
CHAPTER W19

Surfaces

W19.1 Surface States

It is possible to introduce Tamm surface states by adding an attractive delta function
potential of strength U to the step potential introduced in Eq. (19.3):†

V�z� D �V0��z��Uυ�z�. �W19.1�

Note that the units of U are JÐm and that of V0 are joules. The independent variables
in the Schrödinger equation can be separated with the substitution

 �r� D 
�z� exp�ikjj · rjj� �W19.2�

where a solution can be found with


�z� D
{

exp���z� if z > 0,
exp�Cqz� if z < 0.

�W19.3�

Here

� D
√
k2

jj � 2mE

h̄2 , �W19.4a�

where E < 0 and

q D
√
k2

jj � 2m�EC V0�

h̄2 . �W19.4b�

The function 
�z� is continuous at z D 0. The discontinuity in the derivative is deter-
mined by the strength of the delta function:

√
k2

jj � 2mE

h̄2 C
√
k2

jj � 2m�EC V0�

h̄2 D 2mU

h̄2 . �W19.5�

The solution to this equation gives the dispersion formula for the surface state band,
E�kjj�. Note that at kjj D 0, E must lie below �V0.

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W”.
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For the Shockley state one may develop a heuristic model to help understand its
origin. Consider a semiconductor and look at the states near the top of the valence band
at energy Ev. For simplicity’s sake the effective mass of the holes will be assumed to
be isotropic and the band will be taken to be parabolic. The energy of an electron in
the valence band is then given by

E�k� D Ev � �h̄k�2

2mŁ
h

. �W19.6�

One may develop a phenomenological Schrödinger equation based on a spatially depen-
dent mass m�z� with m�z� being the free-electron mass in vacuum and the negative of
the hole mass inside, that is,

m�z� D
{�mŁ

h if z < 0
Cm if z > 0.

�W19.7�

The resulting Schrödinger equation is

� h̄
2

2
r Ð
[

1

m�z�
r

]

C Ev��z�
 D E
. �W19.8�

(The gradient operator is written in this split form so that the probability current
perpendicular to the surface may be proven to be continuous.)

As before, look for a solution of the form given by Eqs. (W19.2) and (W19.3). Now

q D
√

2mŁ
h

h̄2 �E� Ev�C k2
jj , �W19.9a�

� D
√
k2

jj � 2mE

h̄2 . �W19.9b�

The wavefunction 
�z� in Eq. (W19.3) is already continuous. The continuity of prob-
ability current perpendicular to the surface,

� h̄

mŁ
h

Im
(

Ł d

dz

)
D h̄

m
Im
(

Ł d

dz

)
, �W19.10�

which is needed for a valid wavefunction, implies that

q

mŁ
h

D �

m
. �W19.11�

Thus the condition for the surface-state band is

1

mŁ
h

√
2mŁ

h

h̄2 �E� Ev�C k2
jj D 1

m

√
k2

jj � 2mE

h̄2 . �W19.12�
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For kjj D 0 the surface state lies at an energy above the top of the valence band
(E > �jEvj) but below the vacuum level (E < 0):

E�kjj D 0� D � jEvj
1 C mŁ

h/m
. �W19.13�

More generally, one often employs a complex band structure in which the bulk
energy bands are extended to negative values of k2. This permits an effective Hamil-
tonian for the solid to be written which may be solved in conjunction with the
Hamiltonian for the electron in vacuum. The procedure of wavefunction matching
is similar to what was employed, but the implementation is more computational.

W19.2 Surfactants

Surface-active agents, or surfactants, are molecules that can radically alter the surface
or interface properties of a system even in small concentrations. The system usually
involves the liquid–solid, liquid–liquid, or liquid–gas interface. Sometimes the term
surfactant is used in reference to adsorbates [e.g., a monolayer of As is used on
Si (100) and Ge (100) to aid in Si–Ge heteroepitaxy]. Here, however, the focus is on
the liquid–solid interface. The surfactant molecule can consist of a long hydrocarbon
chain with an polar unit at one end. In the liquid the hydrocarbon chain must push
aside the liquid molecules to make room for the surfactant molecule. This involves
reducing the forces responsible for the liquid bonds. In water the surfactant molecule
must break apart the hydrogen bonds that exist. Since the hydrocarbon chain has
all its valence requirements satisfied by carbon–carbon or carbon–hydrogen bonds,
it is fairly inert to chemical or electrical interactions with the liquid. The net result
is that the liquid tends to expel the hydrocarbon in order to lower its energy. The
hydrocarbon chain is called hydrophobic, since it avoids being in water. On the other
hand, the polar end can lower its energy by immersing itself in the liquid. There
is an electrical attraction between the polar group and the liquid. This end is called
hydrophilic, due to its affinity for water. In order for the molecule to go into solution,
the energy decrease involved in the hydrophilic interaction must be greater than the
energy increase due to the hydrophobic interaction. Typical examples of surfactant
molecules are C12H25SO4

�NaC and C12H23COO�NaC.
The surface or interface provides a region of space where both the hydrophobic and

hydrophilic tendencies can be satisfied simultaneously. If the polar group lies in the
liquid and the hydrocarbon chemisorbs onto the surface, a doubly low energy can be
achieved. The lowest-energy state of the system therefore involves an accumulation of
the surfactant molecules at the surface. This means that even in small concentrations
the molecules will aggregate at the surface.

The adsorption of the surfactants at the surface or interface lowers the interfacial
tension, often significantly. This can radically alter such properties as surface diffusion,
chemisorption, and crystal growth. Since the surface atoms are now binding themselves
to the surfactant molecules, they have fewer bonding electrons to form the surface
bonds, thereby depressing the surface tension.

The surface tension drops monotonically with increasing surfactant concentration
until a critical concentration is reached (usually when the surface is completely
covered). Beyond that the surface properties no longer change. This curious behavior
is traced to an interaction that the surfactant molecules have among themselves. The
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surfactant molecules can form a composite unit in solution called a micelle. The micelle
comes about, for example, by creating a ball of molecules with their hydrocarbon chains
directed toward the center of the sphere and the polar groups directed outward into the
liquid. Liquid is not present in the interior of the micelle. This also satisfies both the
hydrophobic and hydrophilic tendencies of the molecule. Other geometries, involving
micellar rods or parallel sheets, are also possible.

To understand why a surfactant molecule would prefer to leave the liquid and adsorb
onto a surface, one must compare the energies of the molecule in solution with it being
adsorbed on the surface. A crude model for the interaction of the surfactant molecule
with the liquid may be obtained by imagining that the polar end is a point dipole that
carves out a small spherical cavity around it in the liquid. Let the sphere have a radius
equal to a. Denote the strength of the dipole by �, and the electric permittivity of the
liquid by �. The electrostatic potential in all of space is then given by

�r, �� D




�E0r cos � C � cos �

4��0r2
if r < a,

p cos �

4��r2
if r > a,

�W19.14�

where, in order to satisfy the continuity of  and the radial component of the electric
displacement vector Dr

p D 3��

�0 C 2�
, �W19.15�

E0 D 2�

4��0a3

�� �0

�0 C 2�
. �W19.16�

Here E0 is the electric field in the cavity due to the polarization charges in the liquid.
The interaction energy of the dipole with this field, Us, is called the solvation energy:

Us D � �2

4��0a3

�� �0

�0 C 2�
. �W19.17�

The hydrophobic interaction, Ui, may be estimated by imagining that the hydrocarbon
chain carves out a cylindrical cavity with surface area A. This causes a rise in the
surface energy given approximately by the product of the surface tension of the liquid
and the area

Ui D #A. �W19.18�

For the molecule to go into solution, the total energy, Us CUi, must be negative.
When chemisorption of the surfactant molecule occurs, there is an additional energy
Uc, corresponding to the chemisorption bond. Since Uc < 0 it is favorable for the
surfactant molecules to go out of solution and adsorb onto the surface.

W19.3 Adsorption

Suppose that a solid is exposed to a monatomic gas at temperature T and pressure P.
Atoms will strike the surface and a fraction, s, will stick to it. It is therefore important
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Figure W19.1. An element of area on the surface, dA, and volume element in the gas, dV;
particles emanating from a volume element at P strike the element of area dA on the surface.

to determine the impingement flux, F, defined as the number of atoms striking the
surface per unit area per unit time. As will be seen, F is determined simply in terms
of P, T, and the atomic mass, M.

In Fig. W19.1a an element of area dA of the surface is drawn, as well as a volume
element dV in the gas a distance r away. The vector joining dA and dV makes an
angle � with the surface normal. The radial extent of dV is dr. The number of atoms in
dV is dN D ndV, where n is the number of atoms per unit volume (number density).
For the moment, consider only the subset of atoms moving with a given speed v. These
atoms are moving in random directions. Those atoms that are directed approximately
at dA will strike it at a time t D r/v later, over a duration lasting dt D dr/v. Therefore,
the volume element may be expressed as dV D r2 d,vdt, where d, is the solid angle
subtended by dV at dA.

The fraction of atoms emanating from dV which strike dA is determined by the solid
angle subtended by dA by a typical point in dV, P. Referring to Fig. W19.1b, the solid
angle is d,0 D dS/r2, where dS is the projection of dA onto a plane perpendicular to
r, and is given by dS D dA cos �. The desired fraction is df D dA cos �/4�r2, where
the solid angle has been divided by 4� steradians.

The differential flux is

dF D df

dA

dN

dt
D nv

4�
cos � d,. �W19.19�

The net flux is obtained by integrating dF over a hemisphere (using d,0 D 2� sin � d�,
where 0 	 � 	 �/2), that is,

F D nhvi
4
. �W19.20�

Here there is finally an average over all speeds.
The kinetic theory of gases provides a means for computing hvi:

hvi D

∫
d3vv exp[�ˇ�mv2/2�]∫
d3v exp[�ˇ�mv2/2�]

D
√

8

�ˇm
; �W19.21�
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here ˇ D 1/kBT. Finally, employing the ideal gas law, P D nkBT, the desired expres-
sion for the impingement flux is obtained:

F D Pp
2�MkBT

. �W19.22�

The rate of deposition of adsorbed atoms per unit area, dNa/dt, is determined by
multiplying the impingement flux by the sticking probability, s. The quantity s is the
fraction that stick “forever” (or for at least several vibrational periods). Thus

dNa
dt

D sPp
2�MkBT

. �W19.23�

The sticking probability or coefficient can be a complicated function of the surface
conditions and the adsorbed atom areal number density, Na. Often, this areal density is
expressed as the coverage, �, which is the fraction of a monolayer that is adsorbed (i.e.,
� D Na/Nam). For example, at low temperatures, s for N2 on W(110) first rises and
then falls as � increases. For N2 on W(100), however, s decreases monotonically with
increasing coverage. Different faces of the same crystal can have different values of s.
For example, for W(100) s D 0.6 at � D 0, whereas s D 0.4 for W(411) and s D 0.08
for W(111). The existence of steps on the surface often increases the value of s over
what it would be for a smooth surface. For example, s for N2 adsorbing on Pt (110)
increases from 0.3 for a smooth surface to 1.0 for a step density of 8 ð 108 m�1. This
trend is to be expected since steps generally possess dangling bonds which enhance
the degree of chemical reactivity.

The impingement flux is rather high at normal atmospheric pressure. For example,
for air at room temperature the flux is 3 ð 1027 atoms/m2Ðs. Taking s ³ 1, one sees that
a monolayer (Na ³ 1019 m�2) will be deposited on the surface in about 10�8 s. To study
a clean surface, ultrahigh-vacuum conditions must be maintained, with pressures as low
as 10�12 torr, 760 torr being 1 atmosphere of pressure. This often requires preparing the
sample under ultrahigh-vacuum conditions, as well. The unit of exposure of a surface
to a gas is called the langmuir; 1 langmuir corresponds to an exposure of 10�6 torrÐs.

Once the atom strikes the surface and sticks, at least temporarily, it will migrate
from place to place by a series of thermally activated jumps. Most of the time, however,
will be spent at adsorption sites. These sites correspond to the minima of the potential
energy surface. Typical places for these sites are illustrated in Fig. W19.2, which shows
the on-top site, T; the bridge site, B; and the centered site, C, for two crystal faces.
More complicated sites can exist for other crystal faces. Steps, kinks, and defect sites
are also common adsorption sites.

T

B

C

Figure W19.2. The top site, T, the bridge site, B, and the centered site, C for two crystal
faces. The left face could be FCC (111) or HCP (0001). The right face could be FCC (100) or
BCC (100).
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W19.4 Desorption

Desorption is the inverse process to adsorption. Atoms bound in the potential well of
the surface vibrate at a characteristic vibrational frequency determined by the atomic
mass and the curvature at the bottom of the well. In addition, the atoms interact with
the bath of thermal phonons presented by the solid. This causes the energy of the
adsorbed atom to fluctuate in time. When the energy fluctuates by an amount suffi-
cient to overcome the binding energy, the atom can dissociate from the surface and be
desorbed. The vaporization process is described in terms of desorption in Section 6.3
of the textbook.

A reasonable estimate for the rate of atoms per unit area that desorb may be obtained
from the expression

dNd
dt

D Naf exp
(

� Ec
kBTs

)
. �W19.24�

Here Na is the number of atoms adsorbed per unit area, f the vibrational frequency
of the atoms, and Ts the surface temperature. The probability of the atom achieving
the required energy Ec is given by the Boltzmann factor. The factor f represents
the “attempt” frequency. In using this expression the situation depicted in Fig. 19.15a
applies. For the case of a second physisorption well, as in Fig. 19.15b, Ep should be
used in place of Ec and the density of physisorbed atoms, Np, should be used rather
than the density of chemisorbed atoms, Na.

In thermal equilibrium the surface and gas temperatures are equal, Ts D T, and the
adsorption rate equals the desorption rate. Under these conditions it can be shown
that

Na�T� D sP

f
p

2�MkBT
exp

(
Ec
kBT

)
. �W19.25�

Thus the number density of adsorbed atoms is proportional to the pressure of adsorbate
atoms in the gas.

Now proceed to look at the Langmuir model for adsorption. In this model one
regards the surface as having a density of adsorption sites, Ns (denoted by Nam in
Section W19.3). The sticking probability is modified as these sites are filled with
adsorbate atoms. When all the sites are filled, the adsorption process comes to a
halt. This model is not general. It applies to a restricted set of adsorption processes,
usually corresponding to a strong chemisorption bond formed between the solid and
the adsorbate.

Let � denote the fraction of sites that are occupied, that is,

� D Na
Ns
. �W19.26�

In place of the previous sticking probability, s, one now has s�1 � ��. Thus, equating
the adsorption rate to the desorption rate yields

sP�1 � ��p
2�MkBT

D Ns�f exp
(

� Ec
kBT

)
. �W19.27�
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Solving for � gives the Langmuir adsorption isotherm,

��P, T� D aP

1 C aP
, �W19.28�

where

a�T� D s

Nsf
p

2�MkBT
exp

(
Ec
kBT

)
. �W19.29�

The formulas above show that the surface coverage saturates to � D 1 at high gas
pressures.

More sophisticated models have been constructed to describe the situation where
multilayer adsorption and desorption can occur.

W19.5 Surface Diffusion

The normal state of affairs for adsorbed atoms is for them to move around on the surface
at finite temperatures. This is in contrast to the bulk solid, where diffusion occurs
via vacancies or interstitials present under equilibrium conditions. Surface diffusion
proceeds by a series of thermally activated jumps. In general, no atoms of the substrate
have to be “pushed” out of the way to achieve this jump. In this sense it is different
from the bulk solid.

Consider a surface that has rectangular symmetry. The diffusion equation for the
motion of the adsorbed atoms will be derived. Let the probability for finding an atom
in the surface net cell �x, y� at time t be denoted by F�x, y, t�. The probability is just
the concentration of adsorbed atoms divided by the concentration of available sites,
F D Na/Ns. Let px be the probability that the atom makes a jump of size dx in the
positive x-direction in a time 3. For the y direction the analogous jump probability
involves dy . Attention will be restricted to the case where there is surface reflection
symmetry, so px is also the probability for a jump to the point x � dx. At time t C 3
the probability becomes

F�x, y, t C 3� D �1 � 2px � 2py�F�x, y, t�C px[F�x C dx, y, t�C F�x � dx, y, t�]

C py[F�x, y C dy, t�C F�x, y � dy, t�]. �W19.30�

The first term on the right-hand side represents the probability for the atom originally at
�x, y� to have remained on the site. The second and third terms together give the proba-
bility that neighboring atoms hop onto the site. Expanding both sides in powers of 3, dx,
and dy , and retaining lowest-order nonvanishing terms, leads to the diffusion equation

∂F

∂t
D Dx

∂2F

∂x2
C Dy

∂2F

∂y2
, �W19.31�

where the diffusion coefficients are

Dx D pxd2
x

3
, Dx D pyd2

y

3
. �W19.32�
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In the case where there is square symmetry, the two diffusion coefficients become
equal to each other and may be replaced by a common symbol, D.

Instead of talking about probabilities, it is more useful to talk about surface concen-
tration, which will now be denoted by C (i.e., C D Na D NsF). Equation (W19.31)
is obeyed by C, since one need only multiply through by Ns. In the derivation above
it was assumed that the hopping probabilities are independent of whether or not the
site to which it hops is occupied. This is clearly a limitation. It may be remedied by
allowing the diffusion constants themselves to be functions of the particle concentra-
tion. One may introduce a particle current per unit length, J, defined as the number
of adsorbed atoms hopping across a line of unit length per unit time. Suppose, for
example, that the surface is horizontal and a line is drawn from south to north. If
there is a higher concentration to the east of the line than to the west, there will be a
larger number of atoms jumping to the west than to the east. Thus the current will be
proportional to the gradient of the probability. Using arguments similar to those used
before leads to

J D �D Ð rC. �W19.33�

Here a diffusion matrix, D, has been introduced and the possibility of having off-
diagonal terms must be allowed for.

The continuity equation that governs the flow of particles on the surface is

r Ð J C ∂C

∂t
D
(
dC

dt

)
adsorb

�
(
dC

dt

)
desorb

. �W19.34�

The terms on the right-hand side correspond to the increase or decrease in concentration
due to adsorption and desorption, respectively. One thereby obtains the generalized
diffusion equation:

�r Ð �D Ð rC�C ∂C

∂t
D
(
dC

dt

)
adsorb

�
(
dC

dt

)
desorb

. �W19.35�

For pure surface diffusion, the right-hand side of this equation would be zero.
In the diffusion process the probability for making a hop depends on the surface

temperature, Ts, and the surface barrier height, Eb;

px�Ts� D 3f exp
(

� Eb
kBTs

)
. �W19.36�

Here f is the attempt frequency, which is essentially the vibrational frequency of
the adatom parallel to the surface. In this formula, both the attempt frequency and
the barrier height may be different for the x and y directions. For simplicity’s sake,
attention will henceforth be restricted to the case of square symmetry. Since the hopping
probabilities exhibit Arrhenius-type behavior, the diffusion coefficient will also exhibit
such behavior. The higher the temperature, the greater will be the rate of surface
diffusion.
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The solution to the homogeneous diffusion equation, ignoring adsorption and desorp-
tion, in two dimensions subject to the initial condition is C�r, t D 0� D C0υ�r� is

C�r, t� D C0

4�Dt
exp

(
� r2

4Dt

)
. �W19.37�

This may be verified for t > 0 by insertion of this formula into the diffusion equation.
[Note that C�r, t� and C0 do not have the same dimensions.] As t ! 0 the spatial
extent of C becomes narrower and the size of C increases without bound, but the
integral over area remains fixed at the value C0, consistent with the initial condition.
This concentration function may be used to compute the mean-square displacement,
that is,

hr2i D

∫
C�r, t�r2dA

C0
D 4Dt. �W19.38�

The mean-square displacement that a particle travels from its starting point grows as
the square root of time for diffusive motion. This is to be contrasted with the case
of ballistic motion, where the distance covered grows linearly with t. The presence
of surface defects may play an important role in surface diffusion because they often
offer paths of high mobility for the diffusing atoms. They may also trap diffusing atoms
(e.g., dislocations can pull surface atoms into the bulk or ledges may trap atoms).

One way of observing surface diffusion is by means of the field-ion microscope.
Using the atomic-scale resolution capabilities of the microscope permits one to follow
the path of a single atom. Usually, the temperature of the tip of the microscope is
raised, and the temperature is maintained for some time and then cooled. At elevated
temperatures the atom has a chance to hop to an adjacent site. In this way the random
walk associated with diffusive motion may be studied. The diffusion coefficient may
be extracted from Eq. (19.38) and studied as a function of temperature. From the
Arrhenius behavior of D the barrier height Eb may be determined.

W19.6 Catalysis

Surfaces of solids may be used to promote or accelerate particular chemical reactions
selectively. Such a catalytic process generally involves the following steps: adsorption
of molecules onto the surface; dissociation of the molecules into smaller components
(including possibly atoms); diffusion of the components on the surface; reaction of
the components to form product molecules; and finally, desorption of the product
from the solid. Each of these steps generally involves potential barriers that need to
be surmounted, so there are a number of physical parameters governing the overall
reaction rate.

Consider, for example, the Haber process for the synthesis of ammonia. Historically,
this process has proven to be extremely important because of the role of ammonia as a
primary starting material in the manufacture of fertilizers and explosives. The process
is illustrated in Fig. W19.3.

The catalyst used is iron. When nitrogen molecules adsorb on iron, the dissociation
energy for N2 is lowered. This is because some of the orbitals that were previously
involved in the N–N bond now hybridize with the Fe 3d orbitals and serve as the
basis for establishing the N2 –Fe bond. At elevated surface temperatures (³ 400°C) the
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a b c

d e f

Figure W19.3. Six stages in the Haber process: nitrogen (dark circles) and hydrogen (light
circles) combine to form ammonia on iron.

probability for N2 dissociation increases. The net result is that individual N atoms are
bound to the iron and are able to hop from site to site as a result of thermal activation.
Hydrogen undergoes a similar dissociation process (i.e., H2 ! H C H). When a free
H and N combine, there is a probability for reacting to form the NH radical, which is
still adsorbed. Further hydrogenation results in the formation of NH2 and ultimately,
the saturated NH3 molecule. Whereas the NH and NH2 radicals are chemically active,
and hence remain chemisorbed to the Fe, the NH3 is only physisorbed. It is easy
for it to desorb. The net result is that Fe has served as the catalyst for the reaction
N2 C 3H2 ! 2NH3. Although a number of metals can be used to dissociate N2 and
H2, Fe is optimal in that it does not attach itself so strongly to N and H so as to prevent
their further reacting with each other to reach the desired product, NH3. What matters
is the net turnover rate — how rapidly the overall reaction can be made to proceed per
unit area of catalyst.

It is found that some faces of Fe are more catalytically active than others. The Fe
(111) and (211) faces are the most active faces, while the (100), (110), and (210) are
less active. It is believed that the (111) and (211) faces are special in that they expose
an iron ion that is only coordinated to seven other iron atoms (called the C7 site). It
is also found that potassium atoms enhance the sticking coefficient for gas molecules
and therefore help promote the catalytic reaction. This is attributed to the lowering of
the work function of the surface, which makes it easier for Fe 3d orbitals to penetrate
into the vacuum so they could form chemical bonds with the adsorbed nitrogen and
hydrogen species.

Another example of catalysis is provided by the catalytic convertor used in the
automobile industry. Here the problem is to remove carbon monoxide (CO) and nitric
oxide (NO) from the exhaust fumes of the internal combustion engine. The catalyst of
choice consists of particles of platinum (Pt) and rhodium (Rh) on a (relatively inex-
pensive) supporting material. An actual catalyst consists of small particles supported
on oxide powders. The CO molecule adsorbs on the metal. Some oxygen is present.
The O2 molecules dissociatively adsorb (i.e., O2 ! 2Oad). Similarly, NO dissociatively
adsorbs (i.e., NO ! Nad C Oad). Free N and O atoms diffuse across the surface. When
an O atom encounters the CO molecule, the reaction CO C O ! CO2 is possible. Since
the valency requirements of this molecule are fully satisfied, it readily desorbs from
the catalyst. The adsorbed N atoms can react similarly to form nitrogen molecules
(N C N ! N2), which also readily desorb.
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The morphology of the surface often plays a crucial role in its efficiency as a catalyst.
Various crystallographic faces of a given material often have catalytic activities that can
vary by orders of magnitude. These large variations reflect the underlying exponential
dependence of hopping probability on barrier height. Step sites and other defects often
provide locales that favor one or more of the processes needed to transform reactants
to products. This is presumably related to the presence of dangling bonds that can
be utilized in forming surface-chemical intermediates. Catalysts are frequently used in
the form of powders, to maximize the amount of available surface area per unit mass.
In some cases coadsorbates are introduced because they provide beneficial surface
structures, such as islands, which can play a role similar to that of steps.

W19.7 Friction

The average power generated per unit area by kinetic friction is given by �kNv/Aa.
This causes an average temperature riseT of the interface. The actual temperature rise
will depend on the thermal conductivities � of the solids and characteristic geometric
lengths. One may write the formula as

T D �kNv

Aa

1

�1/l1 C �2/l2
D �kPv

1

�1/l1 C �2/l2
. �W19.39�

where P is the pressure. The lengths l1 and l2 correspond to the characteristic distances
over which the change T occurs. However, since the actual contact area is much
smaller than the apparent contact area, there will be points where the temperature
rise is considerably higher. There the temperature rise, to what is called the flash
temperature, will be given by

T0 D �kNv

At

1

�1/l1 C �2/l2
. �W19.40�

This may be a serious problem in ceramics, which generally have low values of �. The
high temperatures produce thermal stresses that lead to brittle fracture. This may be
eliminated by depositing a good thermally conducting layer, such as Ag, which serves
to dissipate the frictional heat.

A possible explanation for the velocity dependence of �k , noted above, is due to
the melting of surface asperities. When v becomes sufficiently large, T0 given by Eq.
(W19.40) may be large enough to melt the surface asperities.

An interesting case arises if two atomically flat surfaces with different lattice spac-
ings are brought into contact and slide past each other. If the ratio of the lattice spacings
is an irrational number, the lattices are said to be incommensurate. In that case simu-
lations show that one surface may slowly slide relative to the other without the need
to change the number of bonds between them. Furthermore, the energy released by
forming a new bond may be resonantly transferred to open a nearby existing bond.
There is no static friction predicted in such a case, only viscous friction.

One interesting result of nanotribology is that the kinetic friction force is actually
velocity dependent. The force is proportional to the relative velocity at the true contact
points. Of course, this velocity may be quite different than the macroscopic velocity
due to the local deformations that occur. The kinetic friction force, on a microscopic
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level, is actually a viscouslike friction force. The characteristic relaxation time is given
by the sliptime.

Lubrication involves attempting to control friction and wear by interposing a third
material between the two contacting surfaces. Commonly used solid-state lubricants
include the layered materials graphite and MoS2. Here lubrication is achieved by having
weakly bound layers slough off the crystals as shear stress is applied. Liquid lubricants
include such organic compounds as paraffins, diethyl phosphonate, chlorinated fatty
acids, and diphenyl disulfide. Spherical molecules, such as fullerene, or cylindrical
molecules such as carbon nanotubes, behave in much the same way as ball bearings in
reducing friction. Lubricants can also carry heat away from flash points or can serve
to equalize stress on asperities.

Molecular-dynamics (MD) simulations are often used in conjunction with nanotri-
bology experiments to obtain a more complete understanding of the physics of friction.
An example involves the jump-to-contact instability, in which atoms from a surface
(such as Au) will be attracted toward an approaching tip of a solid (such as Ni) when
the separation is less than 1 nm. At a separation of 0.4 nm, the two metals will actually
come into contact by means of this instability.

In another example it was recently found that the amount of slip at a liquid–solid
interface is a nonlinear function of the shear rate, P# . If v is the relative velocity of
the fluid and solid at the interface, Navier had postulated that v D Ls P# , with Ls being
a slip length characteristic of the solid and liquid. The MD simulations† show that
Ls D L0

s �1 � P#/ P#c��1/2.
The interplay between triboelectricity and friction is not yet completely understood,

although there is evidence that the sudden stick-slip motion does produce electrification.
When two different materials are brought into contact, a charge transfer will occur to
equalize the chemical potential for the electrons. The resulting difference in potential
is called the contact potential. If the materials are slowly separated from each other
the charge transfer is reversed and no electrification occurs. However, for sudden
separation, as occurs in a slip, there is incomplete reverse charge transfer and the
materials become electrified. It is possible that this accounts for the picosecond bursts
of light seen at the moving meniscus of the Hg–glass interface‡.

Appendix W19A: Construction of the Surface Net

Let fRg be a set of lattice vectors and fGg the corresponding set of reciprocal lattice
vectors for a Bravais lattice. The lattice vectors are expressed in terms of the primitive
lattice vectors fuig (i D 1, 2, 3) by

R D n1u1 C n2u2 C n3u3, �W19A.1�

where fn1, n2, n3g are a set of integers. Similarly, the reciprocal lattice vectors may
be expanded in terms of the basis set fgjg by

G D j1g1 C j2g2 C j3g3, �W19A.2�

† P. A. Thomson and S. M. Troian, Nature, 389, 360 (1997).
‡ R. Budakian et al, Nature, 391, 266 (1998).
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where fj1, j2, j3g are also a set of integers. The primitive and basis vectors obey the
relations

ui·gj D 2�υij. �W19A.3�

Select an atom at point O in the interior of the solid as the origin. Let the surface plane
be perpendicular to a particular vector G and a distance h from O. If the displacement
vector r from O to a point on the surface plane is projected along G, the magnitude
of this projection is constant. Thus the plane is described by the equation

r· OG D h �W19A.4�

where OG is a unit vector. This is illustrated in Fig. W19A.1.
Inserting a lattice vector for r leads to the formula

2��j1n1 C j2n2 C j3n3� D hG. �W19A.5�

This equation may be used to eliminate one of the numbers n1, n2, or n3. Which can
be eliminated depends on the numbers j1, j2, and j3. If j1 is nonzero, n1 may be
eliminated and

R D u1

j1

(
h

2�
G� n2j2 � n3j3

)
C n2u2 C n3u3 �W19A.6�

If j1 is zero, either n2 can be eliminated (assuming that j2 is nonzero) or n3 can be
eliminated (assuming that j3 is nonzero), with analogous formulas for R following
accordingly. In the following it will be assumed that j1 is nonzero.

The atoms of the ideal surface plane lie on a regular two-dimensional lattice called
the surface net. To study this net more closely, project the vector r onto the surface
lattice plane. Referring to Fig. W19A.2 shows that for a general vector r the projected
vector is

r0 D r � r Ð OG OG D OGð �r ð OG�. �W19A.7�

Thus a set of projected primitive lattice vectors fu0
ig can be constructed:

u0
1 D OGð �u1 ð OG�, �W19A.8a�

u0
2 D OGð �u2 ð OG�, �W19A.8b�

u0
3 D OGð �u3 ð OG�. �W19A.8c�

O
x

h

z
G

r

y

Lattice plane

Surface plane

Figure W19A.1. Ideal surface plane defined in terms of the direction of the reciprocal lattice
vector, G, and h, the distance of an atom at O.
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Ĝ
G×(r×G)

r •GG^ ^

r r'

^ ^

Figure W19A.2. Projecting a vector r onto the lattice plane defined by vector G.

The projected lattice vector is therefore

R0
mn D hu0

1

2�j1
GC n2v2 C n3v3, �W19A.9�

where v2 and v3 are the primitive surface net vectors, defined by

v2 D u0
2 � j2

j1
u0

1, �W19A.10a�

v3 D u0
3 � j3

j1
u0

1. �W19A.10b�

Note that the projected vector R0
mn is defined by only two subscripts, m and n. The

angle between the primitive surface net vectors is determined by the formula

cos � D v2 · v3

v2v3
. �W19A.11�

(It is convenient to relabel the net vectors so that v1 and v2 define the surface net. This
is accomplished by making the cyclic permutation 3 ! 2 ! 1 ! 3.)

In many cases the surface net that results from cutting the lattice by a surface
plane is easy to visualize, so one might argue that the mathematical machinery above
is superfluous. However, when attempting to automate the procedure, the analytic
approach has decided advantages. After all, a computer is not adept at visualization.

Example. Suppose that a simple cubic crystal is sliced by a plane perpendicular to
the [111] direction. Take this plane to pass through an atom at the origin. In this case,
j1, j2, j3 D �1, 1, 1� and h D 0. Thus

OG D
OiC OjC Okp

3
. �W19A.12�

The projected primitive lattice vectors are

u0
1 D a

3
�2Oi� Oj� Ok�, �W19A.13a�

u0
2 D a

3
��OiC 2 Oj� Ok�, �W19A.13b�

u0
3 D a

3
��Oi� OjC 2 Ok�. �W19A.13c�
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θ

v3

v2

Figure W19A.3. Simple cubic lattice being sliced by a (111) plane passing through the origin.

Figure W19A.4. The (111) surface of a simple cubic crystal.

The surface net vectors are

v2 D a��OiC Oj�, �W19A.14a�

v3 D a��OiC Ok�. �W19A.14b�

The surface-projected lattice vector is

R0
mn D ma��OiC Oj�C na��OiC Ok�. �W19A.15�

Figure W19A.3 shows three of the atoms that lie in the surface plane. Figure W19A.4
depicts the layout of the corresponding surface net. It must be emphasized that these
two-dimensional nets are the analogs of the Bravais lattices in three dimensions. Just
as the lattice in three dimensions may be endowed with a basis of atoms, the same is
true in two dimensions.

Applying the formalism above allows one to obtain a precise picture of the surface
that results by taking an arbitrary slice through any crystalline structure.

Appendix W19B: Fowler–Nordheim Formula

In this appendix the Fowler–Nordheim formula for the current density produced in
field emission is derived. An electric field E0 is applied normal to a flat metal surface.
The potential energy experienced by the electrons is given by

V�z� D
{

0 if z < 0,
V0 � Fz if z > 0,

�W19B.1�
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where F D eE0, as illustrated in Fig. 19.11. The Schrödinger equation governing the
tunneling process is

� h̄2

2m
r2 �r�C V�r� �r� D E �r�. �W19B.2�

The transverse motion is decoupled by writing  �r� D 
�z� exp�ikjj Ð R�. In the region
z < 0 the Schrödinger equation becomes

(
∂2

∂z2
C k2

z

)

�z� D 0, �W19B.3�

where

kz D
√

2mE

h̄2 � k2
jj . �W19B.4�

The solution of Eq. (W19B.3) is given by


�z� D eikzz C re�ikzz, �W19B.5�

with r being interpreted as a reflection amplitude.
For z > 0 the Schrödinger equation is

� h̄2

2m

d2


dz2
C �V0 � Fz�
 D h̄2k2

z

2m

. �W19B.6�

With the substitution

u D
(

2m

h̄2F2

)1/3
(
V0 � Fz � h̄2k2

z

2m

)
, �W19B.7�

the Schrödinger equation becomes Airy’s differential equation:

d2


du2
� u
 D 0. �W19B.8�

The solution may be expressed as a linear combination of the two Airy functions. The
coefficients are chosen so that for large x, 
 represents a wave traveling to the right.
Asymptotic expansions of the Airy functions are presented in Table W19B.1. Thus


�u� D N[Bi�u�C iAi�u�], �W19B.9�

where N is a normalization constant. The current density carried by this wave is
given by

Jz D eh̄

m
Im
(

Ł d

dx

)
D eh̄jNj2

m�

(
2m

h̄2F2

)1/3

F. �W19B.10�
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TABLE W19B.1 Asymptotic Expansion of the Airy Functionsa

Ai�u� ! 1

2
p
�u1/4

e�> , Ai0�u� ! � 1

2
p
�
u1/4e�>

Bi�u� ! 1p
�u1/4

e> , Bi0�u� ! 1p
�
u1/4e>

Ai��u� ! 1p
�u1/4

sin
(
> C �

4

)
, Ai0��u� ! � 1p

�
u1/4 cos

(
> C �

4

)

Bi��u� ! 1p
�u1/4

cos
(
> C �

4

)
, Bi0��u� ! 1p

�
u1/4 sin

(
> C �

4

)
.

Source: Data from M. Abramowitz and I. A. Stegun, eds., Handbook of Mathemat-
ical Functions, National Bureau of Standards, Washington, D.C., 1964.
a> D 2

3u
3/2.

The wavefunction given by Eq. (W19B.9) and its first derivative at z D 0 are set
equal to the corresponding quantities given by Eq. (W19B.5). Solving these equations
for N yields

N D 2ikz
p
� e�>0L�3/2

ikz/u
1/4
0 � Fu1/4

0 �2m/h̄2F2�1/3
, �W19B.11�

where u0 D �2m/h̄2F2�1/3�V0 � h̄2k2
z /2m�, >0 D 2

3u
3/2
0 , and L3 is the volume of the

metal.
The current density is obtained by integrating Eq. (19B.10) over the Fermi sphere:

J D
∑
s

∑
k

Jz�EF � E� D 2
∫
d3kL3

�2��3
Jz�EF � E�. �W19B.12�

The integration over transverse coordinates leads to

∫
d2kjj�EF � E� D �

(
2mEF
h̄2 � k2

z

)


(
2mEF
h̄2 � k2

z

)
. �W19B.13�

Thus one obtains

J D 2me

�2h̄3V0

∫ EF

0
dE0�EF � E0�

√
E0�V0 � E0� exp

[
�4

p
2m

3Fh̄
�V0 � E0�3/2

]
.

�W19B.14�
The major contribution to the integral comes from the region E0 D EF. Thus one may
make the replacements �V0 � E0�3/2 ³ W3/2 C 3

2

p
W�EF � E0�, E0�V0 � E0� ³ EFW

and extend the lower limit of the integral to �1. Here W is the work function. One
finally obtains the Fowler–Nordheim formula:

J D e3E2
0

4�2h̄V0

√
EF
W

exp
(

� 4

3eE0h̄

p
2mW3

)
. �W19B.15�

An additional correction may be included to account for the image potential that the
charge experiences when it is in the vacuum region, but it will not be included here.
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Appendix W19C: Photoemission Yields

In this appendix theoretical expressions for the photoelectric yield will be derived for
an idealized solid whose surface consists of a potential step. The Sommerfeld model
will be used to describe the electrons.

First, the simplifying assumption that the potential is only a function of the normal
coordinate, z, will be made. The wavefunctions are then of the form

 f�r� D 
f�z� exp�ik0
jj Ð rjj�, �W19C.1a�

 i�r� D 
i�z� exp�ikjj Ð rjj�, �W19C.1b�

where the subscripts f and i refer to the final and initial states, respectively, and kjj
and k0

jj refer to propagation vectors along the surface.
Write the matrix element in Eq. (19.29) as

h fjm Ð Ej ii D �eh fjrjj Ð Ejjj ii � eh fjzEzj ii. �W19C.2�

By introducing the Hamiltonian, H, the first term can be shown to vanish:

h fjrjj Ð Ejjj ii D 1

Ef � Ei
h fj[H, rjj Ð Ejj]j ii

D � i

mω
h fjpjj · Ejjj ii D � ih̄

mω
kjj · Ejjh fj ii D 0. �W19C.3�

In this model it is only the normal component of the electric field that is capable of
exciting the electron gas and of causing photoemission. Any photoemission observed
at normal incidence, in which case the electric field would be tangent to the surface,
would be considered volume photoemission and beyond the scope of the model.

The full Hamiltonian governing the interaction of the electron with the light is

H D H0 CH# D p2

2m
C V�z�C eEzz[exp�Bz���z�C�z�] C eEjj · rjj. �W19C.4�

The last term is the interaction of the electron with the component of the field parallel
to the surface, and can be dropped. The third term is the perturbation, H# . For the
initial state the unperturbed Schrödinger equation becomes

[
p2
z

2m
C V�z�� εi

]

i�z� D 0, �W19C.5a�

and for the final state, [
p2
z

2m
C V�z�� εf

]

f�z� D 0, �W19C.5b�

where

εi D Ei � h̄2k2
jj

2m
, �W19C.6a�
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εf D Ef � h̄2k2
jj

2m
. �W19C.6b�

The Schrödinger equation will be solved for the simple step potential:

V�z� D
{

0 if z > 0
�V0 if z < 0.

�W19C.7�

(The effect of a finite electron mean free path could, in principle, be included by
making V0 complex.)

For the initial state the solution was found in Eq. (19.8) in the discussion of relax-
ation of metals. Thus


i�z� D


B exp���z� if z > 0
B sin�qz C υ�

sin υ
if z < 0

�W19C.8�

where

� D 1

h̄

√
�2mεi, �W19C.9a�

q D 1

h̄

√
2m�V0 C εi�. �W19C.9b�

For the final state one has an out-state, an outgoing wave with unit amplitude in
the vacuum supplemented with incoming waves in both the vacuum and the metal.
(A packet constructed out of such states will evolve into a purely outgoing packet for
long times.) Thus


f D
{

exp�ikz�C r exp��ikz� if z > 0,
t exp�iq0z� if z < 0,

�W19C.10�

where

k D 1

h̄

√
2mεf, �W19C.11a�

q0 D 1

h̄

√
2m�εf C V0� �W19C.11b�

Matching the wavefunction and the derivative at z D 0 yields

t D 1 C r, �W19C.12a�

q0t D k�1 � r�. �W19C.12b�

Then the reflection amplitude is

r D k � q0

k C q0 , �W19C.13a�
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and the transmission amplitude is

t D 2k

k C q0 . �W19C.13b�

The matrix element of the perturbation is

h fjH# j ii D
∫
d2rjj expdi�kjj � k0

jj� · rjje

ð eEz

∫ 1

�1
dz 
Ł

f�z�z[exp�Bz���z�C�z�]
i�z�, �W19C.14�

which may be written as

h fjH# j ii D eEz�2��
2υ�k0

jj � kjj��I1 C I2�. �W19C.15�

The first integral is

I1 D tŁB
sin υ

∫ 0

�1
dzz exp[z�B� iq0�] sin�qz C υ�

� tŁB
2i sin υ

[
exp�iυ�

[BC i�q � q0�]2
� exp��iυ�

[B� i�q C q0�]2

]
, �W19C.16a�

and the second integral is

I2 D
∫ 1

0
[exp��ikz�C rŁ exp�ikz�]zB exp���z�dz

D B

[
1

�� C ik�2
C rŁ

�� � ik�2

]
. �W19C.16b�

Plugging this into Fermi’s golden rule gives the transition rate per unit area:

d

dA
D 2�

h̄

∑
s

∫
d2kjj
�2��2

∫ 1

0

dq

�

∫ d2k0
jj

�2��2

∫ 1

�1

dk

2�
2 sin2 υ�eEz�

2�2��2υ�k0
jj � kjj�jMj2

ð υ�Ei C h̄ω � Ef��k��EF � Ei��Ef � EF�. �W19C.17�

where EF is the Fermi energy level and

M D � tŁ exp�iυ�

2i sin υ[BC i�q � q0�]2
C tŁ exp��iυ�

2i sin υ[B� i�q C q0�]2
C 1

�� C ik�2
C rŁ

�� � ik�2
.

�W19C.18�
The photoelectric yield is obtained by dividing this by the incident number of photons
per unit area:

Y D d/dA

I/h̄ω
D 8�h̄ω

cE2
0

d

dA
. �W19C.19�
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Figure W19C.1. Theoretical differential photoelectric yield of emitted electrons for Al irradi-
ated with 10.2-eV photons. The quantity dY/dεF is defined in Eq. (W19C.22).

The transverse wave-vector integral is

∫
dkjj
�2��2



(
EF � εi � h̄2k2

jj
2m

)


(
�EF C εf C h̄2k2

jj
2m

)

D m

2�h̄2 [EF � εi � max�0, EF � εf�]�EF � εi � max�0, EF � εf��. �W19C.20�

After evaluating the remaining integrals, one finds that

Y D 16mωe2

�h̄2c
sin2 �

∫ 1

0
dq
∫ 1

0
dkjMj2 sin2 υ υ�εf � εi � h̄ω�

ð dEF � εi � max�0, EF � εf�e�EF � εi � max�0, EF � εf��, �W19C.21�

where � is the angle of incidence relative to the surface normal.
The energy distribution curve (EDC) is obtained by omitting the integration over

the variable k and using the energy-conserving delta function to do the q integration.
The result is expressed in terms of εf:

dY

dεf
D 8

�

m2e2ω

h̄4C
sin2 �

jM2j sin2 υ√
εf�V0 C εf � h̄ω�

[EF � εf C h̄ω � max�0, EF � εf�]

ð[EF � εf C h̄ω � max�0, EF � εf�]�εf C V0 � h̄ω�. �W19C.22�

It is straightforward to show that near threshold the matrix element M is proportional
to k.

A theoretical electron EDC is presented for Al in Fig. W19C.1. This is to be
compared with experimental results, as shown in Fig. 19.13. In both cases one notes
a rise in the photoyield with increasing energy followed by a precipitous drop at high
energy, corresponding to electrons emerging from the Fermi surface, giving rise to
those with maximum kinetic energy, �mv2/2�max. There is evidence for band-structure
features in the experimental data. Band-structure effects are not included in the simple
Sommerfeld model used here.


