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CHAPTER 15: INFINITE SERIES

Frequently we encounter integrals that can not be evaluated exactly. Even
though nowadays modern computers can be used to evaluate almost any in-
tegral numerically, methods for obtaining approximate expressions of various
types of integrals remain extremely useful. Having an approximate yet an
analytic expression for a given integral, not only allows us to push further
with the analytic approach, but also helps us to understand and interpret
the results better. In this regard, in Bayin (2006) we have introduced the
asymptotic series. We now introduce two more useful methods for obtaining
approximate values of integrals, that is, the method of steepest descent and
the saddle-point integrals. They are both closely related to the asymptotic
series.

I. Method of Steepest Descent

Consider the integral

I =

Z x2

x1

dx F (x), (0.1)

where the range could be infinite. We now write I as

I =

Z x2

x1

dx ef(x), (0.2)

where f(x) is defined as

f(x) = ln[F (x)]. (0.3)

If f(x) has a steep maximum at x0, where

f 0(x0) =
1

F (x0)
F 0(x0) = 0 (0.4)

and

F 00(x0) < 0, (0.5)
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we can approximate f(x) in the neighborhood of x0 by taking only the first
two nonzero terms of the Taylor series:

f(x) = f(x0) + f 0(x0)(x− x0) +
1

2!
f 00(x0)(x− x0)2 + · · · , (0.6)

as

f(x) ' f(x0) +
1

2!
f 00(x0)(x− x0)2. (0.7)

If the range includes the point x0, we can write I as

I =

Z x2

x1

dx F (x) (0.8)

=

Z x2

x1

dx ef(x) (0.9)

'
Z x2

x1

dx exp

∙
f(x0) +

1

2
f 00(x0)(x− x0)2

¸
(0.10)

' F (x0)
Z x2

x1

dx e−
1
2 |f 00(x0)|(x−x0)2 . (0.11)

If the end points do not contribute to the integral significantly, we can replace
I with

I ' F (x0)
Z ∞
−∞

dx e−
1
2 |f 00(x0)|(x−x0)2 , (0.12)

where the integrand,

e−
1
2 |f 00(x0)|(x−x0)2 , (0.13)

is a Gaussian as shown in Figure (0.1). We can now evaluate the integral in
Equation (0.12) to obtain the approximate expression

I '
s

2π

|f 00(x0)|
F (x0). (0.14)

1. Evaluate the integral

Γ(x+ 1) =

Z ∞
0

txe−tdt (0.15)

for large x.

Solution:

We first rewrite the integrand as

F (x; t) = ef(x;t) (0.16)

= txe−t = ex ln t−t, (0.17)
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Fig. 0.1 In one dimension the method of steepest descent allows us to approximate
the integrand in Equation (0.1), F (x), that has a high maximum at x0, with a

Gaussian, F (x0)e
− 1
2 |f00(x0)|(x−x0)2 , where the width, ∆, is ∆ ∝ 1/

p
|f 0(x0)| and

f(x) = ln[F (x)].

hence determine f(x, t) as

f(x; t) = x ln t− t. (0.18)

Evaluating the first two derivatives with respect to t:

f 0(x; t) =
x

t
− 1, (0.19)

f 00(x; t) = − x
t2
, (0.20)

we see that the maximum of f(x; t) is located at t = x. Finally, using
Equation (0.14) we obtain the approximate value of Γ(x+ 1) as

Γ(x+ 1) '
√
2πxxxe−x, (0.21)

which is good for large x. When x is an integer, n, this is nothing but
the Stirling’s approximation of the factorial n!.

Important:

ii) Note that the large x condition assures us that the coefficient of the
third order term in the Taylor series expansion about t = x:

f(x; t) = f(x;x) +
1

2!
f 00(x;x)(t− x)2 + 1

3!
f 000(x;x)(t− x)3 + · · · ,

(0.22)
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is negligible for t values near x. That is,¯̄̄̄
1

3!
f 000(x;x)(t− x)3/ 1

2!
f 00(x;x)(t− x)2

¯̄̄̄
=
2

3

¯̄̄̄
t− x
x

¯̄̄̄
¿ 1. (0.23)

ii) The approximate formula we have obtained in Equation (0.21) is
nothing but the first term in the asymptotic expansion of Γ(x+ 1) :

n! =
√
2πn nne−n

µ
1 +

1

12n
+

1

288n2
+ · · ·

¶
. (0.24)

iii) A Series expansion of the integrand in Equation (0.15) would not be
useful.

II. Saddle-Point Integrals

In general, the method of steepest descent is applicable to contour integrals
of the form

I(α) =

Z
C

F (z) dz (0.25)

=

Z
C

eαf(z) dz, (0.26)

where α is large and positive and C is a path in the complex plane where
the end points do not contribute significantly to the integral. The method of
steepest descent works if the function, f(z), has a maximum at some point
z0 on the contour. However, if the function is analytic, we can always deform
the contour so that it passes through the point z0 without altering the value
of the integral.
From the theory of complex functions (Chapter 12) we know that the real

and the imaginary parts, u and v, of an analytic function,

f(z) = u(x, y) + iv(x, y), (0.27)

satisfy the Laplace’s equation. That is,

∇2u(x, y) = 0 (0.28)

and

∇2v(x, y) = 0. (0.29)

From Equation (0.28) it is seen that if

∂2u

∂x2
< 0, (0.30)



5

Fig. 0.2 The path AA0 is the path that follows the steepest descent. The path B is
perpendicular to AA0, hence it follows the ridges.

then

∂2u

∂y2
> 0. (0.31)

Same conclusion also holds for v(x, y). Using Theorem (1.4) in pg.18 of Bayin
(2008), we conclude that the point z0 that satisfies

∂u

∂x

¯̄̄̄
z0

=
∂u

∂y

¯̄̄̄
z0

= 0 (0.32)

must be a saddle point of the surface u(x, y), where the surface looks like a
saddle or a mountain pass (Fig. 0.2). By the Cauchy-Riemann conditions we
also infer that at z0

∂v

∂x

¯̄̄̄
z0

=
∂v

∂y

¯̄̄̄
z0

= 0, (0.33)

hence

df(z0)

dz
= 0. (0.34)

In other words, a saddle point of u(x, y) is also a saddle point of v(x, y).
About the saddle point we can write the Taylor series

f(z) = f(z0) +
1

2!
f 00(z0)(z − z0)2 +

1

3!
f 000(z0)(z − z0)2 + · · ·
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and for points on the contour near the saddle point we can use the approxi-
mation

f(z) ' f(z0) +
1

2
f 00(z0)(z − z0)2. (0.35)

Using polar representations of f 00(z0) and (z − z0):

f 00(z0) = ρ0e
iφ0 , (0.36)

(z − z0) = reiθ, (0.37)

where z is a point on the contour, we can approximate the integral I(α) [Eq.
(0.25)]by

I(α) '
Z
C0
dz eα[f(z0)+

1
2f

00(z0)(z−z0)2] (0.38)

'
Z
C0
dr eiθeα[f(z0)+

1
2ρ0e

iφ0r2ei2θ] (0.39)

' eαf(z0)
Z
C0
dr eiθeα

1
2ρ0r

2ei(φ0+2θ) (0.40)

' eαf(z0)
Z
C0
dr eiθeα

1
2ρ0r

2[cos(φ0+2θ)+i sin(φ0+2θ)], (0.41)

where C0 is now a contour that passes through the saddle point z0. We are
now looking for directions, θ values, that allow us to approximate the value of
this integral only by using the values of f(z) in the neighborhood of z0. Note
that for points near the saddle point the surface is nearly flat, hence θ varies
very slowly, hence we have written

dz ' dr eiθ. (0.42)

We can also take eiθ outside the integral sign to write

I(α) ' eαf(z0) eiθ
Z
C0
dr eα

1
2ρ0r

2[cos(φ0+2θ)+i sin(φ0+2θ)]. (0.43)

The integrand has two factors:

eα
1
2ρ0r

2[cos(φ0+2θ) ] (0.44)

and

eiα
1
2ρ0r

2[sin(φ0+2θ) ]. (0.45)

The first factor is an exponential, which could be decaying or growing depend-
ing on the sign of the cosine, while the second factor oscillates wildly for large
α. For this method to work effectively, we have to pick a direction that makes
the exponential decay in the fastest possible way, thus justifying the name
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steepest-descent, while suppressing the effect the wildly fluctuating second
factor. From the following table, we see that the paths that follow the steep-
est descent from the saddle point, z0, are the ones that follow the directions
that make cos(φ0 + 2θ) = −1. Since for these paths sin(φ0 + 2θ) = 0, they
also eliminate the concerns caused by the wildly fluctuating second factor. If
we take (φ0 + 2θ) = π, the direction that we have to follow becomes

θ = −φ0
2
+

π

2
, (0.46)

where φ0 is determined from Equation (0.36).

Choice of angles in the saddle-point method:

(φ0 + 2θ) [cos(φ0 + 2θ) + i sin(φ0 + 2θ)] θ

0 +1 −φ0
2

π −1 −φ0
2 +

π
2

2π +1 −φ0
2 ++π

3π −1 −φ0
2 +

3π
2

4π +1 −φ0
2 ++2π

Every time we change θ, that is, the direction that we start moving at z0, by
π/2, the quantity

[cos(φ0 + 2θ) + i sin(φ0 + 2θ)] (0.47)

changes its value from +1 to −1. Depending on which direction we are pass-
ing through the saddle point, the directions that correspond to the steepest
descent are given as

θ = −φ0
2
± π

2
. (0.48)

For these directions the integrand in Equation (0.43) is a Gaussian, hence for
large positive α only the points very close to z0 contribute to the integral.
The directions perpendicular to these follow the ridges and give rise to expo-
nentially increasing functions in Equation (0.43). Any direction in between
will compromise the advantages of this method. Keep in mind that usually
this method gives the first term in the asymptotic expansion of I(α) for large
α. To chose the correct sign in Equation (0.48) we need to look at the topog-
raphy more carefully and see which way to deform the contour. For example,
for φ0 = π/2, in Figure (0.3) we show two possible topographies that require
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Fig. 0.3 To possible ‘mountain ranges’: For the one on the left we use + and for the
one on the right we use − in Equation (0.48).

the + and the − signs, respectively. In these figures dz is a tangent vector to
the path at z0 pointing in the direction we move.
In the light of these, we now write an approximate expression for I(α) as

I(α) ' eαf(z0)
Z ∞
−∞

e−α
1
2ρ0r

2

eiθ dr (0.49)

'
r
2π

αρ0
eαf(z0)eiθ, (0.50)

where θ takes one of the values

θ = −φ0
2
± π

2
(0.51)

and

φ0 = tan
−1
∙
Im f 00(z0)

Re f 00(z0)

¸
. (0.52)

Note that since for large α only points near z0 contribute to the integral, we
have taken the limits in Equation (0.49) as ±∞.
2. Evaluate Γ(z + 1) using the definition

Γ(z) =

Z ∞
0

e−ttz−1 dt, Re z > 0, (0.53)

via the saddle-point method.

Solution:

Using the definition of Γ(z) [Eq. (0.53)] we write

Γ(z + 1) =

Z ∞
0

e−ttz dt (0.54)

=

Z ∞
0

e−t+z ln t dt. (0.55)
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Using the polar representation z = αeiβ , we write

Γ(z + 1) =

Z ∞
0

exp

∙
α

µ
ln t− t

z

¶
eiβ
¸
dt (0.56)

and compare it with

Γ(z + 1) =

Z ∞
0

eαf(t)dt (0.57)

to obtain

f(t) =

µ
ln t− t

z

¶
eiβ , (0.58)

the first two derivatives of which are given as

f 0(t) =

µ
1

t
− 1
z

¶
eiβ (0.59)

and

f 00(t) = − 1
t2
eiβ . (0.60)

Setting the first derivative to zero we obtain the saddle point, t0, as

f 0(t0) = 0⇒ t0 = z. (0.61)

This gives

f(t0) = (ln z − 1)eiβ (0.62)

and

f 00(t0) = −
eiβ

z2
(0.63)

= − 1
α2
e−iβ . (0.64)

Using the polar representation f 00(t0) = ρeiφ0 , we obtain

ρ =
1

α2
, φ0 = π − β. (0.65)

We now have to decide between the two possibilities for θ :

θ = −π − β

2
+

π

2
=

β

2
(0.66)

and

θ = −π − β

2
− π

2
= −π + β

2
. (0.67)
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In our previous example, where z was real, β = 0 and θ = 0, it seems
that

θ =
β

2
(0.68)

is the right choice. This gives the steepest descent approximation of
Γ(z + 1) as

Γ(z + 1) '
√
2πα ez ln z−z eiβ/2 (0.69)

'
√
2π zz+

1
2 e−z. (0.70)

Even though the integral definition [Eq. (0.54)] is valid for Re z > 0,
the above result is good for |z| À 1, provided that we stay away from
the negative real axis where we have a branch cut.

3. Show that the approximate expression for Γ(z + 1) obtained via the
saddle-point method:

Γ(z + 1) =
√
2π zz+

1
2 e−z, (0.71)

is only the first term in the asymptotic expansion of Γ(z + 1).

Solution:

We first write equation (0.70) as

Γ(z) '
√
2π (z − 1)z− 1

2 e−(z−1) (0.72)

'
√
2πzz−

1
2

µ
1− 1

z

¶z− 1
2

e−(z−1) (0.73)

'
√
2πzz−

1
2 e−z. (0.74)

Next we return to

Γ(z + 1) =

Z ∞
0

dt ef(t), (0.75)

where

f(t) = −t+ z ln t. (0.76)

The saddle point, f 0(t0) = 0, of f(t) is located at t0 = z.We now expand
f(t) about the saddle point to write

f(t) = f(z) +A1(t− z) +A2(t− z)2 +A3(t− z)3 + · · · , (0.77)

where

Ak =
1

k!

dkf(z)

dtk
. (0.78)
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Substituting f(t) [Eq. (0.76)] into Equation (0.77) we obtain

f(t) = [−z + z ln z]− (t− z)
2

2z
+
(t− z)3
3z2

− (t− z)
4

4z3
+ · · · , (0.79)

which when substituted into Equation (0.75) gives

Γ(z + 1) = zze−z
Z ∞
0

dt exp

∙
(t− z)2
2z

+
(t− z)3
3z2

− (t− z)
4

4z3
+ · · ·

¸
.

(0.80)

To simplify, we use the substitution

s =
t− z√
2z

(0.81)

to get

Γ(z + 1) =
√
2z zze−z

Z ∞
−
√
z/2

ds exp

"
−s2 + s

3

3

r
8

z
− s

4

z
+ · · ·

#
.

(0.82)

We now write this as

Γ(z + 1) '
√
2z zze−z

Z ∞
−
√
z/2

ds e−s
2

exp

Ã
s3

3

r
8

z
− s

4

z

!
(0.83)

and then expand the exponential to get

Γ(z + 1) '
√
2z zze−z

Z ∞
−
√
z/2

ds e−s
2

"
1 +

Ã
s3

3

r
8

z
− s

4

z

!

+
1

2!

Ã
s3

3

r
8

z
− s

4

z

!2
+ · · ·

⎤⎦ , (0.84)

which when the integrals are evaluated yields the series

Γ(z + 1) '
√
2π zz+

1
2 e−z

∙
1 +

1

12z
+

1

288z2
+ · · ·

¸
. (0.85)

For integers, z = n, this gives the asymptotic expansion of the factorial,

n! '
√
2π nn+

1
2 e−n

∙
1 +

1

12n
+

1

288n2
+ · · ·

¸
, (0.86)

the first term of which is the well known Stirling’s formula valid for large
n:

n! '
√
2π nn+

1
2 e−n. (0.87)
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Keep in mind that the several steps of this derivation lacks the desired
rigor, but nevertheless produces the right answer [Eq. (0.24)].

II. Padé Approximants

In Bayin (2006) we have seen how to use contour integrals and Euler
Maclaurin sum formula to sum series. Both techniques required that the
general term of the series be known. In applications we frequently encounter
situations where only the first few terms of the series can be determined. Fur-
thermore, these terms may not be sufficient to reveal the general term of the
series. We are know going to introduce an intriguing technique that will allow
us to evaluate series sums to very high level of accuracy.
As an example we will consider the series

f(x) = 1 + x− 5
2
x2 +

13

2
x3 − 141

8
x4 + · · · , (0.88)

where only the first five terms are known. Let us first introduce the general
method. Consider a series whose first M terms are given :

f(x;M) =
MX
i=0

aix
i. (0.89)

We write f(x;M) as the ratio of two polynomials:

f(x;M) =
P (x;N)

Q(x;L)
, (0.90)

where

P (x;N) =
NX
j=0

pjx
j , (0.91)

Q(x;L) =
LX
k=0

qkx
k (0.92)

and

M = N + L. (0.93)

We have (N + L + 2) = M + 2 unknowns, where (N + 1) pj ’s and (L + 1)
qk’s, are to be determined from the known M + 1 values of ai. We now write
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Equation (0.90) as

f(x;M)

Ã
LX
k=0

qkx
k

!
=

⎛⎝ NX
j=0

pjx
j

⎞⎠ , (0.94)

Ã
MX
i=0

aix
i

!Ã
LX
k=0

qkx
k

!
=

⎛⎝ NX
j=0

pjx
j

⎞⎠ , (0.95)

¡
a0 + a1x+ · · ·+ aMxM

¢ ¡
q0 + q1x+ · · ·+ qLxL

¢
=
¡
p0 + p1x+ · · ·+ aNxN

¢
.

(0.96)

Since when P (x;N) andQ(x;L) are multiplied with the same constant, f(x;M)
does not change, hence we can set

q0 = 1, (0.97)

thus obtaining¡
a0 + a1x+ · · ·+ aMxM

¢ ¡
1 + q1x+ · · ·+ qLxL

¢
=
¡
p0 + p1x+ · · ·+ pNxN

¢
.

(0.98)

We now have N +L+ 1 =M +1 unknowns, p0, p1, . . . , pN ; q1, . . . , qL, to be
determined from the N +1 values of ai, i = 0, 1, . . . ,M. Expanding Equation
(0.98) and equating the coefficients of the equal powers of x gives the following
M + 1 equations:

a0 = p0,

a1 + a0q1 = p1,

a2 + a1q1 + a0q2 = p2,

...

aN + aN−1q1 + · · ·+ a0qN = pN , (0.99)

aN+1 + aNq1 + · · ·+ aN−L+1qL = 0,
...

aN+L + aN+L−1q1 + · · ·+ aNqL = 0,

for the M + 1 unknowns, where we have taken

ai = 0 when i > M, (0.100)

pj = 0 when j > N, (0.101)

qk = 0 when k > L. (0.102)
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The first N + 1 equations can be written as⎛⎜⎜⎜⎝
p0
p1
...
pN

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
a0 0 · · · 0
a1 a0 · · · 0
...

...
...

...
aN aN−1 · · · a0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
q1
...
qN

⎞⎟⎟⎟⎠ , (0.103)

while the remaining equations become⎛⎜⎜⎜⎝
aN aN−1 · · · aN−L+1
aN+1 aN · · · aN−L+2
...

...
...

...
aM aM−1 · · · aN

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
q1
q2
...
qL

⎞⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎝
aN+1
aN+2
...
aM

⎞⎟⎟⎟⎠ . (0.104)

These are two sets of linear equations. Since ai’s are known, we can solve
the second set for the qk values, which when substituted into the first set will
yield the pj values. For a review of linear algebra and techniques on solving
systems of linear equations we recommend Bayin (2008).
Let us now return to the series in Equation (0.88), whereM = 4 and choose

N = L = 2. (0.105)

Using the values

a0 = 1, a1 = 1, a2 = −
5

2
, a3 =

13

2
, a4 = −

141

8
, (0.106)

the two linear systems to be solved becomesµ
a2 a1
a3 a2

¶µ
q1
q2

¶
= −

µ
a3
a4

¶
, (0.107)⎛⎝ −52 1

13
2 −52

⎞⎠⎛⎝ q1

q2

⎞⎠ = −

⎛⎝ 13
2

−1418

⎞⎠ (0.108)

and ⎛⎝ p0
p1
p2

⎞⎠ =

⎛⎝ a0 0 · · ·
a1 a0 · · ·
a2 a1 a0

⎞⎠⎛⎝ 1
q1
q2

⎞⎠ , (0.109)

⎛⎝ p0
p1
p2

⎞⎠ =

⎛⎝ 1 0 · · ·
1 1 · · ·
−52 1 1

⎞⎠⎛⎝ 1
q1
q2

⎞⎠ . (0.110)

The first set yields the values of qk as⎛⎝ q1

q2

⎞⎠ =

⎛⎝ 11
2

29
4

⎞⎠ . (0.111)
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Using these values in the second set we obtain⎛⎜⎜⎜⎜⎝
p0

p1

p2

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1

13
2

41
4

⎞⎟⎟⎟⎟⎠ . (0.112)

Thus, we obtain the Padé approximant f (2,2)(x) as

f (2,2)(x) =
1 + 13

2 x+
41
4 x

2

1 + 11
2 x+

29
4 x

2
. (0.113)

To interpret this result, it is time to reveal the truth about the five terms
we have in Equation (0.88). They are just the first five terms of the Taylor
series expansion of

F (x) =

r
1 + 4x

1 + 2x
. (0.114)

This function has a pole at

x = −1
2

(0.115)

and a branch point at

x = −1
4
. (0.116)

In other words, the Taylor series:

f(x) = 1 + x− 5
2
x2 +

13

2
x3 − 141

8
x4 + · · · , (0.117)

converges only for

|x| ≤ 1
4
. (0.118)

We now construct the following table to compare F (x), f(x), f (2,2)(x) for
various values of x :

x 0 1/4 1/2 1 3.0 7.0

F (x) 1 1.1547 1.22474 1.29099 1.36277 1.39044

f(x) 1 1.12646 0.585938 -11.625 -1270.63 -40202.6

f (2,2)(x) 1 1.1547 1.22472 1.29091 1.36254 1.39012

f (1,3)(x) 1 1.15426 1.2196 1.24966 0.89702 0.316838

f (3,1)(x) 1 1.15428 1.2199 1.2513 0.712632 -2.91771
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The last two rows are the other two Padé approximants corresponding to the
choices (N,L) = (1, 3) and (N,L) = (3, 1), respectively:

f (1,3)(x) =
1 + 363

100x

1 + 263
100x−

13
100x

2 + 41
200x

3
(0.119)

and

f (3,1)(x) =
1 + 193

52 x+
11
52x

2 − 29
104x

3

1 + 141
52 x

. (0.120)

From this table it is seen that the Padé approximant, f (2,2)(x), approximates
the function F (x) much better than the Taylor series, f(x), truncated after
the fifth term. It is also interesting that f (2,2)(x) remains to be an excellent
approximation even outside the domain, |x| > 1/4, where the Taylor series
ceases to be valid. In this case, the symmetric Padé approximant; f (2,2)(x),
gives a much better approximation than its antisymmetric counterparts.
Definition: For a given function, f(x), the Padé approximant, RN/L(x) ≡

[N,L], of order (N,L) is defined as the rational function

RN/L(x) =
p0 + p1x+ p2x

2 + · · ·+ pNxN
1 + q1x+ q2x2 + · · ·+ qLxL

. (0.121)

RN/L(x) agrees with f(x) to the highest possible order, that is,

f(x)−RN/L(x) = cN+L+1xN+L+1 + cN+L+2xN+L+2 + · · · (0.122)

In other words, the first (N + L) terms of the Taylor series expansion of
RN/L(x) exactly cancel the first (N + L + 1) terms of the Taylor series of
f(x). For a given (N,L) the Padé approximant is unique. Padé approximants
will often be a superior approximation to a function, compared to the one
obtained by truncating the Taylor series. As in the above example, it may
even work where the Taylor series do not .

III. Interesting Sites and additional References

In the following sites we can find encyclopedic information about the Padé
approximants and also find other references and links:
http://en.wikipedia.org/wiki/Pade_approximant

http://mathworld.wolfram.com/PadeApproximant.html.
The following sites can be used for computer codes and simulations:
http://www.mathworks.com/matlabcentral/fileexchange/4388,
http://demonstrations.wolfram.com/PadeApproximants/.

For additional references we give
Antia, H.M., Numerical Methods for Scientists and Engineers, Birkhauser,

Basel, 2002.
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Baker, G.A, Jr., Essentials of Padé Approximants, Academic, 1975.

Selçuk Bayin (February, 2009)


