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CHAPTER 20: GREEN’S FUNCTIONS

and PATH INTEGRALS

I. Anomalous Diffusion and Path Integrals Over
Lévy Paths

Wiener’s path integral approach to Brownian motion can be used to rep-
resent a wide range of stochastic processes, where the probability density,
W (x, t, x0, t0), of finding a random variable at the value x at time t is given
by the Gaussian distribution [Eq. (20.8))]:

W (x, t, x0, t0) =
1p

4πD(t− t0)
exp

½
− (x− x0)

2

4D(t− t0)

¾
, t > t0, (0.1)

where W (x, t, x0, t0) satisfies the diffusion equation [Eq. (20.5)]

∂W

∂t
= D

∂2W

∂x2
(0.2)

with the initial condition

lim
t→t0

W (x, t, x0, t0)→ δ(x− x0). (0.3)

An important feature of the Wiener process is that at all times the scaling
relation

(x− x0)2 ∝ (t− t0), (0.4)

where x0 and t0 are the initial values of x and t, respectively, is satisfied. To
find the fractal dimension of the Brownian motion, we divide the time interval
T into N slices, T = N∆t, which gives the space length of the diffusion path
as

L = N∆x =
T

∆t
∆x. (0.5)
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Using the scaling property [Eq. (0.4)] we write

L ∝ 1

∆x
. (0.6)

When the spacial increment ∆x goes to zero, the fractal dimension, dfractal,
is defined as (Mandelbrot)

L ∝ (∆x)1−dfractal . (0.7)

Comparing Equations (0.6) and (0.7) in the limit as ∆x→ 0, gives the fractal
dimension of the Brownian motion as

dBrownianfractal = 2. (0.8)

In terms of the Wiener path integrals, W (x, t, x0, t0) is expressed as [Eq.
(20.24)]

W (x, t, x0, t0) =

Z
C[x0,t0;x,t]

dwx(τ), (0.9)

where the Wiener measure, dwx(τ), is written as

dwx(τ) = exp

½
− 1

4D

Z t

t0

.
x
2
(τ)dτ

¾ NY
i=1

dxi√
4πD dτ

(0.10)

and the integral is evaluated over all continuous paths from (x0, t0) to (x, t)
[Eqs. (20.24) and (20.25)].
In the presence of a potential, V (x), the diffusion equation is written as

∂WB

∂t
−D∂2WB

∂x2
= −V (x, t)WB, (0.11)

which is also called the Bloch equation. Using the Feynman-Kac formula
[Eq. (20.38)]:

WB(x, t, x0, 0) =

Z
C[x0,0;x,t]

dwx(τ) exp

½
−
Z t

0

dτ V (x(τ), τ)

¾
, (0.12)

a perturbative solution of the Bloch equation can be given as [Eq. (20.44)]

WB(x, t, x0, t0) =WD(x, t, x0, t0)

−
Z ∞
−∞

dx0
Z t

t0

dt0WD(x, t, x
0, t0)V (x0, t0)WD(x

0, t0, x0, t0)

+

Z ∞
−∞

dx0
Z t

t0

dt0
Z ∞
−∞

dx00
Z t0

t00

dt00WD(x, t, x
0, t0)V (x0, t0)WD(x

0, t0, x00, t00)

×V (x00, t00)WD(x
00, t00, x0, t0) + · · · , (0.13)
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where WD =W (x, t, x
0, t0)θ(t− t0) [Eq. 20.35)] satisfies

∂WD

∂t
−D∂2WD

∂x2
= δ(x− x0)δ(t− t0), (0.14)

andW (x, t, x0, t0) is the solution of the homogeneous equation ∂WD

∂t −D
∂2WD

∂x2 =
0.
Even though the Wiener’s mathematical theory of the Brownian motion

can be used to describe a wide range of stochastic processes in nature, there
also exist a lot of interesting phenomenon where the scaling law in Equation
(0.4) is violated. The processes that obey the scaling rule

(x− x0)2 ∝ (t− t0)q, q 6= 1, (0.15)

are in general called anomalous diffusion, where the cases with q < 1 are
classified as subdiffusive and the cases with q > 1 are called superdiffusive.
One of the ways to study anomalous diffusion is to use the fractional

diffusion equation:

∂WL(x, t, x0, t0)

∂t
= Dq∇qWL(x, t, x0, t0), (0.16)

where ∇q ≡ Rq
x is the Riesz fractional derivative:

∇q = ∂q

∂xq
, q < 2. (0.17)

In Equation (0.16) Dq stands for the fractional diffusion constant, which
has the dimension [Dq] = cmq sec−1 . As we discussed in detail in the sup-
plements of Chapter 14, the Riesz derivative is defined with respect to the
Fourier transform as

∇qWL(x, t) = −
1

2π

Z ∞
−∞

dk eikx |k|qWL(k, t), (0.18)

where WL(x, t) and its Fourier transform, WL(k, t), are related as

WL(x, t) =
1

2π

Z ∞
−∞

dk eikxWL(k, t), (0.19)

WL(k, t) =

Z ∞
−∞

dx e−ikxWL(x, t). (0.20)

Solution of the fractional diffusion equation [Eq. (0.16)] with the initial con-
dition

lim
t→t0

WL(x, t, x0, t0) = δ(x− x0), (0.21)
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yields the probability density

WL(x, t, x0, t0) =
1

2π

Z ∞
−∞

dk eik(x−x0) exp {−Dq |k|q (t− t0)} . (0.22)

To obtain Equation (0.22), we first take the Fourier transform of the fractional
diffusion equation:

∂WL(x, t, x0, t0)

∂t
= −Dq |k|qWL(x, t, x0, t0), (0.23)

which with the initial condition

WL(k, 0) = 1, (0.24)

can be integrated easily to yield the solution as

WL(k, t) = exp (−Dqt |k|q) . (0.25)

For simplicity, we have set x0 = t0 = 0. Using Fox’s H functions, we can also
write WL(k, t) as

WL(k, t) =
1

q
H1,0
0,1

µ
(Dqt)

1/q |k|
¯̄̄̄µ
0,
1

q

¶¶
. (0.26)

Finally, we find the inverse Fourier transform ofWL(k, t) to write the solution
of the fractional diffusion equation [Eq. (0.16)] as (Laskin (2000a), West et.
al.)

WL(x, t) =
π

q |x|H
1,1
2,2

⎛⎝ |x|
(Dqt)

1/q

¯̄̄̄
¯
(1,1/q),(1,1/2)

(1,1),(1,1/2)

⎞⎠ . (0.27)

For large arguments, |x| /(Dqt)1/q À 1, we can write the following useful
series expansion (West et.al.)

WL(x, t) =
∞X
l=1

(−1)l+1Γ(1 + lq)
l!

sin

µ
lπq

2

¶
(Dqt)

l

|x|lq+1
. (0.28)

For q = 2,WL(x, t, x0, t0) [Eq. (0.27)] reduces to the Gaussian probability
distribution [Eq. (0.1)]. For 0 < q < 2, WL(k, t) [Eq. (0.27)] is called the q-
stable Lévy distribution, which possesses finite moments of order up tom < q,
while all higher order moments diverge. Lévy processes obey the scaling rule

(x− x0) ∝ (t− t0)1/q, 1 < q ≤ 2, (0.29)

where (x − x0) is the length of the Lévy path for the time interval (t − t0).
Dividing a given time interval T into N slices, T = N∆t, we write

L = N∆x =
T

∆t
∆x, (0.30)
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where L is the length of the Lévy path and ∆x is the length increment for
∆t. Substituting the scaling rule [Eq. (0.29)] into the above equation gives us

L ∝ (∆x)1−q. (0.31)

Considered in the limit as ∆x → 0, this yields the fractal dimension of the
Lévy path as

dLévyfractal = q, 1 < q ≤ 2. (0.32)

For a Lévy process obeying the fractional Bloch equation,

∂WL

∂t
−Dq∇qWL = −V (x, t)WL, (0.33)

we now write the Feynman-Kac formula as [Eq. (20.38)]

WL(x, t, x0, 0) =

Z
C[x0,0;x,t]

dLx(τ) exp

½
−
Z t

0

dτ V (x(τ), τ)

¾
, (0.34)

where the Wiener measure, dwx(τ), is replaced by the Lévy measure defined
as

dLx(τ) = lim
N→∞

"
dx1 · · · dxN

µ
1

Dq∆τ

¶(N+1)/q N+1Y
i=1

Lq

(µ
1

Dq∆τ

¶1/q
|xi − xi−1|

)#
.

(0.35)

We have divided the interval [t− 0] into N + 1 segments [Eq. (20.15)],

∆τ =
t− 0
N + 1

, (0.36)

covered in N steps and introduced the function Lq such that the Lévy dis-
tribution function, WL(x, t), is expressed in terms of the Fox’s H functions
as

WL(x, t) = (Dqt)
−1/qLq

(µ
1

Dqt

¶1/q
|x|
)

=
π

q |x|H
1,1
2,2

⎛⎝ 1

(Dqt)
1/q

|x|
¯̄̄̄
¯
(1,1/q),(1,1/2)

(1,1),(1,1/2)

⎞⎠ . (0.37)

Note that i = 1 marks the initial point while t = N + 1 is the end point
of the path. Since the particle is certain to be somewhere in the internal
x ∈ [−∞,∞], we have Z ∞

−∞
dx

Z
[x0,t0;x,t]

dLx(τ) = 1. (0.38)
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In this regard, the dimension of dLx(τ) and the propagator

WL(x, t) =

Z
[x0,t0;x,t]

dLx(τ) (0.39)

is 1/cm, a point that will be needed shortly.

II. Fox’s H-Functions

In 1961 Fox introduced the H-functions, which are special functions of very
general nature. They allow treatment of several phenomenon, among which is
anomalous diffusion, in elegant and efficient formalism. Fox’s H functions are
generalizations of the Meijer’s G-functions and they are defined with respect
to a Mellin-Barnes type integral (Fox, Srivastava et.al., West et.al.):

Hm,n
p,q (z) = H

m,n
p,q

³
z|(ap,Ap)(bq,Bq)

´
= Hm,n

p,q

³
z|(a1,A1),... ,(ap,Ap)(b1,B1),... ,(bq,Bq)

´
(0.40)

=
1

2πi

Z
C

h(s)zsds, (0.41)

where

h(s) =

Qm
j=1 Γ(bj −Bjs)

Qn
j=1 Γ(1− aj +Ajs)Qp

j=n+1 Γ(aj −Ajs)
Qq
j=m+1 Γ(1− bj +Bjs)

, (0.42)

m,n, p, q are positive integers satisfying 0 ≤ n ≤ p, 1 ≤ m ≤ q, and empty
products are taken as unity. Also, Aj , j = 1, . . . , p, and Bj , j = 1, . . . , q,
are positive numbers, and aj , j = 1, . . . , p, and bj , j = 1, . . . , q, are complex
numbers satisfying

Aj(bh + ν) 6= Bh(aj − λ− 1), ν,λ = 0, 1, . . . ; h = 1, . . . ,m, j = 1, . . . , n.
(0.43)

The contour C is such that the poles of Γ(bj − Bjs), j = 1, . . . ,m, are sep-
arated from the poles of Γ(1 − aj + Ajs), j = 1, . . . , n. The poles of the
integrand are assumed to be simple. The H-function is an analytic function
of z, if either

μ =

qX
j=1

Bj −
pX
j=1

Aj > 0 and 0 < |z| <∞ (0.44)

or

μ = 0 and 0 < |z| <
pY
j=1

A
−Aj
j

qY
j=1

B
Bj

j . (0.45)
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Fox’s H-functions are very useful in solving fractional diffusion equation
(Glöckle and Nonnenmacher, West et. al.). Remembering the definitions for
the Riemann-Liouville fractional integral:

0D
−q
t [f(t)] =0 I

q
t [f(t)] =

1

Γ(q)

Z t

0

f(τ)dτ

(t− τ)1−q
, q > 0, (0.46)

and the Riemann-Liouville fractional derivative as

0D
q
t [f(t)] =

dn

dtn
¡
0I
n−q
t [f(t)]

¢
, n > q, (0.47)

we can write the following useful fractional derivative of the H-function for
arbitrary q:

0D
q
z

h
zaHm,n

p,q

³
(cz)b

¯̄(aj ,Aj)
(bj ,Bj)

´i
= za−qHm,n+1

p+1,q+1

³
(cz)b

¯̄(−a,b),(aj ,Aj)
(bj ,Bj),(q−a,b)

´
,

(0.48)

where a, b > 0 and a + bmin(bj/Bj) > −1, 1 ≤ j ≤ m. Solutions of the
fractional diffusion equation can be obtained by formally manipulating the
parameters in the above formula.
Introducing the notation

H(t) = Hm,n
p,q

³
t|(aj ,Aj)(bj ,Bj)

´
, (0.49)

we can express the Laplace transform of H(t) in terms of another H-function
as (West et.al.)

eH(s) = £{H(t)} =
⎧⎪⎪⎨⎪⎪⎩

1
sH

n+1,m
q,p+1

³
s|(1−bj ,Bj)
(1,1),(1−aj ,Aj)

´
, 0 ≤ μ ≤ 1,

1
sH

m,n+1
p+1,q

³
1
s

¯̄(0,1),(aj ,Aj)
(bj ,Bj)

´
, μ ≥ 1,

(0.50)

where μ is defined in Equation (0.44). On the other hand, given the Laplace
transform

eH(s) = Hm,n
p,q

³
s|(aj ,Aj)(bj ,Bj)

´
, (0.51)

we can write the inverse transform as

H(s) = £−1{ eH(s)} =
⎧⎪⎪⎨⎪⎪⎩

1
tH

n,m
q,p+1

³
t|(1−bj ,Bj)(1−aj ,Aj),(1,1)

´
, 0 ≤ μ ≤ 1,

1
tH

m,n
p+1,q

³
1
t

¯̄(aj ,Aj),(0,1)
(bj ,Bj)

´
, μ ≥ 1.

(0.52)
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These relations [Eqs. (0.50) and (0.52)] hold for λ > 0 and for

max
1≤j≤n

Re

µ
aj − 1
Aj

¶
< min
1≤j≤m

Re

µ
bj
Bj

¶
. (0.53)

III. Fractional Quantum Mechanics

It is well known that fractional diffusion equation is a convenient approach
to anomalous diffusion, which involves global interactions and memory effects.
In this regard, it is important that we also develop the basic equations of
fractional quantum mechanics. We first remember that under Wick’s rotation,
t→ −it, the one dimensional Schrödinger equation for a free particle:

∂Ψ

∂t
=

i

2m

∂2Ψ

∂x2
, ~ = 1, (0.54)

transforms into the diffusion equation:

∂Ψ

∂t
= eD∂2Ψ

∂x2
, (0.55)

where eD is equal to 1/2m. Just like we have written the anomalous diffusion
equation [Eq. (0.16)], we generalize the above equation so that it is now
written in terms of the Riesz fractional space derivative as

∂Ψ

∂t
= eDq∇qΨ, 0 < q < 2, (0.56)

where eDq is the generalized fractional quantum diffusion constant and ∇q is
the Riesz derivative. The inverse Wick rotation, t → it, gives the fractional
version of the Schrödinger equation as

∂Ψ

∂t
= i eDq∇qΨ. (0.57)

In the presence of interactions, the Schrödinger equation [Eq. (20.14)]:

∂Ψ

∂t
=

i

2m

∂2Ψ

∂x2
− iV (x)Ψ(x, t), (0.58)

is now generalized as

∂Ψ

∂t
= i eD2∇qΨ− iV (x)Ψ(x, t). (0.59)

After a Wick rotation, this becomes the Bloch equation:

∂Ψ

∂t
= eDq∇qΨ− V (x)Ψ(x, t). (0.60)
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When q = 2, the generalized fractional quantum diffusion constant becomeseD2 = 1/2m. We now follow the steps described in Section 20.7 that lead to
the Feynman path integral formulation of quantum mechanics and replace Dq
with i eDq in dLx(τ) [Eq. (0.35)] to write

dFeynmanL x(τ) = lim
N→∞

⎡⎣dx1 · · · dxN Ã
1

i eDq∆τ
!−N+1)/q

×
N+1Y
i=1

Lq

⎧⎨⎩
Ã

1

i eDq∆τ
!1/q

|xi − xi−1|

⎫⎬⎭
⎤⎦ . (0.61)

Instead of the Feynman measure dFx(τ) [Eq. (20.143)], we now use d
Feynman
L x(τ),

since the path integrals are to be evaluated over the Lévy paths, and eDq is
the generalized fractional diffusion constant of fractional quantum mechanics.
To convert these equations into physical dimensions, we have to introduce the
proper powers of ~ into dFeynmanL x(τ). We first note that the physical unit of³

1

i eDq∆τ

´1/q
is 1/cm, hence the unit of (i eDq∆τ)−(N+1)/q must be cmN−1.We

now write

~a
Ã

~b

i eDq∆τ
!1/q

, (0.62)

where a and b are to be determined. Using

[~] = ergs cm, (0.63)

[∆τ ] = sec, (0.64)

and ⎡⎣~aÃ ~b

i eDq∆τ
!1/q⎤⎦ = 1

cm
(0.65)

we get

[ eDq]1/q = ergaq+1cmq secaq+b−1, (0.66)

= gmaq+bcm2aq+q+2b sec−aq−b−1 . (0.67)

Since when q = 2, Equation (0.56) gives the dimension of eD2 as
[ eD2] = ∙ 1

2m

¸
= gm−1, (0.68)
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we require the following set of equations:

aq + b = −1,
2aq + q + 2b = 0,
−aq − b− 1 = 0,

¯̄̄̄
¯̄
q=2

, (0.69)

to be true at q = 2, which yields a and b as

a = −1, (0.70)

b = 1. (0.71)

Thus the physical dimension of eDq is now obtained as ergs1−qcmq sec−q,
and the Feynman measure over the Lévy paths with the physical dimensions
becomes

dFeynmanL x(τ) = lim
N→∞

⎡⎣dx1 · · · dxN 1

~N+1

Ã
~

i eDq∆τ
!(N+1)/q

×
N+1Y
i=1

Lq

⎧⎨⎩1~
Ã

~
i eDq∆τ

!1/q
|xi − xi−1|

⎫⎬⎭
⎤⎦ . (0.72)

Note that the physical dimension of dFeynmanL x(τ) is 1/cm.
We now modify the Feynman-Kac formula to be evaluated over the Lévy

paths to write the propagator:

K(x, t, x0, t0) =

Z
[x0,t0,x,t]

dFeynmanL x(τ) exp

½
− i
~

Z t

t0

dτ V [x(τ)]

¾
. (0.73)

Using the propagator K(x, t, x0, t0), we can write the solution of the fractional
Schrödinger equation [Eq. (0.59)] as

Ψ(x, t) =

Z
K(x, t, x0, t0)Ψ(x0, t0)dx0. (0.74)

With the proper factors of ~ introduced, the fractional Schrödinger equation
in physical dimensions becomes

i~
∂Ψ

∂t
= − eDq (~∇)q Ψ+ V (x)Ψ(x, t). (0.75)

Laskin (2000a) has shown that indeed Ψ(x, t) [Eq. (0.74)] satisfies the frac-
tional Schrödinger equation [Eq. (0.75)]. Based on the Lévy paths and the
generalization of the Riesz fractional derivative to three dimensions, Laskin
(2002) also gave the three dimensional version of the fractional Schrödinger
equation.
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