
CHAPTER W2

Bonding in Solids

W2.1 Atomic, Hybrid, and Molecular Orbitals Involved in Bonding in
Solid-State Materials

When isolated atoms come together to form a solid, the atomic orbitals of the valence
electrons are often modified as bonding between the atoms occurs. In this section the
orbitals for electrons in isolated atoms (i.e., the atomic orbitals) are described first.
The hybrid orbitals resulting from combinations of atomic orbitals on the same atom
are described next, followed by a description of the molecular orbitals that result
when atomic or hybrid orbitals on different atoms combine with each other as the
atoms form bonds. It should be emphasized at the outset that the atomic, hybrid, and
molecular orbitals described here are just useful approximations to the actual solutions
of the Schrödinger equation for atoms and molecules. The derivations of mathematical
expressions for these orbitals are not given here since it is outside the scope of this
material to present in detail the physics and chemistry of atoms and molecules.

Atomic Orbitals. The atomic orbitals of the electrons in an atom correspond to
the solutions of the Schrödinger equation for the wavefunctions  which are labeled
with the three quantum numbers n, l, and ml [i.e.,  �nlml�]. (The magnetic quantum
number ms is discussed later.) The energies and spatial extents of the electrons in the
atomic orbitals are determined by the principal quantum number n, which has allowed
values n D 1, 2, 3, . . . ,1. For example, the binding energies of the  �nlml� atomic
orbitals in atomic hydrogen decrease as 1/n2 while their radii increase as n2. The
orbital angular momentum quantum number l specifies the angular momentum of the
electron and can take on the values l D 0, 1, 2, . . . , n� 1. For example, for n D 4, the
allowed values of l are 0 (for s states), 1 (for p states), 2 (for d states), and 3 (for
f states). The quantum number ml determines the orientation of the orbital in space
and can have the �2lC 1� integral values lying between �l and Cl. For d states with
l D 2 the five allowed values of ml are �2, �1, 0, C1, and C2.

The probability of finding the electron at a point in space is proportional to the
value of j �nlml�j2 at that point. The charge density associated with the electron in
this orbital is given by �ej j2. The electronic charge densities for one-electron or
hydrogenic atoms and ions are shown schematically in Fig. W2.1 for the single s,
three p (px, py , and pz), and five d (dx2�y2 , dz2 , dxy , dyz, and dxz) atomic orbitals. The
shapes of these orbitals as shown are only schematic (e.g., the orbitals do not actually
have the sharp boundaries indicated in the figure).
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Figure W2.1. Electronic charge distribution in hydrogenlike s, p, and d atomic orbitals. The
relative phases of the different lobes of the p and d orbitals are indicated with plus and
minus signs. (Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill, 1979.)

It can be seen from Fig. W2.1 that the s orbital is spherically symmetric, whereas
the p and d orbitals have preferred directions in space. In particular, the px, py ,
and pz orbitals have two symmetric regions of high probability called lobes which
are directed along the x, y, and z axes, respectively. The five d orbitals are more
complicated. The dz2 orbital has a shape that is similar to the pz orbital but is much
more extended in one direction in space. The four other d orbitals are similar to each
other in shape, with four lobes as shown. It should be remembered that each orbital
can accommodate no more than two electrons, no matter how many lobes it has. It is
important to note that the phase of the wavefunction alternates between being positive
in one lobe and negative in the adjacent lobes. The significance of this will become
apparent when lobes of orbitals on different atoms overlap. Although rigorously correct
in principle only for one-electron atoms and ions, these atomic orbitals are also used
for multielectron atoms.

Some of the atomic orbitals that are important for bonding in solid-state materials
are listed in Table W2.1. The spin of the electron is s D 1

2 , and in this table the allowed
values C 1

2 and � 1
2 of the magnetic quantum number ms which correspond to spin-up

and spin-down electrons, respectively, are also given. A complete specification of the
atomic orbital is therefore given by  �nlmlms�. The maximum allowed occupancy
of an atomic orbital is given by 2�2lC 1�. A fully occupied or filled orbital or shell
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TABLE W2.1 Important Atomic Orbitals for Bonding in Solids

Atomic Maximum
Orbital n l ml ms Occupancy

1s 1 0 0 š 1
2 2 (1s2)

2s 2 0 0 š 1
2 2 (2s2)

2px , 2py , 2pz 2 1 0, š1 š 1
2 6 (2p6)

3s 3 0 0 š 1
2 2 (3s2)

3px , 3py , 3pz 3 1 0, š1 š 1
2 6 (3p6)

3dz2 , 3dx2�y2 , 3 2 0, š1, š2 š 1
2 10 (3d10)

3dxy , 3dyz, 3dxz

therefore contains 2�2lC 1� electrons. For example, a filled 3d10 shell corresponds to
10 electrons occupying all of the n D 3, l D 2 d orbitals of the atom. The fact that only
10 electrons can occupy an l D 2 orbital follows from the Pauli exclusion principle
(PEP), which states that in a quantum system such as an atom, molecule, or solid, each
electron must have a set of quantum numbers which is distinct from that of any other
electron in the system.

It should be noted that p and d orbitals are actually linear combinations of wave-
functions with different values of ml (except for pz or dz2 , which correspond to ml D 0).
The outer or valence electron configurations of neutral atoms in their ground states are
presented in Table W2.2.

Two important aspects of the bonding of electrons in neutral atoms are illustrated
in Fig. W2.2, where the energies of electrons are shown schematically as a function
of the atomic number Z. Starting with the energy levels of the H atom on the left, it
can be seen that:

1. Electrons are more tightly bound (i.e., their energies are more negative) as the
charge CZe of the nucleus increases.

2. Electrons in the same shell [i.e., in the n D 2 shell (2s and 2p) or the n D 3 shell
(3s, 3p, and, for high enough Z, 3d)] have similar energies which are usually
quite different from the energies of electrons in other shells.

It is also clear from Fig. W2.2 that electrons outside closed shells (e.g., the single
3s electron of the Na atom with Z D 11), are much less strongly bound than those
in filled shells. These less strongly bound electrons are the atomic valence elec-
trons, which can participate readily in the hybrid or molecular orbitals described
next.

Hybrid Orbitals. As atoms bond to each other in molecules and solids via covalent
bonding (i.e., the sharing of electrons), it is often useful to think of the valence electron
atomic orbitals having similar energies on a given atom (such as 2s and 2p or 3s,
3p, and 3d) combining with each other to form hybrid orbitals. The bonding between
the atoms can then involve the hybrid orbitals in addition to the atomic orbitals. An
example of this type of bonding in the CH4 molecule is discussed later.
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Figure W2.2. Dependence of the energies of electrons in atomic orbitals as a function of the
atomic number Z. (Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill,
1979.)

+
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Figure W2.3. Formation of sp hybrid orbitals from s and p atomic orbitals on the same atom.
(Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill, 1979.)

Consider now the linear combination of s and p atomic orbitals on the same atom,
leading to the formation of two new, equivalent hybrid sp orbitals. This process is
shown schematically in Fig. W2.3, where it can be seen that the resulting sp orbitals
have the directional properties of the p orbital but are asymmetric. In addition, sp
orbitals can also be formed from two s orbitals on the same atom if one of the electrons
in an s orbital is first excited or promoted to a higher-lying p orbital. This p orbital
then combines with the remaining s orbital to form two sp hybrid orbitals. The energy
initially expended to excite the electron from the s to the p orbital can be recovered
when the sp hybrid participates in a bond with another atom. This process of the
hybridization of atomic orbitals can occur in principle because it leads to the formation
of strong bonds between atoms and a lowering of the energy of the system.

The directionality of hybridized sp orbitals is due to the interference between the
s and p orbitals. For example, the pz orbital might have a phase corresponding to
 p > 0 if z > 0 and  p < 0 if z < 0. If the phase of  s is > 0, then  s C  p will
be larger (on average) for z > 0 than for z < 0. On the other hand,  s �  p will be
larger for z < 0 than for z > 0.
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The hybrid sp2 or sp3 orbitals can be formed similarly when two s and one or
two p atomic orbitals, respectively, combine on the same atom. The resulting three
equivalent sp2 hybrid orbitals have trigonal planar symmetry, while the four equivalent
sp3 hybrid orbitals have tetrahedral symmetry, as shown in Fig. W2.4. The sp3 orbitals
can be written approximately as linear combinations of the s, px, py , and pz atomic
orbitals (Borg and Dienes, 1992, p. 209). Note that the symmetric arrangements of these
sp, sp2, and sp3 orbitals in space result from the mutual repulsion of the electrons
occupying the orbitals.

Electrons in d atomic orbitals can also participate in the formation of hybrid orbitals.
Two important examples are shown in Fig. W2.5. The four dsp2 hybrid orbitals result
from the linear combination of the dx2�y2 , s, px, and py atomic orbitals on an atom.
These dsp2 hybrids appear similar in shape and symmetry (square planar) to the
dx2�y2 orbital but can accommodate four times as many electrons. The six d2sp3

hybrid orbitals that result from the linear combination of the dx2�y2 , dz2 , s, px, py ,
and pz atomic orbitals have the symmetry of an octahedron, also shown in Fig. W2.5.
Additional hybrids involving d orbitals are the three sd2 orbitals with trigonal planar
symmetry, the four sd3 orbitals with tetrahedral symmetry, the five dsp3 orbitals with

z

x x x
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y120°

x x x x
z z
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z

y + y + y + y

s px py pz

Figure W2.4. Formation of trigonal planar sp2 and of tetrahedral sp3 hybrid orbitals from s
and p atomic orbitals on the same atom. (Adapted from A. L. Companion, Chemical Bonding,
2nd ed., McGraw-Hill, 1979.)
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Figure W2.5. Square-planar dsp2 and octahedral d2sp3 hybrid orbitals formed from s, p, and
d atomic orbitals on the same atom. (Adapted from A. L. Companion, Chemical Bonding, 2nd
ed., McGraw-Hill, 1979.)

TABLE W2.3 Important Hybrid Orbitals Involved in
Bonding in Solids

Coordination
Number CN

Hybrid (Number
Orbital Symmetry of Bonds) Examples

sp Linear 2 Cu2O
sp2 Trigonal planar 3 C (graphite)
sp3 Tetrahedral 4 C (diamond)
dsp2 Square planar 4 CuCl, CuO
d2sp3 Octahedral 6 FeS2

sp3d3f Cubic 8

the symmetry of a trigonal bipyramid, the six d4sp orbitals with the symmetry of a
trigonal prism, and the eight sp3d3f orbitals with the symmetry of the vertices of a
cube. The sd3 orbitals are involved in the bonding of the Cr4C ion (substituting for
Si4C) in tetrahedral coordination with four oxygen ions in crystals such as Mg2SiO4,
forsterite.

Some of the hybrid orbitals that are important for bonding in solid-state mate-
rials are listed in Table W2.3. Also listed are the symmetries of the orbitals, the
coordination number CN or number of bonds that can be formed by an atom using
these orbitals and examples of crystals in which the hybrid orbitals are involved in
the bonding. The formation of these hybrid orbitals is only a transitional step in the
bonding process, since these orbitals are eigenstates of neither the isolated atom nor
the resulting molecule or solid.

Molecular Orbitals and Chemical Bonds. The electrons involved in the chemical
bonds between atoms in a molecule no longer occupy specific atomic or hybrid orbitals
but rather, occupy molecular orbitals (MOs) that are associated with two or more
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atoms. The wavefunctions of these MOs can be calculated in principle by solving the
Schrödinger equation for the molecule. This is very difficult to do in practice since
the potential experienced by the electrons due to the nuclei and the other electrons
is not known a priori. As a result, the solutions for the MOs must be obtained in a
self-consistent manner.

As an example, consider the simplest chemical bond, the bond between two H
atoms in the H2 molecule. In the formation of this molecule, the 1s atomic orbitals
of each H atom begin to overlap in space as the atoms approach each other. If the
phases of the two 1s orbitals are the same, constructive interference results and a
bonding molecular orbital (BMO) is produced. If the phases are opposite, destructive
interference occurs and an antibonding state results. In an occupied bonding orbital
there is an excess electron density between the nuclei. In an occupied antibonding state
there is a diminished electron density between the nuclei.

When the interaction is completed and the H2 molecule is formed, the two 1s orbitals
have combined into a single BMO known as a �1s MO, in which the two electrons are
bound equally to both nuclei. In this doubly occupied �2

1s MO, shown schematically
in Fig. W2.6a, the electron charge density midway between the two nuclei is larger
than the sum of the original charge densities in the two 1s atomic orbitals. When a �
MO is doubly occupied, the two electrons are required by the PEP to have their spins
pointing in opposite directions, corresponding to a singlet state.

Z Zz z

(a)

(b)

z z

Figure W2.6. Formation of sigma molecular orbitals (� MOs): (a) from two s atomic orbitals
on different atoms; (b) from two pz atomic orbitals on different atoms. (Adapted from
A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill, 1979.)
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Stable molecules have lower energies than the initially isolated atoms. For example,
the H2 molecule is lower in energy than the two isolated H atoms by 4.52 eV (see
Fig. 2.1 in the textbook†). This energy can be associated with the energy of the covalent
H–H � bond [i.e., E�H–H� D 4.52 eV]. The � bonds correspond to the buildup of
charge between the two atoms involved and are the strongest covalent bonds. Other �
MOs similar to the one shown in Fig. W2.6a can also be formed from any of the other
atomic (2s, 2p, 3s, 3p, 3d, . . .) or hybrid (sp, sp2, sp3, dsp2, d2sp3, . . .) orbitals.
For example, when two 2pz atomic orbitals (see Fig. W2.1) on different atoms overlap
head-on and in phase, the �2p MO shown in Fig. W2.6b is formed.

Another important type of molecular orbital is the � MO formed from p or d atomic
orbitals. For example, consider again the interaction of two 2pz orbitals on different,
identical atoms which are now aligned side by side with their phases synchronized,
as shown schematically in Fig. W2.7. Their linear combination is known as a � MO
and contains two equivalent regions of high probability, placed symmetrically with
respect to the xy plane. When occupied by two electrons, the � MO corresponds to a
covalent � bond. The � bonds are in general weaker than � bonds because their charge
distributions are more spread out.

The last type of MO to be discussed here is the υ MO formed from the head-on
overlap of two 3d orbitals on different, identical atoms. An example is shown in
Fig. W2.8, where two 3dx2�y2 orbitals overlap along the z axis. Four equivalent regions
of high probability are formed symmetrically with respect to the z axis. When the υ
MO contains its two allowed electrons, a covalent υ bond is formed. The υ bonds are
in general weaker than � or � bonds.

The methane molecule, CH4, provides a simple example of � bonding. Here four
identical � bonds are formed from the four electrons in the 1s H orbitals and the four
electrons in each of the sp3 hybrid orbitals on the C atom. The resulting tetrahedral �

(a)

(c)
(b)

Figure W2.7. Formation of a � molecular orbital (� MO) from two pz atomic orbitals on
different atoms. (Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill,
1979.)

† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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Figure W2.8. Formation of a υ molecular orbital (υ MO) from two 3dx2�y2 atomic orbitals on
different atoms. (Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill,
1979.)

H
H

H

H

C

Figure W2.9. Model of the sp3 tetrahedral � bonding in the CH4 (methane) molecule. (Adapted
from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill, 1979.)

H

H

H

N

I p

Figure W2.10. Model of the “sp3 tetrahedral” � bonding in the NH3 (ammonia) molecule.
(Adapted from A. L. Companion, Chemical Bonding, 2nd ed., McGraw-Hill, 1979.)

bonding in CH4 is shown schematically in Fig. W2.9, where the angles between the �
bonds have the ideal value of 109.47°.

Examination of the bonding in the ammonia molecule, NH3, illustrates the formation
of nonbonding molecular orbitals (NBMOs). In NH3 three � bonds are formed between
the H atoms and the N atom, as shown in Fig. W2.10. Since N has a valence of 5, the
two remaining valence electrons form a nonbonding, or lone pair (lp), orbital, also
shown in the figure. The NH3 molecule does not have perfect tetrahedral symmetry
since the three � bonds and the nonbonding orbital are not equivalent. The reality
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of the nonbonding orbital can be inferred from its transformation to a � bond in the
ammonium ion, NH4

C. Here a proton HC bonds to the N atom through its attraction
to the electrons in the NBMO, thereby converting this orbital into the fourth � bond
in the tetrahedral NH4

C ion. Non-bonding orbitals can also play important roles in the
bonding of solids. NBMOs participate in hydrogen bonding (see Section 2.7), which
helps to stabilize the structures of solid H2O and DNA.

The interaction of two atomic or hybrid orbitals on different atoms can also lead to
the formation of a less stable, antibonding MO (ABMO) lying higher in energy than
the more stable BMO. In the case of the H2 molecule the spins of the two electrons
in the �1s BMO are antiparallel, corresponding to a singlet spin state, while in the �1s

ABMO the spins are parallel, corresponding to a triplet spin state. The energy of the
�1s ABMO state lies well above that of the �1s BMO in H2, as shown in Fig. 2.1.
The triplet state of this molecule is therefore unstable. Examples of stable molecules
in which ABMOs are actually occupied by electrons are O2 and NO.

W2.2 Absence of Covalent Bonding in White Sn (b-Sn) and Pb

The absence of covalent bonding and the existence instead of metallic bonding in
the group IV elements white Sn (ˇ-Sn) of row 5 and Pb of row 6 can be attributed
to the increased separation between the s and p energy levels in these atoms. This
results from the fact that the 5s and 6s electrons are relatively more strongly bound
to the nuclei. It is therefore no longer energetically favorable for the 5s2p2 and 6s2p2

atomic electrons to undergo the hybridizations to 5sp3 and 6sp3 orbitals, respectively,
which are necessary for covalent bonding to occur. Another specific indication of the
relatively stronger binding of the 6s electrons is that Pb (6s26p2) often has a valence
equal to 2 in solids (e.g., PbO and PbS), indicating that the more strongly bound 6s2

electrons do not participate in the bonding.

W2.3 Madelung Energy of Ionic Crystals

A general expression for the electrostatic energy (i.e., the Madelung energy) of an
ionic crystal is obtained by adding together all the Coulomb interaction energies of the
ions. Let zie denote the charge of the basis ion at position si. Neutrality requires that
niD1zi D 0, where n is the number of ions in a unit cell. The Madelung energy is

U D e2

4��0


N

2

n∑
i,j

zizj
jsi � sjj C N

2

∑
R

n∑
i,j

zizj
jR C si � sjj


 , �W2.1�

where R is a Bravais lattice vector and N is the number of unit cells in the crystal
(assumed to be large). Note that R D 0 is excluded from the sum. In the first sum
the term i D j is omitted. The evaluation of this sum is carried out by summing over
“shells” of ions of given charge at a given distance from the central ion. The interactions
involving the cell at R D 0 are illustrated in Fig. W2.11.

This contribution of the electrostatic interaction to the cohesive energy of an ionic
crystal containing 2N ions is usually expressed as U D �NAe2/4��0d, where A > 0
is the Madelung constant and the energy of interaction for a NN cation–anion pair
separated by a distance d is �e2/4��0d. For the CsCl, NaCl, and cubic ZnS crystal
structures, the values of A are 1.7627, 1.7476, and 1.6381, respectively. On this basis
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si sj

R

Figure W2.11. The lines within the box correspond to the intrabasis Coulomb interactions
(within a given unit cell), while the lines joining the boxes denote the intercell interactions.

the CsCl crystal structure is expected to be slightly more stable than the NaCl crystal
structure. Other effects not included here, where ions have been treated as point charges,
such as overlap of charge clouds, make the very small calculated difference between
the CsCl and NaCl crystal structures rather meaningless. The actual ion–ion interaction
is more realistically modeled as the sum of a short-range repulsive potential and the
long-range Coulomb interaction,

V�r� D B

rm
� zczae2

4��0r
, �W2.2�

where B and m are empirical parameters. Ionic bonding and the Madelung energy are
described in more detail in Chapter 13.

W2.4 Hydrogen Bonding in Ice (Solid H2O)

An example of a crystal in which hydrogen bonding plays an essential role is solid H2O
or ice, where the hydrogen-bonding unit can be written as O–HÐ Ð ÐO. Each oxygen atom
in ice is bonded by strong O–H � bonds with the two H atoms in the H2O molecule
and by weaker HÐ Ð ÐO hydrogen bonds to two H atoms in neighboring H2O molecules.
The arrangement of a central O atom with the four H atoms is tetrahedral (Fig. W2.12).
The O–H distance in the O–H bond is about 0.10 nm and is about 0.175 nm in the
weaker HÐ Ð ÐO hydrogen bond. Ice has several stable crystal structures which share this
tetrahedral orientation of each O atom with respect to the four H atoms surrounding
it and also with respect to its four next-NN O atoms. At any given instant, two of
the four H atoms in each of these tetrahedral O-centered units in ice are bonded to
the central O atom by strong O–H bonds. The other two H atoms are bonded to the
central O atom via the weaker HÐ Ð ÐO bonds. Neutron diffraction studies of solid D2O
have shown, however, that the four D (or H) atoms associated with each O atom are
constantly changing their positions so that each D (or H) atom spends half of its time
in strong � bonds to the central O atom and the other half in strong � bonds with a
neighboring O atom. These results are consistent with thermodynamic studies of the
high residual entropy found in ice crystals, which reflects the “disorder” present in
ice even at very low temperatures. Thus while H2O molecules retain their identity in
crystals of ice, it is not possible to say which two of the four H atoms are bonded via
strong O–H � bonds with the central O atom at any instant.
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Figure W2.12. Crystal structure of ice (solid H2O) illustrating hydrogen bonding and showing
the disorder in the positions of the protons (H atoms). (From N. H. Fletcher, The Chemical
Physics of Ice, Cambridge University Press, Cambridge, 1970. Reprinted with the permission of
Cambridge University Press.)

The strengths of the two bonds in O–HÐ Ð ÐO bonding units are quite different, with
the much stronger O–H � bond having an energy E�O–H� ³ 4.8 eV, while the much
weaker HÐ Ð ÐO hydrogen bond has an energy E�H Ð Ð Ð O� of only about 0.4 eV. Thus the
melting of ice (which involves the weakening of the HÐ Ð ÐO hydrogen bonds between
H2O molecules) and the boiling of water (which involves the breaking of the hydrogen
bonds) occur at relatively low temperatures. The processes of melting and boiling leave
the much stronger O–H � bonds within each H2O molecule intact.

W2.5 Standard Enthalpies of Formation

Cohesive energies Hc must in general be distinguished from the standard enthalpies
of formation fHo of crystals, which are the changes in enthalpy involved in the
formation of a crystal from the constituent elements in their standard states. For
example, the standard enthalpy of formation at T D 0 K of ˛-SiO2(s) (i.e., ˛-quartz),
according to the reaction

Si�s�C O2�g� ���! SiO2�s� �W2.3�

is equal to the standard enthalpy change rHo for this reaction. Thus

rH
o[SiO2�s�] D fH

o[SiO2�s�] �fH
o[Si�s�] �fH

o[O2�g�]

D �905.978 � 0 � 0 D �905.978 kJ/mol. �W2.4�

Solid Si(s) and molecular O2�g� in Eq. (W2.3) are in their standard states with standard
enthalpies of formation fHo, which by definition are equal to zero.† The negative

† Unless otherwise specified, the standard enthalpies of formation fHo used in this section are from the
NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data, 11, Suppl. 2 (1982).
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value for fHo[SiO2�s�] indicates that energy is released when SiO2�s� is formed
from Si(s) and O2�g� (i.e., the reaction is exothermic).

The cohesive energy of ˛-SiO2 at T D 0 K according to the reaction

SiO2�s� ���! Si�g�C 2O�g� �W2.5�

is given by

Hc[�SiO2�s�] D fH
o[Si�g�] C 2fH

o[O�g�] �fH
o[SiO2�s�]

D 451.29 C 2�246.785�� ��905.978�

D C1850.84 kJ/mol. �W2.6�

Here fHo[Si�g�] and fHo[O�g�] are the standard enthalpies of formation of gas-
phase Si and O atoms from solid Si(s) and O2�g� at T D 0 K, respectively.

W2.6 Bond Energies

The cohesive energy Hc[SiO2�s�] was shown in Eq. (W2.6) to be equal to
1850.84 kJ/mol. If this energy is assumed to be shared by the 4NA Si–O bonds per
mole of SiO2�s� (NA is Avogadro’s number), the Si–O bond energy is then

E�Si–O� D 4.80 eV. �W2.7�

The bond energies for single bonds listed in Table W2.4 have been obtained from
cohesive energies using this procedure. The crystals whose cohesive energies are used
are also listed. The close connection between bond energies and the electronegativity
scale is discussed in Section 2.8.

W2.7 Ionization Energies and Electron Affinities

It is clear from the discussions presented in Chapter 2 that the valence electrons play a
critical role in the bonding of atoms in solids. Certain important properties and param-
eters pertaining to atoms (or ions) include ionization energy, electron affinity, valence,

TABLE W2.4 Bond Energies

Bond E(X–Y)
X–Y (eV) Source

Si–Si 2.34 Si(s)
Si–C 3.21 ˇ-SiC(s, cubic)
Si–Ge 2.14 Average of Si(s) and Ge(s)
Si–N 3.45 Si3N4�s�
Si–O 4.80 ˛-SiO2�s�
C–C 3.70 C(s,diamond)
Ge–Ge 1.95 Ge(s)
Ge–O 3.66 GeO2�s�
B–N 3.32 ˇ-BN(s, cubic)
Al–N 2.90 AlN(s)
Al–O 5.33 Al2O3�s�
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and atomic or ionic radius. Of these important quantities, only the ionization energies
and electron affinities are obtained directly from experiment. The other parameters (i.e.,
valence, electronegativity, and atomic radii), can only be inferred from the measured
properties of atoms.

The first ionization energy IE(1) of an atom is the energy required to remove an elec-
tron from the neutral atom. IE(1) is also known as the ionization potential. Conversely,
the electron affinity EA of an atom is the energy released when an additional electron
is bound to a neutral atom, leading to the formation of a negative ion with charge �e.
The quantity IE(1) is thus a measure of the ease with which atoms give up electrons
(i.e., of their ability to become cations), while EA is the corresponding quantity for
the formation of anions.

The reactivity of an atom (i.e., its tendency to combine with other atoms to form a
solid), will be greater for atoms with low values of IE(1), such as Li and Na, or with
high values of EA, such as F and Cl. Conversely, atoms with high values of IE(1)
and low values of EA, such as He and Ne, will tend to be unreactive. Strongly ionic
crystals with high ionicities will be formed from pairs of atoms in which one atom has
a low IE(1) and the other atom has a high EA. The classic example is NaCl, where
the Na atom has IE�1� D 5.15 eV, the Cl atom has EA D 3.62 eV, and the resulting
ionicity (see Table 2.6) is fi D 0.94.

Values of IE(1) and IE(2) for the elements are presented in Table 2.9, with IE(1)
also shown graphically in Fig. 2.7a as a function of atomic number Z. It can be seen
that IE(1) generally increases in a given row of the periodic table from left to right as
Z, the resulting nuclear charge CZe, and the attractive electrostatic potential felt by the
electrons all increase. For example, at the beginning of the second row IE�1� D 5.39 eV
for Li with Z D 3, while at the end of the same row IE�1� D 21.56 eV for Ne with
Z D 10. Even though Z and the nuclear charge of atoms also increase down a given
group, IE(1) generally decreases in this direction because of the increase in atomic size
and the screening of the nuclear charge by electrons in filled inner shells.

The two atoms with the highest first ionization energies, He with IE�1� D 24.59 eV
and Ne with IE�1� D 21.56 eV, both have filled outer-electron shells. These two
elements, along with the other inert-gas elements in group VIII, are therefore quite
stable and unreactive. Only at low temperatures are these elements able to form close-
packed crystals in which the neutral atoms are bonded by the weak van der Waals
interaction.

Atomic excitation energies can also play a role in chemical bonding, particularly
in the formation of hybrid orbitals (see Section W2.1). For example, while IE�1� D
9.32 eV for Be is relatively high due to its 1s22s2 filled-shell electron configuration, Be
is nevertheless reactive due to the low first excitation energy of about 2.7 eV, which is
required to excite a 2s electron to a 2p atomic level. The 2s and the 2p electrons of the
excited Be atom can then form a pair of sp hybrid orbitals. Under these conditions, the
Be atom can be considered to have a valence of 2. These sp orbitals can form bonds
with other atoms, such as O in solid BeO, which has the wurtzite (i.e., hexagonal ZnS)
crystal structure.

The electron affinities EA for the elements up to Z D 87 are presented in Table 2.10
and Fig. 2.7b. It can be seen that EA is much smaller than IE(1) for a given atom.
Also, EA increases irregularly from left to right across each row of the periodic table,
reaching its maximum value for the group VII elements, which require just one addi-
tional electron to achieve a filled-shell configuration. All the elements in group II (and
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He) with filled s2 shells and in group VIII with filled s2 and p6 shells have negative
values of EA. These atoms are therefore unstable as negative ions.

W2.8 Valence

The valence z of an atom is usually defined either as the number of electrons it can
share with other atoms in covalent bonds or as the number of electrons it can gain or
lose in the formation of ionic bonds. These two definitions are often equivalent. For
example, the H atom can share its single 1s electron in a covalent bond with another
H atom or can give it up to a F atom during the formation of an ionic HF molecule.
In either case the valence of the H atom is 1.

On the basis of this definition, the most common valences for atoms are given by
the number of outer-shell s and p electrons and so can readily be predicted from their
locations in the periodic table. For example, atoms from group I (H, Li, Na, . . .) and
VII (F, Cl, Br, . . .) have valence 1, atoms from group II (Be, Mg, Ca, . . .) and VI (O,
S, Se, . . .) have valence 2, atoms from group III (B, Al, Ga, . . .) and V (N, P, As,
. . .) have valence 3, atoms from group IV (C, Si, Ge, . . .) have valence 4, while atoms
from group VIII (He, Ne, Ar, . . .) have valence 0.

As with many such simple definitions, there are a large number of instructive excep-
tions. For the transition metals and the noble metals Cu, Ag, and Au, for example,
there exist unfilled or just filled 3d, 4d, or 5d shells lying in energy just below the 4s,
5s, and 6s valence electrons. As a result, the d electrons may participate in bonding
and thereby act as valence electrons. Oxides of the 3d, 4d, and 5d transition metals
and of the noble metals illustrate this point since the valences for the metal cations
can vary from oxide to oxide, depending on the crystal structure. Some examples are
shown in Table W2.5. Note that in Fe3O4, magnetite, and Mn3O4, hausmannite, the Fe
and Mn cations are observed to have two different valence states, C2 and C3, within
the same oxide. Also included in the table are oxides of Pb, a metal with a 6s26p2

TABLE W2.5 Valence, Bonding, and Crystal Structures of Some Oxide Crystals

Chemical Valence z Local Atomic Crystal
Formula of Metal Ion Bonding Units Structure

Cu2O C1 Cu–O2, O–Cu4 Cuprite (BCC)
CuO C2 Cu–O4, O–Cu4 Tenorite (monoclinic)
MnO C2 Mn–O6, O–Mn6 NaCl
Mn2O3 C3 Mn–O6, O–Mn4 Distorted fluorite
Mn3O4 C2 (1) Mn–O4, O–Mn2CMn3C

3 Hausmannite (tetragonal)
C3 (2) Mn–O6

ˇ-MnO2 C4 ³ Mn–O6, O–Mn3 Rutile (tetragonal)
FeO C2 Fe–O6, O–Fe6 NaCl
Fe3O4 C2 (1) Fe–O6, O–Fe2CFe3C

3 Magnetite (inverse spinel)
C3 (1) Fe–O6

C3 (1) Fe–O4, O-Fe2C
2 Fe3C

2

Fe2O3 C3 ³ Fe–O6, O–Fe4 Corundum (hexagonal)
Pb2O C1 Pb–O2, O–Pb4 Cuprite (BCC)
PbO C2 Pb–O4, O–Pb4 Tetragonal
PbO2 C4 Pb–O6, O–Pb3 Rutile (tetragonal)
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electron configuration. The valence of Pb can vary due to the relatively large energy
separation between the 6s2 and 6p2 atomic energy levels.

The overall electrical neutrality of these oxide crystals requires that the total positive
charge of the metal cations be balanced by the total negative charge of the oxygen
anions. This balance is clearly reflected in the chemical formulas, assuming a valence
of oxygen equal to 2, and also in the local atomic bonding units, M–Om and O–Mn,
where m and n are the integal numbers of NNs of the metal M cations and of the O
anions, respectively. The following relationship involving the numbers of NNs and the
valences of the metal cation, z(M), and oxygen, z(O), is found to be satisfied for all
the oxides listed in the table:

mz�O� D nz�M�. �W2.8�

W2.9 Electronegativity

As an example of the use of Eq. (2.12), that is,

E�A–B� D E�A–A�C E�B–B�

2
C k�XA � XB�

2, �2.12�

consider quartz, SiO2. The single-bond energies E�Si–Si� D 2.34 eV and E�Si–O� D
4.80 eV are derived from thermochemical data (see Table W2.4). Using the single-bond
energy E�O–O� ³ 1.48 eV derived from similar data on H2O and H2O2, Eq. (2.12)
yields �XSi � XO�2 D 2.89. It follows that �XSi � XO� D �1.70 since it is known that
XSi < XO. To obtain an absolute scale for electronegativity, Pauling assigned the value
X D 4.0 to F, the most electronegative atom. In this way, the values of electroneg-
ativity presented in Table 2.11 have been obtained from Eq. (2.12). From Table 2.11
it can be seen that �XSi � XO� D 1.8 � 3.5 D �1.7, as found above. These values of
electronegativity reproduce fairly well the measured single-bond energies E(A–B) in
a wide range of materials. It should be noted that electronegativities have not been
assigned to the elements in group VIII of the periodic table, since these atoms with
filled outer-electron shells do not ordinarily form bonds with other atoms.

It can be seen from Tables 2.9, 2.10, and 2.11 that the atoms with the highest
electronegativities [i.e., F (4.0), O (3.5), N (3.0), and Cl (3.0)] are also the atoms with
some of the highest first ionization energies IE(1) and highest electron affinities EA.
This observation is the basis of an alternative electronegativity scale proposed by
Mulliken† in which these strictly atomic properties have been used to define X, as
follows:

X D IE�1�C EA

5.42
. �W2.9�

Here IE(1) and EA are expressed in electron volts. When applied to Si and O using
the data presented in Tables 2.9 and 2.10, the values XSi D 1.76 and XO D 2.78 are
obtained from Eq. (W2.9), compared with Pauling’s values of 1.8 and 3.5. Mulliken’s
scale of electronegativity is thus only reasonably consistent with that of Pauling.

Since electronegativity is a parameter that is neither directly measured from exper-
iment nor precisely defined from first principles, it is not surprising that several scales

† R. S. Mulliken, J. Chem. Phys., 2, 782 (1934); 3, 573 (1935).
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of electronegativity exist in addition to those of Pauling and Mulliken. Scales based
on different assumptions and using different physical properties as input have been
proposed by Sanderson (1976) and by Phillips (1973). The Phillips electronegativity
scale for elements in tetrahedrally coordinated environments is based on dielectric
properties, in particular the optical dielectric function. The difference between the
Pauling and Phillips electronegativities is that Phillips includes the effects of screening
of ions by the valence electrons through use of the Thomas–Fermi screening factor
exp��kTFr�, defined in Chapter 7. These electronegativity scales have been found to
be particularly useful when applied to physical properties closely related to those used
in their definition.

One of the main uses of electronegativities has been in the prediction of the frac-
tion of ionic character of a given bond (i.e., the ionicity of the bond). Ionicities as
determined by Phillips have been presented in Table 2.6. With Pauling’s definition
of electronegativity given in Eq. (2.12), the ionicity of the binary compound AB is
defined by Pauling to be

fi�Pauling� D 1 � exp
[
� �XA � XB�2

4

]
. �W2.10�

While the Pauling and Phillips definitions of X agree for the elements in the first row
of the periodic table, there are significant discrepancies for elements in lower rows.

A serious deficiency of Pauling’s and other electronegativity scales is that a single
value of X is typically assigned to an atom, independent of its valence in a solid.
Since, as shown in Table W2.5, the valence of an atom can vary in different crystal
structures, it should be expected that its electronegativity can also vary. Some examples
of the dependence of electronegativity on valence include XCu D 1.9 for the normal
Cu valence state of 1, [i.e., Cu(1)] but XCu D 2.0 for Cu(2), as well as XFe D 1.8 for
Fe(2), but XFe D 1.9 for Fe(3).

W2.10 Atomic Radii

For the one-electron atom H and for one-electron ions (HeC, Li2C, Be3C, . . .) with
nuclear charge CZe, the expectation value or most probable value for the radius of the
electron in its ground-state orbital is given by

hri D a1

Z
D 0.0529 nm

Z
, �W2.11�

where a1 D 4��oh̄
2/me2 is the first Bohr radius. The inverse dependence of hri on Z

reflects the increased attraction of the electron as the nuclear charge CZe increases.
A useful approximate expression for the radius of the outermost electron orbital with
principal quantum number n in a neutral atom is

hri ³ n2a1/Zeff, �W2.12�

where CZeffe is the effective nuclear charge experienced by the outermost electrons.
Note that Zeff will be less than Z as a result of the screening of the nuclear charge by
the electrons in filled inner shells.
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Some general observations concerning the radii presented in Table 2.12 can be made
(note that the only anions listed in the table are O2�, S2�, Se2�, Te2�, F�, Cl�, Br�,
and I�; the rest are cations):

1. The radii of atoms and ions increase as one moves down the periodic table, in
qualitative agreement with the dependence on the principal quantum number n
expressed in Eq. (W2.12).

2. For a given atom the radii rcov and rmet are closer in value to each other than to
the radius rion of the same atom.

3. Anions such as O2� or F� which have gained additional electrons have rion >
rcov, whereas the reverse is true for cations such as Be2C and Mg2C which have
given up electrons.

4. In the case of Si the three radii presented in Table 2.12 are quite different (i.e.,
rion D 0.040 nm, rcov D 0.118 nm, and rmet D 0.132 nm). These values apply, in
principle, to the Si4C ion in crystalline SiO2 or in the SiF4 molecule, to crystalline
Si with the diamond crystal structure, and to metal silicides such as V3Si in which
the Si atom has 12 NNs, respectively.

5. Values of rion will depend on the valence of the ion (see Table 2.4 and also the
sources listed in this table for values of rion for other valences). For example, the
values of rion presented in Table 2.12 for the group V elements are appropriate
for the cations N5C, P5C, and so on. The values of rion for the corresponding
anions N3�, P3�, As3�, and Sb3� are much larger (i.e., 0.150, 0.190, 0.200, and
0.220 nm, respectively).

As an example of the use of these radii, consider again SiO2 and the question
of its ionicity. Assuming ionic bonding, the interatomic distance d(Si–O) in SiO2

is predicted to be equal to the sum of the radii rion for Si and O (i.e., 0.040 nm C
0.140 nm D 0.180 nm). For the case of covalent bonding, the corresponding sum of the
radii rcov is 0.118 nm C 0.066 nm D 0.184 nm. The actual Si–O interatomic distance
in SiO2 has in fact been measured to be 0.161 nm (independent of the actual crystal
structure). Therefore, neither the ionic nor the covalent radii listed in Table 2.12 are
in fact completely appropriate for SiO2. The actual situation is that the bonding in
SiO2 is of the mixed ionic–covalent type, with the ionicity of the Si–O bond close
to 50%.

The van der Waals atomic radii rvdW are appropriate for neutral atoms with filled
outer shells which are effectively in contact with other atoms in solids but which are
not bonded to them. In such cases the internuclear distance d(A–B) can be set equal
to the sum of the van der Waals radii of atoms A and B. Examples include atoms
such as He and Ne in inert-gas crystals, nonbonded atoms in adjacent molecules in
molecular crystals such as solid H2, Cl2, or solid hydrocarbons, and nonbonded atoms
such as C in adjacent planes in the layered crystal graphite. Selected values of rvdW are
presented in Table 2.13. These values for rvdW were chosen by Pauling to be essentially
the same as the values of rion for the corresponding anions. This choice should not be
surprising since, for example, in the Cl2 molecule “the bonded (Cl) atom presents the
same face to the outside world in directions away from its bond as the ion, Cl�, does
in all directions” (Pauling, 1960, p. 258).
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PROBLEMS

W2.1 To see how rapidly the summation involved in the calculation of the Madelung
energyU converges, use Eq. (W2.1) to calculate the contributions to the summa-
tion from the first five shells of ions surrounding a central ion in the NaCl and
CsCl crystal structures.

W2.2 Compare the electronegativity difference jXC � XSij calculated from Eq. (2.12)
and the Si–Si, C–C, and Si–C bond energies listed in Table W2.4 with the
Pauling electronegativities for Si and C listed in Table 2.11.

W2.3 Calculate the Pauling ionicities fi for SiC, GaAs, AlN, ZnS, HgS, and NaCl.
Compare your results with the Phillips ionicities listed in Table 2.6 for the same
compounds. Are there any systematic differences between the two scales?


