location of these circles, they always find the same number for
the circumference to radius ratio, c/r0, which is twice a mysterious number
they called π. Furthermore, when they draw triangles of various sizes and
orientations, regardless of the location of these triangles, they always find the
interior angles of the triangles add up to the same mysterious number π.
In fact, nothing would have changed even if some of the bugs had used a co-

ordinate system where the line element and the metric are given, respectively,
as

ds2 = (y2 + 1)dx2 + 2(xy + 1)dxdy + (x2 + 1)dy2, (0.115)

gij =

µ
y2 + 1 xy + 1
xy + 1 x2 + 1

¶
. (0.116)

Being intelligent creatures capable of abstract thought, these bugs imme-
diately notice that they are living in a flat universe. In fact, the first metric
is nothing but the Pythagorean theorem in Cartesian coordinates, while the
second metric is the same metric written in plane polar coordinates. The two
coordinate systems are related by the transformation equations

x = r cos θ, (0.117)

y = r sin θ. (0.118)

Similarly, a transformation can be written between the metric in Equation
(0.115) and the first two metrics [Eqs. (0.93) and (0.94)].
Now consider another two dimensional universe, where this time the metric

given as

ds2 =
dr2¡
1− r2

R2

¢ + r2dφ2, r ∈ [0, R] , φ ∈ [0, 2π] . (0.119)

A circle in this universe is defined by

r = r0. (0.120)
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Fig. 0.6 Bugs living on a sphere.

The proper radius, rp, and the proper circumference, cp, that the bugs will
measure in this universe are calculated as

rp =

Z
ds(φ=φ0) =

Z r0

0

dr¡
1− r2

R2

¢1/2 (0.121)

= R sin−1(r0/R). (0.122)

cp =

Z
ds(r=r0) (0.123)

= r0

Z 2π

0

dφ (0.124)

= 2πr0, (0.125)

thus yielding the ratio

cp
rp
=

2πr0

R sin−1(r0/R)
. (0.126)

Clearly, this ratio depends on the size of the circle and only in the limit as the
radius of the circle goes to zero, r0 → 0, or as R→∞, goes to 2π. Expansion
of cp/rp in powers of r0/R :

cp
rp
= 2π

∙
1− 1

6

³r0
R

´2
+ · · ·

¸
, (0.127)

shows that in general these bugs will measure a cp/rp ratio lower than 2π.
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To the bugs this looks rather strange and they argue that there must be a
force field that effects the rulers to give this cp/rp < 2π ratio. In fact, one of
the bugs uses the transformation

r =
ρ

1 + ρ2

4R2

(0.128)

to write the line element [Eq. (0.119)] as

ds2 =
1³

1 + ρ2

4R2

´2 £dρ2 + ρ2dφ2
¤
, (0.129)

which demonstrates that the proper lengths, hence the rulers, in their universe
are indeed shortened by the factor

1³
1 + ρ2

4R2

´ , (0.130)

with respect to a flat universe.
They even develop a field theory, where there is a force field that shortens

the rulers by the factor 1/
³
1 + ρ2

4R2

´
. However, like the electric fields, which

effect only electrically charged objects, this field may also effect only certain
types of matter possessing a new type of charge. To check this, they repeat
their measurements with different rulers made from all kinds of materials they
could find. No matter how hard they try and how precise their measurements
are made, to their surprise, they always find the same circumference to radius
ratio [Eq. (0.126)]. Whatever this field is, apparently effecting everything
precisely the same way. In other words, it is a universal force field. This fact
continues to intrigue them, but not knowing what to do with it, they continue
with the force field concept, which after all appears to work fine in terms of
their existing data.
Then comes a brilliant bug and says that all these years they have been

mesmerized by the beauty and the simplicity of the geometry on flat space,
but the measurements they have been getting could actually indicate that
they may be living on the surface of a sphere. Then the brilliant bug shows
them that the transformation

r

R
= sin θ (0.131)

transforms their line element [Eq. (0.119)] into the form

ds2 = R2dθ2 +R2 sin2 θdφ2, (0.132)

which when compared with line element in three-dimensional space in spher-
ical coordinates:

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2, (0.133)
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Fig. 0.7 Geometry of space is an experimental science.

corresponds to the line element on the surface of a sphere with the radius R
(Fig. 0.6):

r = R. (0.134)

In summary, these bugs do not need a force field to explain their obser-
vations. All they have to do is to accept that they are living on the two
dimensional surface of a sphere in three dimensions. Since the geometry of
space is something experimentally detectable, the fact that they have been
getting the same geometry regardless of the internal structure of their mea-
suring instruments; rulers, protractors, etc., indicates that this new geometry
is universal. That is, it is the geometry of the physical space that everything
exists in.
There is actually another possible geometry for the two dimensional bugs,

where the line element is this time given as

ds2 =
dr2¡
1 + r2

R2

¢ + r2dφ2, r ∈ [0,∞] , φ ∈ [0, 2π] . (0.135)

In this case the ratio of the circumference to the radius of a circle is larger
than 2π :

cp
rp
=

2πr0

R sinh−1(r0/R)
= 2π

∙
1 +

1

6

³r0
R

´2
+ · · ·

¸
, (0.136)

and the interior angle of triangles are less than π. Such surfaces can be visual-
ized as the surface of a saddle (Fig. 0.7). These are the three basic geometries
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for the surfaces in three dimensions. Of course, in general the surfaces could
be something rather arbitrary with lots of bumps and dimples like the surface
of an orange or an apple.

III. Curvature:

We have seen that from the appearance of a metric tensor one could not tell
whether the underlying space is curved or not. A complicated looking metric
with all or some of its components depending on position may very well be
due to an unusual choice of coordinates. Still, the metric tensor possesses all
the necessary information regarding the intrinsic properties of the underlying
space. Intrinsic curvature is defined entirely interms of measurments that
can be carried out in the space itself and not on how the space is embedded in
a higher dimension. Our task is now to find a way to extract this information
from the metric tensor. Furthermore, we would like to find a way that works
not just for two-dimensional surfaces, but also for surfaces with any number
of dimensions and for any shape. Hence, we need a criteria more sophisticated
than the just the circumference to radius ratio of a circle.
Let the intelligent bugs living on the two-dimensional surface of a sphere

transport a small vector over a closed path always pointing in the same direc-
tion so that it remains parallel to itself. This is called parallel transport.
When the vector comes back to its starting point, the bugs will see that the
vector has turned a certain angle ϑ (Fig.0.8). This angle, which is zero in flat
space, for a sufficiently small area enclosed by the path, δA, is proportional
to the area:

δϑ = KδA. (0.137)

The proportionality constant K is called the Gaussian curvature. For
a sphere K = 1/R2. In fact, for a triangular path this angle is precisely
the excess over π for the sum of the interior angles of the triangle. For a
flat space we can take R as infinity, thus obtaining K = 0. For the saddle
like surface in Figure 0.7, the Gaussian curvature is negative: K = −1/R2.
Gaussian curvature can be defined locally in terms of the radii of curvature in
two perpendicular planes as K = 1/R1R2, where for a sphere R1 = R2 = R,
hence K = 1/R2. For a cylinder K = 0, since R1 = R and R2 =∞.
The general description of curvature in many-dimensional surfaces is still

based on parallel transport over closed paths. However, this time δϑ will also
depend on the orientation of the path. The fact that the parallel transported
vectors over closed paths in general do not coincide with themselves, is due
to the fact that the covariant derivatives with respect to j and k in vi;jk do
not commute, vi;jk 6= vi;kj , unless the space is flat. We have mentioned that
the difference between vi;jk and vi;kj is given in terms of a fourth-rank tensor,
Rlijk, called the Riemann curvature tensor, or in short, the curvature
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tensor [Eqs. (10.227) and (10.228)]:

vi;jk − vi;kj = Rlijkvl, (0.138)

where

Rlijk =

½
l

mj

¾½
m

ik

¾
−
½
l

mk

¾½
m

ij

¾
+

∂

∂xj

½
l

ik

¾
− ∂

∂xk

½
l

ij

¾
. (0.139)

To understand the properties of the curvature tensor we now discuss parallel
transport in detail.
Parallel Transport:
Covariant differentiation [Eq. (10.208)] over the entire space is defined as

vi;j =
∂vi

∂xj
+

½
i

jk

¾
vk, (0.140)

where the Chrisfoffel symbols of the second kind are defined as [Eq. (10.202)]½
i

jk

¾
=
gil

2

µ
∂gjl
∂xk

+
∂gkl
∂xj

− ∂gjk
∂xl

¶
. (0.141)

However, we are frequently interested in covariant differentiation along a path
parametrized as xi(τ). Along xi(τ), we can also parametrize a vector in terms
of τ as vi(τ). Now the covariant derivative of vi over the path xi(τ) becomes

Dvi

Dτ
= vi;j

dxj

dτ
(0.142)

=
∂vi

∂xj
dxj

dτ
+

½
i

jk

¾
dxj

dτ
vk (0.143)

=
dvi

dτ
+

½
i

jk

¾
dxj

dτ
vk. (0.144)

Note that Dv
i

Dτ is a covariant expression, hence valid in all coordinate systems.
A vector parallel transported along a curve satisfies

Dvi

Dτ
= 0, (0.145)

that is,

dvi

dτ
= −

½
i

jk

¾
dxj

dτ
vk. (0.146)

For a covariant vector the parallel transport equation becomes

dvi
dτ

=

½
k

ij

¾
dxj

dτ
vk. (0.147)
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Fig. 0.8 Parallel transport.

Parallel transport is what comes closest to a constant vector along a curve in
curved space.
Round Trips via Parallel transport:
We have obtained the formula [Eq. (0.147)] that tells us how a vector

changes when parallel transported along a curve. We now apply this result to
see whether a given vector returns to its initial state when parallel transported
along a small but closed path. If the curve is sufficiently small, we can expand
the Christoffel symbols and the vector vi around some point X = x(τ0) as

Γkij(x) = Γ
k
ij(X) + (x

l(τ)−X l)
∂

∂Xl
Γkij(X) + · · · , (0.148)

vi(τ) = vi(τ0) + Γ
k
ij(X)(x

j(τ)−Xj)vk(τ0) + · · · , (0.149)

where we have written the Christoffel symbols as

Γkij(x) =

½
k

ij

¾
(0.150)

and used Equation (0.147) to first order in (xj(τ) − Xj) to write Equation
(0.149). Substituting Equations (0.148) and (0.149) into (0.147) and keeping
terms of up to second-order we get

vi(τ) ' vi(τ0) +
Z τ

τ0

∙
Γkij(X) + (x

l(τ)−X l)
∂

∂Xl
Γkij(X) + · · ·

¸
×
£
vk(τ0) + vm(τ0)Γ

m
kl(X)(x

l(τ)−X l) + · · ·
¤ dxj(τ)

dτ
dτ. (0.151)
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We could simplify this further to write

vi(τ) ' vi(τ0) + Γkij(X)vk(τ0)
Z τ

τ0

dxj(τ)

dτ
dτ

+

∙
∂

∂X l
Γmij (X) + Γ

k
ij(X)Γ

m
kl(X)

¸
vm(τ0)

Z τ

τ0

(xl(τ)−X l)
dxj

dτ
dτ.

(0.152)

Since for a closed path xi returns to its initial value Xi for some τ1,Z τ1

τ0

dxj

dτ
dτ = 0. (0.153)

This gives the change in value, ∆vi, of the vector vi when parallel transported
over a sufficiently small closed path as

∆vi =

∙
∂

∂X l
Γmij (X) + Γ

k
ij(X)Γ

m
kl(X)

¸
vm(τ0)

Z τ1

τ0

xl(τ)
dxj

dτ
dτ, (0.154)

or as

∆vi =

∙
∂

∂X l
Γmij (X) + Γ

k
ij(X)Γ

m
kl(X)

¸
vm(τ0)

I
xl(τ)dxj . (0.155)

The integral,
H
xl(τ)dxj , is in general nonzero and antisymmetric:I
xl(τ)dxj =

Z τ1

τ0

d(xlxj)

dτ
dτ −

Z τ1

τ0

xj
dxl

dτ
dτ (0.156)

= −
I
xj(τ)dxl, (0.157)

hence we can also write ∆vi as

∆vi =

∙
∂

∂Xj
Γmil (X) + Γ

k
il(X)Γ

m
kj(X)

¸
vm(τ0)

I
xj(τ)dxl (0.158)

= −
∙

∂

∂Xj
Γmil (X) + Γ

k
il(X)Γ

m
kj(X)

¸
vm(τ0)

I
xl(τ)dxj . (0.159)

Adding Equations (0.155) and (0.159) we write

2∆vi =

∙
∂

∂Xl
Γmij (X) −

∂

∂Xj
Γmil (X) + Γ

k
ij(X)Γ

m
kl(X)− Γkil(X)Γmkl(X)

¸
× vm(τ0)

I
xl(τ)dxj . (0.160)

The quantity inside the square brackets is nothing but Rmilj , that is, the cur-
vature tensor, hence

∆vi =
1

2
Rmiljvm(τ0)

I
xl(τ)dxj. (0.161)
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Fig. 0.9 Parallelogram.

This result indicates that a vector, vi, parallel transported over a small closed
path does not return to its initial value unless Rmilj vanishes at X. If we take

our closed path as a small parallelogram with the sides ∆1x
i and ∆2x

j , thenH
xl(τ)dxj are the components of the area of the parallelogram (Fig. 0.9 ):I

xl(τ)dxj = ∆1x
l∆2x

j −∆1xj∆2xl. (0.162)

For a finite closed path C enclosing an area A, we can subdivide A into
small cells each bounded by cN . The change in vi when parallel transported
around C can then be written as the sum.

∆vi =
X
N

∆Nvi. (0.163)

This follows from the fact that the change in vi around the neighboring cells
are cancelled, thus leaving only the outermost cell boundaries making up the
path C.
Algebraic Properties of the Curvature Tensor :
To reveal the algebraic properties of the curvature tensor we write it as

Rijkl = gimR
m
jkl. (0.164)

Using Equation (0.139) this can be written as

Rijkl =
1

2

∙
∂2gjk
∂xl∂xi

− ∂2gik
∂xl∂xj

+
∂2gil

∂xk∂xj
− ∂2gjl

∂xk∂xi

¸
+ gnm

£
ΓnliΓ

m
jk − ΓnkiΓmjl

¤
.

(0.165)

From this equation the following properties are evident:
i) Symmetry:

Rijkl = Rklij (0.166)
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ii) Antisymmetry:

Rijkl = −Rjikl = −Rijlk = Rjilk (0.167)

iii) Cyclicity:

Rijkl +Riljk +Riklj = 0. (0.168)

There is one more symmetry called the Bianchi identity, which is not obvi-
ous but could be shown by direct substitution:
iv) Bianchi identity:

Rijkl;m +Rijmk;l +Rijlm;k = 0. (0.169)

Contractions of the Curvature Tensor:
Using the symmetry property we can contract the first and the third in-

dices to get a very important symmetric second-rank tensor called the Ricci
tensor:

gikRijkl = Rjl, (0.170)

Rjl = Rlj . (0.171)

The antisymmetry property indicates that this is the only second-rank tensor
that can be constructed by contracting the indices of the curvature tensor.
Contracting the first and the third, and then the second and the fourth indices
of the curvature tensor gives us the only scalar, R, that can be constructed
from the curvature tensor as

gjlgikRijkl = g
jlRjl = R

j
j = R. (0.172)

Finally, contracting the Bianchi identity gives

gikRijkl;m + g
ikRijmk;l + g

ikRijlm;k = 0, (0.173)

Rjl;m −Rjm;l +Rkjlm;k = 0. (0.174)

Contracting once more yields

R;m −Rjm;j −Rkm;k = 0, (0.175)µ
Rjm −

1

2
Rδjm

¶
;j

= 0, (0.176)

which can also be written asµ
Rij − 1

2
Rgij

¶
;j

= 0. (0.177)
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Curvature in n dimensions:
The curvature tensor, Rijkl, in n dimensions has n

4 components. In four
dimensions it has 256, in three dimensions 81 and in two dimensions 16 compo-
nents. However, due to its large number of symmetries expressed in Equations
(0.166-0.168) it has only

Cn =
1

12
N2(N2 − 1) (0.178)

independent components. In four dimensions this gives the number of inde-
pendent components as 20, in three dimensions as 6 and in two dimensions
as 1. In one dimension, the curvature tensor has only one component, R1111,
which due to Equation (0.167) or (0.168) is always zero. In other words, in
one dimension we can not have intrinsic curvature. It sounds odd that a
curved wire has zero curvature. However, curvature tensor reflects the inner
properties of the space and not how it is embedded or viewed from a higher
dimension. Indeed, in one dimension we can always transform the line element

ds2 = g11(x)dx
2 (0.179)

everywhere into the form

ds2 = dx02, (0.180)

via the coordinate transformation

x0 =

Z √
g11dx. (0.181)

Another way to see this is that we can always straighten a bent wire without
cutting it. In two dimensions, Rijkl has only one independent component,
which can be taken as R1212. Using Equations (0.165)-(0.168) we can write
all the components of Rijkl as

R1212 = −R2112 = −R1221 = R2121, (0.182)

R1111 = R1112 = R1121 = R1122 = 0, (0.183)

R1211 = R1222 = R2111 = R2122 = 0, (0.184)

R2211 = R2212 = R2221 = R2222 = 0. (0.185)

These can be conveniently expressed as

Rijkl = (gikgjl − gilgjk)
R1212
g

, (0.186)

where g is the determinant:

g =
¡
g11g22 − g212

¢
. (0.187)
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If we contract i and k in Rijkl we get

Rjl = gjl
R1212
g

. (0.188)

Contracting j and l in Rjl gives the curvature scalar

R =
2R1212
g

. (0.189)

We can now write the curvature tensor as

Rijkl =
R

2
(gikgjl − gilgjk) . (0.190)

The Gaussian curvature, K, introduced in Equation (0.137) is related to the
curvature scalar R as

K =
R

2
(0.191)

=
R1212
g

, (0.192)

which for a sphere becomes

K =
1

a2
, (0.193)

where a is the radius of the sphere.
Problem 0.4:
Verify Equation (0.165).
Problem 0.5:
Show by direct substitution that the Bianchi identities are true.
Problem 0.6:
Verify Equations (0.182)−(0.190).
Problem 0.7:
For the surface of a sphere the metric can be written as [Eq. (0.132)]

ds2 = a2(dθ2 + sin2 θdφ2), (0.194)

where a is the radius of the sphere. Using the definition of the Riemann
curvature tensor [Eq. (0.165)] evaluate R1212 and R, and verify that

K =
1

a2
. (0.195)
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