EEEN APPENDIX WC

Quantum Mechanics

In the short space of an appendix it is not possible to develop quantum mechanics.
However, it is possible to review some of the key concepts that are used in the textbook"
and at the Web site.

In the Schrodinger description of quantum mechanics a physical system such as an
atom or even a photon is described by a wavefunction 1. The wavefunction depends
on the variables describing the degrees of freedom of the system and on time. Thus
for a particle moving in one dimension, the wavefunction is ¥ (x, f); for a particle
moving in three dimensions, it is ¥ (r, t); for a two-particle system in three dimen-
sions, it is ¥ (r], 1z, t); and so on. In the Dirac notation an abstract state vector
|y(¢)) is introduced and is projected onto the appropriate space, according to the iden-
tification ¥ (x, t) = (x|¥(¢)), ¥(r,t) = (r|y¥(¢)), and so on. As will be seen shortly,
Y(x, t) is a complex function (i.e., it has real and imaginary parts). The wavefunction
contains all the information that may be obtained about a physical system. Unfortu-
nately, it is now possible to write down the exact wavefunctions only for very simple
systems.

According to Born’s interpretation of the wavefunction, if a measurement of the
position of a particle is made at time ¢ (in the one-dimensional case), the relative
probability of finding the particle between x and x + dx is given by dP = |y(x, t)|dx,
where the square of the absolute value of  is taken. When possible, it is useful to
normalize the probability density so that
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(YOl (1)) E/ [yr(x, )P dx = 1. (WC.1)
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This states that the particle must be found somewhere, with probability 1.

The wavefunction for a particle in one dimension satisfies the Schrodinger equation
n Py v

—— 4V = ih—. WC.2
om a2 TV =iy, (WE.2)
Here m is the mass of the particle, i = h/2m = 1.0545887 x 1073* Js, i = /—1, and
V(x) is the potential energy influencing the particle’s motion as it moves through
space. In general, the wavefunction will be a complex function of its arguments. The
Schrodinger equation is linear in . Thus, if ¥ (x, t) and ¥, (x, #) are solutions, the

" The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel T.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”’; cross-references
to material in the textbook appear without the “W.”
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524 QUANTUM MECHANICS

superposition ¥ = ¢ + ¥, is also a solution. This means that both constructive
and destructive interference are possible for matter waves, just as for light waves.

In quantum mechanics physical quantities are represented by operators. Examples
include the position, x, the momentum, p, = —ihd/ox, and the energy (or Hamiltonian),
H = p?/2m + V(x), which is the sum of the kinetic energy and the potential energy
operators. If a number of measurements of a physical quantity are made and the results
averaged, one obtains the expectation value of the quantity. The expectation value of
any physical operator, Q, is given in quantum mechanics by

(©) = WD) = / W (5 DOV, 1) d. (WC.3)

To guarantee that the expectation value always be a real number, it is necessary for
QO to be a Hermitian operator. A Hermitian operator is one for which the following
identity holds for any two functions f and g:

(f1Q8) = (Qflg) = 1 [r(0)Qg(x)dx = [ (Qf ()" (x)dx. (WC.4)

The operators x, py, and H are examples of Hermitian operators, as is the set of orbital
angular momentum operators:

L, = yp; —zpy, Ly =2zp: —xp, L, =Xxpy — ypx. (WC.5)

If a measurement is made of a physical variable Q, the result will be one of the
eigenvalues ¢; of the operator Q, and the act of measurement will reset the wave-
function to the corresponding eigenfunction of that operator, |¢;). The eigenvalues and
eigenfunctions are defined through the relation

Qlai) = qilqi)- (WC.6)

The eigenvalues of a Hermitian operator may be shown to be real numbers. Their
eigenfunctions may be chosen so that they form an orthogonal set, that is,

(gilg)) = /¢; (X)pg; (x) dx = §;. ;. (WC.7)

It is customary to normalize the eigenfunctions as well, when possible. For example,
the eigenfunctions of the momentum operator p, are the plane waves ¢y (x) = exp(ikx).
They are not normalizable since it is equally probable to find the particle anywhere on
the infinite domain —oo < x < oco. The corresponding momentum eigenvalue is 7k.

It is assumed that the eigenfunctions of any physical operator form a complete set
(i.e., that the wavefunction may be expanded in terms of them). Thus

W(®) =D ca®)lgn). (WC.8)

If a measurement of Q is made, the probability of finding the eigenvalue ¢, is given
by |c,|?. Obviously, 3 |c,|? = 1.
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A necessary and sufficient condition for a set of operators {Q;} to be observable
simultaneously is that they commute with each other (ie., [Q;, Q;] = Q0:0; —
Q;0; =0). Examples of sets of commuting operators are {Q1, 0>, O3} = {x, y, z},
or {Ql’ QZa Q3} = {px’ Py, Pz}a or {Q]’ QZ} = {sz LZ}? where L2 = L;% +L§ +Lz2
Noncommuting operators may not be measured simultaneously to arbitrary accuracy.
Examples include {Q1, O»} = {x, px}, since [x, py] = ih, or {Q1, O2, O3} = {Ly, Ly, L.}
[see Eq. (WC.22)]. When operators fail to commute, successive measurements of the
respective physical variables interfere with each other. Thus measurement of x affects
the outcome of a measurement of p,. The result is summarized by the Heisenberg
uncertainty principle, which states that the product of the uncertainties in these variables
obeys the inequality Ax Ap, > h/2.

Stationary states of the Schrodinger equation are the analogs of standing waves in
classical wave physics. They are solutions that may be expressed in factored form [i.e.,
Y(x, 1) = ¢(x) exp(—iEt/h)]. Such a state has a time-independent probability density,
|¢(x)|*> and an energy E. Insertion of this expression into Eq. (WC.2) results in the
time-independent Schrodinger equation,

Ho(x) = E¢(x), (WC.9)

which shows that ¢(x) is an eigenfunction of H with energy eigenvalue E.

Examples of common quantum-mechanical systems include the one-dimensional
infinite square well, the simple harmonic oscillator, and the hydrogen atom. For the
one-dimensional infinite square well, the potential energy operator is given by V(x) = 0
for 0 < x < a and V(x) = oo otherwise. The energy eigenfunctions are (see Table 11.5)

2
¢n(x) = \/7 sin @, (WC.10)
a a
where n = 1,2, 3, ... . The energy eigenvalues are
g (””)2 (WC.11)
"Tom\al '

For the simple harmonic oscillator with frequency w, the time-independent
Schrodinger equation is given by

W %p,(x)  maw’x
H, () = —3-—2 .

2
¢n(x) = Eppn (x). (WC.12)
The energy eigenvalues are given by
E,= (n+1)ho, (WC.13)

where n =0, 1, 2, ... . The eigenfunctions may be expressed as products of Gaussians
multiplied by Hermite polynomials:

1 mw\ /4 mawx? mw
b (x) = W (E) exp (— = )H,, <,/7x>. (WC.14)

The first few Hermite polynomials are Ho(x) = 1, H(x) = 2x, and H,(x) = 4x> — 2.
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The Schrodinger equation for the hydrogen atom is

n? e
=2 Vibuim(X) = —— i (¥) = Epbuim (8). (WC.15)
m 4megr

The energy eigenvalues for the bound states are

2

o — (WC.16)
8mepan?
where the first Bohr radius is given by a; = Aegh® /me*> and n =1,2,3,.... The
bound-state wavefunctions are of the form
¢nlm(r) = NuimRui (r)Ylm(G, ¢), (WC17)
where Y;,,(6, ¢) is a spherical harmonic (see the next paragraph). The quantum number
[ assume the values 0,1,2,...,n — 1. The m quantum numbers take on the values
—I,—l+1,...,1—1,1. The ground state, with the quantum numbers (n,[, m) =
(1,0,0), is
1 r
$r00(r) =/ —5 exp(—— . (WC.18)
nal aj

The hydrogen atom also possesses a continuum of states for £ > 0, which describe
the Coulomb scattering of an electron from a proton.

The spherical harmonics are simultaneous eigenstates of the angular momentum
operators L? and L., that is,

LY 1,0, ) = 1(I + DI2Y 1,6, ¢), (WC.19)
LY (8, ¢) = mhY 1,,(0, ?), (WC.20)

where 6 and ¢ are spherical polar coordinates. The first few spherical harmonics are

1 /3
Yoo (0, ) = —F—, Yio=14/-—cosb,
V/ 47
4 (WC.21)
3 . 3 i
Y1 =—4/— sinfe'?, Yi_1 =14/ —sinfe '?.
8 8
The angular momentum commutation relations are
[Ly, Ly] = iRhL,, [Ly, L;] = ihLy, [L;, L] = ihL,. (WC.22)

The spin of the electron is incorporated by writing the wavefunction as a two-
component column vector. The upper and lower elements are the probability amplitudes
for the electron having spin up or spin down, respectively. The operators for spin-
angular momentum are written in terms of the Pauli spin matrices:

h h h
So=30n  Si=g0  S.=so (WC.23)
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where the Pauli spin matrices are given by

0 1 0 —i 1 0
ax=<1 0), ayz(l. 0), UZ:(O _1>. (WC.24)

The Sy, Sy, and §; matrices obey the angular momentum commutation rules given in
Eq. (WC.22).

Tunneling through a barrier is one of the dramatic quantum-mechanical effects.
Consider a potential barrier given by V(x) = V( for 0 < x < a and V(x) = 0 otherwise.
Let a particle approach it with energy E < V. The particle is able to tunnel through
the barrier with some finite probability. The transmission probability is given by

1
T= s ,
1 + V§sinh” ga/4E(Vy — E)

where g = +/2m(Vy — E)/h.

Time-independent perturbation theory is used to calculate the effect of a small
interaction term added to the Hamiltonian. Let H = Hy + AV and Hy¢, = ES ¢, define
the unperturbed eigenvalues and eigenfunctions. The quantity A is a small parameter.
Assume that the eigenvalues are nondegenerate (i.e., no two values of E® coincide).
Then an approximate expression for the eigenvalues of H¢, = E, ¢, is

(WC.25)

$VIg0) 2

I
Ey = ES + MIVISN + 7Y =S (WC.26)
j no T

where the term j = n is excluded from the sum.
The case in which there is degeneracy is usually handled by matrix techniques. A
finite set of eigenfunctions is chosen and the matrix elements of H are formed:

Hj, = (¢)H|¢y). (WC.27)
The eigenvalues and eigenvectors of the Hamiltonian matrix are computed. An example

of this is provided by the two-level system in which the unperturbed states are labeled
[1) and |2). The Hamiltonian matrix is

Ey Vip
H = , WC.28
(V21 E> > ( )

where V,; = V7,. The eigenvalues are obtained as solutions of the secular equation

E, —-F Via

— _ _ _ 2 _
Vy  E, —E’ =(E,—E)E2—E)—|Vp|"=0 (WC.29)

and are given by

E\+E E, —E)\?
Eizgi\/< ! 2) 1+ Vil2 (WC.30)
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The variation principle permits one to obtain an approximate solution to the
Schrodinger equation and an upper bound on the energy of the ground state of a system.
An arbitrary function F(x) is chosen and the expectation value of the Hamiltonian is
computed using this function:

E[F(x)] = (FIHIF) (WC.31)
(FIF)

Then it may be shown that the ground-state energy obeys the inequality Eg < E[F (x)].
The function F(x) depends on a set of parameters, {«;}. The parameters are varied to
obtain the minimum value of E[F (x)]. The more parameters the function contains, the
more accurately F(x) will approximate the ground-state wavefunction and the closer
E[F(x)] will be to the ground-state energy.

In some problems there is a discrete state that is degenerate with a continuum of
states. Assuming that the system starts in the discrete state, one calculates the transition
rate, I, to the final continuum of states. Again, take the Hamiltonian to be of the
form H = Hy + AV. The initial state satisfies H|i) = E;|i) and the final state satisfies
Holf) = Es|f). The Fermi golden rule states that

2
r= %Zuﬂwwzauﬂf —E)). (WC.32)
7

In treating systems with more than one particle, the symmetry of the wavefunction
under interchange is important. For identical particles with half-integer spin, such
as electrons, protons, neutrons, and 3He, the wavefunction changes sign if any two
particles have their positions (and spins) interchanged, that is,

Wiy G Ny = =W, ooy iy N, (WC.33)

The particles are said to obey Fermi—Dirac statistics. For identical particles with integer
spin, such as photons or “He, the wavefunction is symmetric under interchange:

UL, ooy g N =L, o iy N, (WC.34)

Such particles obey Bose—Einstein statistics.



