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CHAPTER 5: GEGENBAUER and

CHEBYSHEV POLYNOMIALS

I. Solutions or Hints to Selected Problems:

1. Write the wave equation [Eq. (5.3)] for the massless conformal scalar
field in a closed static Friedmann (Einstein) universe explicitly.

Solution:

The wave equation for the massless conformal scalar field in a closed
static Friedmann universe is given as

¤Φ(t,χ, θ,φ) + 1

R20
Φ(t,χ, θ,φ) = 0, (0.1)

where R0 is the radius of the universe. D’Alembert (wave) operator, ¤,
is defined as

¤ ≡ gμν∇μ∇ν , μ, ν = 0, 1, 2, 3, (0.2)

where ∇μ stands for the covariant derivative, which is also shown as ∂μ.
The ¤ operator can also be written as [Eq. (10.225)]

¤ ≡ g1/2 ∂

∂xμ

∙
g1/2gμν

∂

∂xν

¸
, (0.3)

where g stands for the absolute value of the determinant of the metric
tensor [Eq. (10.238)]. Note that we use the Einstein summation con-
vention, that is, the repeated indices are summed over (Chapter 10). In
a closed static Friedmann universe, the metric tensor is defined by the
line element [Eq. (5.1)]

ds2 = gμνdx
μdxν

= dt2 −R20
£
dχ2 + sin2 χdθ2 + sin2 χ sin2 θdφ2

¤
, (0.4)
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where R0 is the constant radius of the universe and

g = R60 sin
4 χ sin2 θ.

Using the summation convention and the identification

x0 = t, x1 = χ, x2 = θ, x3 = φ, (0.5)

Equation (0.1) with Equation (0.3) can be written as∙
1

2g

∂g

∂xμ
gμν∂ν +

∂gμν

∂xμ
∂ν + g

μν∂μ∂ν +
1

R20

¸
Φ = 0, (0.6)

which eventually leads to

∂2Φ

∂t2
− 1

R20

∂2Φ

∂χ2
− 1

R20 sin
2 χ

∂2Φ

∂θ2
− 1

R20 sin
2 θ sin2 χ

∂2Φ

∂φ2

− 2 cosχ

R20 sinχ

∂Φ

∂χ
− cos θ

R20 sin
2 χ sin θ

∂Φ

∂θ
+
3
.

R0
R0

∂Φ

∂t
+
1

R20
Φ = 0. (0.7)

We now try the separation of variables method and substitute a solution
of the form

Φ(t,χ, θ,φ) = T (t)X(χ)Y (θ,φ), (0.8)

which yields Equation (5.6) and eventually leads to Equations (5.7)−(5.9)
in the book.

2. Show that the function

1Π
N
l = sin

l χ
dl+1(cosNχ)

d(cosχ)l+1
(0.9)

also satisfies the differential equation for X(χ) [Eq. (5.9)]:

sin2 χ
d2X

dχ2
+ 2 sinχ cosχ

dX

dχ
+

∙
(ω2 − 1

R20
)R20 sin

2 χ− l(l + 1)
¸
X(χ) = 0

(0.10)

with

ω =
N

R0
. (0.11)

Solution:

We first write Equation (0.10) as

d

dχ

∙
sin2 χ

dX

dχ

¸
+

∙
(ω2 − 1

R20
)R20 sin

2 χ− l(l + 1)
¸
X(χ) = 0 (0.12)
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and then make the transformation

x = cosχ (0.13)

to obtain

(1− x2)2 d
2X

dx2
− 3x(1− x2)dX

dx
+
£
(ω2R20 − 1)(1− x2)− l(l + 1)

¤
X = 0.

(0.14)

We now substitute

1Π
N
l = (1− x2)l/2

dl+1(cosNχ)

dxl+1
(0.15)

into the above differential equation to get

(1− x2)d
l+3(cosNx)

dxl+3
− (2l + 3)xd

l+2(cosNx)

dxl+2

+[−l2 − 2l − 1 + ω2R20]
dl+1(cosNx)

dxl+1
= 0. (0.16)

Now, the problem boils down to showing that the function

y(x) =
dl+1(cosNx)

dxl+1
(0.17)

satisfies the following second-order differential equation:

(1− x2) d
2

dx2

∙
dl+1(cosNx)

dxl+1

¸
− (2l + 3)x d

dx

∙
dl+1(cosNx)

dxl+1

¸
+[−(l + 1)2 + ω2R20]

∙
dl+1(cosNx)

dxl+1

¸
= 0, (0.18)

for ω = N
R0
. We first show that the above equation is true for l = 0 :

(1− x2)d
3(cosNx)

dx3
− 3xd

2(cosNx)

dx2

+[−1 + ω2R20]
d(cosNx)

dx
= 0. (0.19)

Evaluating the derivatives explicitly gives

ω =
N

R0
. (0.20)

Finally, differentiating Equation (0.19) l times and using the Leibnitz
rule:

dl(uv)

dxl
=

lX
r=0

µ
l

r

¶
dru

dxr
dl−rv

dxl−r
, (0.21)
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we get the desired result. Note that N is not quantized yet. However,
for finite solutions everywhere in the interval x ∈ [−1, 1], we restrict N
to integer values:

N = 1, 2, . . . .

3. Show that a second and linearly independent solution of Equation (0.10)
can be written as

2Π
N
l (x) = (1− x2)l

dl+1(sinNχ)

dxl+1
. (0.22)

Discuss the boundary conditions for the general solution. Establish the
connection between 1Π

N
l (x) and the solution given in the book in terms

of Gegenbauer polynomials [Eq.(5.31)].

Solution:

To prove that the above function is indeed a solution of Equation (0.10),
we use the same method used in the previous problem for 1Π

N
l (x). For

their linear independence, check their Wronskian [Eq. (6.84)]. The
general solution can now be given as the linear combination:

X(x) = c0 1Π
N
l (x) + c1 2Π

N
l (x), (0.23)

where c0 and c1 are two integration constants. We now impose the
boundary condition that the solution be finite everywhere in the interval

χ ∈ [0,π], or x ∈ [−1, 1]. (0.24)

The second solution diverges for χ = 0, hence we set its coefficient to
zero.

To establish the connection with the Gegenbauer polynomials, we make
use of the trigonometric expansion

cosNχ =

[N/2]X
j=0

N(N − j − 1)!(−1)j2N−(2j+1)
(N − 2j)!j! (cosχ)N−2j (0.25)

=

[N/2]X
j=0

N(N − j − 1)!(−1)j2N−(2j+1)
(N − 2j)!j! xN−2j , (0.26)

which terminates when a coefficient is zero. We can now write

dl+1(cosNx)

dxl+1

= N

[(N−l−1)/2]X
j=0

(−1)j 2
N−(2j+1)(N − j − 1)!
(N − 2j − l − 1)!j! xN−2j−l−1, (0.27)
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where N = 1, 2, . . . and we have used the formula

dmxn

dxm
=

n!

(m− n)!x
m−n. (0.28)

Comparing this with the Gegenbauer polynomials [Eq. (5.28)]:

Cλ
n(x) =

[n/2]X
r=0

(−1)r Γ(n− r + λ)

Γ(λ)r!(n− 2r)! (2x)
n−2r, (0.29)

which satisfies the differential equation [Eq. (5.27)]

(1− x2)d
2Cλ

n(x)

dx2
− (2λ+ 1)xdC

λ
n(x)

dx
+ n[n+ 2λ]Cλ

n(x) = 0, (0.30)

we see that the function
h
dl+1(cosNx)

dxl+1

i
is proportional to Cl+1N−l−1(x),

N = 1, 2, . . . . That is,

Cl+1N−l−1(x) =

[(N−l−1)/2]X
j=0

(−1)j Γ(N − j)2N−2j−1−l
j!Γ(l + 1)(N − 2j − l − 1)!x

N−2j−l−1

=

[(N−l−1)/2]X
j=0

(−1)j (N − j − 1)!2
−l2N−2j−1

j!l!(N − 2j − l − 1)! xN−2j−l−1

=

µ
2−l

l!

¶ [(N−l−1)/2]X
j=0

(−1)j 2
N−2j−1(N − j − 1)!
j!(N − 2j − l − 1)! x

N−2j−l−1,

=

µ
2−l

l!

¶
1

N

∙
dl+1(cosNx)

dxl+1

¸
. (0.31)

Hence, they both satisfy the same differential equation [Eq. (0.18)]. We
can now write the solution of Equation (5.9) as

X(χ) = c0 1Π
N
l (χ), (0.32)

= c0 sin
l χ
dl+1(cosNχ)

d(cosχ)l+1
, (0.33)

or

X(x) = C0(1− x2)l/2Cl+1N−l−1(x), (0.34)

where x = cosχ. For finite solutions everywhere in the interval x ∈
[−1, 1], we also restrict N to integers:

N = 1, 2, . . . . (0.35)
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4. Evaluate the normalization constants in X(χ) and X(x) [Eqs. (0.33)
and (0.34)].

Solution:

Using the normalization condition of the Gegenbauer polynomials [Eq.
(5.29)], we can writeZ +1

−1
(1− x2)l+1/2Cl+1N−l−1dx =

π

2l+1N(l!)2
(N + l)!

(N − l − 1)! . (0.36)

We can also write the ratio

(N + l)!

(N − l − 1)! =
(N + l) · · ·N · · · (N − l)(N − l − 1)!

(N − l − 1)!
= (N2 − l2) · · · (N2 − 1)N, (0.37)

which yieldsZ +1

−1
(1− x2)l+1/2Cl+1N−l−1dx =

π(N2 − l2) · · · (N2 − 1)
2l+1(l!)2

. (0.38)

This gives C0 as

C0 =
2(l+1)/2l!√

π

£
(N2 − l2) · · · (N2 − 1)

¤−1/2
. (0.39)

We now use Equations (0.27) and (0.31) to establish the relation

Cl+1N−l−1 = l!2
lN

∙
dl+1(cosNχ)

d(cosχ)l+1

¸
(0.40)

to obtain

c0 =
hπ
2
(N2 − l2) · · · (N2 − 1)N2

i−1/2
. (0.41)

5. The wave equation for the massless conformal scalar field in an open
static Friedmann universe is written as

¤Φ(t,χ, θ,φ)− 1

R20
Φ(t,χ, θ,φ) = 0, (0.42)

where the line element is given as

ds2 = gμνdx
μdxν

= dt2 −R20
£
dχ2 + sinh2 χdθ2 + sinh2 χ sin2 θdφ2

¤
(0.43)

and the range of the coordinates are:

χ ∈ [0,∞], θ ∈ [0,π], φ ∈ [0, 2π]. (0.44)



7

Following similar steps as in the previous problems, find separable solu-
tions of the wave equation and show that the solution you have found
can be obtained from the closed universe case by the transformation

N → iN, χ→ iχ. (0.45)

What are the allowed frequencies in this case?

Note:

These results have found great use in the study of quantum fields in
Friedmann universes. For details and other references we refer to Quan-
tum Fields in Curved Space by Birrell and Davies (Cambridge, 1984).
In particular, see their Chapter 5.

II. Useful Sites

More references and other useful information about Gegenbauer and Cheby-
shev polynomials can be found in the following sites:
http://en.wikipedia.org/wiki/Gegenbauer_polynomials,
http://mathworld.wolfram.com/GegenbauerPolynomial.html,
http://en.wikipedia.org/wiki/Chebyshev_polynomials,
http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.

html.

Selçuk Bayin (October, 2008).


