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CHAPTER 11: CONTINUOUS GROUPS and

REPRESENTATIONS

I. Solutions or Hints to Selected Problems:

1. (Problem 11.6, 11.7, 11.8) Solve the differential equation for dlmm0(β)
by the factorization method.

i) Considering m as a parameter, find the normalized step-up and step-
down operators £+(m+1) and £−(m), which change the index m while
keeping the index m0 fixed.

ii) Considering m0 as a parameter, find the normalized step-up and
step-down operators £0+(m

0 + 1) and £0−(m
0), which change the index

m0 while keeping the index m fixed. Show that |m| ≤ l and |m0| ≤ l.
iii) Find the normalized functions with m = m0 = l.

d) For l = 2, construct the full matrix d2m0m(β).

iv) By transforming the differential equation for dlmm0(β) into an ap-
propriate form, find the step-up and step-down operators that shift the
index l for fixed m and m0, giving the normalized functions dlmm0(β) .

v) Using the result of the previous part, derive a recursion relation for
(cosβ) dlmm0(β). That is, express this as a combination of dl

0

mm0(β) with
l0 = l ± 1, ... .
Solution:

i) We first write the differential equation that dlmm0(β) satisfies:½
d2

dβ2
+ cotβ

d

dβ
+

∙
l(l + 1)−

µ
m2 +m02 − 2mm0 cosβ

sin2 β

¶¸¾
dlm0m(β) = 0,

(0.1)
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and then put it into self-adjoint form [Eq. (8.6)]:

d

dβ

∙
sinβ

d

dβ
dlm0m(β)

¸
− m

2 +m02 − 2mm0 cosβ

sin2 β
dlm0m(β)

= −l(l + 1) sinβdlm0m(β). (0.2)

We now identify the functions p(β), w(β), and q(β) [Eqs. (8.6) and
(8.16)] as

p(β) = sinβ, (0.3)

w(β) = sinβ, (0.4)

q(β) = −m
2 +m02 − 2mm0 cosβ

sin2 β
, (0.5)

and make the substitutions [Eqs. (9.5) and (9.6)]

dlm0m(β) =
y(λl,m

0,m,β)√
sinβ

, (0.6)

dz = dβ, (0.7)

to obtain the second canonical form [Eq. (9.7)]:

d2y

dβ2
+ [λl + r(z,m)]y(z) = 0, (0.8)

where

λl = l(l + 1) +
1

4
, (0.9)

r(z,m) = −
m2 +m02 − 2mm0 cosβ − 1

4

sin2 β
. (0.10)

Next we use the table in Infeld and Hull (Bayin 2006) to determine
k(β,m) and μ(m) to write the ladder operators [Eq. (9.14)] as

O±(m) = ±
d

dβ
− k(β,m) (0.11)

= ± d

dβ
− (m− 1

2
) cotβ +

m0

sinβ
. (0.12)

Using the μ(m) found from the table:

μ(m) = (m− 1
2
)2, (0.13)

and theorem I, we show that

|m| ≤ l. (0.14)
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We now construct the eigenfunctions starting from the top of the ladder,
that is, m = l, as

y(λl,m
0,m = l,β) = sinl+1/2 β tan−m

0
µ
β

2

¶
(0.15)

or

dlm0l = sin
l β tan−m

0
µ
β

2

¶
. (0.16)

ii) Following similar steps, but this time keeping m as fixed and treating
m0 as a parameter and utilizing the table in Infeld and Hull, we first
find k(β,m0) and μ(m0) to write the ladder operators, and then show
that m0 satisfies

|m0| ≤ l. (0.17)

Note that

r(z,m,m0,β) (0.18)

is symmetric inm andm0. From the definition of dlm0m(β) [Eq. (11.127)]:

dlm0m(β) =

Z Z
dΩY ∗lm0(θ,φ)e−iβLyYlm(θ,φ), (0.19)

it is seen that the dlm0m(β) are the elements of unitary matrices, fur-
thermore, they are real; hence,

dlm0m(β) = d
l
mm0(−β) (0.20)

is true (show this). In order to satisfy this relation, we introduce a factor
of −1 into the definition of the ladder operators O±(m0) as

O±(m
0) = −

∙
± d

dβ
−K(β,m0)

¸
(0.21)

= −
∙
± d

dβ
− (m0 − 1

2
) cotβ +

m

sinβ

¸
. (0.22)

iii) We have found that [Eq. (0.15)]

y(l,m0,m = l,β) = sinl+1/2 β tan−m
0
(
β

2
). (0.23)

Using the definition

dlm0m(β) =
y(l,m,m0,β)√

sinβ
, (0.24)
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we can write

dlll(β) = (1 + cosβ)
l. (0.25)

Using the weight function [Eq. (0.4)] we evaluate the normalization
constant from Z π

0

w(β)
£
dlll(β)

¤2
dβ =

22l+1

2l + 1
(0.26)

and write the normalized dlll(β) as

dlll(β) =

µ
2l + 1

22l+1

¶1/2
(1 + cosβ)l. (0.27)

iv) For l = 2, using the eigenfunctions

dlm0l(β) = C
l
m0l sin

l β tan−m
0
(
β

2
), (0.28)

where Clm0l are the normalization constants, we write

d2m02(β) = C
2
m02 sin

2 β tan−m
0
µ
β

2

¶
, (0.29)

hence

d222(β) =

µ
5

2

¶1/2µ
1 + cosβ

2

¶2
,

d212(β) = −
µ
5

2

¶1/2
sinβ

2
(1 + cosβ),

d202(β) =

µ
15

16

¶1/2
sin2 β, (0.30)

d2−1,2(β) = −
µ
5

2

¶1/2
sinβ

2
(1− cosβ),

d2−2,2(β) =

µ
5

2

¶1/2µ
1− cosβ

2

¶2
,

As the reader can check, we can also generate these functions by acting
on the normalized d222(β) with the normalized ladder operator £−(m

0),
which acts on m0 and lowers it by one while keeping m fixed. Equation
(0.30) gives only the first column of the 5 × 5 matrix, d2m0m(β), where
m = 2 andm0 takes the values 2, 1, 0,−1,−2. For the remaining columns
we use the normalized ladder operator:

£−(m) =
− d
dβ − (m−

1
2) cotβ +

m0

sinβp
(l +m)(l −m+ 1)

, (0.31)
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which keeps m0 fixed and lowers m by one as

£−(m) y(λ,m
0,m,β) = y(λ,m0,m− 1,β). (0.32)

Similarly, we write the other normalized ladder operator £+(m).

We now use p
sinβdlm0m = y(λ,m

0,m,β) (0.33)

in Equation [0.32] to obtain

dlm0,m−1 =
1p

(l +m)(l −m+ 1)

∙
− d

dβ
−m cotβ + m0

sinβ

¸
dlm0m.

(0.34)

In conjunction with the normalized eigenfunctions [Eq. (0.30)], each of
which is the top of the ladder for the corresponding row, we use this
formula to generate the remaining 20 elements of the dlm0m matrix.

Note:

You can use the symmetry relation in Equation (0.20) to check your
algebra. Also show the relation

dlm0m(β) = (−1)m
0−mdl−m0−m(β). (0.35)

v) We start with the equation that dlm0m(β) satisfies:½
d2

dβ2
+ cotβ

d

dβ
+

∙
l(l + 1)− m

2 +m02 − 2mm0 cosβ

sin2 β

¸¾
dlm0m(β) = 0,

(0.36)

and substitute ½
z = ln(tanβ/2),
dlm0m(β) = K

l
m0m(z),

¾
(0.37)

to obtain

d2Kl
m0m

dz2
+

∙
−(m2 +m02) +

l(l + 1)

cosh2 z
− 2mm0 tanh z

¸
Kl
m0m(z) = 0.

(0.38)

This is in second canonical form. We now proceed as in the previous
case to obtain the recursion relations for the normalized eigenfunctions:

dl−1m0m(β) =

"
l
p
(2l − 1)/(2l + 1)p
[l2 −m2][l2 −m02]

# ∙
− sinβ d

dβ
+ l cosβ − m

0m

l

¸
dlm0m(β)

(0.39)
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and

dl+1m0m(β) =

"
(l + 1)

p
(2l + 3)/(2l + 1)p

[(l + 1)2 −m2][(l + 1)2 −m02]

#
(0.40)

× [sinβ d
dβ
+ (l + 1) cosβ − m0m

(l + 1)
]dlm0m(β) (0.41)

vi) For the needed recursion relation, simply add the above expressions.

2. (Problem 11.9) Show that

i)

Dl
m0(α,β,−) =

s
4π

(2l + 1)
Y ∗lm(β,α) (0.42)

and

ii)

Dl
0m(−,β, γ) = (−1)m

s
4π

(2l + 1)
Y ∗lm(β, γ). (0.43)

Hint. Use the invariant

m=lX
m=−l

Y ∗lm(θ1,φ1)Ylm(θ2,φ2) (0.44)

with (θ1,φ1) = (β,α) and (θ2,φ2) = (θ,φ), θ12 = θ0, and£
Dl
mm0(α,β, γ)

¤−1
=
£
Dl
m0m(α,β, γ)

¤∗
= Dl

mm0(−γ,−β,−α). (0.45)

Solution:

We demonstrate the solution of the first part. First write the addition
theorem [Eq. (11.325)]:

m=lX
m=−l

Y ∗lm(θ1,φ1)Ylm(θ2,φ2) =
2l + 1

4π
Pl(cos θ12), (0.46)

and then make the substitutions

θ1 = β,

φ1 = α,

θ2 = θ, (0.47)

φ2 = φ,

θ12 = θ0
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to write

m=lX
m=−l

Y ∗lm(β,α)Ylm(θ,φ) =
2l + 1

4π
Pl(cos θ

0). (0.48)

We now multiply with Y ∗l0m0(θ,φ) and then integrate to obtain

4π

2l + 1

Z m=lX
m=−l

Y ∗lm(β,α)Ylm(θ,φ)Y
∗
l0m0(θ,φ)dΩ =

Z
Pl(cos θ

0)Y ∗l0m0(θ,φ)dΩ.

(0.49)

Use the definition of Ylm(θ,φ) and its orthogonality relation [Eqs. (2.177)
and (2.179)] to write this as

4π

2l + 1

m=lX
m=−l

Y ∗lm(β,α)δll0δmm0 =

r
4π

2l + 1

Z
Yl0(θ

0)Y ∗l0m0(θ,φ)dΩ,

(0.50)r
4π

2l0 + 1
Y ∗l0m0(β,α) =

Z
Yl00(θ

0)Y ∗l0m0(θ,φ)dΩ. (0.51)

From the definition of θ12 :

θ1 + θ2 = β + θ = θ0, (0.52)

write

Yl0(β + θ) = R(α,β, γ)Yl0(θ,φ) (0.53)

andr
4π

2l0 + 1
Y ∗l0m0(β,α) =

Z
Y ∗l0m0(θ,φ)R(α,β, γ)Yl00(θ,φ)dΩ. (0.54)

Finally, use the definition [Eq. (11.273)] of Dl0

mm0(α,β, γ) to obtain the
desired result.

A different approach:

We are now going to approach this problem from a different direction.
We have obtained the differential equation that dlm0m(β) satisfies as½
d2

dβ2
+ cotβ

d

dβ
+

∙
l(l + 1)− m

2 +m02 − 2mm0 cosβ

sin2 β

¸¾
dlm0m(β) = 0.

(0.55)



8

Given the solution of the above equation:

dlm0m(β) = (−1)m
0+m

∙
(l +m0)!(l −m0)!

(l +m)!(l −m)!

¸1/2X
k

µ
l +m

l −m0 − k

¶µ
l −m
k

¶

× (−1)l−m0−k
µ
cos

β

2

¶2k+m0+mµ
sin

β

2

¶2l−2k−m0−m
, (0.56)

we now use the Jacobi polynomials:

P (a,b)n (x) = 2−n
nX
k=0

µ
n+ a

k

¶µ
n+ b

n− k

¶
(x− 1)n−k(x+ 1)k, (0.57)

which satisfy the differential equation

(1− x2)dy
2

dx2
+ [b− a− (a+ b+ 2)x]dy

dx
+ n(n+ a+ b+ 1)y(x) = 0,

(0.58)

to express dlm0m(β) as

dlm0m(β) = (−1)m
0+m

∙
(l +m0)!(l −m0)!

(l +m)!(l −m)!

¸1/2µ
cos

β

2

¶m0+mµ
sin

β

2

¶m0−m

× P (m
0−m,m0+m)

l−m0 (cosβ). (0.59)

Notes:

i) The normalization constant of dlm0m(β) can be evaluated via the in-
tegral Z 1

−1
(1− x)a(1 + x)bP (a,b)n (x)P (a,b)m (x)dx

=
2a+b+1

2n+ a+ b+ 1

Γ(n+ a+ 1)Γ(n+ b+ 1)

Γ(n+ 1)Γ(n+ a+ b+ 1)
δnm. (0.60)

Also note that the Jacobi polynomials are normalized so that

P (a,b)n (1) =

µ
n+ a

n

¶
. (0.61)

ii) You can use Equation (0.59) to check the matrix elements found
in Problem 2 [Eq. (0.30)] and in Equation (11.281). You can use
Mathematica r° to obtain the needed Jacobi polynomials via the com-
mand “ JacobiP[a,b,n,x] ”.
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iii) To see that dlm0m(β) given in Equation (0.59) is indeed a solution to
Equation (0.55), substitute

dlm0m(β) = C

µ
cos

β

2

¶m0+mµ
sin

β

2

¶m0−m
f(cosβ), (0.62)

where C is an appropriate normalization constant, into Equation (0.55)
and then show that f(cosβ) satisfies the Jacobi equation [Eq. (0.57)]
with an appropriate choice of the parameters.

For the first part of Problem 2, we need the value of dlm0(β), which from
Equation (0.59) can be written as

dlm0(β) = (−1)m
∙
(l +m)!(l −m)!

(l!)2

¸1/2
1

2m
(sinm β)P

(m,m)
l−m (x). (0.63)

We now use the relation

P
(m,m)
l−m (x) = (−2)m l!

(l −m)! (1− x
2)−m/2P−ml (x), (0.64)

to write

dlm0(β) =

∙
(l +m)!

(l −m)!

¸1/2
P−ml (cosβ) (0.65)

= (−1)m
∙
(l −m)!
(l +m)!

¸1/2
Pml (cosβ). (0.66)

Using the definition [Eq. (11.277)]

Dl
m0m(α,β, γ) = e

−iαm0
dlm0m(β)e

−iγm, (0.67)

we write

Dl
m0(α,β, γ) = e

−iαmdlm0(β). (0.68)

Since [Eq. (2.177)]

Y ml (θ,φ) = (−1)m
s
2l + 1

4π

(l −m)!
(l +m)!

eimφPml (cos θ), (0.69)

Equations (0.64) and (0.66) yield the desired result:

Dl
m0(α,β) =

r
4π

2l + 1
Y ∗lm(β,α). (0.70)

For the second part, first show and then use the symmetry property:

dlm0m(−β) = dlmm0(β). (0.71)
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.

3. (Problem 11.10) For l = 2 construct the matrices

Lky =
¡
Lky
¢
mm0 (0.72)

for k = 0, 1, 2, 3, 4, ... and show that the matrices with k ≥ 5 can be
expressed as linear combinations of these. Use this result to check the
result of Problem 11.8.4.

Solution:

Use [Eq. (11.276)]

dlm0m(β) =

Z Z
dΩY ∗lm0(θ,φ)e−iβLyYlm(θ,φ), (0.73)

which for l = 2 becomes

d2m0m(β) =

Z Z
dΩY ∗2m0(θ,φ)e−iβLyY2m(θ,φ). (0.74)

Matrix elements, (ylm0,LyYlm), of Ly are obtained from [Eq. (11.263)]:

(Ly)m0m = −
i

2

p
(l −m)(l +m+ 1)δm0,m+1

+
i

2

p
(l +m)(l −m+ 1)δm0,m−1, (0.75)

which gives

(Ly)m0m =

⎛⎜⎜⎜⎜⎝
0 −i 0 0 0

i 0 −i
p
3/2 0 0

0 i
p
3/2 0 −i

p
3/2 0

0 0 i
p
3/2 0 −i

0 0 0 i 0

⎞⎟⎟⎟⎟⎠ , (0.76)

where the rows correspond to the m0 values as m0 = 2, 1, 0,−1, 2 and
the columns correspond to the m values m = 2, 1, 0,−1, 2, respectively.
We now evaluate the higher powers:

¡
L2y
¢
m0m

=

⎛⎜⎜⎜⎜⎝
1 0 −

p
3/2 0 0

0 5/2 0 −3/2 0

−
p
3/2 0 3 0 −

p
3/2

0 −3/2 0 5/2 0

0 0 −
p
3/2 0 1

⎞⎟⎟⎟⎟⎠ , (0.77)

note the symmetry with respect to the two diagonals,

¡
L4y
¢
m0m

=

⎛⎜⎜⎜⎜⎝
5/2 0 −2

√
6 0 3/2

0 17/2 0 −15/2 0

−2
√
6 0 12 0 −2

√
6

0 −15/2 0 17/2 0

3/2 0 −2
√
6 0 5/2

⎞⎟⎟⎟⎟⎠ , (0.78)
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¡
L3y
¢
m0m

=

⎛⎜⎜⎜⎜⎝
0 −5i/2 0 3i/2 0

0 −2i
√
6 0

0

⎞⎟⎟⎟⎟⎠ , (0.79)

¡
L5y
¢
m0m

=

⎛⎜⎜⎜⎜⎝
0 −17i/2 0 15i/2 0

0 −i8
√
6 0

0

⎞⎟⎟⎟⎟⎠ , (0.80)

¡
L6y
¢
m0m

=

⎛⎜⎜⎜⎜⎝
17/2 0 −8

√
6 0 15/2

65/2 0 −65/2
48

⎞⎟⎟⎟⎟⎠ , (0.81)

¡
L5y
¢
m0m

= −4 (Ly)m0m + 5
¡
L3y
¢
m0m

, (0.82)¡
L7y
¢
m0m

= −4
¡
L3y
¢
m0m

+ 5
¡
L5y
¢
m0m

= −20 (Ly)m0m + 21
¡
L3y
¢
m0m

,

(0.83)¡
L9y
¢
m0m

= −20
¡
L3y
¢
m0m

+ 21
¡
L5y
¢
m0m

= −84 (Ly)m0m + 85
¡
L3y
¢
m0m

,

(0.84)¡
L11y

¢
m0m

= −340 (Ly)m0m + 341
¡
L3y
¢
m0m

, (0.85)¡
L6y
¢
m0m

= −4
¡
L2y
¢
m0m

+ 5
¡
L4y
¢
m0m

(0.86)

...

We now write d22,−2(β) as the series

d22,−2(β) = I − iβLy −
β3

3!
L3y +

β5

5!
L5y − · · ·

+ (−β
2

2
L2y +

β4

4!
L4y −

β6

6!
L6y + · · · ) (0.87)

and proceed to show

d22,−2(β) =
(1− cosβ)2

4
. (0.88)

II. Useful Sites
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Additional references and other useful information about the Jacobi poly-
nomials can be found in the following sites:

http://mathworld.wolfram.com/JacobiPolynomial.html,

http://en.wikipedia.org/wiki/Jacobi_polynomials.

Selçuk Bayin (November, 2008)


