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CHAPTER 14: FRACTIONALDERIVATIVES

and INTEGRALS: DIFFERINTEGRALS

I. Caputo Derivative (Problem 14.7)

Laplace transform of a differintegral is given as [Eq. (14.222)]

£

½
dqf(t)

dtq

¾
= sq ef(s)− n−1X

k=0

sk
dq−1−kf

dxq−1−k
(0)

= sq ef(s)− f (q−1)(0)− sf (q−2)(0)− · · ·− sn−1f (q−n)(0),
(0.1)

where n is an integer satisfying n− 1 < q ≤ n. For 0 < q < 1, we take n = 1,
thus obtaining

£

½
dqf(t)

dtq

¾
= sq ef(s)− f (q−1)(0)− sf (q−2)(0)− · · ·− f (q−1)(0). (0.2)

Due to the difficulty in imposing boundary conditions with fractional deriva-
tives, Caputo defined the Laplace transform for

0 < q < 1 (0.3)

as

£

½
dqf(t)

dtq

¾
= sq ef(s)− sq−1f(0),
= sq−1

³
s ef(s)− f(0)´ , (0.4)

the inverse of which gives

dqf(t)

dtq
= £−1

n
sq−1

³
s ef(s)− f(0)´o . (0.5)
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Using the convolution theorem [Eq. (16.156)]:Z t

0

f(u)g(t− u)du = £−1 {F (s)G(s)} , (0.6)

with the definitions

F (s) = s ef(s)− f(0), (0.7)

G(s) = sq−1, (0.8)

yields the fractional derivative known as the Caputo derivative:∙
dqf(t)

dtq

¸
C

=
1

Γ(1− q)

Z t

0

µ
df(τ)

dτ

¶
dτ

(t− τ)q
, 0 < q < 1, (0.9)

which was used by him to model dissipation effects in linear viscosity.

II. Caputo Derivative and the Riemann-Liouville
Derivative

We now write the Riemann-Liouville derivative [Eq. (14.71)] for 0 < q < 1
as ∙

dq+1f(t)

dtq+1

¸
R−L

=
dn

dtn

∙
1

Γ(n− q − 1)

Z t

0

f(τ)dτ

(t− τ)q+1−n+1

¸
, (0.10)

where n is a positive integer satisfying n− q − 1 > 0. Choosing n = 2 yields∙
dq+1f(t)

dtq+1

¸
R−L

=
d2

dt2

∙
1

Γ(1− q)

Z t

0

f(τ)dτ

(t− τ)q

¸
. (0.11)

Similarly, we write∙
d1+qf(t)

dt1+q

¸
R−L

=
dn

dtn

∙
1

Γ(n− 1− q)

Z t

0

f(τ)dτ

(t− τ)1+q−n+1

¸
(0.12)

and choose n = 2:∙
d1+qf(t)

dt1+q

¸
R−L

=
d2

dt2

∙
1

Γ(1− q)

Z t

0

f(τ)dτ

(t− τ)q

¸
, (0.13)

thus verifying the relation∙
dq+1f(t)

dtq+1

¸
R−L

=

∙
d1+qf(t)

dt1+q

¸
R−L

. (0.14)
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Returning to the Caputo derivative [Eq. (0.9)], we write

d

dt

∙
dqf(t)

dtq

¸
C

=
1

Γ(1− q)
d

dt

Z t

0

df(τ)

dτ

dτ

(t− τ)q
. (0.15)

As in the Riemann-Liouville and Grünwald definitions, we impose the condi-
tion [Eqs. (14.40) and (14.67)]

d

dt

∙
dqf(t)

dtq

¸
=
d1+qf(t)

dt1+q
, (0.16)

to get ∙
d1+qf(t)

dt1+q

¸
C

=
1

Γ(1− q)
d

dt

Z t

0

df(τ)

dτ

dτ

(t− τ)q
. (0.17)

Definition of the Riemann-Liouville derivative and Equation (0.14) allows us
to write ∙

d1+qf(t)

dt1+q

¸
C

=

∙
dq

dtq

µ
df(t)

dt

¶¸
R−L

. (0.18)

Using the composition rule [Eq. (14.158)] of differintegrals:

dqdQf = dq+Qf − dq+Q[f − d−QdQf ], (0.19)

we write the right-hand side of Equation (0.18) as∙
dq

dtq

µ
df(t)

dt

¶¸
R−L

=

∙
dq+1f(t)

dtq+1

¸
R−L

−
∙
dq+1

dtq+1

¸
R−L

∙
f(t)− d−1

dt−1
d

dt
f(t)

¸
.

(0.20)

Also using Equation (14.152):

d−nf (N)(t)

[d(t− a)]−n = f
(N−n)(t)−

n−1X
k=0

[t− a]k
k!

f (N+k−n)(a), (0.21)

with

n = 1, (0.22)

N = 1, (0.23)

a = 0, (0.24)

we have

d−1d1f(t) = f(t)− f (1+0−1)(0) (0.25)

= f(t)− f(0). (0.26)
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Thus,∙
dq

dtq

µ
df(t)

dt

¶¸
R−L

=

∙
dq+1f(t)

dtq+1

¸
R−L

−
∙
dq+1

dtq+1

¸
R−L

[f(t)− f(t) + f(0)]

(0.27)

=

∙
dq+1f(t)

dtq+1

¸
R−L

−
∙
dq+1

dtq+1

¸
R−L

f(0). (0.28)

Using this in Equation (0.18) we write∙
d1+qf(t)

dt1+q

¸
C

=

∙
dq+1f(t)

dtq+1

¸
R−L

−
∙
dq+1

dtq+1

¸
R−L

f(0). (0.29)

Also using Equation (0.14):∙
dq+1f(t)

dtq+1

¸
R−L

=

∙
d1+qf(t)

dt1+q

¸
R−L

, (0.30)

and the Riemann-Liouville derivative of a constant [Eq. (14.190)]:

dq+1

dtq+1
f(0) =

t−q−1f(0)

Γ(−q) , (0.31)

we finally obtain the relation between the Riemann-Liouville derivative and
the Caputo derivative as∙

dqf(t)

dtq

¸
C

=

∙
dqf(t)

dtq

¸
R−L

− t−qf(0)

Γ(1− q) , 0 < q < 1. (0.32)

From the above equation, Caputo and the Riemann-Liouville derivatives agree
when f(0) = 0. Furthermore, the Caputo derivative of a constant, C0, is zero:∙

dqC0
dtq

¸
C

=

∙
dqC0
dtq

¸
R−L

− t−qC0
Γ(1− q)

=
t−qC0
Γ(1− q) −

t−qC0
Γ(1− q) = 0. (0.33)

To display the clear distinction between the two definitions of fractional
derivatives, we use the Riemann-Liouville definition of fractional integrals
[Eq. (14.70)] to introduce the fractional integral operator 0I

q
t :

0I
q
t [f(t)] =

1

Γ(q)

Z t

0

f(τ)dτ

(t− τ)1−q
, q > 0, (0.34)

which allows us to define the Riemann-Liouville and the Caputo deriva-
tives of arbitrary order, q > 0, respectively, as∙

dqf(t)

dtq

¸
R−L

=
dn

dtn
¡
0I
n−q
t [f(t)]

¢
, n > q, (0.35)∙

dqf(t)

dtq

¸
C

= 0I
n−q
t

∙
dn

dtn
f(t)

¸
, n > q, (0.36)
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where n is the smallest integer greater than q, that is, n− 1 < q < n. Notice
how the order of the dn

dtn and the 0I
n−q
t operators reverses. We can also write

the above equations as

R−L
0 Dq

tf(t) =
dn

dtn
¡
0I
n−q
t [f(t)]

¢
, (0.37)

C
0 D

q
tf(t) = 0I

n−q
t

∙
dn

dtn
f(t)

¸
. (0.38)

Taking the Laplace transform of these derivatives yields, respectively,

£
©
R−L
0 Dq

tf(t)
ª
= sq ef(s)− n−1X

k=0

sk
³
R−L
0 Dq−k−1

t f(t)
´¯̄̄
t=0

, n− 1 < q ≤ n,

(0.39)

£
©
C
0 D

q
tf(t)

ª
= sq ef(s)− n−1X

k=0

sq−k−1
dkf(t)

dtk

¯̄̄̄
t=0

, n− 1 < q ≤ n. (0.40)

Since the Laplace transform of the Caputo derivative requires only the values
of the function and its ordinary derivatives at t = 0, it has a clear advantage
over the Riemann-Liouville derivative, when it comes to imposing the initial
conditions. Equation (0.32) can be generalized for all q > 0 as

C
0 D

q
tf(t) =

R−L
0 Dq

tf(t)−
n−1X
k=0

tk−q

Γ(k − q + 1)f
(k)(0+), n− 1 < q < n. (0.41)

In other words, the two derivatives are not equal unless f(t) and its first n−1
derivatives vanish at t = 0 (Gorenflo and Mainardi).

III. Differintegral of 1/x

In applications we frequently need the differintegral of 1/x. Let us start
with the differintegral of lnx [Eq. (14.216) and see Example (0.2) of this
supplement.]:

dq(lnx)

dxq
=

x−q

Γ(1− q) [lnx− γ −Ψ(1− q)], (0.42)

which is valid for all q (Fig. 0.1). The gamma and the Ψ(x) functions are
related as

Ψ(x) =
1

Γ(x)

dΓ(x)

dx
, (0.43)

γ = −Ψ(1) = 0.5772157, Ψ(n+ 1) = Ψ(1) +
nX
j=1

1

j
. (0.44)
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Fig. 0.1 Graph of the differintegral dq lnx
dxq

= x−q

Γ(1−q) [lnx − γ − Ψ(1 − q)] for the
q1 = −1.1, q2 = −0.5, q3 = 1.5, q4 = 2.4 values.

Using the identity

Ψ(1− n)
Γ(1− n) = (−1)

nΓ(n), (0.45)

where n is an integer, Equation (0.42) reproduces the usual expressions:

d−|n|(lnx)

dx−|n|
=
x|n|

|n|!

⎡⎣lnx− |n|X
j=1

1

j

⎤⎦ (0.46)

and

d|n|(lnx)

dx|n|
= −Γ(|n|)[−x]−|n|. (0.47)

Using the integral representation of lnx :

lnx =

Z x

1

dx

x
, x ∈ [1,∞], (0.48)

we can write

dq(lnx)

[d(x− 1)]q =
dq

[d(x− 1)]q

∙Z x

1

dx

x

¸
, x ∈ [1,∞]. (0.49)

Since

1

x
− d

[d(x− 1)]
d−1

[d(x− 1)]−1

µ
1

x

¶
= 0, (0.50)

Equation (14.158) allows us to write this as

dq(lnx)

[d(x− 1)]q =
dq−1

[d(x− 1)]q−1

∙
1

x

¸
. (0.51)
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Equation (14.185) gives the dependence of a differintegral on the lower limit
as

δ(a, b; f(x)) =
dqf(x)

[d(x− a)]q −
dqf(x)

[d(x− b)]q (0.52)

=
∞X
l=1

dq+l(1)

[d(x− b)]q+l
d−lf(b)

[d(b− a)]−l . (0.53)

Using this with a = 0, b = 1 and f(x) = lnx, we write Equation (0.51) as

dq−1

[d(x− 1)]q−1

∙
1

x

¸
=
dq(lnx)

dxq
− δ(0, 1; lnx). (0.54)

Substituting

δ(0, 1; lnx) =
∞X
l=1

dq+l(1)

[d(x− 1)]q+l

µ
d−l(lnx)

[d(x− 0)]−l

¶
x=1

(0.55)

=
∞X
l=1

dq+l(1)

[d(x− 1)]q+l

µ
d−l(lnx)

dx−l

¶
x=1

, (0.56)

and using Equation (0.42), we write

dq−1

[d(x− 1)]q−1

∙
1

x

¸
=

x−q

Γ(1− q) [lnx− γ −Ψ(1− q)]

−
∞X
l=1

dq+l(1)

[d(x− 1)]q+l

µ
d−l(lnx)

dx−l

¶
x=1

. (0.57)

Since this is valid for all q, we let q−1→ q, thus obtaining the desired formula:

dq(1/x)

[d(x− 1)]q =
x−(q+1)

Γ(−q) [lnx− γ −Ψ(−q)]−
∞X
l=1

dq+1+l(1)

[d(x− 1)]q+1+l

µ
d−l(lnx)

dx−l

¶
x=1

(0.58)

=
x−(q+1)

Γ(−q) [lnx− γ −Ψ(−q)]−
∞X
l=1

(x− 1)−(q+1+l)

Γ(−q − l)

µ
d−l(lnx)

dx−l

¶
x=1

.

(0.59)

To simplify, we use Equation (0.42) to write

d−l(lnx)

dx−l
=

xl

Γ(1 + l)
[lnx− γ −Ψ(1 + l)], (0.60)

which gives

d−l(lnx)

dx−l

¯̄̄̄
x=1

=
−1

Γ(1 + l)
[γ +Ψ(1 + l)]. (0.61)
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Equation (0.59) can now written as

dq(1/x)

[d(x− 1)]q =
x−(q+1)

Γ(−q) [lnx− γ −Ψ(−q)] +
∞X
l=1

(x− 1)−(q+1+l) [γ +Ψ(1 + l)].
Γ(−q − l)l! .

(0.62)

One can easily check that for the integer values of q, this expression reduces to
the usual results [Eqs. (0.46) and (0.47)]. The power series on the right-hand
side converges uniformly and absolutely for |x− 1| > 1.
To obtain the differintegral dq(1/x)

dxq , we apply Equation (0.52) one more
time with the substitutions a = 0, b = 1, f(x) = 1/x and write

dq(1/x)

dxq
=

dq(1/x)

[d(x− 1)]q + δ(0, 1; 1/x), (0.63)

where

δ(0, 1; 1/x) =
∞X
l=1

dq+l(1)

[d(x− 1)]q+l

µ
d−l(1/x)

dx−l

¶
x=1

. (0.64)

Along with Equation (0.59) these yield

dq(1/x)

dxq
=
x−(q+1)

Γ(−q) [lnx− γ −Ψ(−q)]−
∞X
l=1

(x− 1)−(q+1+l)

Γ(−q − l)

µ
d−l(lnx)

dx−l

¶
x=1

+
∞X
l=1

(x− 1)−(q+l)

Γ(1− q − l)

µ
d−l(1/x)

dx−l

¶
x=1

. (0.65)

To simplify the first sum, we use Equation (0.61) for
³
d−l(lnx)
dx−l

´
x=1

. For³
d−l(1/x)
dx−l

´
x=1

, we use the composition rule in Equation (14.135) to write

d−l(1/x)

dx−l
=
d−l+1

dx−l+1

µ
d−1(1/x)

dx−1

¶
, (0.66)

where

d−1(1/x)

dx−1
=

Z x

0

1

x0
dx0 (0.67)

= lnx− ln 0, (0.68)

which diverges logarithmically. We use the limit

d−1(1/x)

dx−1
= lnx− lim

ε→0
(ln ε), (0.69)
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to write Equation (0.66) as

d−l(1/x)

dx−l
=
d−l+1(lnx)

dx−l+1
− θε

d−l+1(1)

dx−l+1
, (0.70)

where

θε = lim
ε→0

(ln ε). (0.71)

Using Equations (0.42) and (14.190) we can now write

d−l(1/x)

dx−l
=
xl−1

Γ(l)
[lnx− γ −Ψ(l)]− θε

xl−1

Γ(l)
, (0.72)

thus obtaining µ
d−l(1/x)

dx−l

¶
x=1

=
−1
Γ(l)

[γ +Ψ(l)]− θε
1

Γ(l)
. (0.73)

Substituting Equations (0.61) and (0.73) into Equation (0.65), we finally ob-
tain

dq(1/x)

dxq
=
x−(q+1)

Γ(−q) [lnx− γ −Ψ(−q)] +
∞X
l=1

(x− 1)−(q+1+l)
∙
Ψ(l + 1) + γ

Γ(−q − l)l!

¸

−
∞X
l=1

(x− 1)−(q+l)
∙

Ψ(l) + γ

Γ(1− q − l)Γ(l)

¸
− θε

∞X
l=1

(x− 1)−(q+l)
∙

1

Γ(1− q − l)Γ(l)

¸
.

(0.74)

All of the three series in this expression converge absolutely and uniformly for
|x− 1| > 1. However, the entire expression diverges logarithmically as

θε = lim
ε→0

(ln ε) :
dq(1/x)

dxq
∼ θε

Ã ∞X
l=1

(x− 1)−(q+l)
∙

1

Γ(1− q − l)Γ(l)

¸!
.

(0.75)

Example 0.1: Prove the relation

Ψ(1− n)
Γ(1− n) = (−1)

nΓ(n), (0.76)

where n is an integer.

Proof: We start with the identity

Γ(−x)Γ(x+ 1) = −π csc(πx) (0.77)
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or

Γ(x)Γ(1− x) = π csc(πx) (0.78)

and then differentiate:

dΓ(x)

dx
Γ(1− x) + Γ(x)dΓ(1− x)

dx
= −π2 cos(πx)

sin2(πx)
, (0.79)

dΓ(x)

dx
Γ(1− x) + Γ(x)dΓ(1− x)

d(1− x)
d(1− x)
dx

= −π2 cos(πx) csc2(πx), (0.80)

dΓ(x)

dx
Γ(1− x)− Γ(x)dΓ(1− x)

d(1− x) = −π
2 cos(πx) csc2(πx), (0.81)

1

Γ(x)

dΓ(x)

dx
− 1

Γ(1− x)
dΓ(1− x)
d(1− x) = −

π2 cos(πx)

Γ(1− x)Γ(x) csc
2(πx),

(0.82)

1

Γ(x)

dΓ(x)

dx
− 1

Γ(1− x)
dΓ(1− x)
d(1− x) = −

π2 cos(πx)

Γ(1− x)Γ(x) csc
2(πx),

(0.83)

1

Γ(x)

dΓ(x)

dx
− 1

Γ(1− x)
dΓ(1− x)
d(1− x) = −

π2 cos(πx)

Γ(1− x)Γ(x)
Γ2(1− x)Γ2(x)

π2
,

(0.84)

1

Γ(x)

dΓ(x)

dx
− 1

Γ(1− x)
dΓ(1− x)
d(1− x) = − cos(πx)Γ(1− x)Γ(x). (0.85)

This is nothing but

Ψ(x)−Ψ(1− x) = − cos(πx)Γ(1− x)Γ(x). (0.86)

For x = n, where n = 1, 2, 3, . . . , this becomes

Ψ(n)

Γ(1− n) −
Ψ(1− n)
Γ(1− n) = −(−1)

nΓ(n), n = 1, 2, 3, . . . . (0.87)

Since Ψ(n) is finite for n = 1, 2, 3, . . . , due to the fact that the gamma function
with a negative integer argument is infinity, the first term vanishes, thus
proving the desired identity:

Ψ(1− n)
Γ(1− n) = (−1)

nΓ(n), n = 1, 2, 3, . . . . (0.88)

Problem 0.1: Using Equation (0.76) show that Equation (0.62) reduces
to the usual results for the integer values of q . For the negative integer values
of q show only for the first three values: q = −1,−2,−3

Example 0.2: Differintegral of lnx : To find the differintegral of lnx,
we first write the Riemann-Liouville derivative:

dq lnx

dxq
=

1

Γ(−q)

Z x

0

lnx0dx0

[x− x0]q+1 , q < 0, (0.89)
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and then make the substitution

y =
x− x0
x

, (0.90)

to write

dq lnx

dxq
=
x−q lnx

Γ(−q)

Z 1

0

dy

yq+1
+

x−q

Γ(−q)

Z 1

0

ln(1− y)dy
yq+1

. (0.91)

The first integral is easily evaluated as 1/(−q). Using integration by parts,
the second integral can be written asZ 1

0

ln(1− y)dy
yq+1

=
1

q

Z 1

0

ln(1− y)d(1− y−q) (0.92)

=
(1− y−q) ln(1− y)

q

¯̄̄̄1
0

+
1

q

Z 1

0

(1− y−q)dy
1− y (0.93)

=
1

q

Z 1

0

1− y−q
1− y dy. (0.94)

Using the integral definition of Ψ(x), also called the digamma function:

Ψ(x+ 1) = −γ +
Z 1

0

1− tx
1− t dt, (0.95)

we find Z 1

0

ln(1− y)dy
yq+1

=
1

q
[γ +Ψ(1− q)]. (0.96)

Using these in Equation (0.91) we obtain

dq lnx

dxq
=

x−q lnx

(−q)Γ(−q) +
x−q

(−q)Γ(−q) [−γ −Ψ(1− q)] (0.97)

=
x−q

Γ(1− q) [lnx− γ −Ψ(1− q)]. (0.98)

Even though this result is obtained for q < 0, Using analyticity we can use it
for all q (Oldham and Spanier).

IV. Mittag-Leffler Function and the Caputo Deriva-

tive
The Mittag-Leffler function, Eq(x), is the generalization of the exponential

function

ex =
∞X
n=0

tn

n!
(0.99)

=
∞X
n=0

tn

Γ(n+ 1)
(0.100)
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as

Eq(x) =
∞X
n=0

tn

Γ(qn+ 1)
, q > 0. (0.101)

We now consider the following fractional differential equation:

C
0 D

q
xy(x) = ωy(x), y(0) = y0, 0 < q < 1, (0.102)

where C0 D
q
x stands for the Caputo derivative, and write its Laplace transform:

sqey − sq−1y0 = ωey, (0.103)

as

ey(s) = sq−1y0
sq − ω

. (0.104)

Using the geometric series, 1
1−x =

P∞
n=0 x

n, we can write ey as
ey(s) = y0 ∞X

n=0

ωn

s1+qn
, (0.105)

which can be inverted easily to yield the solution as

y(x) = y0

∞X
n=0

ωnxqn

Γ(qn+ 1)
(0.106)

= y0Eq(ωx
q). (0.107)

We also use the notation

y(x) = y0Eq(w;x), (0.108)

where Eq(w;x) satisfies

C
0 D

q
xEq(w;x) = ωEq(w;x), Eq(w; 0) = 1. (0.109)

V. Euler Equation For the Mittag-Leffler Function

Euler equation for the exponential function is given as

y(t) = eiωt = cosωt+ i sinωt, (0.110)
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Fig. 0.2 Modified Bromwich contour.

where y(t) satisfies the differential equation

dy

dt
= iωy(t), y(0) = 1. (0.111)

We now consider the following fractional differential equation for the Caputo
derivative:

C
0 D

q
ty(t) = ωiqy(t), y(0) = y0, 0 < q < 1, (0.112)

the solution of which is given as

y(t) = y0Eq(ωi
q; t). (0.113)

Laplace transform of the differential equation gives the transform of the solu-
tion:

ey(s) = sq−1y0
sq − ωiq

, (0.114)

which when inverted yields the solution, y(t), as

y(t) =
1

2πi

Z γ+i∞

γ−i∞

∙
estsq−1y0
sq − ωiq

¸
ds. (0.115)

Since the integrand has a branch point at s = 0, the Bromwich contour has
to be modified as in Figure 0.2. We have located the branch cut along the
negative real axis and the contour around the branch cut is called the Hankel
contour. There are two contributions to this integral, one of which is due to
the pole at

s = ω1/qi, (0.116)
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and the other one comes from the straight line segments of the contour above
and below the branch cut. We can now write

y(t) = [residue at s = ω1/qi ] +
y0
2πi

Z
Hankel

∙
estsq−1

sq − ωiq

¸
ds. (0.117)

The residue is evaluated easily as

residue = lim
s→s0

(s− s0)y0estsq−1
sq − ωiq

, s0 = ω1/qi, (0.118)

=
eiω

1/qt

q
. (0.119)

The remaining integral over the Hankel contour can be written as

−y0ωi
q

π

Z ∞
0

(sin qπ)e−xtxq−1dx

x2q − 2ωiq(cos qπ)xq + (ωiq)2 . (0.120)

We can now put together the final solution as

y(t) = y0

"
eiω

1/qt

q
− ωiq(sin qπ)

π

Z ∞
0

e−xtxq−1dx

x2q − 2ωiq(cos qπ)xq + (ωiq)2

#
.

(0.121)

The first term on the right-hand side is oscillatory, while the second term
contains an exponentially decaying term. As q → 1, the above expression
reduces to the Euler equation. Defining the function

Fq(σ; t) =
σ(sin qπ)

π

Z ∞
0

e−xtxq−1dx

x2q − 2σ(cos qπ)xq + σ2
, (0.122)

which is monotonically decreasing, we can write the solution of the differential
equation:

C
0 D

q
ty(t) = ωiqy(t), y(0) = y0, 0 < q < 1, (0.123)

as

y(t) = y0

∙
1

q
eiω

1/qt − Fq(ωiq; t)
¸
, (0.124)

where C0 D
q
t stands for the Caputo derivative. Following Naber, we can now

write the analog of the Euler equation in fractional calculus as

Eq(ωi
q; t) =

1

q
eiω

1/qt − Fq(ωiq; t), 0 < q < 1, (0.125)

which satisfies the differential equation

C
0 D

q
tEq(ωi

q; t) = ωiqEq(ωi
q; t), 0 < q < 1. (0.126)
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For q = 1, Eq(ωi
q; t) reduces to the Euler equation:

E1(iω; t) = e
iωt. (0.127)

Equation (0.115) also allows us to write the integral representation of the

Mittag-Leffler equation as

Eq(ωi
q; t) =

1

2πi

Z γ+i∞

γ−i∞

∙
estsq−1

sq − ωiq

¸
ds, (0.128)

which with the substitution

x = ωiq, t = 1, (0.129)

is also written as

Eq(x) =
1

2πi

Z γ+i∞

γ−i∞

∙
essq−1

sq − x

¸
ds, q > 0, (0.130)

In applications we frequently need the asymptotic forms:

Eq(x) ∼
1

q
ex

1/q −
∞X
k=1

x−k

Γ(1− qk) , |x|→∞, 0 < q < 2, (0.131)

Eq(x) ∼ −
∞X
k=1

x−k

Γ(1− qk) , |x|→∞, q < 0, (0.132)

Eq(x) ∼
1

q

X
m

e(x
1/2e2πim/q) −

∞X
k=1

x−k

Γ(1− qk) , |x|→∞, q ≥ 2, (0.133)

where m takes all the integer value such that −qπ/2 < 2πm < qπ/2 for x > 0.
For analytic continuation of these expressions, [Eqs. (0.130)-(0.133)], we refer
the reader to Mainardi and Gorenflo.

VI. Right- and Left-Handed Operators

We can generalize the fractional Riemann-Liouville integral,

0I
q
t [f(t)] =

1

Γ(q)

Z t

0

f(τ)dτ

(t− τ)1−q
, q > 0, (0.134)

to define the right- and the left- handed Riemann-Liouville integrals,
respectively, as [Eqs. (14.178) and (14.180)]

a+I
q
t [f(t)] =

1

Γ(q)

Z t

a

(t− τ)q−1f(τ)dτ, (0.135)

b−I
q
t [f(t)] =

1

Γ(q)

Z b

t

(τ − t)q−1f(τ)dτ, (0.136)
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where a < t < b and q > 0. In applications we frequently encounter cases with
a = −∞ or b = ∞. Fractional integrals with either the lower or the upper
limit is taken as infinity are also called theWeyl fractional integral. Some
authors may reverse the definitions of the right- and the left- handed deriva-
tives. Sometimes a+I

q
t and b−I

q
t are also called progressive and regressive,

respectively.
The right- and the left- handed Riemann-Liouville derivatives of

order q > 0 are defined as [Eq. (14.71)]

a+D
q
tf(t) =

dn

dtn
¡
a+I

n−q
t [f(t)]

¢
, (0.137)

b−D
q
tf(t) = (−1)n

dn

dtn
¡
b−I

n−q
t [f(t)]

¢
, (0.138)

where a < t < b and n > q. The following composition rules hold for the
dn/dtn and the a+I

n
t f(t) operators [Eqs. (14.150) and (14.151)]:

dn

dtn
[a+I

n
t f(t)] = f(t), (0.139)

[a+I
n
t ]
dnf(t)

dtn
= f(t)−

n−1X
k=0

f (k)(a+)

k!
(t− a)k. (0.140)

The corresponding equations for the left-handed integrals are given as

dn

dtn
[b−I

n
t f(t)] = (−1)nf(t) (0.141)

and

[b−I
n
t ]
dnf(t)

dtn
= (−1)n

"
f(t)−

n−1X
k=0

f (k)(b−)

k!
(b− t)k

#
. (0.142)

The right-handed Caputo derivative for q > 0 is defined as

C
a+D

q
rf(r) = a+I

n−q
r f (n)(x)

=
1

Γ(n− q)

Z r

a

f (n)(τ)dτ

(r − τ)1−n+q
, (0.143)

where n is the next integer higher than q. Note that for 0 < q < 1, a = 0 and
n = 1, we obtain Equation (0.9).

The left-handed Caputo derivative for q > 0 is defined as

C
b−D

q
rf(r) = (−1)nb−In−qr f (n)(x)

=
(−1)n
Γ(n− q)

Z b

r

f (n)(τ)dτ

(τ − r)1−n+q , (0.144)
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where n is again the next integer higher than q (El-Sayed and Gaber). We
reserve the letter a for the lower limit of the integral operators and the letter
b for the upper limit, hence we will ignore the superscripts in a+ and b−.
Example (0.3) Left-handed Caputo derivative of 1/r :
We calculate the left-handed Caputo derivative of 1/r for 0 < q < 1, k = 1

and b =∞ :

C
∞D

q
r

µ
1

r

¶
=

−1
Γ(1− q)

Z ∞
r

(−1/τ2)dτ
(τ − r)q

=
−1

Γ(1− q)

Z ∞
r

(−1)τ−(q+2)
³
1− r

τ

´−q
dτ. (0.145)

Defining

t =
r

τ
, (0.146)

we write

C
∞D

q
r

µ
1

r

¶
=

1

Γ(1− q)

Z 0

1

³r
t

´−(q+2)
(1− t)−q

µ
−rdt
t2

¶
(0.147)

=
−r−(q+1)
Γ(1− q)

Z 0

1

(1− t)−q

t−q
dt (0.148)

=
r−(q+1)

Γ(1− q)

Z 1

0

tq (1− t)−q dt. (0.149)

Using the definition of the beta function [Eq. (13.151) and Eq. (13.146)] this
gives

C
∞D

q
r

µ
1

r

¶
= r−(q+1)Γ(1 + q), 0 < q < 1. (0.150)

Note that as q → 1 one does not get the expected result, that is, D1
r(1/r) =

−1/r2. Actually, in general one has limq→n
£
C
b D

q
rf(r)

¤
= (−1)nf (n)(r). For

this and other properties of the Caputo derivatives see El-Sayed and Gaber.

VII. Riesz Fractional Integral and Derivative

Riesz fractional integral:
Another fractional derivative commonly encountered in applications is the

Riesz derivative. It is useful in generalizing the standard diffusion equation
by replacing the second-order space derivative. Since the Riesz derivative is
defined through the Fourier transform of a function, we start with a review
of the basic properties of the Fourier transforms. Fourier transform of an
absolutely integrable function, f(t), in the interval (−∞,∞) is defined as
[Bayin (2006), Bayin (2008)]

F (ω) = F{f(t)} =
Z ∞
−∞

e−iωtf(t)dt, ω is real, (0.151)
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where the inverse transform is given as

f(t) = F−1{F (ω)} = 1

2π

Z ∞
−∞

eiωtF (ω)dω. (0.152)

If F (ω) and G(ω) are the Fourier transforms of f(t) and g(t), respectively,
the convolution of f with g, f ∗ g, is defined as

f ∗ g =
Z ∞
−∞

f(t− τ)g(τ)dτ =

Z ∞
−∞

f(τ)g(t− τ)dτ. (0.153)

The Fourier transform of a convolution, F{f ∗ g}, is equal to the product of
the Fourier transforms F (ω) and G(ω) :

F{f ∗ g} = F (ω) ·G(ω). (0.154)

Granted that all the required derivatives, f(f), f 0(t), . . . , f (n−1)(t), vanish as
t→ ±∞, the Fourier transform of a derivative, F{f (n)(t)}, is given as

F{f (n)(t)} = (iω)nF (ω). (0.155)

To find the Fourier transform of the fractional Riemann-Liouville integral
[Eq. (14.70) with a = −∞.]

−∞I
q
tg(t) =−∞ D

−q
t g(t) =

1

Γ(q)

Z t

−∞
(t− τ)q−1g(τ)dτ, q > 0, (0.156)

we first write the Laplace transform of the function [Eq. (16.113)]

h(t) =
tq−1

Γ(q)
, q > 0 : (0.157)

£{h(t)} = 1

Γ(q)

Z ∞
0

tq−1e−stdt = s−q, (0.158)

and then substitute s = iω to obtain the Fourier transform of

h+(t) =

⎧⎨⎩
tq−1

Γ(q)
, t > 0,

0 t ≤ 0
(0.159)

as

F{h+(t)} = (iω)−q. (0.160)

In this case the convergence of the integral in Equation (0.158) restricts q to
0 < q < 1. We now write the convolution of g(t) with h+(t), which is nothing
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but −∞D
−q
t g(t), as

h+(t) ∗ g(t) =
Z ∞
−∞

h+(t− τ)g(τ)dτ (0.161)

=

Z ∞
−∞
(t− τ)q−1g(τ)dτ (0.162)

=−∞ D
−q
t g(t). (0.163)

We finally use Equation (0.160) to obtain

F{−∞D−qt g(t)} = (iω)−qG(ω), (0.164)

where G(ω) is the Fourier transform of g(t).
To find the Fourier transform of

∞D
−q
t g(t) =

1

Γ(q)

Z ∞
t

(τ − t)q−1g(τ)dτ, 0 < q < 1, (0.165)

we again make use of the Laplace transform

£{h(t)} = 1

Γ(q)

Z ∞
0

tq−1e−stdt = s−q, q > 0, (0.166)

and substitute s = −iω to get

£{h(t)} = 1

Γ(q)

Z ∞
0

tq−1eiωtdt

= (−iω)−q, 0 < q < 1. (0.167)

We then let t→ −t in the above integral to write

£{h(t)} = 1

Γ(q)

Z 0

−∞
(−t)q−1e−iωtdt (0.168)

= (−iω)−q, 0 < q < 1. (0.169)

This is nothing but the Fourier transform of the function

h−(t) =

⎧⎨⎩ 0, t ≥ 0,
(−t)q−1
Γ(q)

, t < 0
(0.170)

as

F{h−(t)} =
1

Γ(q)

Z ∞
−∞

h−(t)e
−iωtdt (0.171)

=
1

Γ(q)

∙Z 0

−∞
h−(t)e

−iωtdt+

Z ∞
0

h−(t)e
−iωtdt

¸
(0.172)

=
1

Γ(q)

Z 0

−∞
(−t)q−1e−iωtdt (0.173)

= (−iω)−q. (0.174)
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We now employ the convolution theorem to write

h−(t) ∗ g(t) =
Z ∞
−∞

h−(t− τ)g(τ)dτ (0.175)

=

Z 0

−∞
h−(t− τ)g(τ)dτ +

Z ∞
0

h−(t− τ)g(τ)dτ (0.176)

=
1

Γ(q)

Z ∞
0

(τ − t)χ−1g(τ)dτ (0.177)

= F{∞D−qt g(t)} (0.178)

= H−(ω)G(ω) (0.179)

= (−iω)−qG(ω). (0.180)

Summary:
We have obtained the following Fourier transforms of fractional integrals:

F{−∞D−qt g(t)} = (iω)−qG(ω), (0.181)

F{∞D−qt g(t)} = (−iω)−qG(ω). (0.182)

We can combine these equations to write

F{
£
−∞D

−q
t +∞ D

−q
t

¤
g(t)} =

£
(iω)−q + (−iω)−q

¤
G(ω) (0.183)

= |ω|−q
£
i−q + (−i)−q

¤
G(ω) (0.184)

=
³
2 cos

qπ

2

´
|ω|−q G(ω) (0.185)

and

F
(£
−∞D

−q
t +∞ D

−q
t

¤
2 cos

¡
qπ
2

¢ g(t)

)
= |ω|−q G(ω). (0.186)

The combined expression (El-Sayed and Gaber):

R−qt g(t) =

£
−∞D

−q
t +∞D

−q
t

¤
g(t)

2 cos
¡
qπ
2

¢ (0.187)

=
1

2Γ(q) cos
¡
qπ
2

¢ Z ∞
−∞
(t− τ)q−1g(τ)dτ, q > 0, q 6= 1, 3, 5, . . . ,

(0.188)

is called the Riesz fractional integral or the Riesz potential. The Riesz
fractional integral for 0 < q < 1 is evaluated through its Fourier transform as

F{R−qt g(t)} = |ω|
−q
G(ω), 0 < q < 1. (0.189)

Problem 0.2: Verify Equation (0.185).
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Riesz fractional derivative:
To find the Fourier transform of fractional derivatives, we write the Riemann-

Liouville definition [Eq. (14.17)] with a = −∞ as

−∞D
q
tg(t) =

1

Γ(n− q)

Z t

−∞
(t− τ)−q−1+ng(n)(τ)dτ, q > 0, (0.190)

=−∞ D
q−n
t g(n)(t), n− 1 < q < n. (0.191)

We have assumed reasonable behavior of g(t) and its derivatives, and used −∞
for the lower limit in Section II of this supplement. In other words, due to
the boundary conditions used, Riemann-Liouville and the Caputo definitions
of the fractional derivatives agree (El-Sayed and Gaber, also see Podlubny).
Since q − n < 0, we can write the Fourier transform of −∞D

q
tg(t) as

F{−∞Dq
tg(t)} = (iω)q−nF{g(n)(t)}, q > 0, (0.192)

= (iω)q−n(iω)nG(ω) (0.193)

= (iω)qG(ω), (0.194)

where we have used the result in Equation (0.155). Similarly, we can show
that

F{∞Dq
tg(t)} = (−iω)qG(ω). (0.195)

We now combine the results in Equations (0.194) and (0.195) to write

F{[−∞Dq
t +∞D

q
t ] g(t)} = [(iω)q + (−iω)q]G(ω) (0.196)

=
³
2 cos

qπ

2

´
|ω|q G(ω). (0.197)

For 0 < q ≤ 2, q 6= 1, the Riesz fractional derivative is defined as (Her-
rmann)

Rq
tg(t) = −

[−∞D
q
t +∞D

q
t ] g(t)

2 cos
¡
qπ
2

¢ , (0.198)

which can be found through its Fourier transform:

F{Rq
tg(t)} = |ω|

q
G(ω), 0 < q ≤ 2, (0.199)

as

Rq
tg(t) = −

1

2π

Z ∞
−∞

|ω|q G(ω)eiωtdω. (0.200)
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The minus sign in the definition of the Riesz derivative [Eq. (0.198)] is intro-
duced to recover the q = 2 case as

R2
tg(t) = −

1

2π

Z ∞
−∞

|ω|2G(ω)eiωtdω (0.201)

=
1

2π

Z ∞
−∞

G(ω)

∙
d2

dt2
eiωt

¸
dω (0.202)

=
d2

dt2

∙
1

2π

Z ∞
−∞

G(ω)eiωtdω

¸
(0.203)

=
d2

dt2
g(t). (0.204)

As in the fractional integral case, because of the boundary conditions that
g(t) satisfies, the Riemann-Liouville, Grünwald, Caputo and Riesz derivatives
all agree. In general, the Riesz derivative is related to the q/2 power of the
positive definite operator

−D2
tg(t) = −

d2

dt2
g(t) (0.205)

as

−Rq
tg(t) =

µ
− d

2

dt2

¶q/2
g(t). (0.206)

Problem 0.3: Justify Equation (0.195) and show that the Riemann-
Liouville, Grünwald, Caputo and the Riesz definitions of the fractional deriva-
tive agree. Note the following important relation between the left-handed
Riemann-Liouville and the Caputo derivatives (El-Sayed and Gaber):

R−L
b Dq

tg(t) =
C
b D

q
tg(t) +

n−1X
k=0

(−1)n−k(b− t)k−q
Γ(k − q + 1)

£
Dk
t g(t)

¤
t=b
, (0.207)

where q ∈ (n− 1, n]. When g(t) satisfies the boundary conditions

Dk
t g(b) = 0, k = 0, 1, . . . , n− 1, (0.208)

Equation (0.207) implies

R−L
b Dq

tg(t) ≡Cb D
q
tg(t). (0.209)

Another representation of the Riesz derivative:
To find another useful representation of the Riesz derivative, we use Equa-

tions (0.137) and (0.138) to write

−∞D
q
tf(t) =

d

dt

h
−∞I

1−q
t f(t)

i
, 0 < q < 1, (0.210)
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and

∞D
q
tf(t) = (−1)

d

dt

h
∞I

1−q
t f(t)

i
, 0 < q < 1. (0.211)

The first equation [Eq. (0.210)]:

−∞D
q
tf(t) =−∞ I

−q
t f(t) =

1

Γ(1− q)
d

dt

Z t

−∞
(t− τ)−qf(τ)dτ, (0.212)

which after a variable change can be written as

−∞D
q
tf(t) =

1

Γ(1− q)
d

dt

Z ∞
0

ξ−qf(t− ξ)dξ. (0.213)

Furthermore, using the integral

ξ−q = q

Z ∞
ξ

dη

η1+q
, (0.214)

we can also write

−∞D
q
tf(t) =

q

Γ(1− q)
d

dt

Z ∞
0

∂f(t− ξ)

∂t

Z ∞
ξ

1

η1+q
dη dξ. (0.215)

Since

∂f(t− ξ)

∂t
= −∂f(t− ξ)

∂ξ
, (0.216)

we write

−∞D
q
tf(t) =

q

Γ(1− q)

∙
−
Z ∞
0

∂f(t− ξ)

∂ξ

µZ ∞
ξ

dη

η1+q

¶
dξ

¸
. (0.217)

Integration by parts yields

−∞D
q
tf(t) =

q

Γ(1− q)

(∙
− (f(t− ξ)− f(t))

µZ ∞
ξ

dη

η1+q

¶¸∞
ξ=0

(0.218)

+

Z ∞
0

(f(t− ξ)− f(t))
µ
d

dξ

Z ∞
ξ

dη

η1+q

¶
dξ

¾
=

q

Γ(1− q)

Z ∞
0

f(t)− f(t− ξ)

ξ1+q
dξ, 0 < q < 1. (0.219)

Following similar steps and using Equation (0.211), we obtain

∞D
q
tf(t) =∞ I

−q
t f(t) = −

d

dt

h
∞I

1−q
t f(t)

i
, 0 < q < 1, (0.220)

=
q

Γ(1− q)

Z ∞
0

f(t+ ξ)− f(t)
ξ1+q

dξ. (0.221)
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Similar results can be obtained for the interval 1 < q < 2. Recalling the
definition of the Riesz derivative [Eq. (0.198)]:

Rq
tg(t) = −

[−∞D
q
t +∞D

q
t ] f(t)

2 cos
¡
qπ
2

¢ (0.222)

and using the identity

q

Γ(1− q) = −
1

Γ(−q) = Γ(1 + q)
sin(qπ/2)

π
, (0.223)

we get the following regularized representation of the Riesz derivative, which
is also valid for q = 1 (Herrmann, Scalas et.al.):

Rq
tf(t) =

Γ(1 + q) sin(qπ/2)

π

Z ∞
0

f(t+ ξ)− 2f(t) + f(t− ξ)

ξ1+q
dξ, 0 < q < 2.

(0.224)

Fractional Laplacian:
Using the following definitions of the three-dimensional Fourier transforms:

Φ(
−→
k , t) =

Z ∞
−∞

d3−→r Ψ(−→r , t)e−i
−→
k ·−→r , (0.225)

Ψ(−→r , t) = 1

(2π)3

Z ∞
−∞

d3
−→
k Φ(

−→
k , t)ei

−→
k ·−→r , (0.226)

we can introduce the fractional Laplacian as (Laskin (2002))

∆q/2Ψ(−→r , t) = − 1

(2π)3

Z ∞
−∞

d3
−→
k Φ(

−→
k , t) |k|q ei

−→
k ·−→r . (0.227)

VIII. Useful Sites and References

Useful Sites on Fractional Calculus:

http://mathworld.wolfram.com/FractionalCalculus.html

http://en.wikipedia.org/wiki/Fractional_calculus.

Sites On Mittag-Leffler Functions:

http://mathworld.wolfram.com/Mittag-LefflerFunction.html

http://en.wikipedia.org/wiki/Mittag-Leffler_funcion.
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Revised version: R1

Revisions made in R1:
¨ Section on the right- and the left- handed Caputo derivatives is revised.
¨ Section on the Riesz fractional integrals and derivatives is added.


