EN CHAPTER W7

Electrons in Solids: Electrical and
Thermal Properties

W7.1 Boltzmann Equation

In Section 7.2 of the textbook,” formulas were derived on the basis of Newtonian
mechanics and the assumption that all of the conduction electrons contribute to the
electrical current. In the Sommerfeld theory this is not correct. Electrons with energies
less than ~ Er — kgT have difficulty being accelerated by the electric field since the
states above them are already filled. Only those electrons in the immediate vicinity
of the Fermi surface are excitable. The question is how to rederive the conductivity
formula taking into account the Pauli exclusion principle. Here a semiclassical approach
is adopted.

One introduces a distribution function f(r,p, t) to describe the system of electrons
in phase space. The quantity 2 f (r, p, t) dr dp/h’® gives the number of electrons within
volume element dr and within a momentum bin of size dp at time ¢ (the factor of 2 is
for spins). The distribution function evolves in time due to collisions. The Boltzmann
equation relates the total time derivative of f to the difference between f and the
equilibrium distribution function fo = F(E, T), where E is the energy,
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where v is the velocity and F = —¢eE is the force on the electron. This equation has

been written in what is called the relaxation-time approximation: it is assumed that
the relaxation of f to f( occurs in a time 7(p) as a result of collisions. Interest here
is in the steady-state behavior, so df /0t =0 and f = f(r,p). Attention will also be
restricted to the case of an infinite medium where a spatially homogeneous solution is
sought, so f = f(p). It will also be assumed that 7 depends only on E.

An approximate expression for f is developed by substituting fo for f in the
left-hand side of Eq. (W7.1):
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T The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel 1.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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Since fo = F(E, T), the derivatives may be reexpressed in terms of energy derivatives:

f=fo—t1——=V- | ZV(B(E —pn)) —eEy| . (W7.3)
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The electrical-current density is

p

J@r, 1) = —Ze/Vf(r,p, 1) 3 (W7.4)
and the heat-current density is
dp
Jo(r, 1) = 2/(E — VS (6P D)3 (W7.5)

Note that the thermal energy transported is positive when E exceeds @ and negative
when E is less than u. Upon inserting Eq. (W7.3) into Eqs. (W7.4) and (W7.5), the
need to angular-average a product of two velocities over momentum space is encoun-
tered. One uses (vv - A) = v’A/3 =2 < EA > /3m, where A is a constant vector, and
obtains
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An expression for p is given in Eq. (7.24). Evaluation of the integrals leads to the
formulas

J = oEy — oSV, (W7.8)
Jo = 0STE) — kVT, (W7.9)

which are called the Onsager relations.

W7.2 Random Tight-Binding Approximation

In this section we study the behavior of p(E) for a random one-dimensional solid. Two
models for randomness are studied: the first with “bond” randomness and the second
with “site” randomness. In the bond case the tunneling integral, ¢, varies randomly
from bond to bond, but the site energy, €, remains constant. As an example, let ¢
assume two values, f; and f,, with probabilities p; and p;, respectively. Numerical
results are displayed in Fig. W7.1, where results are shown for p(E) for the case
where N = 125 sites, t; = 1,1, =2, and p; = p, = % A suitable average over many
independent configurations has been made. A comparison is made with the uniform
case involving an average tunneling integral (t) = p#; + pat,. It is apparent that near
the band center the densities of states are the same, while near the band edges the
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Figure W7.1. Comparison of electron densities of states for the random-bond and uniform
one-dimensional solids.
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Figure W7.2. Comparison of electron densities of states for the random-site and uniform
one-dimensional solids.

random solid exhibits an irregular behavior in contrast to the smooth but divergent
behavior of the uniform solid.

In Fig. W7.2 the result for the random-site model is presented. In this model the
site energy is allowed to have one of two values, €; or €;, with probabilities p; and p,,
respectively. The tunneling integral is held fixed at = 1.5. As before, there is some
rough but reproducible behavior near the band edges. Note that in both the random-site
and random-bond cases there is a tailing off of the density of states beyond the band
edges.

W7.3 Kronig-Penney Model

An analytic solution to Bloch’s difference equation can be found when all Fourier coef-
ficients are equal (i.e., Vg = U) and the problem is one-dimensional. Then Eq. (7.54)
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becomes

ug(k) + U ug-g (k) =0. (W7.10)
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Let S => ug. If S=0, then ug =0 and there is no nonzero solution. If § # 0,
dividing by the first factor and summing over all G yields

1
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This will have a non-trivial solution when
1+UY ! =0 (W7.12)
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In one dimension G, = 2nwn/a, where n is an integer, and the sum converges. The
dispersion relations are given by the roots E(k) of the equation
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Note some simple properties of the left-hand side of this equation: (1) it is periodic
under the replacement k — k &+ 2w /a; (2) it is an analytic function of k except for

simple poles at k = —27n/a + \/2mE /h?; and (3) as k — ico in the complex plane,
the left-hand side approaches 1. From the theory of complex variables (Carlson’s
theorem) it follows that these properties are uniquely shared by the function on the
left-hand side of the following equation:

1+ Ua |m " a r 2mE ) a k4 2mE 0
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Letting y = a/2mE /h?, one has, after some trigonometric manipulation,

ma*U sin y

e (W7.15)

coska = cosy+

It is important to note that the left-hand side of this equation is bounded by +1. For
arbitrary y, the right-hand side can exceed these bounds. No real solution is possible
for such values. Thus there are certain y values, and consequently certain energies, for
which no solution exists. These are called forbidden bands or gaps. Correspondingly,
the regions of energy for which solutions exist are called allowed bands.

An example of the energy spectrum for the Kronig—Penney model is given in
Fig. W7.3. As before, the energy gaps open at the boundaries of the first Brillouin
zone. The Kronig—Penney model considered here corresponds to the case where the
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Figure W7.3. Energy spectrum for the one-dimensional Kronig-Penney model. Here
ma*U/(4h*) = —10.

potential consists of a periodic array of delta-function potentials for which

w2 (N/2]
Ve =U Y, = UN Y b (W7.16)
n=—[N/2] n=—[N/2]

where N has been assumed to be odd and [N /2] stands for the integer part of N/2.
It is also possible to formulate the Kronig—Penney model for the case of a periodic
square-well potential.

W7.4 Hall Effect in Band Theory

A discussion of the Hall effect from the perspective of band theory predicts a more
complicated behavior than that of classical Drude theory. The Boltzmann equation for
the distribution function, f,, in a given band n is

n _ _So= T (W7.17)
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with F,, = —e(E + v, X B) and v, = d¢,,/dp [see Eq. (W7.1)]. Henceforth the band
index n will be suppressed. Equation (W7.17) is rewritten as

Vn'an + Fn'

d d
f=fo—fV-Vf+erE-—f+erva-—f (W7.18)
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and is iterated to produce an expansion in increasing powers of the fields:

aifo d
f=f0+erE-V8—+erva~a— tEev— | +... . (W7.19)
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It is seen from this expression that filled bands do not contribute to the currents, since
dfo/de =0, and no current is supported by the equilibrium distribution. The current
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density from Eq. (W7.4) is
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Attention here is restricted to the case of an isotropic metal. Assume t = t(¢) and
write p = m(g)v, so
J =0E + AE x B, (W7.21)

where

A
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In a multiband case one would sum this expression over all partially occupied bands.
For a perpendicular geometry (E_LB), the Hall coefficient may be expressed as

A
RH=;.

(W17.23)

The expression for A shows that its magnitude and sign depends on the effective
mass at the Fermi level. This mass may be either positive or negative, depending on the
curvature of the energy band. For example, in the case of aluminum, the Fermi surface
lies outside the first Brillouin zone and has contributions from the second, third, and
fourth Brillouin zones. The net contributions from these bands produces a net positive
value for the Hall coefficient, opposite to that predicted by the classical Drude theory.
The Hall effect in semiconductors is discussed in Section 11.8.

W7.5 Localization

A measure of the ease with which a carrier can move through a crystal is the mobility
w = (v)/E, where (v) is the drift velocity and E is the electric field strength. In a
metal the mobility is determined by the collision time through the formula u = et/m.
The connection between the mobility and the conductivity differs in two and three
dimensions. In d = 3 the relation is 0 = neu, whereas in d = 2 it is 0 = Neju, where
n and N are the number of electrons per unit volume and per unit area, respectively.
Obviously, the units for are different in the two cases, being Q7! m~! and Q7!,
respectively. For a thin film of thickness 7, n = N/t.

In this section, disordered solids, in which the electron mean free path is determined
by the amount of disorder, are studied. The mean free path is related to the collision time
by A = vpt, vp being the Fermi velocity. There is a minimum value that A can have for
the solid still to have finite conductivity. Ioffe and Regel” (1960) argued that for conduc-
tivity, the electron waves would have to be able to propagate throughout the metal. The
presence of a mean free path introduces an uncertainty in the wave vector, Ak &~ 1/,
as may be inferred from Heisenberg’s uncertainty principle. However, for the wave
vector to have a meaning, Ak < k = kp. Using mvp = hkp, this gives (min = e/hk,zF as

T A. F. Ioffe and A. R. Regel, Prog. Semicond., 4, 237 (1960).
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the minimum metallic mobility. The Ioffe—Regel criterion for localization is kpA < 1.
The Fermi wave vector is given by kr = (27N)'/? and kr = (37n)'/3 ford = 2 and 3,
respectively. This implies the existence of a minimum metallic conductivity given by

2
e 1
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Note that in d = 2, oy, is independent of the properties of the metal. In d = 3, o, =
1.12 x 10° 7 'm~! for Cu, compared with o = 5.88 x 10" Q~'m~'at T = 295 K.

Quantum-mechanical effects modify the classical Drude expression for the conduc-
tivity. For weak disorder the rate for elastic backscattering is enhanced due to construc-
tive interference of direct and time-reversed scattering events. Thus, suppose that there
is a sequence of scattering events for the electron from ion sites labeled A, B, C,..., X
that lead to the electron being backscattered. The time-reversed scattering sequence,
X,...,C, B, A, also leads to backscattering of the electron. In quantum mechanics
one must add together all amplitudes for a given process to determine the total ampli-
tude. Adding the above-mentioned amplitudes before squaring leads to constructive
interference and an enhanced backscattering. If the backscattering is increased, prob-
ability conservation implies that it comes at the expense of forward scattering, and
hence the conductivity. This effect is called weak localization. One may show that the
conductivity change is approximately

Ao 3
—_— (W17.25)
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Suppose that one looks at impurities in a solid with a distribution of electron site
energies {E;} whose width is W. The sites are coupled by tunneling matrix elements,
which decay exponentially with distance. In the familiar tight-binding model, all the
site energies are degenerate and the bandwidth, B, is determined by the NN tunneling
matrix element. All the states are extended Bloch waves and the conductivity is infinite.

In the disordered solid, things are not as simple. For conduction to occur, an electron
must tunnel from one site to another, and this requires a mixing of the local site
wavefunctions. From perturbation theory, two conditions must be satisfied for this to
occur: There must be a sizable tunneling matrix element connecting the sites, and the
energy difference between the site levels must be very small. These conditions are not
likely to occur simultaneously for any given pair of states. The problem is to explore
this competition as the size of the system becomes large. This is usually best done by
computer experiment. The results depend on the dimensionality of the system.

As disorder is introduced, some of the states separate from the allowed band
and reside in what was previously the forbidden region (e.g., the bandgap). This
phenomenon was seen in the discussion of the one-dimensional tight-binding solid
when randomness was present and there was an irregular component to the density
of states (see Section W7.2). These states are localized in space, meaning that their
wavefunctions die off rapidly with distance away from a given point in the crystal. As
more disorder is introduced, some of the previously occupied band states are converted
to localized states. The line of demarcation between the localized and extended states is
called the mobility edge. With increasing disorder, W is increased, and a critical value
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of W/B is ultimately reached for which all states become localized. This is called the
Anderson localization transition. The solid then becomes an insulator.

An estimate of the critical value of W/B can be made as follows. For electrons
to hop from site to site, one needs degeneracy. What determines whether two states
are degenerate or not is the size of the tunneling matrix element r compared with
their energy separation AE. If ¢ is larger than AE, the states will mix and one may
consider them to be effectively degenerate. Since W represents the full spread of site
energies, the probability that two states will be “degenerate” is given by p = 2¢t/W.
Delocalization may be interpreted as a percolation phenomenon and it is possible for
the electron to propagate a large distance by following a percolation cluster. In the
discussion of percolation in Section 7.16 it was found that the percolation transition
occurs when p =d/Z(d — 1) [see Eq. (7.130)]. It was also found in the discussion
of the tight-binding approximation in Section 7.9 that the bandwidth is B = 2Z¢ [see
Eq. (7.94)]. Thus the transition occurs when

= (W7.26)

For d =3 this gives B/W = 1.5, in rough agreement with computer experiments.
For B/W < 1.5 the states are localized, while for B/W > 1.5 they are extended. For
d =1 the critical value of B/W is infinite, meaning that unless W = 0, all states will
be localized.

It is also useful to compare this formula to the Ioffe—Regel criterion. A measure
of the size of the bandwidth B is the Fermi energy. For example, a metal with a half-
filled band would have B &~ 2Er, where the Fermi energy is measured with respect to
the bottom of the band. If the mean free path is A, one may think of the electron as
effectively bound in a spherical box of mean size A. The confinement energy would
then be a measure of the spread of energies brought about by the inhomogeneities, so
W =~ 1*/2mA? since k ~ 1/A. Combining these formulas with Eq. (W7.26) and using
Er = hzk,z.- /2m gives the condition when localization occurs as

[ d

Note that in d = 3, kpA < /3/4 ~ 1. For a metal such as Cu, kr ~ 5/a, where a is
the lattice constant, and so A < a/5 for localization of electrons to occur.

It must be cautioned, however, that the current theoretical picture is not completely
understood. There are theoretical arguments based on single-electron scattering from
random potentials which say that in two dimensions there is only localization. There
are also some experiments that seem to point to the existence of conductivity in two
dimensions. There are also recent experiments suggesting that the M-I transition may
be associated with the formation of a Wigner crystal (i.e., a two-dimensional crystal-
lization of the electrons). Just what possible role many-body effects play in conductivity
has yet to be clarified.

There are two factors involved in localization. One is, as has been seen, perco-
lation. The other is phase interference of electrons traveling along different paths
but connecting the same pair of points. In a random medium the phase differences
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can be quite large, resulting in destructive interference. The effects of phase interfer-
ence in lower dimensions are more extreme and may contribute to suppression of the
conductivity.

W7.6 Properties of Carbon Nanotubes

Termination of Nanotubes. The nanotube must be capped at both ends for it not to
have dangling bonds. An understanding for how this capping comes about can be had
from examining Euler’s theorem. Consider a polyhedron with N, vertices, N ; faces,
and N, edges. Then for a simply connected body, N, —N; — N, = —2. It will be
assumed that each vertex connects to three adjoining polygons and each edge to two
adjoining polygons. Let N; denote the number of i-sided polygons in the structure. Then

1 o0
Ne=3 ZiNi, (W7.28a)
i=3
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Combining these equations with Euler’s theorem gives
oo
> (i —6)N; =12, (W7.29)
i=3

For example, using only pentagons with i = 5 to terminate the ends of the nanotube,
then N5 = 12 and N; = 0 for i # 5. Thus six pentagons are needed at each end since
only half of the 12-sided polyhedron is needed. The fullerene molecule Cgy has Ns =
12 and N¢ = 20, so (N., N, Nf) = (90, 60, 32).

Conductivity of Carbon Nanotubes. Adding a single electron to the nanotube
costs electrostatic charging energy E. = e?/8me,C, where C is the capacitance (rela-
tive to infinity) of the nanotube (=~ 3 x 10~!7 F). Unless the potential bias across the
tubule satisfies the condition —eV + E. < 0, no current will flow. One refers to this
as a Coulomb blockade. Similar phenomena occur in granular metals. However, if a
quantum state of the wire overlaps the occupied states of one electrode and an empty
state of the second electrode, conduction can occur via resonant tunneling through the
quantum state. In this case there is zero-bias conductance. The conductance will be
temperature dependent, being proportional to

G /dE/dE’p(E),o(E’ + V) F(E)1 — f(E + V)IS(E — AE)S(E' — AE + V)

o sech? [g(AE — u)] , (W7.30)
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where the value of the quantum energy level relative to the chemical potential can be

changed by a gate voltage AE — 4 = eAVgye/a, o being a constant determined by
capacitance ratios. Thus there is a rapid variation of conductance with gate voltage.

Appendix W7A: Evaluation of Fermi Integrals

The Fermi integral to be evaluated is

Eit1/2

1;(B, ) = /0 m dE. (W7A.1)

Let x = B(E — i), so

% dx (u+x/By*I
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Integrate this by parts to obtain
1,8, B) 1 / T B0y (W7A.3)
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Make a power series development in x and extend the lower limit of the integral to
—00, to obtain
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where the term linear in x integrates to zero. The integrals required are
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The final result is
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Using Eq. (W7A.7), two useful formulas may be derived. If ¥(E) is a function of
the form Y(E) = 3 p;E/™1/? with j > 0, then

(o) 2
/ W(E)f(E, T)dE = /“ wEydE + —ier? Y
0 0 6

. W7A.8
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where f(E,T) is the Fermi—Dirac distribution. Also, letting {(E) = d¢(E)/dE and
integrating by parts, one obtains

© AfET T, 3
/0 Y(E) =2 dE = —p(u) = = kyT

gt (W7A.9)
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