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CHAPTER 3: LAGUERRE POLYNOMIALS

[. Solutions or Hints to Selected Problems:

1. (Problem 3.2) Derive the recursion relations

(n+1) Lysr (@) = 2n+1—2) Ly () —nLp_y (), (0.1)
L, () = nLy () — nLy_1 (z), (0.2)
and
L, (z) = —tX;Lr (). (0.3)
Solution:

For the first recursion relation, differentiate the generating function [Eq.
(3.25)] with respect to ¢t and then compare equal powers of ¢.

For the second recursion relation, differentiate the generating function
with respect to z and compare equal powers of ¢ to obtain the relation

L, (2) = L,y () = —Loos (@) (0.4)

Now let n — n + 1 and then multiply the above equation with (n + 1)
to write

(n+1)L;, 1 (x) = (n+ 1)L, () = —(n+ 1)L, (z). (0.5)

Finally, differentiate the first recursion relation [Eq. (0.1)] with respect
to x and use the result in Equation (0.5) to obtain the desired recursion
relation.

For the third recursion relation, use the fact that Laguerre polynomials
form a complete set to write the expansion

oo
L;l = ZakLk, (06)
k=0
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and then evaluate the expansion coefficients as

0, k>n,
ay = (0.7)
~1, k=0,1,...,(n—1).

Note that calculating aj does not require long calculations and the third
recursion relation [Eq. (0.3)] can also be written as

n—1
n+1=—Lp — Z L. (0.8)
k=0

. (Problem 3.4) Write the normalized wave function of the hydrogen
atom in terms of the spherical harmonics and the associated Laguerre
polynomials.

Solution:

The answer is given as
\Ilnlm (7‘7 97 ¢) = CO"il—i_lrle_HrLiljll,l <2Hr)§/lm(67 (b)a (09)

where Cy is the normalization constant and

2m |E
K=/ hl | (0.10)

To obtain Cj, use the normalization condition of the wave function:

/ Wt (1,0, ¢)|2d’U =1,
\4

[e’e} 2m I
/ / / |t (7,0, &) 72 sin? Odrdfde = 1. (0.11)
0 0 0

First use the normalization condition of the spherical harmonics [Eq.
(2.179)]:

/OQW /OW Vi (0, 6)[2 sin? 0d0dg = 1, (0.12)
and then show the integral
/°° et [k ()] = O k’)!(f;‘ Rl 1oL (0.13)
0 !
which leads to the desired result as
2k(n—1—1)!

Co = 2!11 (0.14)

2n(n +1)!



and

(n—1-1)!

1/2
2n(n +1)! ] (2rr)' e LYY (267) Y™ (6, 9).

(0.15)

Ui (1,0, ¢) = (2/1)3/2 {

. (Problem 3.11) In quantum mechanics the radial part of Schrédinger’s
equation for the three-dimensional harmonic oscillator is given as

@R(z) , 2dR(@) <€ el

dx? r dr

> R(z) =0, (0.16)

x2

where x and e are defined in terms of the radial distance r and the
energy E as

" and £
€= ——.
h hw/2

mw

(0.17)

[ takes the integer values [ = 0,1,2... . Show that the solutions of this
equation can be expressed in terms of the associated Laguerre polyno-
mials of argument z2.

Solution:

First show that the above differential equation gives a three-term re-
cursion relation. To obtain a two-term recursion relation look at the
behavior of the differential equation at +o0o0, which suggest the transfor-
mation

R(z) = e " 2u(z). (0.18)

Obtain the differential equation for v(x):
2 (l+1
v”+<——2x>v’+v(—3+e— <—Z )):0. (0.19)
x x

Associated Laguerre polynomials with the argument z? satisfies

d2
da?

LF(2%) + [(% + 1% — 2:5] %Lﬁ(aﬁ) +nLF(z*) =0.  (0.20)

The last term of Equation (0.19) still does not allow us to compare
the two equations, hence we analyze its behavior near the origin, which
suggests the substitution

v(z) = zlw(x). (0.21)



The differential equation for w(z) is obtained as
w” + (@ - 295) w4 (=3+e—20)w=0. (0.22)
Comparing with Equation (0.20), we can write the solution for w(z) as
w(w) = L2 @), (0.23)
Now the complete solution becomes

R(z) = xle_x2/2L$¥372l(x2). (0.24)

I1. Useful Sites

More references and other useful information about Laguerre polynomials
can be found in the following sites:

http://en.wikipedia.org/wiki/Laguerre_polynomials,

http://mathworld.wolfram.com/LaguerrePolynomial.html
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