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CHAPTER 19: GREEN’S FUNCTIONS

I. Perturbation Theory:

A Short Introduction To Integral Equations (from the supplements
of Chapter 18):
We often encounter cases where a given second-order linear differential

operator,

£ =
d

dx

∙
p(x)

d

dx

¸
+ q(0)(x) + q(1)(x), x ∈ [a, b], (0.1)

differs from an exactly solvable Sturm-Liouville operator,

£0 =
d

dx

∙
p(x)

d

dx

¸
+ q(0)(x), (0.2)

by a small term, q(1)(x), compared to q(0)(x). Since the eigenvalue problem
for £0 is exactly solvable, it yields a complete and orthonormal set of eigen-
functions, ui, which satisfy the eigenvalue equation

£0ui + λiui = 0, (0.3)

where λi are the eigenvalues. We now consider the eigenvalue equation for
the general operator £:

£Ψ(x) + λΨ(x) = 0, (0.4)

and write it as

£0Ψ(x) + λΨ(x) = −q(1)Ψ(x). (0.5)

In general, the above equation is given as

£0Ψ(x) + λΨ(x) = f(x,Ψ(x)), (0.6)

where the inhomogeneous term usually corresponds to sources or interactions.
We confine our discussion to cases where f(x,Ψ) is separable:

f(x,Ψ(x)) = h(x)Ψ(x). (0.7)
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This covers a wide range of physically interesting cases. For example, in
scattering problems the time independent Schrödinger equation is written as

−→∇ 2Ψ(−→r ) + 2mE
~2
Ψ(−→r ) = 2m

~2
V (−→r )Ψ(−→r ), (0.8)

where V (−→r ) is the scattering potential.
As we discussed in Chapters 18 and 19 of Bayin (2006), the general solution

of Equation (0.5) can be written as

Ψ(x) = Ψ(0)(x) +

Z
dx0G(x, x0)h(x0)Ψ(x0)

= Ψ(0)(x) +

Z
dx0K(x, x0)Ψ(x0), (0.9)

where G(x, x0) is the Green’s function, K(x, x0) = G(x, x0)h(x0) is called the
kernel of the integral equation and Ψ(0)(x) is the known solution of the ho-
mogeneous equation:

£0Ψ(x) + λΨ(x) = 0. (0.10)

Introducing the linear integral operator K,

K =
Z b

a

dx0K(x, x0), (0.11)

K(αΨ1 + βΨ2) = αKΨ1 + βKΨ2, (0.12)

where α,β are constants, we can write Equation (0.9) as

(I−K)Ψ(x) = Ψ(0)(x), (0.13)

where I is the identity operator. Assuming that K(x, x0) is small, we can
write

Ψ(x) =
Ψ(0)(x)

(I−K) (0.14)

= (I+K+K2 + · · · )Ψ(0)(x). (0.15)

A similar expansion can be written for Ψ(x) as

Ψ(x) = Ψ(0)(x) +Ψ(1)(x) + · · · , (0.16)

which when substituted into Equation (0.15) yields the zeroth-order term of
the approximation as

Ψ(x) ' Ψ(0)(x), (0.17)
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and the subsequent terms of the expansion as

Ψ(1)(x) =

Z
dx0K(x, x0)Ψ(0)(x), (0.18)

Ψ(2)(x) = KΨ(1)(x) = K2Ψ(0)(x) =
Z
dx00K(x, x00)

Z
dx0K(x00, x0)Ψ(0)(x0),

(0.19)

...

We can now write the following Neumann series [Eq. (18.51)]:

Ψ(x) = Ψ(0)(x) +

Z
dx0K(x, x0)Ψ(0)(x0) +

Z
dx0K(x, x0)Ψ(1)(x0) + · · · ,

(0.20)

that is,

Ψ(x) = Ψ(0)(x)

+

Z
dx0K(x, x0)Ψ(0)(x0)

+

Z
dx0K(x, x0)

Z
dx00K(x0, x00)Ψ(0)(x00) (0.21)

+

Z
dx0K(x, x0)

Z
dx00K(x0, x00)

Z
dx000K(x00, x000)Ψ(0)(x000)

+ · · · .

If we approximate Ψ(x) with the first N terms,

Ψ(x) ' Ψ(0)(x) +Ψ(1)(x) + · · ·+Ψ(N)(x), (0.22)

we can write Equation (0.13) as

(I−K)(Ψ(0) +Ψ(1) + · · ·+Ψ(N)) ' Ψ(0), (0.23)

Ψ(0) −Ψ(N+1) ' Ψ(0). (0.24)

For the convergence of Neumann series, for a given small positive number ε0,
we should be able to find a number N0, independent of x and such that for

N + 1 > N0, (0.25)

¯̄̄
Ψ(N+1)

¯̄̄
< ε0. (0.26)

To obtain the sufficient condition for convergence let

max |K(x, x0)| =M (0.27)
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for

x, x0 ∈ [a, b], (0.28)

and take Z b

a

dx0
¯̄̄
Ψ(0)(x)

¯̄̄
= C. (0.29)

We can now write the inequality¯̄̄
Ψ(n+1)(x)

¯̄̄
< CMN+1(b− a)N = CM [M(b− a)]N , (0.30)

which yields the error committed by approximating Ψ(x) with the first N +1
terms of the Neumann series [Eq. (0.21)] as¯̄̄̄
¯Ψ(x)−

NX
n=0

Ψ(n)(x)

¯̄̄̄
¯ ≤ ¯̄ΨN+1(x)¯̄+ ¯̄ΨN+2(x)¯̄+ · · · (0.31)

≤ CM [M(b− a)]N{1 +M(b− a) +M2(b− a)2 + · · · }.
(0.32)

If

M(b− a) < 1, (0.33)

which is sufficient but not necessary, we can write¯̄̄̄
¯Ψ(x)−

NX
n=0

Ψ(n)(x)

¯̄̄̄
¯ ≤ CM [M(b− a)N[1−M(b− a)] < ε0 (0.34)

for all N > N0 independent of x.
Nondegenerate Perturbation Theory:
We now consider the following problem [Eq. (0.5)]:

{£0 + λ}Ψ(x) = εh(x)Ψ(x), (0.35)

where £0 is an exactly solvable Sturm-Liouville operator and where we have
introduced a small parameter, ε, that allows us to keep track of the order of
terms in our equations. In the limit as ε → 0 and assuming that h(x) is
bounded, the solution, Ψ(x), and the parameter λ, reduce to the exact eigen-
functions, Φn(x), and the exact eigenvalues, λn,of the unperturbed operator
£0 :

{£0 + λn}Φn(x) = 0. (0.36)

That is, as ε→ 0,

Ψ(x)→ Ψ(0)(x) = Φn(x), (0.37)

λ→ λn. (0.38)
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We now write the perturbed eigenvalues as

λ = λn +∆λ, (0.39)

thus Equation (0.35) becomes

{£0 + λn}Ψ(x) = [εh(x)−∆λ]Ψ(x) = f(x,Ψ(x)), (0.40)

Since the eigenfunctions of the unperturbed operator, £0, form a complete
and orthonormal set: Z b

a

dx Φn(x)Φm(x) = δnm, (0.41)

we can write the expansions

f(x) =
X
k

ckΦk(x), (0.42)

ck =

Z b

a

dx0Φ∗k(x
0)f(x0) (0.43)

and

Ψ(x) =
X
k

akΦk(x), (0.44)

ak =

Z b

a

dx0Φ∗k(x
0)Ψ(x0). (0.45)

Using these in Equation (0.40):X
k

ak(λn − λk)Φk =
X
k

ckΦk, (0.46)

we obtain

ak =
ck

(λn − λk)
. (0.47)

When n = k we insist that ck = 0. We now substitute ak [Eq. (0.47)] and ck
[Eq. (0.43)] into the expansion of Ψ(x) [Eq. (0.44)] to get

Ψ(x) =
X
k

1

(λn − λk)

Z b

a

dx0Φ∗k(x
0)Φk(x)f(x

0), (0.48)

which after rearranging becomes

Ψ(x) =

Z b

a

dx0

"X
k

Φk(x)Φ
∗
k(x

0)

(λn − λk)

#
[εh(x0)−∆λ]Ψ(x0). (0.49)
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The quantity inside the square brackets is the Green’s function

G(x, x0) =

"X
k

Φk(x)Φ
∗
k(x

0)

(λn − λk)

#
. (0.50)

For the general solution of the differential equation [Eq. (0.40)] we also add
the solution of the homogeneous equation, that is, the unperturbed solution,
to write

Ψ(x) = Φn(x) +

Z b

a

dx0

"X
k

Φk(x)Φ
∗
k(x

0)

(λn − λk)

#
[εh(x0)−∆λ]Ψ(x0). (0.51)

Comparing with the form in Equation (0.9), we write the kernel as

K(x, x0) = G(x, x0)[εh(x0)−∆λ]. (0.52)

This is an integral equation and the unknown, Ψ(x), appears on both sides of
the equation. To obtain the perturbed solution in terms of known quantities,
we expand Ψ(x) and ∆λ in terms of the small parameter ε as, respectively,

Ψ(x) = Φn(x) + εΨ(1)(x) + ε2Ψ(2)(x) + · · · (0.53)

and

λ = λn + ε[∆λ(1) + ε∆λ(2) + ε2∆λ(3) + · · · ], (0.54)

which gives

∆λ = ε[∆λ(1) + ε∆λ(2) + ε2∆λ(3) + · · · ]. (0.55)

We now substitute these expansions into Equation (0.51) and simplify:

Ψ(x) = Φn(x) +

Z b

a

dx0

"X
k

Φk(x)Φ
∗
k(x

0)

(λn − λk)

# h³
εh(x0)− ε∆λ(1)

´
− ε2∆λ(2) + · · ·

i
×
h
Φn(x

0) + εΨ(1)(x0) + ε2Ψ(2)(x0) + · · ·
i
, (0.56)

Ψ(x) = Φn(x) + ε

Z b

a

dx0

"X
k

Φk(x)Φ
∗
k(x

0)

(λn − λk)

# h³
h(x0)−∆λ(1)

´
− ε∆λ(2) + · · ·

i
×
h
Φn(x

0) + εΨ(1)(x0) + ε2Ψ(2)(x0) + · · ·
i
, (0.57)

Ψ(x) = Φn(x) + ε

Z b

a

dx0

"X
k

Φk(x)Φ
∗
k(x

0)

(λn − λk)

# h
h(x0)−∆λ(1)

i
Φn(x

0)

+ ε

Z b

a

dx0

⎡⎣X
j

Φj(x)Φ
∗
j (x

0)

(λn − λj)

⎤⎦ h−ε∆λ(2)Φn(x0) + (h(x0)−∆λ(1))εΨ(1)(x0)i
(0.58)

+ 0(ε3).
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Collecting terms with equal powers of ε we get

Ψ(x) = Φn(x) + ε

Z b

a

dx0

"X
k

Φk(x)Φ
∗
k(x

0)

(λn − λk)

# h
h(x0)−∆λ(1)

i
Φn(x

0)

+ ε2
Z b

a

dx0

⎡⎣X
j

Φj(x)Φ
∗
j (x

0)

(λn − λj)

⎤⎦ h−∆λ(2)Φn(x0) + (h(x0)−∆λ(1))Ψ(1)(x0)i
(0.59)

+ 0(ε3)

Comparing the right-hand side with the expansion of the left-hand side:

Ψ(x) = Ψ(0)(x) + εΨ(1)(x) + ε2Ψ(2)(x) + · · · , (0.60)

we obtain

Ψ(0)(x) = Φn(x), (0.61)

Ψ(1)(x) =

Z b

a

dx0

"X
k

Φk(x)Φ
∗
k(x

0)

(λn − λk)

#
[h(x0)−∆λ(1)]Φn(x0), (0.62)

Ψ(2)(x) =

Z b

a

dx0
X
j

∙
Φj(x)Φ

∗
j (x

0)

(λn − λj)

¸
×
h
−∆λ(2)Φn(x0) + (h(x0)−∆λ(1))Ψ(1)(x0)

i
, (0.63)

...

In the first-order term [Eq. (0.62)], the numerator has to vanish for k = n,
thus

Φn(x)

Z b

a

dx0Φ∗n(x
0)[h(x0)−∆λ(1)]Φn(x0) = 0, (0.64)

Φn(x)

Z b

a

dx0Φ∗n(x
0)h(x0)Φn(x

0) = Φn(x)∆λ
(1)

Z b

a

dx0Φ∗n(x
0)Φn(x

0),

(0.65)Z b

a

dx0Φ∗n(x
0)h(x0)Φn(x

0) = ∆λ(1)
Z b

a

dx0Φ∗n(x
0)Φn(x

0).

(0.66)

Using the orthogonality relation:Z b

a

dx0Φ∗k(x
0)Φn(x

0) = δkn, (0.67)
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we obtain the first order correction to the nth eigenvalue, λn, as

∆λ(1) =

Z b

a

dx0Φ∗n(x
0)h(x0)Φn(x

0) = hnn. (0.68)

We can now write the first-order correction to the eigenfunction as

Ψ(1)(x) =
X
k 6=n

Z b

a

dx0
Φk(x)Φ

∗
k(x

0)

(λn − λk)
[h(x0)−∆λ(1)]Φn(x0) (0.69)

=
X
k 6=n

Φk(x)

(λn − λk)
(0.70)

×
"Z b

a

dx0Φ∗k(x
0)h(x0)Φn(x

0)−∆λ(1)
Z b

a

dx0Φ∗k(x
0)Φn(x

0)

#
.

We again use the orthogonality relation [Eq. (0.67)] to write

Ψ(1)(x) =
X
k 6=n

Φk(x)

(λn − λk)

"Z b

a

dx0Φ∗k(x
0)h(x0)Φn(x

0)

#
(0.71)

=
X
k 6=n

Φk(x) hkn
(λn − λk)

, (0.72)

where hkn is the Hermitian matrix hkn =
R b
a
dx0Φ∗k(x

0)h(x0)Φn(x
0).

Let us now turn to the second-order term. Substituting Ψ(1)(x) [Eq. (0.72)]
into Ψ(2)(x) [Eq. (0.63)]:

Ψ(2)(x) =

Z b

a

dx0

⎡⎣X
j

Φj(x)Φ
∗
j (x

0)

(λn − λj)

⎤⎦
×
h
−∆λ(2)Φn(x0) + (h(x0)−∆λ(1))Ψ(1)(x0)

i
, (0.73)

we obtain

Ψ(2)(x) =

Z b

a

dx0

⎡⎣X
j

Φj(x)Φ
∗
j (x

0)

(λn − λj)

⎤⎦
×

⎡⎣−∆λ(2)Φn(x0) + (h(x0)−∆λ(1))X
k 6=n

Φk(x
0) hkn

(λn − λk)

⎤⎦ , (0.74)
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which also becomes

Ψ(2)(x) =
X
j

Φj(x)

(λn − λj)

"Z b

a

dx0Φ∗j (x
0)(−∆λ(2))Φn(x0)

+

Z b

a

dx0Φ∗j (x
0)
h
h(x0)−∆λ(1)

iX
k 6=n

Φk(x
0)hkn

(λn − λk)

⎤⎦ , (0.75)

where

hkn =

Z b

a

dx00Φ∗k(x
00)h(x00)Φn(x

00). (0.76)

For j = n, we again set the numerator to zero:Z b

a

dx0Φ∗n(x
0)∆λ(2)Φn(x

0) =

Z b

a

dx0Φ∗n(x
0)
h
h(x0)−∆λ(1)

iX
k 6=n

Φk(x
0)hkn

(λn − λk)
,

(0.77)

∆λ(2)
Z b

a

dx0Φ∗n(x
0)Φn(x

0) =
X
k 6=n

⎡⎣
hR b
a
dx0Φ∗n(x

0)h(x0)Φk(x
0)
i
hkn

(λn − λk)

−∆λ(1)
hR b
a
dx0Φ∗n(x

0)Φk(x
0)
i
hkn

(λn − λk)

⎤⎦ . (0.78)

Using the orthogonality relation [Eq. (0.67)] we obtain

∆λ(2) =
X
k 6=n

hnkhkn
(λn − λk)

. (0.79)

Substituting this in equation (0.63) we obtain Ψ(2)(x) as

Ψ(2)(x) =
X
j 6=n

Φj(x)

(λn − λj)

"
(−∆λ(2))

Z b

a

dx0Φ∗j (x
0) Φn(x

0)

+
X
k 6=n

hR b
a
dx0Φ∗j (x

0)h(x0)Φk(x
0)
i
hkn

(λn − λk)

−
³
∆λ(1)

´Z b

a

dx0Φ∗j (x
0)Φk(x

0)
X
k 6=n

hkn
(λn − λk)

⎤⎦ . (0.80)
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Using the orthogonality relation [Eq. (0.67)] this also becomes

Ψ(2)(x) =
X
j 6=n

Φj(x)

(λn − λj)

h
(−∆λ(2))δjn

+
X
k 6=n

hjk hkn
(λn − λk)

−
³
∆λ(1)

´
δjk

X
k 6=n

hkn
(λn − λk)

⎤⎦ . (0.81)

Finally, using ∆λ(1) = hnn we obtain

Ψ(2)(x) =
X
j 6=n
Φj(x)

⎡⎣X
k 6=n

[hjk − δjkhnn]hkn
(λn − λj)(λn − λk)

⎤⎦ . (0.82)

Example (0.1): Slightly anharmonic oscillator in one dimension:
We now consider the slightly anharmonic oscillator problem in quantum

mechanics with the potential

V (x) =
1

2
k2x

2 − k3x3, (0.83)

where k2 and k3 are constants such that k3 ¿ k1. We have already solved the
Schrödinger equation for the harmonic oscillator potential, V (x) = 1

2k2x
2, in

Chapter 4 that leads to the following eigenvalue equation:

d2Ψn
dx2

− x2Ψn + ²Ψn(x) = 0, (0.84)

where

x =
xphysicalp
~/mω

, ² =
E

~ω/2
. (0.85)

We rewrite the exactly solvable case as

£0Φn + ²nΦn(x) = 0, (0.86)

£0 =
d2

dx2
− x2, (0.87)

where the solution is given in terms of the Hermite polynomials [Eq. (4.47)]:

Φn(x) =
e−x

2/2Hn(x)p
2nn!
√
π
, n = 0, 1, . . . . (0.88)

We are now looking for the solution of the slightly anharmonic oscillator that
satisfies the equation

(£0 + λ)Ψ(x) = αx3Ψ, (0.89)
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where α¿ 1. The perturbed energy eigenvalues are written as

λ = ²n + α∆λ(1) + α2∆λ(2) + · · · , (0.90)

where

²n = 2n+ 1 (0.91)

are the exact eigenvalues. We can easily verify that

∆λ(1) = hnn =

Z ∞
−∞

dx0Φ2n(x
0)x03 = 0. (0.92)

For Ψ(1)(x) we need to evaluate the integral

hkn =

Z ∞
−∞

dx0
e−x

02
Hn(x

0)x03Hk(x
0)√

2nn!
√
2kk!
√
π

. (0.93)

Using the recursion relation [Eq. (4.40)]

xHn =
1

2
Hn+1 + nHn−1, (0.94)

we write

x2Hn =
1

2

µ
1

2
Hn+2 + (n+ 1)Hn

¶
+ n

µ
1

2
Hn + (n− 1)Hn−2

¶
, (0.95)

=
1

4
Hn+2 +

2n+ 1

2
Hn + n(n− 1)Hn−2. (0.96)

Similarly,

x3Hn =
1

8
Hn+3 +

3

4
(n+ 1)Hn+1 +

3

2
n2Hn−1 + n(n− 1)(n− 2)Hn−3.

(0.97)

Using Equation (0.97) in (0.93), along with the orthogonality relationZ ∞
−∞

dxe−x
2/2Hn(x)Hk(x) = 0, n 6= k, (0.98)

we obtain

hkn = 0, (0.99)

unless

k = (n+ 3), (n+ 1), (n− 1), (n− 3). (0.100)
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We evaluate the component hn(n+3) as

hn(n+3) = h(n+3)n =
1

8

Z ∞
−∞

dx0e−x
02/2Hn+3(x

0)√
2nn!

Hn+3(x
0)p

2n+3(n+ 3)!
√
π
(0.101)

=
1

8

p
2n+3(n+ 3)!√

2nn!

⎧⎪⎨⎪⎩
Z ∞
−∞

dx0
e−x

02H2
n+3(x

0)hp
2n+3(n+ 1)!

√
π
i2
⎫⎪⎬⎪⎭ (0.102)

=
1

8

√
8

r
(n+ 3)!

n!
(0.103)

=

r
(n+ 3)(n+ 2)(n+ 1)

8
. (0.104)

Similarly, we evaluate the other nonzero components:

h(n−3)n =

r
n(n− 1)(n− 2)

8
, (0.105)

hn(n+1) = 3(n+ 1)

r
n+ 1

8
, (0.106)

hn(n−1) = 3n

r
n

8
. (0.107)

Using these results we now write

∆λ(2) =
X
k

hnkhkn
2(n− k) (0.108)

=
1
8(n+ 3)(n+ 2)(n+ 1)

−6 (0.109)

+
1
8n(n− 1)(n− 2)

6
+
9(n+ 1)2(n+ 1)

−2(8) +
9n2n

2(8)
,

hence obtain

² = (2n+ 1)− α2
[30n2 + 30n+ 11]

16
+ 0(α3). (0.110)

Similarly, we evaluate the first nonzero term of the perturbed wave function
as

Ψ(x) = Φn(x) + α

"p
n(n− 1)(n− 2)

12
√
2

Φn−3(x)

−
p
(n+ 3)(n+ 2)(n+ 1)

12
√
2

Φn+3(x)

+
3n
√
n

4
√
2
Φn−1(x)−

3(n+ 1)
√
n+ 1

4
√
2

Φn+1(x)

¸
+ 0(α2). (0.111)
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Degenerate Perturbation Theory:
The preceding formalism works fine as long as the eigenvalues are distinct,

that is, λi 6= λj , when i 6= j. In the event that multiple eigenvalues turn out
to be equal, the method can still be rescued with a simple procedure. We first
remember that the first-order correction to Ψ(x) [Eq. (0.72)], that is, Ψ(1)(x),
is written as

Ψ(1)(x) =
X
k 6=n
Φk(x)

∙
hkn(x)

(λn − λk)

¸
. (0.112)

In the above series the expansion coefficients,∙
hkn

(λn − λk)

¸
, (0.113)

diverge for the degenerate eigenvalues, where λn = λk for n 6= k. This would
be okay, if somehow the corresponding matrix elements, hkn, k 6= n, also van-
ished. In other words, if the submatrix, hkn, corresponding to the degenerate
eigenvalues are diagonal. From Sturm-Liouville theory we know that for her-
mitian operators for distinct eigenvalues the corresponding eigenfunctions are
mutually orthogonal. However, for the degenerate eigenvalues there is an am-
biguity. All the vectors that are perpendicular to the remaining eigenvectors
corresponding to the distinct eigenvalues are legitimate eigenvectors for the
degenerate eigenvalues. For example, if λ1 = λ2 6= λ3, all the vectors that lie
on a plane perpendicular to the third eigenvector for λ3 are good eigenvectors
for λ1 and λ2. Normally, we would pick any two perpendicular vectors on this
plane as the eigenvectors of λ1 and λ2, thus obtaining a mutually orthogonal
eigenvector set for λ1,λ2,λ3. In the presence of a perturbation we use this
freedom to find an appropriate orientation for the eigenvectors of λ1 and λ2,
such that the 2× 2 submatrix, hkn,Z b

a

dx0Φ∗k(x
0)h(x0)Φn(x

0) = hkn, (0.114)

corresponding to the degenerate eigenvalues is diagonal. In other words, the
perturbation removes the degeneracy and picks a particular orientation for
the orthogonal eigenvectors of λ1 and λ2 on the plane perpendicular to the
third eigenvector corresponding to the distinct eigenvalue. This procedure is
called diagonalization. For an l-fold degenerate eigenvalue, the corresponding
submatrix to be diagonalized is an l× l square matrix. This procedure, albeit
being cumbersome, can be extended to higher order terms in the perturbation
expansion and to any number of multiply degenerate eigenvalues. A short
example for this process can be found in Mathews and Walker (Bayin, 2006).
For a review of the eigenvalue problems and the diagonalization of matrices
see Bayin (2008).
Exercise (0.1): Find the solution of the following eigenvalue problem:

d2Ψ

dθ2
+ cot θ

dΨ

dθ
+ λΨ = α cos2 θΨ,
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where Ψ = Ψ(θ) is defined over the interval 0 ≤ θ ≤ π and must be square-
integrable with the weight function sin θ. The parameter α is ¿ 1, hence
the solution can be expanded in terms of the positive powers of α. Find the
solution which in the limit as α→ 0, has the eigenvalue

λ(0) = l(l + 2)

with l = 2. Also, for this eigenvalue find the eigenvalue correct to order α2

and the solution Ψ(θ) correct to order α.

II. Constructing the Green’s function:
(Problems 19.4, 19.5 and 19.6)
Let us start with the most general second-order differential equation:

£y(x) = f(x, y(x)), x ∈ [a, b], (0.115)

£ = p0(x)
d2

dx2
+ p1(x)

d

dx
+ p2(x), (0.116)

where for self-adjoint operators

p1(x) = p
0
0(x). (0.117)

Green’s function, G(x, x0), allows us to convert the differential equation [Eq.
(0.115)] into an integral equation:

y(x) =

Z b

a

dx0G(x, x0)f(x0, y(x0)), (0.118)

where the Green’s function satisfies the differential equation

£G(x, x0) = δ(x− x0) (0.119)

with the same boundary conditions that y(x) is required to satisfy. These
boundary conditions are usually one of the following two types:

I. Single point boundary condition:

G(a, x0) = 0, (0.120)

∂G(a, x0)

∂x
= 0. (0.121)

II. Two point boundary condition:

G(a, x0) = 0, (0.122)

G(b, x0) = 0. (0.123)
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From the differential equation that the Green’s function satisfies:

p0(x)
d2G(x, x0)

dx2
+ p1(x)

dG(x, x0)

dx
+ p2(x)G(x, x

0) = δ(x− x0), (0.124)

we can deduce that G(x, x0) must be continuous at x = x0. Otherwise, G(x, x0)
would be proportional to the unit step function and since the derivative of the
unit step function is a Dirac-delta function, the first term on the left would be
proportional to the derivative of the Dirac-delta function, which would make
it incompatible with the Dirac-delta function on the right-hand side. Let us
now integrate the differential equation between x0 ∈ (x0 − ², x0 + ²) and take
the limit ²→ 0:Z x0+²

x0−²
dx0 p0(x

0)
d2G(x, x0)

dx02
+

Z x0+²

x0−²
dx0 p1(x

0)
dG(x, x0)

dx0

+

Z x0+²

x0−²
dx0 p2(x

0)G(x, x0) =

Z x0+²

x0−²
dx0 δ(x− x0). (0.125)

We now analyze this equation term by term. From the definition of the dirac-
delta function the first term on the right is 1 :Z x0+²

x0−²
dx0 δ(x− x0) = 1. (0.126)

In the integrals on the right-han side, since p0, p1, p2 are continuous functions,
in the limit as ²→ 0, we can replace them with their values at x = x0 :

p0(x
0) lim
²→0

Z x0+²

x0−²
dx0
d2G(x, x0)

dx02
+ p1(x

0) lim
²→0

Z x0+²

x0−²
dx0
dG(x, x0)

dx0

+p2(x
0) lim
²→0

Z x0+²

x0−²
dx0G(x, x0) = 1. (0.127)

Since G(x, x0) is continuous at x = x0, in the limit as ²→ 0, the last term on
the left-hand side vanishes:

lim
²→0

Z x0+²

x0−²
dx0G(x, x0) = 0, (0.128)

thus leaving

p0(x
0) lim
²→0

Z x0+²

x0−²
dx0
d2G(x, x0)

dx02
+ p1(x

0) lim
²→0

Z x0+²

x0−²
dG(x, x0) = 1 (0.129)

or

p0(x
0) lim
²→0

∙
dG(x, x0 + ²)

dx0
− dG(x, x

0 − ²)
dx0

¸
+p1(x

0) lim
²→0

[G(x, x0 + ²)−G(x, x0 − ²)] = 1. (0.130)
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From the continuity of G(x, x0), in the limit as ²→ 0, the second term on the
left-hand side vanishes, thus leaving us with the fact that the derivative of
G(x, x0) has a finite discontinuity by the amount 1/p0(x

0) at x = x0.
Using these results, we now construct the Green’s function under more

general conditions than used in Sections 19.1-19.4. Let the general solution
of £y(x) = 0 be given as

y(x) = ay1(x) + by2(x), (0.131)

where £y1(x) = 0 and £y2(x) = 0. We write the general form of the Green’s
function as

G(x, x0) = Ay1(x) +By2(x), x− x0 > 0,
G(x, x0) = Cy1(x) +Dy2(x), x− x0 < 0. (0.132)

At x = x0 the two functions must match and their derivatives differ by
1/p0(x) :

Ay1(x
0) +By2(x

0) = Cy1(x
0) +Dy2(x

0), (0.133)

Ay01(x
0) +By02(x

0) = Cy01(x
0) +Dy02(x

0) +
1

p0(x0)
. (0.134)

We first write these equations as

(A− C)y1(x0) + (B −D)y2(x0) = 0, (0.135)

(A− C)y01(x0) + (B −D)y02(x0) =
1

p0(x0)
, (0.136)

so that

(A− C) =

¯̄̄̄
0 y2(x

0)
1/p0(x

0) y02(x
0)

¯̄̄̄
¯̄̄̄
y1(x

0) y2(x
0)

y01(x
0) y02(x

0)

¯̄̄̄ (0.137)

= − y2(x
0)

p0(x0)W (x0)
, (0.138)

where the Wronskian, W (y1, y2), is defined as

W (x0) = y1(x
0)y02(x

0)− y2(x0)y01(x0). (0.139)

Similarly,

(B −D) = y1(x
0)

p0(x0)W (x0)
. (0.140)

We can now write the Green’s function as

G(x0, x) = Cy1(x) +Dy2(x)−
[y1(x)y2(x

0)− y2(x)y1(x0)]
p0(x0)W (x0)

, x− x0 > 0,

(0.141)
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and

G(x− x0) = Cy1(x) +Dy2(x), x− x0 < 0. (0.142)

Let us now impose the boundary conditions.
Type 1: Using

G(a, x0) = 0, (0.143)

∂G(a, x0)

∂x0
= 0, (0.144)

we write

Cy1(a) +Dy2(a) = 0, (0.145)

Cy01(a) +Dy
0
2(a) = 0. (0.146)

Since W (x0) 6= 0, we get

C = D = 0, (0.147)

thus the Green’s function becomes

G(x0, x) = Θ(x− x0) [y1(x)y2(x
0)− y2(x)y1(x0)]

p0(x0)W (x0)
, (0.148)

where Θ(x− x0) is the unit step function.
As an example [Prob. (19.5)], consider

d2y

dx2
+ k20y(x) = f(x), y(0) = y

0(0) = 0. (0.149)

The two linearly independent solutions satisfying the boundary conditions are

y1(x) = cos(k0x), (0.150)

y2(x) = sin(k0x). (0.151)

With the Wronskian determined as W (x) = k0, Equation (0.148) allows us to
write the Green’s function as

G(x0, x) = Θ(x− x0)sin[k0(x− x
0)]

k0
, (0.152)

which agrees with our earlier result [Eq. (19.143)].
Type II: We now use the two point boundary condition:

G(a, x0) = 0, (0.153)

G(b, x0) = 0 (0.154)
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to write

Cy1(a) +Dy2(a) = 0, (0.155)

Cy1(b) +Dy2(b)−
[y1(b)y2(x

0)− y2(b)y1(x0)]
p0(x0)W (x0)

= 0. (0.156)

Simultaneous solution of these yield the Green’s function

G(x, x0) =
[y1(x

0)y2(a)− y1(a)y2(x0)] [y1(b)y2(x)− y2(b)y1(x)]
[y1(b)y2(a)− y1(a)y2(b)] p0(x0)W (x0)

, x− x0 > 0,

(0.157)

G(x, x0) =
[y1(x)y2(a)− y1(a)y2(x)] [y1(b)y2(x0)− y2(b)y1(x0)]

[y1(b)y2(a)− y1(a)y2(b)] p0(x0)W (x0)
, x− x0 < 0.

(0.158)

The second solution:
In constructing Green’s functions by using the above formulas we natu-

rally need two linearly independent solutions and also the Wronskian of the
solutions. The nice thing about the Wronskian in this case is that it can be
obtained from the differential operator:

£ = p0(x)
d2

dx2
+ p1(x)

d

dx
+ p2(x), x ∈ [a, b]. (0.159)

Let us now write the derivative of the Wronskian

dW (x)

dx
=
d

dx
[y1(x)y

0
2(x)− y2(x)y01(x)] , (0.160)

= y1(x)y
00
2 (x)− y001 (x)y2(x). (0.161)

where ∙
p0(x)

d2

dx2
+ p1(x)

d

dx
+ p2(x)

¸
yi(x) = 0, i = 1 or 2. (0.162)

We rewrite the differential equation, £y(x) = 0, as

d2yi
dx2

+ P (x)
dyi
dx

+Q(x)yi(x) = i = 1 or 2, (0.163)

to get

y1y
00
2 − y001y2 = −P (x)[y1y02 − y2y01], (0.164)

= −P (x)W (x), (0.165)

thus

dW

dx
= −P (x)W (x). (0.166)
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Hence the Wronskian can be obtained from the differential operator, £, by
the integral

W (x) = e−
R x
a
dx0P (x0). (0.167)

Furthermore, by using the Wronskian and a special solution, we can also
obtain a second solution. If we write W (x) as

W (x) = y1y
0
2 − y2y01 (0.168)

= y21
d

dx

µ
y2
y1

¶
, (0.169)

we obtain

y2(x) = y1(x)

Z x

a

W (x0)

y21(x
0)
dx0. (0.170)

In other words, a second solution, y2, can be obtained from a given solution,
y1, and the Wronskian, W .
Example (0.2): Green’s function for the Helmholtz equation in

spherical coordinates:
We consider the open problem for the Helmholtz equation in spherical

coordinates with an inhomogeneous term, F (r) :

−→∇ 2Ψ(r, θ,φ) + k2Ψ(r, θ,φ) = F (r), r ∈ [0,∞]. (0.171)

In terms of the spherical harmonics the general solution can be written as

Ψ(r, θ,φ) =
X
lm

Rl(kr)Ylm(θ,φ). (0.172)

Substituting this into the Helmholtz equation [Eq. (0.171)] we obtain the
differential equation that Rl(kr) satisfies as

d2Rl
dr2

+
2

r

dRl
dr

+

∙
k2 − l(l + 1)

r2

¸
Rl(kr) = 0. (0.173)

Substituting

Rl(kr) =
yl(kr)

kr
, (0.174)

we also obtain

y00l (x) +

∙
1− l(l + 1)

x2

¸
yl(x) = 0, (0.175)

where

x = kr. (0.176)
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The two linearly independent solutions can be written in terms of Bessel
functions, Jn, Nn, as

Rl(kr) =
yl(kr)

kr
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
jl(kr) =

r
π

2

Jl+1/2(kr)√
kr

,

nl(kr) =

r
π

2

Nl+1/2(kr)√
kr

.

(0.177)

For large r these solutions behave as

Rl(kr) = lim
r→∞

⎧⎪⎪⎪⎨⎪⎪⎪⎩
jl(kr)

r→∞→
cos(kr − (l + 1)π2 )

kr
,

nl(kr)
r→∞→

sin(kr − (l + 1)π2 )
kr

.

(0.178)

Using Equations (0.141) and (0.142) we can now construct the Green’s func-
tion as

gl(r, r
0) = Cjl(kr) +Dnl(kr)−

jl(kr)nl(kr
0)− nl(kr)jl(kr0)

p0(r)W (r0)
, r − r0 > 0,

(0.179)

gl(r, r
0) = Cjl(kr) +Dnl(kr), r − r0 < 0. (0.180)

For a regular solution at the origin we set D = 0.We evaluate the Wronskian,
W (r), by using Equation (0.167) as

dW

W
= −P (r)dr (0.181)

= −2
r
dr, (0.182)

which yields

W (r) =
constant

r2
. (0.183)

To evaluate the constant we use the asymptotic forms of the Bessel functions
as

lim
r→∞

W (kr) = lim
r→∞

¯̄̄̄
jl(kr) nl(kr)
j0l(kr) n0l(kr)

¯̄̄̄
(0.184)

=

¯̄̄̄
¯̄̄ cos(kr − (l + 1)π2 )

kr

sin(kr − (l + 1)π2 )
kr

−k sin(kr − (l + 1)π2 )
kr

k cos(kr − (l + 1)π2 )
kr

¯̄̄̄
¯̄̄ (0.185)

=
k

(kr)2
(0.186)

=
1

kr2
, (0.187)
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thus

W (r) =
1

kr2
. (0.188)

Since p0(x) = 1 [Eq. (0.162)], we write

gl(r, r
0) = Cjl(kr) +Dnl(kr)−

jl(kr)nl(kr
0)− nl(kr)jl(kr0)
(1/kr02)

, r − r0 > 0,

(0.189)

gl(r, r
0) = Cjl(kr) +Dnl(kr), r − r0 < 0. (0.190)

For a solution regular at the origin we set D = 0 :

gl(r, r
0) = Cjl(kr)−

jl(kr)nl(kr
0)− nl(kr)jl(kr0)
(1/kr02)

, r − r0 > 0, (0.191)

gl(r, r
0) = Cjl(kr), r − r0 < 0. (0.192)

To determine the remaining constant we demand that as r → ∞ we have a
spherically outgoing wave, that is,

lim
r→∞

gl(r, r
0)→ eikr

r
. (0.193)

This implies the relation

kr02jl(kr
0)

[C − kr02nl(kr0)]
= i, (0.194)

which gives

C = −ikr02h(1)(kr0). (0.195)

Substituting this into the expression for the Green’s function [Eqs. (0.191)
and (0.192)] we obtain, after some algebra,

gl(r, r
0) = −ikr02h(1)l (kr)jl(kr0), r − r0 > 0, (0.196)

gl(r, r
0) = −ikr02h(1)l (kr0)jl(kr), r − r0 < 0. (0.197)

We usually write this as

gl(r, r
0) = −ikr02h(1)l (kr>)jl(kr<). (0.198)

Exercise (0.2): Find the Green’s function for the Helmholtz equation
outside a spherical boundary with the radius a and satisfying the boundary
conditions

R(a) = finite, (0.199)

R(r)
r→∞→ eikr

kr
. (0.200)
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Example (0.3): In Section 19.1.15 using the Fourier transforms we have
solved the Helmholtz equation

−→∇ 2Ψ(−→r ) + k2Ψ(−→r ) = F (−→r ), r ∈ [0,∞], (0.201)

as

Ψ(−→r ) = ξ(−→r ) +
Z
d−→r G(−→r ,−→r 0)F (−→r 0), (0.202)

where ξ(−→r ) is the solution of the homogeneous equation:
−→∇ 2Ψ(−→r ) + k2Ψ(−→r ) = 0, (0.203)

and the Green’s function, G(−→r ,−→r 0), is given as

G(−→r ,−→r 0) = − 1

4π

eik|−→r −−→r
0|

|−→r −−→r 0| . (0.204)

We expand F (−→r 0) as

F (−→r 0) =
X
l,m

Fl(r
0)Ylm(θ

0,φ0), (0.205)

where the angular part is separated and then expanded in term of spherical
harmonics. Since G(−→r ,−→r 0) depends only on |−→r −−→r 0| , we can write its
expansion as

G(−→r ,−→r 0) =
∞X
l00=0

Cl00(r, r
0)Pl00(cos θ12), (0.206)

where θ12 is the angle between −→r and −→r 0. Using the addition theorem of
spherical harmonics [Eq. (11.325)] we can write this as

G(−→r ,−→r 0) =
∞X
l00=0

Cl00(r, r
0)

l00X
m00=−l00

4π

(2l00 + 1)
Y ∗l00m00(θ0,φ0)Yl00m00(θ,φ),

(0.207)

which allows us to write the solution as

Ψ(−→r ) = ξ(−→r ) (0.208)

+

∙Z 2π

0

Z π

0

dΩ0
Z ∞
0

dr0 r02

×
X

l00,m00,l,m

4π

(2l00 + 1)
Cl00(r, r

0)Y ∗l00m00(θ0,φ0)Fl(r
0)Ylm(θ

0,φ0)

⎤⎦Yl00m00(θ,φ).
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We can also expand the solution, Ψ(−→r ), and ξ(−→r ) to writeX
l,m

Rl(kr)Ylm(θ,φ) =
X
l,m

ξ(r)Ylm(θ,φ) (0.209)

+
X
l,m

∙
4π

(2l + 1)

Z ∞
0

dr0 r02Cl(r, r
0)Fl(r

0)

¸
Ylm(θ,φ),

where we have used the orthogonality relation [Eq. (2.179)] of the spherical
harmonics. Comparing both sides of Equation (0.209) gives

Rl(kr) = ξ(r) +
4π

(2l + 1)

Z ∞
0

dr0 r02Cl(r, r
0)Fl(r

0). (0.210)

We now compare Equation (0.210) with Example 0.2, where

Rl(kr) = ξ(r) +

Z ∞
0

dr0gl(r, r
0)Fl(r

0), (0.211)

to get the relation between Cl(r, r
0) and gl(r, r

0) as

4π

(2l + 1)
r02Cl(r, r

0) = gl(r, r
0). (0.212)

Using Equation (0.198) this becomes

4π

(2l + 1)
r02Cl(r, r

0) = −ikr02h(1)l (kr>)jl(kr<). (0.213)

Finally, substituting this into Equation (0.207) and with Equation (0.204)
gives us

− 1

4π

eik|−→r −−→r
0|

|−→r −−→r 0| = −ik
∞X
l=0

h
(1)
l (kr>)jl(kr<)

lX
m=−l

Y ∗lm(θ
0,φ0)Ylm(θ,φ),

(0.214)

a formula extremely useful in applications.
Example (0.3): Diffraction from a circular aperture:
In the previous problems we have considered the entire space. If there are

some black surfaces that restrict the region available to us, we use the formula
[Eq. (19.238)]

Ψ(−→r ) =
Z
V

d−→r 0G(−→r ,−→r 0)F (−→r 0) (0.215)

+
kX
i=1

Z
ds0i bn0i · hΨ(−→r 0)−→∇ 0G(−→r ,−→r 0)−G(−→r ,−→r 0)−→∇ 0Ψ(−→r 0)

i
.
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Fig. 0.1 Diffraction from a spherical aperture.

Let us now apply this formula to diffraction from a circular aperture, where
a plane wave,

Ψ(−→r ) = Aeikz, (0.216)

moving in the z-direction is incident upon a screen lying in the xy-plane with
a circular aperture. Our region of integration is the inside of the hemisphere
as the radius R goes to infinity (Fig. 0.1). The surfaces that bound our
region are the screen, S, which lies in the xy-plane and which has a circular
aperture of radius a, and the surface of the hemisphere as R→∞. Inside the
hemisphere there are no sources: F (−→r 0) = 0, hence the Green’s function in
this region is

G(−→r ,−→r0 ) = − 1

4π

eik|−→r −−→r
0|

|−→r −−→r 0| . (0.217)

The solution is now written entirely in terms of surface integrals as

Ψ(−→r ) =
Z
xy-plane

ds0 bez · hΨ(−→r 0)−→∇ 0G(−→r ,−→r 0)−G(−→r ,−→r 0)−→∇ 0Ψ(−→r 0)
i

+

Z
R→∞

ds0 ber · hΨ(−→r 0)−→∇ 0G(−→r ,−→r 0)−G(−→r ,−→r 0)−→∇ 0Ψ(−→r 0)
i
,

(0.218)

where −→r 0 is a vector on the aperture. We use −→k i to denote wave vector
of the incident plane wave moving in the direction of −→e z, and use

−→
k f for
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the diffracted wave propagating in the direction of −→r . Both vectors have

the same magnitude:
¯̄̄−→
k i

¯̄̄
=
¯̄̄−→
k f

¯̄̄
= k. We impose the following boundary

conditions: On the hemisphere and in the limit as the radius, R, goes to
infinity, we have an outgoing spherical wave:

Ψ(−→r ) r→∞→ f(θ,φ)
eikr

r
, (0.219)

On the screen:

Ψ(−→r )|z=0 = 0, (0.220)

−→∇Ψ(−→r )
¯̄̄
z=0

= 0 (0.221)

and on the aperture:

Ψ = Aeikz
0
¯̄̄
z0=0

= A, (0.222)

dΨ

dz0
= Aikeikz

0
¯̄̄
z0=0

= Aik. (0.223)

Let us first look at the integral over the hemisphere, which we can write asZ Z
R→∞

r02dΩ0f(θ0,φ0)

"
eikr

0

r0
∂

∂r0

Ã
− 1

4π

eik|−→r −−→r
0|

|−→r −−→r 0|

!

+
1

4π

eik|−→r −−→r
0|

|−→r −−→r 0|
∂

∂r0

Ã
eikr

0

r0

!#
. (0.224)

In the limit as R → ∞, the quantity inside the square brackets goes to zero
as 1/r03, hence the above integral goes to zero as 1/r0. This leaves us with the
first term in Equation (0.218):

Ψ(−→r ) =
Z
xy-plane

ds0 ben · hΨ(−→r 0)−→∇ 0G(−→r ,−→r 0)−G(−→r ,−→r 0)−→∇ 0Ψ(−→r 0)
i
.

(0.225)

From the boundary conditions on the screen [Eqs. (0.220) and (0.221)], we
see that the only contribution to this integral comes from the aperture, where
the boundary conditions are given by Equations (0.222) and (0.223), hence
we write

Ψ(−→r ) = −
Z
Aperture

ds0 A

"
∂

∂z0

Ã
− 1

4π

eik|−→r −−→r
0|

|−→r −−→r 0|

!

−ik
Ã
− 1

4π

eik|−→r −−→r
0|

|−→r −−→r 0|

!#
. (0.226)
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The extra minus sign in front of the integral comes from the fact that the
outward normal to the aperture is in the negative z direction. Let

−→
R = −→r −−→r 0 = (X,Y,Z), (0.227)

X = x− x0, Y = y − y0, Z = z − z0, (0.228)

thus

Ψ(−→r ) = − A
4π

Z
Aperture

ds0
∙
− ∂

∂z0

µ
eikR

R

¶
+ ik

eikR

R

¸
(0.229)

= − A
4π

Z
Aperture

ds0
∙
− d

dR

µ
eikR

R

¶
∂R

∂z0
+ ik

eikR

R

¸
(0.230)

= − A
4π

Z
Aperture

ds0
∙
−
µ
ikeikR

R
− e

ikR

R2

¶µ
−Z
R

¶
+ ik

eikR

R

¸
. (0.231)

We now write |−→r −−→r 0| as

|−→r −−→r 0|2 = (−→r −−→r 0) · (−→r −−→r 0) (0.232)

= r2 + r02 + 2−→r ·−→r 0 (0.233)

= r2
µ
1 + 2

−→r
r
·
−→r 0
r
+
r02

r2

¶
, (0.234)

hence

|−→r −−→r 0| = r
µ
1 + 2

−→r
r
·
−→r 0
r
+
r02

r2

¶1/2
. (0.235)

For
r0

r
¿ 1, we use the approximation

|−→r −−→r 0| ' 1 +−→n ·
−→r 0
r
+ 0

µ
1

r2

¶
, (0.236)

where −→n is a unit vector in the direction of −→r . For large r, we also use the
approximation

Z

R
' z

R
= cos θ,

to write the solution as

Ψ(−→r ) ' −Aik
4π

Z
Aperture

ds0

"
(cos θ + 1)

eikr(1−
−→n ·−→r 0r )

r
+ 0

µ
1

r2

¶#
(0.237)

' −Aik
4π

Z
Aperture

ds0
∙
(cos θ + 1)

eikr

r
e−ik

−→n ·−→r 0
¸

(0.238)

' −Aik
4π

Z
Aperture

ds0
∙
(cos θ + 1)

eikr

r
e−i
−→
k f ·−→r 0

¸
, (0.239)
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where
−→
k f is in the direction of −→r . For a circular aperture we can write this

integral as

Ψ(−→r ) ' − ikA
4π
(cos θ + 1)

eikr

r

∙Z 2π

0

dφ0
Z a

0

dr0 r0e−i
−→
k f ·−→r 0

¸
. (0.240)

To evaluate this integral we have to find the cosine of the angle between
−→
k f

and −→r 0. The angular coordinates of −→r and −→r 0 are given by (θ,φ) and (θ0,φ0),
respectively. Using the trigonometric relation

cos γ = cos θ cos θ0 + sin θ sin θ0 cos(φ− φ0), (0.241)

where γ is the angle between the two vectors, −→r and −→r 0, and since −→r 0 is a
vector on the aperture, hence θ0 = π/2, we get

cos γ = sin θ cos(φ− φ0). (0.242)

Equation (0.240) now becomes

Ψ(−→r ) ' − ikA
4π

eikr

r
(cos θ + 1)

∙Z 2π

0

dφ0
Z a

0

dr0 r0e−ikr
0 cos γ

¸
(0.243)

' − ikA
4π

eikr

r
(cos θ + 1)

∙Z 2π

0

dφ0
Z a

0

dr0 r0e−ikr
0 sin θ cos(φ−φ0)

¸
.

(0.244)

We define two new variables:

x = kr0 sin θ (0.245)

and

β = φ− φ0, (0.246)

to write the above integrals as

Ψ(−→r ) ' − ikA
2

µ
eikr

r

¶
(cos θ + 1)

k2 sin2 θ

"
1

2π

Z ka sin θ

0

dx x

Z 2π

0

dβ e−ix cosβ

#
.

(0.247)

We now concentrate on the integral:

I =

Z ka sin θ

0

dx x

∙
1

2π

Z 2π

0

dβ e−ix cosβ
¸
. (0.248)

Using the integral definition of Bessel functions [Eq. (6.49)] we can show that
the expression inside the square brackets is nothing but J0(x), hence

I =

Z ka sin θ

0

dx xJ0(x). (0.249)
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We also use the recursion relation [Eq. (6.50)]

xJ0(x) =
d

dx
[xJ1(x)], (0.250)

to evaluate the final integral in I as

I = ka sin θJ1(ka sin θ). (0.251)

Substituting this into Equation (0.247) gives us the solution as

Ψ(−→r ) ' − iAa
2

µ
eikr

r

¶
(cos θ + 1)

sin θ
J1(ka sin θ). (0.252)

Since the intensity is |Ψ(r)|2 r2, we obtain

Intensity =
A2a2(cos θ + 1)2

4r2 sin2 θ
J21 (ka sin θ). (0.253)

Problems in diffraction theory are usually very difficult and exact solutions
are quite rare. For a detailed treatment of the subject we refer the reader to
Classical Electrodynamics by Jackson (Bayin, 2006).

III. Useful Sites

Additional references and other useful information about the perturbation
theory and diffraction can be found in the following sites:

http://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics),
http://en.wikipedia.org/wiki/Diffraction,
http://scienceworld.wolfram.com/physics/Diffraction.html.

Selçuk Bayin (April, 2009)


