
CHAPTER W20

Thin Films, Interfaces, and Multilayers

W20.1 Strength and Toughness

Having seen how a film adheres to the surface, attention now turns to a study of its
mechanical strength. The strength of the bond of a thin film to a substrate may be
determined by comparing the surface energies before and after separation. Let �SS0

denote the surface tension between the film and the substrate. In delaminating the film
from the substrate new solid–vapor interfaces are created, so the change in surface
energy per unit area, called the intrinsic toughness, is given by the Dupré formula:

υu D �SV C �S0V � �SS0 . �W20.1�

This is a positive number because it takes energy to create a cleavage.
If sufficient stress is applied to a film in the direction normal to the interface, the

film will separate from the surface. The maximum stress the interface can withstand
will be denoted by 	max. Let 	zz�z� denote the stress needed to separate the film a
distance z from the equilibrium position, taken to be z D 0. Then

υu D
∫ 1

0
	zz�z� dz. �W20.2�

In the case of metal films on metal substrates, it has been found that the stress may
be obtained by taking the derivative of a potential energy per unit area of the empirical
form

u�z� D F
( z

a

)
E, �W20.3�

where E and a are parameters that depend on the metals and F is the universal
function:

F�t� D ��1 C t�e�t. �W20.4�

It is believed that this form results from the formation of bond charge at the interface
and depends on the exponential falloff of the wavefunctions into vacuum. It is also
believed that this formula applies as well to covalent bonds. The stress is therefore

	zz D E

a2
ze�z/a. �W20.5�
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It rises from zero at the surface, goes through a maximum at z D a, and falls off with
further increase in z. At the maximum it has the value

	max D E

ae
, �W20.6�

where e D 2.718. Integrating the analytical formula for the stress results in the expres-
sion

	max D υu

ae
D �SV C �S0V � �SS0

ae
. �W20.7�

W20.2 Critical Thickness

If a crystalline film grows epitaxially on a substrate in such a way that both are
constrained to be flat, there is a critical film thickness beyond which misfit dislocations
will develop. This often leads to degradation of the mechanical and electrical properties
of the film. The theory of Freund and Nix† generalizes earlier work by Matthews and
Blakeslee‡, who analyzed this phenomenon for the case of a thin film on a thick
substrate. This critical thickness is determined by the condition that the work needed
to produce a dislocation be equal to the strain energy recovered from the system. Letting
af and as be the stress-free lattice constants for the film and substrate, respectively,
and εf and εs be the corresponding strains, one has

εm D as � af
af

³ εf � εs �W20.8�

for the mismatch strain.
It will be convenient to assume that the film and substrate are both isotropic

materials and that they have identical mechanical properties, such as G, the
shear modulus, and �, the Poisson ratio. The film and substrate are subjected
to a biaxial stress. The components of the stress tensor may be expressed as
�	1, 	2, 	3, 	4, 	5, 	6� D �P, P, 0, 0, 0, 0�, where P is the in-plane pressure. The
compliance tensor Sij will be of the same form as Eq. (10.18) in the textbook§

with Sij elements replacing Cij elements. Using Eq. (10.14b), the elements of the
strain tensor are �ε1, ε2, ε3, ε4, ε5, ε6� D �P�S11 C S12�, P�S11 C S12�, 2S12P, 0, 0, 0�.
Note that ε1 D ε2 D εm. The biaxial modulus M common to both the substrate and the
film is defined by the relation ε1 D P/M. From Table 10.4, using S11 � S12 D 1/�2G�
and S12 D ��S11, one obtains an expression for the biaxial modulus:

M D 2G
1 C �

1 � �
. �W20.9�

† L. B. Freund and W. D. Nix, Appl. Phys. Lett., 69, 173 (1996).
‡ J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth, 27, 118 (1974).
§ The material on this home page is supplemental to the The Physics and Chemistry of Materials by
Joel I. Gersten and Fredrick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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The net force per unit length on a plane perpendicular to the interface must vanish, so

Mεftf C Mεsts D 0, �W20.10�

where tf and ts are the corresponding thicknesses of the film and substrate. Thus

εs D �εm
tf

tf C ts
, εf D εm

ts
tf C ts

�W20.11�

before any dislocations are generated.
The geometry is illustrated in Fig. W20.1 both before and after the dislocation is

formed in the substrate. Let b be the Burgers vector of the dislocation, bx and by
its components parallel to the interface, and bz the perpendicular component. From
elasticity theory, the long-range attractive force per unit length on the edge dislocation
from both free surfaces is estimated to be

F�z� D G[b2
x C b2

y C �1 � ��b2
z ]

4"�1 � ��

(
1

z
� 1

ts C tf � z

)
. �W20.12�

The direction of the force is shown in Fig. W20.1. The energy released per unit thick-
ness when the strain in the substrate is relaxed is U D Mεstsbx. The work per unit
thickness needed to cause a migration of the edge dislocation from the bottom of the
substrate to the interface is

W D �
∫ ts

r0

F�z� dz D �G[b2
x C b2

y C �1 � ��b2
z ]

4"�1 � ��

∫ ts

r0

(
1

z
� 1

ts C tf � z

)
dz

D �G[b2
x C b2

y C �1 � ��b2
z ]

4" �1 � ��
ln

tstf
r0�ts C tf�

. �W20.13�

where r0 is a cutoff parameter of atomic dimensions at which macroscopic elasticity
theory breaks down. The bottom of the substrate is at z D 0. Equating W and U

z

ts

tf
x

f

f

s

s
b

F

(a)

(b)

Figure W20.1. (a) Film on a substrate subjected to stresses due to lattice mismatch for the case
af > as; (b) an edge dislocation migrates from a surface to the interface. [From L. B. Freund and
W. D. Nix, Appl. Phys. Lett., 69, 173 (1996). Copyright 1996, American Institute of Physics.]
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results in the formula

εm D b2
x C b2

y C �1 � ��b2
z

8"�1 C ��bxtc
ln

tc
r0

, �W20.14�

where a reduced critical thickness is defined by 1/tc � 1/tfc C 1/tsc. Equation (W20.14)
expresses εm in terms of tc, but this may be inverted numerically to give tc in terms of
εm. Note that if the substrate is thick, tc gives the film thickness tfc directly.

Typical experimental data for GexSi1�x films deposited on a thick Si substrate† give
the critical thickness as approximately 1000, 100, 10, and 1 nm for x D 0.1, 0.3, 0.5,
and 1.0, respectively.

W20.3 Ionic Solutions

The description of an ionic solution involves specifying the ionic densities, nš�r�,
the solvent density, ns�r�, and the potential, )�r�, as functions of the spatial position
r. The presence of a solid such as a metal or semiconductor is likely to introduce
spatial inhomogeneities in these quantities. Far from the solid one may expect these
variables to reach the limiting values n1

š , n1
s , and )1, respectively. It is conve-

nient to take )1 � 0 . If the ionic charges are zCe and �z�e, then bulk neutrality
requires that zCn1

C D z�n1
� . Near the solid deviations from neutrality occur and elec-

tric fields are present. In this section the relationship between these quantities is
studied.

It is convenient to use a variational principle to derive these equations‡. At T D 0 K
the familiar Poisson equation may be derived from the energy functional:

U D
∫

dr u D
∫

dr
[
� +

2
�r)�2 C zCenC) � z�en�)

]
. �W20.15�

By using the Euler–Lagrange equation

r Ð
(

∂u

∂r)

)
D ∂u

∂)
, �W20.16�

one obtains

r2) D �e

+
�zCnC � z�n��, �W20.17�

where + is the electric permittivity of the solvent.
For T > 0 K one constructs a quantity analogous to the Helmholtz free energy:

F D
∫

drf D U � TS, �W20.18�

† J. C. Bean et al., J. Vac. Sci. Technol., A2, 436 (1984).
‡ The approach is similar to that of I. Borukhov, D. Andelman, and H. Orland, Phys. Rev. Lett., 79, 435
(1997).
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where S is the entropy, defined in terms of an entropy density, s,

S D
∫

dr s. �W20.19�

To obtain s imagine partitioning the volume of the solvent into boxes of size V. The
number of ions of a given type in a box is Nš D nšV, and the number of solvent
molecules is Ns D nsV. Idealize the situation by imagining that each particle (positive
ion, negative ion, or solvent molecule) occupies the same volume. Let N be the number
of sites available in volume V. Then N D NC C N� C Ns. The number of ways of
distributing the particles among the N sites is W D N!/�NC!N�!Ns!�. The entropy
for the box is given by S D sV D kB ln�W�. Use of Stirling’s approximation results in
the expression

S D �kB

∫
dr

(
nC ln

nC
n

C n� ln
n�
n

C ns ln
ns

n

)
, �W20.20�

where n D N/V. The total numbers of positive and negative ions are fixed. One varies
F subject to these constraints

υ

(
F � 0C

∫
drnC�r� � 0�

∫
drn��r�

)
D 0, �W20.21�

where the chemical potentials 0š are Lagrange multipliers. Variation with respect to
nš and ) leads to the Poisson equation, as before, and

nš�r� D �n � nC�r/ � n��r�� exp[�ˇ�šzše)�r� � 0š�], �W20.22�

where ˇ D 1/kBT and use has been made of the fact that ns C nC C n� D n. Evaluating
this far from the solid, where )�r� ! 0, yields

0š D kBT ln
n1

š
n � n1š � n1š �zš/zÝ�

. �W20.23�

The Poisson equation becomes

r2) D �ne

+

zCn1
C exp��ˇzCe)� � z�n1

� exp�ˇz�e)�

n1
s C n1C exp��ˇzCe)� C n1� exp�ˇz�e)�

. �W20.24�

At high charge densities on an interface the right-hand side saturates at a maximum
value. Thus, if Ýˇzše) × 1,

r2) D Ýne

+
zš. �W20.25�

In the limit where nš − n the denominator simplifies and Eq. (W20.24) reduces to
what is called the Poisson–Boltzmann equation:

r2) D �e

+
[zCn1

C exp��ˇzCe)� � z�n1
� exp�ˇz�e)�]. �W20.26�
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In the limit where jˇzše)j − 1, this reduces further to the Debye–Hückel equation:

r2) D 1

22
D

), �W20.27�

where 2D is the Debye screening length, given by

1

22
D

D e2

+kBT
�z2

Cn1
C C z2

�n
1
� �. �W20.28�

In this case the potential will fall off exponentially with distance as )�z� / exp��z/2D�.
The distance 2D determines the range over which the charge neutrality condition is
violated and an electric field exists.

Returning to Eq. (W20.24), in the one-dimensional case, let the solid occupy the
half-space z < 0. One may obtain a first integral by multiplying through by d)/dz and
integrating from 0 to 1:

ˇ+

2

(
d)

dz

)2
∣∣∣∣∣
zD0

D n ln
n1
s C n1

C exp��ˇzCe)0� C n1
� exp�ˇz�e)0�

n1
s C n1C C n1�

�W20.29�

where )0 is the solid-surface potential. The quantity d)/dz is the negative of the
electric field and is related to the charge density on the surface through the boundary
condition that Dz is continuous. This is also partly determined by solving the Poisson
equation inside the solid and linking the two solutions across the surface. The interface
between a semiconductor and an ionic solution is considered in Section W20.4.

W20.4 Solid–Electrolyte Interface

Having considered both the semiconductor and the ionic solution in isolation, we are
now in a position to combine them and to study their interface. Some aspects of
solid–ionic solution systems have been encountered in Section W12.4 in the discus-
sion of corrosion and oxidation, and in Section 19.11 concerning anodization. To be
somewhat general, imagine that both a metal surface and a semiconductor surface are
involved (Fig. W20.2). In thermal equilibrium the chemical potential of the electrons
is constant throughout the system. Furthermore, there has to be net charge neutrality.
Consider what happens when an electrochemical reaction occurs involving an exchange
of electrons with the solids. An example is the reduction–oxidation reaction (redox
couple) H2 ⇀↽ 2HC C 2e�. In the forward direction the reaction is the oxidation of H2.
In the backward direction it is the reduction of HC. Each species is characterized by
its own unique chemical potential in the electrolyte. To dissociate and ionize the H2

molecule, energy must be supplied equal to the difference in energy between the two
species. For the moment, any complications caused by the realignment of the solva-
tion shell of solvent molecules are ignored. The solvation shell consists of those water
molecules in the immediate vicinity of the ion whose dipole moments are somewhat
aligned by the electric field of the ion.

More generally, consider the redox couple between two hypothetical ionic species
labeled A1 and A2, of ionic charges z1e and z2e, respectively:

n1A1 ���⇀↽��� n2A2 C ne�. �W20.30�
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Figure W20.2. Band bending and equalization of Fermi levels in the semicon-
ductor–electrolyte–metal system: (a) semiconductor (S), electrolyte (L), and metal (M) in
isolation, sharing a common vacuum level; (b) band-bending and electrostatic-potential profile
when the materials are brought in contact.

The chemical potentials obey the relation

n1�01 C z1e)� D n2�02 C z2e)� C n�0 � e)�, �W20.31�

where the energy shift due to the local electrostatic potential is included. The chemical
potentials in solution are given in terms of the activities by the Nernst equation:

0i � �eziεi D �eziε
0
i C kBT ln ai, �W20.32�

where ε0
i and ai are the standard electrode potentials and activities of species Ai,

respectively. To a first approximation the activities are often set equal to the fractional
concentrations, ci:

0i ³ �eziε
0
i C kBT ln ci. �W20.33�

Charge conservation gives

z1n1 D z2n2 � n. �W20.34�

Therefore, 0 is a sensitive function of the ionic concentrations:

0 D n101 � n202

n

D eε � kBT

n
ln

�c2�n2

�c1�n1
. �W20.35�

Here

ε D n2z2ε0
2 � n1z1ε0

1

n
�W20.36�
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is called the standard redox potential of the couple. At any given point in the electrolyte
the redox reaction is driven backwards or forwards, allowing concentrations of species
1 and 2 to adjust so as to maintain the chemical potentials at constant levels.

In the description above, the energy of reduction of a positive ion (i.e., the energy
needed to add an electron to the ion) equals the energy of oxidation (i.e., the energy
needed to remove an electron from an atom to create a positive ion). However, when
the response of the solvent is included, these energies no longer coincide. The solvent
molecules adjust themselves so as to minimize the Coulomb energy of the system.
Since charge-exchange reactions alter the net ionic charge, there is a solvent shift
of the energy levels. Thermal fluctuations in the solvent cause the energy levels to
fluctuate in time. Whenever the energy balance condition is satisfied, a resonant charge
exchange process can occur.

The convention is to take the hydrogen couple H2 ⇀↽ 2HC C 2e� as the reference
level by which to measure the redox potentials (the standard electrode potentials) of
other redox couples. Typical couples are presented in Table W20.1 along with their
standard redox potentials. The entries are arranged according to how good a reducing
agent the atoms are. Thus Li is a strong reducing agent (i.e., it readily donates elec-
trons to a solid). F2 is a strong oxidizing agent, readily accepting electrons from a
solid.

Equation (W20.35) must be modified for use in describing the solid–electrolyte
interface. The problem arises because of the arbitrariness of the choice of the hydrogen
couple in defining the zero of the standard redox potential. For use in describing
the solid–electrolyte interface, both chemical potentials must be referred to the same
reference level (e.g., vacuum). It is therefore necessary to find the difference between
the standard redox potentials and the energies relative to vacuum, υ0 (see Fig. W20.2).
Thus Eq. (W20.35) should be replaced by

0 D eε C υ0 � kBT

n
ln

�c2�n2

�c1�n1
. �W20.37�

The value of the offset energy υ0 is obtained by looking at the Gibbs free-energy
changes (i.e., rGo) for a series of reactions (Morrison, 1980) and comparing the result
to the value quoted for the standard redox potential:

AgC�g� C e� D Ag(g) �7.57 eV
Ag�g� D Ag(s) �2.95 eV
AgC�aq� D AgC�g� C5.00 eV

AgC�aq� C e� D Ag(s) �5.52 eV

The first line corresponds to the free-space ionization of a silver atom. The second line
introduces the cohesive energy of silver. The third line utilizes a calculated value for
the solvation energy of a silver ion in water. The solvation energy is the difference in
electrostatic energy of an ion of charge Ce at the center of a spherical cavity in the
water and the electrostatic energy of the ion in free space:

U D � e2

8"+0a

(
1 � 1

+r

)
. �W20.38�
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Here a is the metallic radius of AgC (0.145 nm) and +r�0� D 80 is the static dielectric
constant for H2O at T D 27°C. The value of the standard redox potential for the reac-
tion AgC�aq� C e� D Ag�s� (Table W20.1) is 0.800 eV. Thus υ0 D �5.52 C 0.80 D
�4.72 eV. However, this value must be regarded as being only approximate. It disre-
gards the solvation energy of the electron and underestimates the radius of the solvation
shell. Typically, values for υ0 in the range �4.5 to �4.8 eV are employed in the
literature.

Electrons in an isolated semiconductor will, in general, have a chemical potential
which is different from that of an electron in an electrolyte. This is illustrated in
Fig. W20.2. The upper half of the diagram shows the semiconductor (S), electrolyte
(L), and metal (M) isolated from each other, sharing a common vacuum level. Note that
the chemical potential of an electron in the electrolyte, 0L, is determined by subtracting
the chemical potential for the redox couple, 0�A/AC� [given by Eq. (W20.37)], from
the offset energy υ0, as in Fig. W20.2.

When the two are brought into contact, as in the lower half of Fig. W20.2, there
will be a charge transfer and the chemical potentials will equilibrate. This will cause
band bending in the semiconductor in much the same way that it was caused in the
p-n junction. At the two interfaces there is not charge neutrality and electric fields
exist due to the dipole double layers.

W20.5 Multilayer Materials

One rather simple use of multilayers is to fabricate optical materials with interpolated
gross physical characteristics. For example, one could achieve an interpolated index
of refraction n by alternating sufficiently thin layers of indices n1 and n2. The linear
interpolation formula, n D �1 � f�n1 C fn2, where f is the fraction of space occupied
by material 2, would only give a crude approximation to n and is not physically

TABLE W20.1 Standard Redox
Potential Energies at T = 25°C

ε
Redox Couple (V)

Li D LiC C e� 3.045
Rb D RbC C e� 2.925
K D KC C e� 2.924
Cs D CsC C e� 2.923
Na D NaC C e� 2.711
Mn D Mn2C C 2e� 1.029
Zn D Zn2C C 2e� 0.763
Cu D Cu2C C 2e� 0.34
Pb D Pb2C C 2e� 0.126
H2 D 2HC C 2e� 0.000
CuC D Cu2C C e� �0.153
Fe2C D Fe3C C e� �0.770
Ag D AgC C e� �0.800
2Br� D Br2 C 2e� �1.065
2Cl� D Cl2 C 2e� �1.358
2F� D F2 C 2e� �2.870
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motivated. A better interpolation could be obtained by recalling that ni D p
+ri and

making use of the Clausius–Mossotti formula, Eq. (8.40). That formula showed that
the ratio �n2 � 1�/�n2 C 2� may be expressed as a linear combination of polarizability
contributions from each of the materials present in a composite medium. Thus an
appropriate interpolation formula would be

n2 � 1

n2 C 2
D �1 � f�

n2
1 � 1

n2
1 C 2

C f
n2

2 � 1

n2
2 C 2

. �W20.39�

The design is valid provided that the length scale of the periodicity is small compared
with the wavelength of light.

The linear interpolation formula = D �1 � f�=1 C f=2 could be used to fabricate
materials with interpolated thermal conductivities. However, this is only approximate,
since the interface region between two media often has different physical properties
from either medium, including its own thermal resistance due to phonon scattering.

As another example of linear interpolation, suppose that there are two physical
properties, denoted by n and p, that one would like to obtain. Assume that there are
three materials, with values (n1, n2, n3) and (p1, p2, p3), respectively. Construct the
multilayer by taking lengths (a1, a2, a3) such that the superlattice has periodicity

a1 C a2 C a3 D D. �W20.40�

Then, assuming simple additivity of the properties, one has

a1n1 C a2n2 C a3n3 D Dn, �W20.41a�

a1p1 C a2p2 C a3p3 D Dp. �W20.41b�

These three linear equations may be solved for the lengths a1, a2, and a3. One finds
that

a1

D
D 1


[�n2p3 � p2n3� C �p2 � p3�n C �n2 � n3�p], �W20.42a�

a2

D
D 1


[�n3p1 � p3n1� C �p3 � p1�n C �n3 � n1�p], �W20.42b�

a3

D
D 1


[�n1p2 � p1n2� C �p1 � p2�n C �n1 � n2�p], �W20.42c�

where
 D n2p3 C n3p1 C n1p2 � p2n3 � p3n1 � p1n2. �W20.43�

The extension to a higher number of variables is obvious.

W20.6 Second-Harmonic Generation in Phase-Matched Multilayers

Nonlinear polarization is introduced in Section 8.9 and discussed further in Section
18.6. For efficient second-harmonic generation one needs two things: a material with a
large nonlinear electrical susceptibility and birefringence. The latter is needed so that
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phase matching between the primary beam at frequency ω and the secondary beam
at frequency 2ω can be obtained over a long coherence length. The semiconductor
GaAs has a large ?�2� (240 pm/V) but is a cubic crystal, so is optically isotropic and
not birefringent. By constructing a multilayer structure with interspersed thin layers of
oxidized AlAs (Alox), artificial birefringence is obtained†.

Here one uses the approximate additivity of the dielectric function for the TE mode
of propagation:

+TE D �1 � f�+r1 C f+r2 . �W20.44�

The TE mode of a waveguide has the electric field perpendicular to the direction of
propagation, but the magnetic field need not be. Similarly, the approximate additivity
of the inverse of the dielectric function for the TM mode of propagation yields

1

+TM
D 1 � f

+r1

C f

+r2

. �W20.45�

The TM mode has a magnetic field perpendicular to the propagation direction. In
Eqs. (W20.44) and (W20.45), +r1 and +r2 are the respective dielectric functions of the
materials and f is the filling fraction. The respective indices of refraction for GaAs and
Alox are n1 D p

+r1 D 3.6 and n2 D p
+r2 D 1.6. The net birefringence is determined

by the difference in the indices of refraction for the TE and TM modes:

n D p
+TE � p

+TM. �W20.46�

This, in turn, is a function of the filling fraction and may therefore be engineered to
specifications.

The same concept may be used to the advantage of another nonlinear process,
difference frequency generation (DFG). In this process, photons of frequencies ω1 and
ω2 are mixed together to produce a photon of frequency jω1 � ω2j.

W20.7 Organic Light-Emitting Diodes

Recently, a structure composed partly of stacked organic films was designed to act as a
tunable three-color transparent organic light-emitting diode (TOLED). Since the addi-
tive primary colors are red, blue, and green, this device can function as a universal light-
emitting diode. The structure is illustrated in Fig. W20.3. Electron injection into the
upper organic layer is through the low work function Mg:Ag cathode. The transparent
conductor indium tin oxide (ITO) serves as the anodes. The organic molecules used are
4,40-bis[N-(1-napthyl)-N-phenylamino]biphenyl (˛-NPD), which is a hole conductor,
bis(8-hydroxy)quinaldine aluminum phenoxide (Alq0

2Oph), which fluoresces in the
blue, and tris(8-hydroxyquinoline aluminum) (Alq3), which is an electron conductor
and fluoresces in the green. By doping Alq3 with 3% 5,10,15,20-tetraphenyl-21H,23H-
porphine (TPP), the fluorescent band is pulled down to the red. A layer of crystalline
3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) serves as a transparent hole
conductor and shields the sensitive organic layer against ITO sputtering. One of the

† A. Fiory et al., Nature, 391, 463 (1998).
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Figure W20.3. Three-color tunable organic light-emitting device. [Reprinted with permission
from Z. Shen et al., Science, 276, 2009 (1997). Copyright 1997, American Association for the
Advancement of science.]

keys to success in fabricating this device is that amorphous and organic films tend not
to be tied down by the need to satisfy lattice-matching constraints.

W20.8 Quasiperiodic Nonlinear Optical Crystals

A recent application of multilayer structures to the field of nonlinear optics involves
the construction of a periodic superlattice. For example, to carry out second-harmonic
generation efficiently, phase matching is required (i.e., the material must be able
to simultaneously satisfy momentum and energy conservation). However, k�2ω� �
2k�ω� D K21 6D 0, in general. Similarly, for third-harmonic generation, k�3ω� �
3k�ω� D K31 6D 0. By constructing a superlattice with the periodicity 2"/K21 or
2"/K31, the index of refraction will possess this periodicity and will be able to supply
the missing wave vector. The strength of the scattering amplitude will involve the
Fourier component of the index of refraction at that wave vector. This scheme has
been applied to such nonlinear crystals as LiNbO3.

It is also possible to construct a quasiperiodic lattice (one-dimensional quasicrystal)
which can supply K21 and K31 simultaneously. It is assumed that these wave vectors
are such that K31/K21 is not a rational number. Such a structure can be based on the
Fibonacci sequence of layers ABAABABAABAAB. . . . Such a crystal using LiTaO3

has been built†. In that scheme the A and B layers each had a pair of antiparallel
ferroelectric domains. The thicknesses of the domains were LA1 and LA2 in layer A
and LB1 and LB2 in layer B. Let LA D LA1 C LA2 and LB D LB1 C LB2 and assume that
LA1 D LB1 D L. Let LA2 D L�1 C C� and LB2 D L�1 � CD�, with D D �1 C p

5�/2 and C
a small number. Let D D DLA C LB be a characteristic distance. Then the vectors Gm,n

serve as quasiperiodic reciprocal-lattice vectors

Gm,n D 2"

D
�m C nD�. �W20.47�

† S. Zhu et al., Science, 278, 843(1997).
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There exist a set of numbers �m1, n1� that make Gm1,n1 ³ K21 and another pair �m2, n2�
that make Gm2,n2 ³ K31 . Thus both K21 and K31 are provided by the structure. In the
reference cited above, the values used for the structural parameters were L D 10.7 µm
and C D 0.23.

W20.9 Graphite Intercalated Compounds

Graphite consists of graphene layers of sp2-bonded carbon rings arranged in the
stacking sequence ABAB. . . and separated by 0.335 nm, which is substantially larger
than the nearest-neighbor distance of 0.142 nm. The in-plane lattice constant of the
hexagonal sheet is 0.246 nm. The layers are only weakly bound together by van der
Waals forces. It is possible to insert foreign atoms and molecules in the interlayer
region to form graphite intercalated compounds (GICs). It is found that the atoms
intercalate in well-defined stoichiometric ratios, forming compounds such as KC24. In
one type of arrangement one layer of intercalate is followed by n graphene layers, as
illustrated in Fig. W20.4a. This is called an n-stage GIC. For example, KC24 can exist
as a two-stage compound KC12ð2 or a three-stage compound KC8ð3. Values of n up to
8, or higher, are not uncommon. In other compounds there may be several intercalate
layers, followed by n graphene layers. In still other situations the intercalates may form
islands arranged in an array interspersed in the graphite structure (the Daumas–Herold
domain structure). This is illustrated in Fig. W20.4b.

The distance between successive intercalate layers, dc, depends on the degree of
staging. Different forms of ordering are found in the GICs. The intercalated layers
could either be commensurate or incommensurate with the host lattice. The graphene
layers could either maintain the ABAB. . . . stacking sequence or adopt some other
sequence, such as AB/BA/AB/BA/. . . (where a slash denotes an intercalated layer).
The intercalate could exist as an ordered two-dimensional crystal, a disordered glass,
or even a liquid.

The intercalated atoms and molecules may act as either donors or acceptors. In
either case, carriers are injected into the " bands of the graphene sheet. Typical donors
are the alkali metals, which form GICs such as LiC6, LiC12, LiC18, KC8, KC24, . . . ,

d
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Figure W20.4. Graphite intercalated compounds: (a) n D 5 stage compound; (b) island inter-
calation.
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KC72, RbC8, RbC24 or CsC8, and CsC24. Acceptor compounds are C10HNO3, C14Br,
or C16AsF5. Note the convention of placing the chemical symbol for the donors to the
left of the carbon and the symbol for acceptors to the right.

Staging results from the interplay of various microscopic forces. Charge transfer is
brought about by the difference in chemical potentials between the graphite and the
intercalate. This, by itself, lowers the energy of the system. The Coulomb interaction
between the layers, partially screened by the mobile carriers in the graphite, is important
in establishing the staging. Elastic interactions are also involved, since the layer spacing
of the host lattice is altered to accommodate the intercalated layer. One of the early
attempts† at describing the system theoretically involved the introduction of the model
internal energy:

U

N0
D t

∑
i

	i � u

2

∑
i

	2
i C 1

2

∑
ij

0Vij	i	j, �W20.48�

where N0 is the number of intercalation sites in a layer and 	i is the fractional occu-
pancy of the ith layer, a number between 0 and 1. The first two terms represent
the interaction of the intercalate with the host, and the bonding of the intercalate
to form a two-dimensional solid, respectively. The third term describes the screened
Coulomb energy and is positive. The parameters Vij are taken to be of the form
Vij D �V/2�jzijj�˛ , where zij is the interplanar distance. This form is suggested by
making a Thomas–Fermi analysis of the screening for large n. The quantities t, u, V,
and ˛�³ 5� parametrize the theory.

The entropy for a given layer is determined by partitioning N0	i intercalate atoms
among N0 sites. Since there are Wi D N0!/[�N0	i�!�N0 � N0	i�!] ways of doing this,
the layer entropy is, by Stirling’s approximation,

Si D kB lnWi D �kBN0[	i ln 	i C �1 � 	i� ln�1 � 	i�]. �W20.49�

The Helmholtz free energy for the system is

F

N0
D t

∑
i

	i � u

2

∑
i

	2
i C 1

2

∑
ij

0Vij	i	j C kBT
∑
i

[	i ln 	i C �1 � 	i� ln�1 � 	i�].

�W20.50�
Only the layers with nonzero 	i contribute to F. The chemical potential for the ith
layer is given by

0i D 1

N0

∂F

∂	i
D t � u	i C

∑
j

0Vij	j C kBT [ln 	i � ln�1 � 	i�] . �W20.51�

Setting all the chemical potentials equal to 0 leads to the set of coupled equations

	i D 1

1 C e
ˇ�t�u	iC

∑
j

0Vij	j�0�
. �W20.52�

† S. A. Safran, Stage ordering in intercalation compounds, H. Ehrenreich and D. Turnbull, eds., Solid State
Physics, Vol. 40, Academic Press, San Diego, Calif., 1987, p. 183.
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For a given set of staging occupancies it is possible to obtain 0�T�, F, and the other
thermodynamic variables.

Further refinements in the theory have evolved over the years. Interest in GICs
stems largely from the fact that their electrical conductivity is high and may be varied
in a controlled way by changing the stoichiometry.

Graphite fluorides (CF)n have been used as cathodes in lithium batteries. By itself,
(CF)n is a poor electrical conductor, so it is often combined with a good electrical
conductor such as graphite. The anode is made of lithium. Such lithium batteries
have high specific energy (360 WÐh/kg) and a high voltage (3 V). The material (CF)n
is a stage 1 compound with every C atom bonded to a fluorine. The layers alter-
nate in the sequence CFCFCF. . . . The lattice constants are a D 0.257 nm and c D
0.585 nm.

Other GICs that may potentially be used as cathodes have intercalant anions such as
PF6

�, AsF6
�, and SbF6

�. The obstacle to their use is the lack of a suitable electrolyte.
Superconductivity is also observed in GICs (see Chapter W16).
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PROBLEM

W20.1 Consider the case of a thin film deposited on a thick substrate (tf − ts).
(a) Show that the resulting strains in the substrate and film are +s ³ 0 and

+f ³ �as0 � af0�/af0, respectively, where as0 and af0 are the stress-free
lattice constants of the substrate and film.

(b) Show that the strain in the film can be relieved completely if the misfit
dislocations at the film/substrate interface are, on the average, separated
by a distance d D as0/j+mj, where +m is the misfit strain defined by
Eq. (W20.8).


