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CHAPTER 17: VARIATIONAL ANALYSIS

I. Solutions or Hints to Selected Problems:

1. (Newton’s bucket experiment) A bucket half-filled with water is
rotated about its axis. Find the shape of the surface of the water after
the equilibrium is set.

Solution:

In Principia (1689) Newton describes a simple experiment with a bucket
half-filled with water and suspended with a rope from a fixed point in
space. In this experiment, first the rope is twisted tightly and then
after the water has settled and its surface becomes flat, the rope is
released. At first, the bucket spins rapidly with the water remaining
at rest with its surface flat. Eventually, the friction between the water
and the bucket communicates the motion of the bucket to the water and
the water begins to rotate also. As the water begins to rotate, it also
rises along the sides of the bucket. Slowly, the relative motion between
the bucket and the water ceases and the surface of the water assumes
a concave shape. Finally, the rope unwinds completely and begins to
twist in the other direction, thus slowing and eventually stopping the
bucket. Shortly after the bucket has stopped, the water continues its
rotation with its surface being concave. The question is; what causes
this concave shape of the surface of the water?

At first, the bucket is spinning but the water is at rest and its surface
is flat. Eventually, when there is no relative motion between the bucket
and the water, the surface is concave. Finally, when the water is spinning
but the bucket is at rest, the surface is still concave. From these it is
clear that the relative rotation of the water and the bucket is not what
determines the shape of the surface.

The crucial question is; what is spinning and with respect to what?
Let us try to understand the shape of the surface in terms of interac-
tions. Since the bucket, the water and the rest of the universe are on
the average neutral, electromagnetic forces can not be the reason. The
gravitational interaction between the bucket and the water is surely
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Fig. 0.1 Newton’s bucket experiment.

negligible, hence it can not be the reason either. According to New-
ton’s theory, gravity is a scalar interaction, thus the gravitational force
between two masses is independent of their velocity and thus depends
only on their separation. In this regard, Newton could not have used
the gravitational interaction of the water with the rest of the universe
also. This lead Newton reluctantly to explain the concave shape as due
to rotation with respect to absolute space. In other words, the surface
of the water is flat when the water is not rotating with respect to abso-
lute space and when there is rotation with respect to absolute space it
is concave.

A satisfactory solution comes only with the Einstein’s general theory
of relativity, where the gravitational force between two masses depends
not just on their separation but also on their relative velocity. This
is analogous to Maxwell’s theory, where the electromagnetic forces are
described by a vector potential, hence the force between two charged
particles has a velocity dependent part aside from the usual coulomb
force. However, in the case of general theory of relativity gravity is de-
scribed by a tensor potential, the metric tensor, thus the gravitational
force is much more complicated than it is in a vector interaction. In this
context, not just the shape of the surface of the water in the Newton’s
bucket experiment, but all fictitious forces in Newton’s theory, in prin-
ciple, can be explained as the gravitational interaction of matter with
the mean matter distribution in the universe.

Let us now find the equation of the concave shape that the surface of
the water assumes. For simplicity, we assume a cylindrical container
(Fig. 0.1) with the radius R and rotating with uniform angular velocity
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ω about its axis. We determine the surface height, z(r), of the water by
minimizing the potential energy. For a given mass element of the water,
we can write the infinitesimal potential energy as

dE = (ρgz − 1
2
ρω2r2)dv, (0.1)

where ρ is the uniform density of the water and g is the acceleration of
gravity. We now write the functional, I[z(r)], that needs to be minimized
for z(r) as

I[z(r)] =

Z Z Z
V

dE (0.2)

=

Z 2π

0

Z R

0

Z z(r)

0

(ρgz − 1
2
ρω2r2)r dz dr dθ (0.3)

= πρ

Z R

0

(gz2 − ω2r2z)rdr. (0.4)

Important:

Note that the integrand in the above functional does not involve any
derivatives of z(r), hence the boundary conditions

z(0) and z(R), (0.5)

are not needed in the derivation of the Euler Equation (17.14), which
becomes:

∂
£
(gz2 − ω2r2z)r

¤
dz

= 0, (0.6)

thus yielding the surface of revolution, z(r), representing the free surface
of the water as

z(r) =
ω2r2

2g
. (0.7)

One final remark that needs to be made is that this result is only par-
tially true, since we have not defined the optimization problem correctly.
For a proper description of the problem we have to take into account
the fact that water is incompressible, that is, its volume is fixed. Now
the functional in Equation (0.4) has to be extremized subject to the
constraint

J [z(r)] =

Z Z Z
V

dv (0.8)

=

Z 2π

0

Z R

0

Z z(r)

0

r dz dr dθ (0.9)

= 2π

Z R

0

z(r)dr (0.10)

= V0, (0.11)
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Fig. 0.2 Drag force on a surface of revolution.

thus making the problem one of isoperimetric type and can be solved
by using the method discussed in Section 17.6.

2. Consider an axially symmetric object moving in a perfect incompressible
fluid with constant velocity. Assuming that at any point on the surface
the drag force per unit area is proportional to the normal component of
the velocity, find the shape that minimizes the drag force on the object.

Solution:

Since the object is axially symmetric, we consider the surface of revolu-
tion shown in Figure 0.2, where θ is the angle that the tangent at point
P makes with the plane perpendicular to the z-axis. Since the normal
component of the velocity at P is

v⊥ = v0 cos(π − θ) (0.12)

= −v0 cos θ, (0.13)

we write the drag force on the infinitesimal strip with the area (Fig. 0.2)

2πr ds (0.14)

and projected along the z-axis, as

α
¡
v20 cos

2 θ
¢
cos θ 2πr ds, (0.15)

where α is the drag coefficient. Since ds = dr/ cos θ, the total drag on
the body is the integral

J = 2παv20

Z R

0

r cos2 θ dr. (0.16)
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Using the definition of the surface of revolution, z(r), we can write

dz

dr
= tan θ, (0.17)

hence

cos θ =
1

[1 + z02]1/2
. (0.18)

Now the functional to be minimized for z(r) becomes

J [z(r)] = 2παv20

Z R

0

r dr

1 + z02
, (0.19)

which yields the Euler equation

rz0

[1 + z02]2
= c0, (0.20)

where c0 is an integration constant. Note that since the integrand does
not depend on z explicitly, we have written the first integral [Eq. (17.14)]
immediately. For the solution we call z0 = p and solve the above equa-
tion for r to write

r =
c0
p
(1 + p2)2, (0.21)

which when differentiated gives

dr = c0(−
1

p2
+ 2 + 3p2)dp. (0.22)

Using

dz

dr
= p, (0.23)

we also obtain Z
dz =

Z
p dr (0.24)

= c0

Z
p(− 1

p2
+ 2 + 3p2)dp (0.25)

or

z = c0

µ
− ln p+ p2 + 3p

4

4

¶
+ c1. (0.26)
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Fig. 0.3 The brachistochrone problem.

Equations (0.21) and (0.26) represent the parametric expression of the
needed surface of revolution. To determine the integration constants we
can use the values

z(a/2) = z1, (0.27)

z(R) = z2. (0.28)

For a complete treatment of this problem, which was originally discussed
by Newton and which still has engineering interest, see Bryson and Ho
(1969).

3. (Problem 17.11: The brachistocrone problem) Find the shape of
the curve joining two points, along which a particle, initially at rest,
falls freely under the influence of gravity from the higher point to the
lower point in the least amount of time.

Solution:

Velocity of the bead as it falls freely along the wire is

v =
ds

dt
, (0.29)

where ds is the arclength

ds =
p
dx2 + dy2. (0.30)
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We write the total time, T, to descend from point 1 to 2 (Fig 0.3) as

T =

Z 2

1

ds

v
(0.31)

=

Z 2

1

1

v

p
1 + y02 dx, (0.32)

where y0 = dy/dx. Since the velocity changes along the wire, we still
need to express v(x) as a function of y(x) and possibly x. For this we
use the expression of the conservation of energy, which we write as∙

mgy +
1

2
mv2

¸
1

=

∙
mgy +

1

2
mv2

¸
2

= E, (0.33)

where E is the conserved total energy of the bead. Since the bead is
initially at rest:

v1 = 0, (0.34)

we use Equation (0.33) to write

v =

s
2g

µ
E

mg
− y

¶
. (0.35)

Using this we finally obtain the functional

T [y(x)] =

Z 2

1

s
1 + y02

2g(E0 − y) dx, (0.36)

where we wrote E0 = E/mg. Note that E0 is always greater than y for
x ∈ (1.2) in Equation (0.36). We now define a new variable as

z = (E0 − y) (0.37)

to write

T [z(x)] =

Z 2

1

s
1 + z02

2gz
dx. (0.38)

Since the integrand does not depend on the independent variable, we
can write the first integral as

1p
z[1 + z02]

= C0, (0.39)

which can be solved for z0 as

z0 =

s
1− C20z
C0z

, (0.40)
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or as

C1 +

Z u

0

r
u

1− u du = C
2
0x, (0.41)

where we have defined

u = C20z. (0.42)

To evaluate the integral we substitute

u = sin2 θ (0.43)

to write

C1 +

Z θ

0

2 sin2 θ dθ = C1 +

Z θ

0

(1− cos 2θ) dθ = C20x, (0.44)

which yields

x = A+B(2θ − sin 2θ), (0.45)

where

A =
C1
C20
, B =

1

2C20
. (0.46)

Since from Equations (0.42) and (0.43), z is also related to θ through
the relation

z = B(1− cos 2θ), (0.47)

we obtain the parametric expression of the curve as

z = B(1− cos 2θ), (0.48)

x = A+B(2θ − sin 2θ). (0.49)

4. (Rayleigh-Ritz method: First-order) Consider the differential equa-
tion

y00 + λa(x)y(x) = 0, y(0) = y(1) = 0, (0.50)

which could represent the vibrations of a rod with nonuniform cross-
section given by a(x). By choosing a suitable trial function, estimate
the lowest eigenvalue for a(x) = x.

Solution:

Using the trial functions

y(x) = sinπx (0.51)
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and

y(x) = x(1− x) (0.52)

we can estimate the lowest eigenvalue, λ0, as

λ0 ≤
R 1
0
|y0(x)|2 dxR 1

0
a(x) |y(x)|2 dx

, (0.53)

which yields the values

λ0 ≤ 19.74 (0.54)

and

λ0 ≤ 20.0, (0.55)

for y(x) = sinπx and y(x) = x(1− x), respectively.
One can show that for

a(x) = α+ βx, (0.56)

Equation (0.50) can be reduced to Bessel’s equation, where for α = 0,
β = 1, the exact lowest eigenvalue is given as

λ0 = 18.956. (0.57)

We can improve our approximation by choosing the trial function as

y(x) = sinπx+ c sin 2πx. (0.58)

This leads to the inequality

λ0 ≤
2π2(1 + 4c2)

1 + c2 − 64c/9π2 . (0.59)

Minimizing the right-hand side gives

c = −0.11386 (0.60)

and the improved estimate becomes

λ0 ≤ 18.961. (0.61)

5. (Rayleigh-Ritz method: Second-order) For the previous problem
find an upper bound to the second-order eigenvalue.

Solution:
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In page 539 of Bayin (2006) we have concluded Example 17.9 by saying
that the method we use to estimate the lowest eigenvalue can also be
used for the higher-order eigenvalues, granted that the trial function is
chosen orthogonal to the lower eigenfunctions. In the previous problem
we have estimated the lowest eigenvalue via the test function

y0 = sinπx− 0.11386 sin 2πx. (0.62)

For the second-order trial function we use

y1 = sinπx+ d sin 2πx, (0.63)

where d is determined such that y0 and y1 are orthogonal. A simple
calculation yields

d =
9π2(−0.11386)− 32
32(−0.11386)− 9π2 (0.64)

= 2.1957, (0.65)

which gives the estimate

λ1 ≤ 94.45. (0.66)

An exact calculation in terms of Bessel functions gives

λ1 = 81.89. (0.67)

Note and also show that the estimates for λ0 and λ1 are both upper
bounds to the exact eigenvalues.

6. If y(x) extremizes J [y(x)], then regardless of the prescribed end condi-
tions, show that the first variation must vanish:

δJ [y(x)] = 0. (0.68)

Solution:

Using the variational notation we write the variation of the functional

J [y(x)] =

Z 2

1

F (y, y0, x)dx (0.69)

as

J [y(x) + δy]− J [y(x)] = δJ + δ2J + δ3J + · · · , (0.70)

where the second variation is given as

δ2J =
1

2!

Z 2

1

£
Fyyδy

2 + 2Fyy0δyδy
0 + Fy0y0δy

02¤ dx. (0.71)



11

Since δy = εη(x), δy0 = εη0(x), etc. [Eq. (17.4)], where ε is a small
parameter, δ2J is smaller in magnitude by at least by one power of ε
than δJ and so are the higher order variations. On the other hand,
δJ [δy] can be written as

δJ [δy] = ε

Z 2

1

[Fyη(x) + Fy0η
0(x)] dx, (0.72)

which can be made to be positive or negative for the positive or the
negative choices of the small parameter ε, respectively, hence δJ [y(x)]
must vanish for any y(x) that extremizes the functional in Equation
(0.69).

II. Optimum Control Theory

Let us now discuss a slightly different problem, where we have to produce a
certain amount, say by weight, of goods to meet a certain order at time t = T .
The problem is to determine the best strategy to follow so that our cost is
minimum. One obvious strategy is to produce at a constant rate determined
by the amount of goods to be delivered at time T. To see whether this actually
minimizes our cost or not, let us formulate this as a variational problem. We
first let x(t) be the total amount of goods accumulated at t ≥ 0, hence its
derivative, x0(t), gives the production rate. For the cost there are mainly two
sources, one of which is the production cost per unit item, cP , which can be
taken as proportional to the production rate:

cP = k1x
0(t), (0.73)

Naturally, producing faster while maintaining the quality of the product in-
creases the cost per item. Besides, producing the goods faster will increase our
inventory unnecessarily before the delivery time, thus increasing the holding
cost, cH , which is defined as the cost per unit item per unit time. As a first
approximation, we can take cH to be proportional to x(t) :

cH = k2x(t). (0.74)

We can now write the total cost of production over the time interval

(t, t+∆t) (0.75)

as

δJ = cP δx+ cHδt (0.76)

= [cPx
0(t) + cH ] δt (0.77)

=
£
k1x

0(t)2 + k2x(t)
¤
δt. (0.78)

We also assume that production starts at t = 0 with zero inventory, x(0) =
x0 = 0, and we need x(T ) = xT , where xT is the amount of goods to be
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delivered at t = T. We can know write the total cost of the entire process as
the functional

J [x(t)] =

Z T

0

£
k1x

0(t)2 + k2x(t)
¤
dt. (0.79)

The problem is to find a production strategy, x(x), that minimizes the func-
tional J [x(t)], subject to the initial conditions

x(0) = 0 and x(T ) = xT . (0.80)

For this problem an acceptable solution should also satisfy the conditions

x(t) ≥ 0 and x0(t) ≥ 0. (0.81)

Solution of the unconstrained problem with the given initial equations [Eq.
(0.80)] is

x(t) =

µ
xT −

k2
4k1

T 2
¶
t

T
+
k2
4k1

t2. (0.82)

The uniform rate of production,

x(t) =
xT t

T
, (0.83)

even though satisfies the end conditions [Eq. (0.80)] and the inequalities in
Equation (0.81), does not minimize J [x(t)] for k2 6= 0. Besides, for realistic
problems due to finite capacity we also have an upper and a lower bound for
the production rate, hence we also need to satisfy the inequalities

x0M ≥ x0(t) ≥ x0m ≥ 0, (0.84)

where x0M and x0m represent the possible maximum and the minimum produc-
tion rates, respectively. The unconstrained solution is valid only for the times
that the inequalities in Equations (0.81) and (0.84) are satisfied. Variational
problems with constraints on x(t) and/or x0(t), expressed either as equali-
ties, or inequalities, are handled by the optimal control theory, which is a
derivative of the variational analysis. In the minimum cost production sched-
ule, to obtain the desired result we need to control the production rate, x0(t),
hence the optimal control theory is needed to determine the correct strategy.
Basic Optimum Control Theory: Dynamics versus Controlled

Dynamics
In physics a dynamical system is described by the second law of Newton

as

−→
F = m−→a , (0.85)
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where
−→
F represents the net force acting on the mass, m, and −→a is the ac-

celeration. For example, for the one dimensional motion of a mass falling in
uniform gravity, g, under the influence of a restoring force, −kx, and a friction
force, −μ .x, the second law of Newton becomes

m
..
x = −μ .x− kx−mg, (0.86)

where k and μ are constants. With the appropriate initial conditions, x(0)
and

.
x(0), we can solve this differential equation to find the position, x(t), at a

later time. If we also attach a thrust mechanism that allows us to apply force,
f(t), to the mass m, then we can control its dynamics so that it arrives at a
specific point at a specific time and with a predetermined velocity. Equation
(0.85) is now written as

..
x = − μ

m

.
x− k

m
x− g + f(t)

m
. (0.87)

We now define two new variables, y1 and y2, that define the state of the
system:

y1(t) = x(t), y2(t) =
.
x(t), (0.88)

and introduce u1 and u2, called the control variables or parameters as

u1(t) = 0, u2(t) =
f(t)

m
. (0.89)

We can write them as the column vectors

y =

µ
y1
y2

¶
and u =

µ
u1
u2

¶
. (0.90)

Controlled dynamics of this system is now governed by the differential equa-
tion

.
y = f(y,u,t), (0.91)

where f(y,u,t) is given as

f(y,u,t) =

µ
y2

− k
my1 −

μ
my2 − g + u2

¶
(0.92)

=

µ
0 1
− k
m − μ

m

¶
y+

µ
0 0
0 1

¶
u+

µ
0
−g

¶
. (0.93)

We introduce the matrices

A =

µ
0 1
− k
m − μ

m

¶
, (0.94)

B =

µ
0 0
0 1

¶
, (0.95)

f0 =

µ
0
−g

¶
. (0.96)
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to write the above equation as

f(y,u,t) = Ay+Bu+ f0. (0.97)

Note that Equation (0.91) gives two differential equations:

.
y1 = y2 (0.98)

and

.
y2 = −

k

m
y1 −

μ

m
y2 − g + u2, (0.99)

to be solved simultaneously, which are coupled and linear. However, in general
they are nonlinear and can not be decoupled. For a realistic solution of the
fuel-optimal horizontal motion of a rocket problem, one also has to consider
the loss of mass due to thrusting (Geering, 2007).
General Statement of a Controlled Dynamics Problem
A general optimal control problem involves the following features:
I) State variables and Controls:
State of the system is described by the state variable, y, written as the

column (n× 1) vector

y(t) =

⎛⎜⎝ y1
...
yn

⎞⎟⎠ , (0.100)

while all the admissable controls are described by the (m× 1) column vector

u(t) =

⎛⎜⎝ u1
...
um

⎞⎟⎠ . (0.101)

II) Vector differential equation of state:
Dynamical evolution of the system is described by the ordinary differential

equation

.
y = f(y,u,t), (0.102)

also called the equation of state, where f(y,u,t) is a known (n× 1) contin-
uously differentiable column vector, with the usual initial condition

y(t0) = y0. (0.103)

Depending on the problem, the terminal state, y(T ) is either fixed or left free.
III) Constraints:
(a) Some constraints on the controls, which are of the form

u(t1) = u1, (0.104)
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for some t1 in the time domain.
(b) Some constraints on the controls in the form of inequalities, such as

um≤ u ≤ uM . (0.105)

(c) Some constraints on the state variables, which are either expressed as
equality:

Φ(y,t) = 0 (0.106)

or as inequality:

Θ(y,t) ≥ 0. (0.107)

(d) One could also have constraints mixing the state variables and the
controls and expressed in various forms.
IV) Solution:
For a given choice of an admissable control, u(t), we solve the initial value

problem [Eq. (0.102)] for y(t). In other cases we seek for an admissable u(t)
that steers y(t) to a target value y(T ) at some terminal time T. In optimal
control problems, we look for the admissable control variables, u(t), such that
the functional

J [u(t)] =

Z T

t0

F (y,u,t)dt+Ψ(T,y(T )), (0.108)

where F (y(t),u(t),t) and Ψ(T,y(T )) are known functions, is minimized or
maximized. Note that F (y,u,t) in Equation (0.108) is different from f(y,u,t)
in Equation (0.102). In certain type of problems we look for the maximum
of J [u(t)], where it is called the payoff functional, while F (y,u,t) is the
running payoff and Ψ(T,y(T )) is called the terminal payoff. In certain
other problems, the minimum of J [u(t)] is desired, where it is called the cost
functional.
Connection With Variational Analysis
There is a definite connection between optimal control theory and varia-

tional analysis. If we set
.
x = u in the action

J [x(t)] =

Z 2

1

£(x,
.
x, t)dt (0.109)

and write

J [x(t)] =

Z 2

1

£(x, u, t)dt, (0.110)

and take the constraint as the entire real axis for u, we transform a variational
problem to an optimal control one with

.
x = u (0.111)
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representing the equation of state [Eq. (0.102)]. Similarly, if we solve the
equation of state [Eq. (0.102)] for u in terms of

.
y, y and t, and substitute

the result into the payoff functional in Equation (0.110), we can convert an
optimal control problem into a variational problem.
However, it should be kept in mind that there is a philosophical difference

between the two approaches. In Lagrangian mechanics nature does the op-
timization and hence controls the entire process. All we can do is to adjust
the initial conditions. For example, when firing a cannon ball controlling the
system through initial conditions helps to achieve a simple goal like having
the ball drop to a specific point. However, if we are sending astronauts to
the moon, to assure that they land on the moon safely we have to steer the
process all the way. Among other things, we have to assure that the fuel is
used efficiently, we have to make sure that the accelerations involved and the
cabin conditions stay within certain limits and we have to assure that the
rocket lands softly on the moon with enough fuel left to return. Optimum
control theory basically allows us to develop the most advantageous strategy
to achieve the desired result through some control variables that we build into
the system, like the thrust system. In optimal control theory, we are basically
steering the system to achieve a certain goal.
Controllability of a System
A major concern in optimal control theory is the controllability of a given

system. Landing a rocket safely on the moon is a difficult problem, but if
we insist on landing it at a specific point at a specific time, that is, if we
also fix the terminal state, it becomes a much more difficult problem. In
general, it is not clear that a system can be steered from an initial state to a
predetermined final state with an admissable choice of the control variables.
To demonstrate some of the basic ideas, we confine ourselves to linear systems
where the equation of state can be written as

.
y = F (y,u,t) (0.112)

= Ay+Bu. (0.113)

Here, A and B are (n × n) and (n ×m) matrices, respectively. To simplify
the matter further, consider time-invariant (autonomous) systems. For such
systems the A and B matrices are constant matrices, hence the controllability
of such a system does not depend on the initial time. Let us now consider
that A has a complete set of eigenvectors and let M be the matrix, columns
of which are composed of the eigenvectors of A. We also define the column
vector z as

z =M−1y, (0.114)
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and write Equation (0.114) as

.
z =M−1

.
y (0.115)

=M−1 [Ay+Bu] (0.116)

=M−1AMM−1y+M−1Bu (0.117)

=
¡
M−1AM

¢
M−1y+M−1Bu (0.118)

=
¡
M−1AM

¢
z+
¡
M−1B

¢
u, (0.119)

whereM−1AM is a diagonal (n×n) matrix, λ, with its diagonal terms being
the eigenvalues:

λ =

⎛⎜⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

⎞⎟⎟⎟⎠ . (0.120)

From here it is seen that if the matrix M−1B has a zero row, say, the kth
row, then the kth component of z satisfies

.
zk = λkzk. (0.121)

That is, zk(t) is determined entirely by the initial conditions at t0. In general,
for a linear autonomous system, if A has a complete set of eigenfunctions, a
necessary and sufficient condition for its controllability is thatM−1B has no
zero rows. For linear autonomous systems, where the constant matrix A does
not necessarily has a complete set of eigenvectors, then the following theorem
is more useful:
Theorem 0.1: A linear autonomous system is controllable, if and only if

the (n× nm) matrix

C = [B,AB,A2B, . . . ,An−1B] (0.122)

is of rank n. Proof of this theorem can be found in Wan (1995).
There exists a set of necessary conditions that the optimal solution of an

optimal control theory problem should satisfy. This set of conditions is called
the Pontryagin’s Minimum Principle, which can also be used to solve several
optimal control problems. For a formulation of the optimal control problem
via the Pontryagin’s minimum principal see Geering (2007).
Example 0.1. An Inventory Control Model:
A firm has an inventory of y1 amount (by weight) of goods produced at

the rate of u1 = u(t). If the rate of sales, which could be taken from the past
records, is y2, we can write the rate of change of the inventory as

.
y1 = u− y2. (0.123)
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It is natural to think that the firm will make a bigger effort to sell when the
inventory increases, hence we can take

.
y2 as proportional to the inventory:

.
y2 = α2y1, (0.124)

where α is real and positive. If CP is the price per unit sale, cp is the cost per
unit produced, and ch is the holding cost per unit item per unit time, we can
write the total revenue over a period of T as the integral

J [u] =

Z T

0

Fdt (0.125)

=

Z T

0

[CP y2 − cpu− chy1] dt. (0.126)

Note that we have only one control variable, hence we take u2 = 0 in this
problem. We now look for the control variable, u(t), that maximizes the
revenue, J [u], subject to the initial conditions:

y1(0) = y10, (0.127)

y2(0) = y20. (0.128)

We now write the two conditions [Eqs. (0.123) and (0.124)] as

.
y1 − u+ y2 = 0, (0.129)
.
y2 − α2y1 = 0 (0.130)

and incorporate them into the problem through two Lagrange multipliers,
λ1(t), λ2(t), by defining a new Lagrangian, H, as

H = F − λ1[
.
y1 − u+ y2]− λ2[

.
y2 − α2y1] (0.131)

and consider the variation of

I[u] =

Z T

0

Hdt

=

Z T

0

£
F − λ1

¡ .
y1 − u+ y2

¢
− λ2(

.
y2 − α2y1)

¤
dt

= − [λ1y1 + λ2y2]
T
0

+

Z T

0

h
(CP y2 − cpu− chy1) + (

.

λ1 + α2λ2)y1 + (
.

λ2 − λ1)y2 + λ1u
i
dt.

(0.132)

Note that the stationary values of J [u] are also the stationary values of I[u]
(Wan, 1995, pg. 345). However, we also have to take into account that in any
realistic business the rate of production is always limited, that is,

0 ≤ um ≤ u ≤ uM , (0.133)
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where um and uM represent the possible minimum and the maximum produc-
tion rates possible. In this regard, we can not insist on the optimal strategy to
be a stationary value of J [u]. We can at most ask for δI[u] be nonincreasing,
that is, δI[u] ≤ 0, for a maximum of J [u] :

δI[u] = − [λ1(T )δy1(T ) + λ2(T )δy2(T )]

+

Z T

0

h
(
.

λ1 + α2λ2 − ch)δy1 + (
.

λ2 − λ1 + CP )δy2 + (λ1 − cp)δu
i
dt ≤ 0.

(0.134)

Since we have fixed the initial conditions [Eqs. (0.127) and (0.128)], we have
taken

δy1(0) = δy2(0) = 0. (0.135)

For simplicity, we also choose the Lagrange multipliers such that

λ1(T ) = 0, (0.136)

λ2(T ) = 0, (0.137)
.

λ1(t) + α2λ2(t)− ch = 0, (0.138)
.

λ2(t)− λ1(t) + CP = 0. (0.139)

The first two terms eliminate the surface term in Equation (0.134), which is
needed, since we are not given the terminal values y1(T ) and y2(T ), and the
last two equations are needed to avoid the need for a relation between δy1and
δy2 in the integrand, thus reducing Equation (0.134) to

δI[u] =

Z T

0

(λ1 − cp)δudt ≤ 0. (0.140)

The two coupled linear equations for λ1(t) and λ2(t) [Eqs. (0.138) and (0.139)]
can be solved immediately. After incorporating the end conditions [Eqs.
(0.136) and (0.137)] we obtain

λ1(t) = CP {1− cos(α[T − t])}−
ch
α
sin(α[T − t]), (0.141)

λ2(t) =
ch
α2
{1− cos(α[T − t])}+ Cp

α
sin(α[T − t]). (0.142)

With λ1(t) determined as in Equation (0.141), we can not in general have

λ1(t)− cp = 0, (0.143)

obviously not when cp is a constant, hence we can not use δI = 0. We now
turn to I[u] in Equation (0.132) and substitute the expressions found for λ1(t)
and λ2(t) to get

I[u] = − [λ1(0)y10 + λ2(0)y20] +

Z T

0

(λ1 − cp)u dt. (0.144)



20

For a maximum of J [u] we need to pick the largest possible value of u that
makes the integral a maximum. In other words, we need

u(t) =

⎧⎨⎩ uM when (λ1 − cp) > 0,

um when (λ1 − cp) < 0.
. (0.145)

We now check the inequality in Equation (0.140). Since λ1(T ) = 0, we have

λ1(T )− cp = −cp < 0, (0.146)

hence it is also satisfied. Optimum control models, where the control variables
alternate from two extreme values are called the bang-bang models. For the
limitations of this simple control model see Wan (1995). What is depicted
here is a very brief introduction to the interesting field of optimal control
theory. For the interested reader who wants to explore this subject further,
we recomment the following books and sites.

IV. References and Useful Sites
Books:
Bryson, A., and Y.C. Ho, Applied Optimal Control Theory, Ginn, Lexing-

ton, MA, 1969.
Gamkrelidze, R.V., Principles of Optimal Control Theory, Plenum, New

York, 1978.
Geering, H.P., Optimal Control With Engineering Applications, Springer,

Berlin, 2007.
Griffel, D.E., Applied Functional Analysis, Ellis Horwood Ltd., New York,

1988.
Wan, F.Y.M., Introduction To the Calculus of Variations and Its Applica-

tions, Chapman &Hall, NY, 1995.
Weinstock, R., Calculus of Variations, Dover, New York, 1974.
Useful Links:
Calculus of Variations:
http://en.wikipedia.org/wiki/Calculus_of_variations,
http://mathworld.wolfram.com/CalculusofVariations.html.
Newton’s Bucket:
http://demonstrations.wolfram.com/NewtonsRotatingBucketExperiment/,
http://en.wikipedia.org/wiki/Bucket_argument.
Inventory Control Models:
http://demonstrations.wolfram.com/ASimpleInventoryControlModel/.
Optimum Control Theory:
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