
CHAPTER W11

Semiconductors

W11.1 Details of the Calculation of n.T/ for an n-Type Semiconductor

A general expression for n as a function of both T and Nd can be obtained as follows.
After setting Na� D 0, multiplying each term of Eq. (11.34) of the textbook† by n,
replacing the np product by nipi, and rearranging the terms, the following quadratic
equation can be obtained:

n2 �Nd
Cn� nipi D 0. 	W11.1


The following substitutions are now made in this equation: from Eq. (11.27) for n,
Eq. (11.28) for nipi, and the following expression for NdC:

Nd
C	T
 D Nd �Nd

o	T
 D
1
2Nde

ˇ[Eg�Ed��	T
]
1
2e
ˇ[Eg�Ed��	T
] C 1

. 	W11.2


After setting y D n	T
/Nc	T
 D exp[ˇ	�	T
� Eg
], w D exp	�ˇEd), and z D
exp	�ˇEg
, the following equation is obtained:

Nc
2y2 �NcNd

w

	w/y
C 2
�NcNvz D 0. 	W11.3


The quantities Nc and Nv are defined in Eq. (11.27).
This expression can be rearranged to yield the following cubic equation for y	T
 D

n	T
/Nc	T
:

y3 C w

2
y2 �

(
Ndw

2Nc
C Nvz

Nc

)
y � Nvwz

2Nc
D 0. 	W11.4


The concentration of holes will then be given by

p	T
 D ni	T
pi	T


n	T

, 	W11.5


where n	T
 is obtained from Eq. (W11.4).

† The material on this home page is supplemental to The Physics and Chemistry of Materials by
Joel I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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104 SEMICONDUCTORS

In the high-temperature limit when w × y [i.e., when ˇ	Eg � �	T
� Ed
 ³ 2 or
greater], the following quadratic equation is obtained from Eq. (W11.3):

y2 � Nd
Nc
y � Nv

Nc
z D 0. 	W11.6


The appropriate solution of this equation is

y D Nd/Nc C
√
Nd2/Nc2 � 4	�Nvz/Nc


2
. 	W11.7


In the T ! 0 K limit the terms in Eq. (W11.4) containing z D exp	�ˇEg
 can be
neglected, with the following result:

y2 C w

2
y � Ndw

2Nc
D 0. 	W11.8
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Figure W11.1. Effects of n- and p-type doping on the electrical resistivity of Si at T D 300 K,
with � plotted versus the dopant concentration on a logarithmic plot. (From J. C. Irvin, The
Bell System Technical Journal, 41, 387 (1962). Copyright  1962 AT&T. All rights reserved.
Reprinted with permission.)
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Solving this quadratic equation and also making use of the fact that w − 8Nd/Nc
yields

y	T
 D
√
Ndw

2Nc
. 	W11.9


In the intermediate temperature region, where y − w, z − y2 (i.e., Eg > 4[Eg �
�	T
] > 8Ed), and z − Ndw/2Nc, Eq. (W11.4) becomes

w

2
y2 � Ndw

2Nc
y D 0 or y	T
 D Nd

Nc
, 	W11.10


which can be written as n	T
 D Nd.

W11.2 Effects of Doping on Resistivity of Silicon

The effects of doping on the electrical resistivity of Si at T D 300 K are presented in
Fig. W11.1, where � is shown plotted versus the dopant concentration Nd or Na in a
logarithmic plot. The resistivity decreases from the intrinsic value of � ³ 3000 �Ðm
with increasing Nd or Na. Scattering from ionized dopant atoms also plays a role in
causing deviations at high values of Nd or Na from what would otherwise be straight
lines with slopes of �1 on such a plot.

W11.3 Optical Absorption Edge of Silicon

The absorption edge of Si is shown in Fig. W11.2, where the absorption coefficient
˛ determined from measurements of reflectance and transmittance at T D 300 K for a
single-crystal Si wafer is plotted as 	˛h̄ω
1/2 versus E D h̄ω. The linear nature of this
plot is in agreement with the prediction of Eq. (11.54). The onset of absorption at about
1.04 eV corresponds to h̄ω D Eg � h̄ωphonon, while the additional absorption appearing
at about 1.16 eV corresponds to h̄ω D Eg C h̄ωphonon. These two distinct absorption
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Figure W11.2. Optical absorption edge for Si at T D 300 K with the absorption coefficient ˛
plotted as 	˛h̄ω
1/2 versus the photon energy E D h̄ω. The energy gap Eg D 1.11 eV and the
energy of the phonon h̄ωphonon ³ 0.06 eV participating in this indirect optical transition can be
obtained in this way. (From Z. L. Akkerman, unpublished data.)
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onsets which are separated from Eg D 1.11 eV by h̄ωphonon D 0.06 eV ³ 485 cm�1 are
the result of the absorption and emission, respectively, of the phonon, which participates
in this indirect transition. If Si were a direct-bandgap semiconductor such as GaAs,
there would be only a single onset at h̄ω D Eg. In this way both Eg and the energy of
the participating phonon can be obtained from straightforward optical measurements.
The absorption onset associated with phonon absorption will become weaker as the
temperature decreases since fewer phonons will be available, while that associated with
phonon emission will be essentially independent of temperature.

W11.4 Thermoelectric Effects

The equilibrium thermal properties of semiconductors (i.e., the specific heat, thermal
conductivity, and thermal expansion) are dominated by the phonon or lattice contribu-
tion except when the semiconductor is heavily doped or at high enough temperatures
so that high concentrations of intrinsic electron–holes pairs are thermally excited. An
important and interesting situation occurs when temperature gradients are present in a
semiconductor, in which case nonuniform spatial distributions of charge carriers result
and thermoelectric effects appear. Semiconductors display significant bulk thermoelec-
tric effects, in contrast to metals where the effects are usually orders of magnitude
smaller. Since the equilibrium thermal properties of materials are described in Chap-
ters 5 and 7, only the thermoelectric power and other thermoelectric effects observed
in semiconductors are discussed here. Additional discussions of the thermopower and
Peltier coefficient are presented in Chapter W22.

The strong thermoelectric effects observed in semiconductors are associated with
the electric fields that are induced by temperature gradients in the semiconductor, and
vice versa. The connections between a temperature gradient rT, a voltage gradient
rV or electric field E D �rV, a current density J, and a heat flux JQ (W/m2) in a
material are given as follows:

J D �	E � SrT
 D JE C JrT,

JQ D �E � !rT.
	W11.11


Here � and ! are the electrical and thermal conductivities, respectively. The quan-
tity S is known as the Seebeck coefficient, the thermoelectric power, or simply the
thermopower, and  is the Peltier coefficient. While the electrical and thermal conduc-
tivities are positive quantities for both electrons and holes, it will be shown later that
the thermopower S and Peltier coefficient  are negative for electrons and positive for
holes (i.e., they take on the sign of the responsible charge carrier).

The Seebeck and Peltier effects are illustrated schematically in Fig. W11.3. The
thermopower S can be determined from the voltage drop V resulting from a temper-
ature difference T in a semiconductor in which no net current J is flowing and no
heat is lost through the sides. Since J D 0 as a result of the cancellation of the electrical
currents JE and JrT flowing in opposite directions due to the voltage and tempera-
ture gradients, respectively, it can be seen from Eq. (W11.11) that E D SrT D �rV.
Therefore, S is given by

S D �rV
rT D �V

T
	W11.12
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Figure W11.3. Seebeck and Peltier effects. (a) In the Seebeck effect a voltage difference V
exists in a material due to the temperature difference T. The Seebeck coefficient or ther-
mopower of the material is given by S D �V/T. (b) In the Peltier effect a flow of heat into
(or out of) a junction between two materials occurs when a current I flows through the junction.

and has units of V/K. Since V and T have the same sign for electrons and opposite
signs for holes, it follows that a measurement of the sign of S is a convenient method
for determining the sign of the dominant charge carriers. The physical significance of
S is that it is a measure of the tendency or ability of charge carriers to move from the
hot to the cold end of a semiconductor in a thermal gradient.

The Peltier coefficient 	T
 of a material is related to its thermopower S(T) by the
Kelvin relation:

	T
 D TS	T
. 	W11.13


Therefore,  has units of volts. The physical significance of the Peltier coefficient 
of a material is that the rate of transfer of heat JQab occurring at a junction between
two materials a and b when a current is flowing through the junction from a to
b is proportional to the difference ab D a �b. Note that JQab < 0 Fig. W11.3,
corresponding to the flow of heat into the junction. The Peltier effect in semiconductors
can be used for thermoelectric power generation or for cooling.

There is an additional thermoelectric effect, the Thomson effect, which corresponds
to the flow of heat into or out of a material carrying an electrical current in the presence
of a thermal gradient. The Thomson effect will not be described here since it usually
does not play an important role in the thermoelectric applications of semiconductors.

In the one-dimensional case for the Seebeck effect in a semiconductor the induced
electric field Ex is given by S dT/dx and the thermopower is given by

S D 1

qT

( h(Ee,hi
h(i � �

)
. 	W11.14


In this expression Ee,h is the kinetic energy of the charge carriers (i.e., the energy
Ee D E� Ec of an electron relative to the bottom of the conduction band or the energy
Eh D Ev � E of a hole relative to the top of the valence band). In addition, q D še is
the charge of the dominant charge carriers. Also, the chemical potential � is constant
in space in the absence of net current flow, (	E
 is the energy-dependent scattering or
momentum relaxation time for the charge carriers, and h(i and h(Ei are the averages
of these quantities over the appropriate distribution function.
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When (	E
 obeys a power law (e.g., ( / Er), the thermopower for an n-type semi-
conductor is

Sn	T
 D �kB
e

(
Ec � �

kBT
C r C 5

2

)
, 	W11.15


while for a p-type semiconductor,

Sp	T
 D kB
e

(
�� Ev

kBT
C r C 5

2

)
. 	W11.16


The exponent r is equal to � 1
2 for acoustic phonon scattering. The thermopowers of

semiconductors are typically hundreds of times larger than those measured for metals,
where, according to the free-electron model,

S D �,
2

6

kB
e

kBT

EF
³ 1 µV/K.

Physically, S is smaller in metals than in semiconductors due to the high, temperature-
independent concentrations of electrons in metals. In this case only a relatively small
thermoelectric voltage is required to produce the reverse current needed to balance the
current induced by the temperature gradient.

The Peltier effect in a semiconductor is illustrated schematically in Fig. W11.4,
where an electric field E is applied across the semiconductor by means of two metal
contacts at its ends. As a result, the energy bands and the Fermi energy EF slope down-
ward from left to right. In the n-type semiconductor in which electrons flow from left
to right, only the most energetic electrons in metal I are able to pass into the semicon-
ductor over the energy barrier Ec � � at the metal–semiconductor junction on the left.
When the electrons leave the semiconductor and pass through the metal–semiconductor
junction into metal II at the right, the reverse is true and they release an amount of heat
equal to 	Ec � �C akBT
 per electron. The term akBT represents the kinetic energy
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Figure W11.4. Peltier effect in a semiconductor. An electric field E is applied across a semi-
conductor, and as a result, the energy bands and the chemical potential � slope downward from
left to right. In the n-type semiconductor, electrons flow from left to right and in the p-type
semiconductor holes flow from right to left. The resulting temperature gradient is also shown
for each case.
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transferred by the electron as it moves through the semiconductor, with a ³ 1.5 to
2, depending on the dominant scattering process. Therefore, the net heat flow due to
electrons is from left to right through the semiconductor, with the temperature gradient
in the direction shown. It follows in this case for electrons that the magnitude of the
Peltier coefficient (i.e., the net energy transported by each electron divided by the
charge e) is

n	T
 D TSn	T
 D Ec � �C akBT

e
. 	W11.17


This result is consistent with Eq. (W11.15). Note that the position of the chemical
potential � within the energy gap can be determined from a measurement of n as
T ! 0 K.

For the p-type semiconductor shown in Fig. W11.4, holes will flow from right to
left. Since the energy of a hole increases in the downward direction on this electron
energy scale, only the most energetic holes can pass into the semiconductor over the
energy barrier �� Ev at the junction on the right. In this case the net heat flow is
from right to left, with the temperature gradient in the direction shown. It follows for
holes that

p	T
 D TSp	T
 D �� Ev C akBT

e
, 	W11.18


which is consistent with Eq. (W11.16).
The contribution of phonons to the thermoelectric power originates in the phonon

drag effect, the tendency of phonons diffusing from the hot to the cold end of a
material to transfer momentum to the electrons, thereby “dragging” them along in the
same direction. This effect becomes more noticeable at lower temperatures.

Experimental results and theoretical predictions for the Peltier coefficient  for n-
and p-type Si as functions of temperature are shown in Fig. W11.5. The Si samples
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Figure W11.5. Experimental results (points) and theoretical predictions (solid lines) for the
Peltier coefficient  for n- and p-type Si are shown as functions of temperature. The Si
samples show intrinsic behavior above T ³ 600 K. (From T. H. Geballe et al., Phys. Rev., 98,
940 (1955). Copyright  1955 by the American Physical Society.)
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show intrinsic behavior above T ³ 600 K. Note that plots of e versus T yield as
intercepts at T D 0 K, the quantities �	Ec � �
 and (�� Ev) for n- and p-type semi-
conductors, respectively. This is a convenient way of determining the position of the
chemical potential � relative to the band edges in doped semiconductors.

W11.5 Dielectric Model for Bonding

In the dielectric model of Phillips and Van Vechten (PV) for tetrahedrally coordi-
nated semiconductors with diamond and zincblende crystal structures the chemical
bonding is considered to be the sum of covalent and ionic contributions. As discussed
in Section 2.6, fc is the fraction of covalent bonding in an A–B bond involving atoms
A and B, while the ionic fraction or ionicity is fi D 1 � fc. Values of fi obtained on
the basis of the PV model are presented in Table 2.6. These values are based on the
dielectric properties of these materials and differ somewhat from those proposed by
Pauling, which are based on the thermochemistry of solids.

In the PV model the average total energy gap Eg(A–B) in, for example, a binary
compound AB containing only A–B bonds is defined as the average energy separa-
tion between the bonding and antibonding energy levels associated with the orbitals
involved in the A–B bond. Thus Eg is not an observable quantity and is in some sense
an average energy gap between the valence and conduction bands. A spectroscopic
or dielectric definition for Eg is used in the PV model rather than a thermochemical
definition based on heats of formation or cohesive energies. Specifically, Eg(A-B) is
defined experimentally in terms of the measured optical dielectric function by

/	0


/o
D 1 C A1

(
h̄ωp
Eg

)2

, 	W11.19


where

ω2
p D ne2

m/o
.

Here /	0
//o D n2(0) is the real, zero-frequency limit of the complex dielectric function
/	ω, q
//o, also known as the relative permittivity /r , and ωp is the plasma frequency.
Also, n is the concentration of valence electrons, /o the permittivity of free space, and
A1 a correction factor that is close to 1 which accounts for the possible participation
of d electrons in the optical response. The bonding–antibonding energy gap Eg(A–B)
differs from and is typically much larger than the optical energy gap Eg D Ec � Ev.
Equation (W11.19) is close in form to the expression given in Eq. (8.32), which is
derived from the Lorentz oscillator model for the optical dielectric function.

When the A–B bond is of a mixed ionic–covalent type, the gap Eg(A–B) is taken
to be complex, with a real covalent or homopolar component Eh and an imaginary
ionic or heteropolar component iC, so that

Eg	A–B
 D Eh C iC,

jEgj2 D E2
h C C2.

	W11.20
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The definitions of Eh and C in terms of microscopic parameters associated with the
A–B bond and the binary AB compound are

Eh	A–B
 D A2

d2.5
,

C	A–B
 D 14.4b
(
zA
rA

� zB
rB

)
exp

(
�kTFd

2

)
.

	W11.21


where A2 D 39.74 eV, the dimensionless constant b ³ 1.5, d is the A–B interatomic
distance or bond length, and zA and zB are the valences and rA and rB the covalent
radii of atoms A and B, respectively, with d D rA C rB. Here Eh and C are given in
eV when rA and rB are in angstrom units. The exponential Thomas–Fermi screening
factor, defined in Section 7.17, describes the screening of the ion cores by the valence
electrons and is expressed in terms of the Thomas–Fermi wave vector or inverse
screening length:

kTF D
√

3ne2

2/EF
D
√
e2�	EF


/
, 	W11.22


where n is the concentration of valence electrons, EF the Fermi energy, / the permit-
tivity of the material, and �	EF
 the electron density of states per unit volume. Typical
values of kTF are ³ 5 ð 1010 m�1. It can be seen that C(A–B) is given by the difference
between the Coulomb potentials of the two atoms A and B composing the bond.

The use of known values of d(A–A) and of Eg(A–A) determined from /(0) using
Eq. (W11.19) for the covalent elemental semiconductors diamond and Si allows both
the exponent of d, �2.5, and the constant A2 D 39.74 eV to be determined in the
expression for Eh. The ionic component C(A–B) of Eg(A–B) for binary AB semi-
conductors can then be calculated using Eq. (W11.20) from empirical values of Eg
determined from Eq. (W11.19) and values of Eh(A–B) calculated from Eq. (W11.21).
It has been shown empirically that the ionic contribution C	A–B
 / XA � XB, the
difference of the electronegativities of the two atoms.

The ionicity of the A–B bond is defined in a straightforward manner by

fi D C2

Eg2 . 	W11.23


Thus fi D 0 when C D 0 and fi ! 1 for C × Eh. The ionicities presented in
Table 2.6, known as spectroscopic ionicities, have been calculated in this way using
the PV model. For group III–V compounds it has been found that C is usually smaller
than Eh so that fi < 0.5. The bonding in these compounds is therefore predominantly
covalent. The reverse is true for the group II–VI and I–VII compounds, where C is
usually greater than Eh.

Values of Eh, C, Eg	A� B
, and fi for several semiconductors with the diamond
or zincblende crystal structures are presented in Table W11.1. Note that Eh is nearly
constant for isoelectronic sequences (e.g., for Ge, GaAs, and ZnSe), where Eh ³
4.3 eV, since their NN distances d are nearly constant. The optical energy gap Eg
and the average total energy gap Eg(A–B) are neither proportional to nor simply
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TABLE W11.1 Values of Eh , C , Eg .A − B/, and fi for Several Semiconductors

Semiconductor

IV III–V II–VI Eh (eV) C (eV) Eg	A� B
 (eV) fi Eg/Eg(A–B)

C (diamond) 13.5 0 13.5 0 0.40
BN 13.1 7.71 15.2 0.256 0.39

BeO 11.5 13.9 18.0 0.602 0.52
3C–SiC (ˇ-SiC) 8.27 3.85 9.12 0.177 0.25
Si 4.77 0 4.77 0 0.23

AlP 4.72 3.14 5.67 0.307 0.43
MgS 3.71 7.10 8.01 0.786 0.55

Ge 4.31 0 4.31 0 0.16
GaAs 4.32 2.90 5.20 0.310 0.26

ZnSe 4.29 5.60 7.05 0.630 0.37
Gray Sn 3.06 0 3.06 0 0.026

InSb 3.08 2.10 3.73 0.321 0.028
CdTe 3.08 4.90 5.79 0.717 0.25

related to each other [e.g., for the group IV elements, the ratio Eg/Eg(A–B) decreases
from 0.4 for diamond to 0.026 for gray Sn].

A test of the usefulness of this definition of ionicity has been provided by correlating
fi with the crystal structures of about 70 binary group IV–IV, III–V, II–VI, and I–VII
compounds. It is found that compounds with fi < fic D 0.785 are all tetrahedrally
coordinated and semiconducting with either the diamond, zincblende, or wurtzite crystal
structures, while those with fi > 0.785 are all octahedrally coordinated and insulating
with the higher-density NaCl crystal structure. This is an impressive confirmation of
the usefulness of the definition of ionicity provided by the PV model.

A definition of electronegativity has also been formulated in the PV model for
nontransition metal elements with tetrahedral coordination. This definition differs from
that of Pauling presented in Section 2.9 by including the screening of the ion cores
by the valence electrons and is likely to be a more useful definition for this group of
elements and crystal structures.

W11.6 Nonstandard Semiconductors

In addition to the standard semiconductors discussed in our textbook, which typically
have the diamond, zincblende, wurtzite, or NaCl crystal structures, there also exist
nonstandard semiconducting materials with a variety of other structures and properties,
including disordered or amorphous semiconductors, oxide, organic, and magnetic semi-
conductors, and porous Si. Some interesting and technologically important examples
of these semiconductors are next discussed briefly.

Amorphous Semiconductors. Amorphous semiconductors that lack the long-range
order found in their crystalline counterparts often retain to a first approximation the
short-range order corresponding to the NN local bonding configurations present in
the crystal. For example, in amorphous Si (a-Si) essentially every Si atom is bonded
to four NN Si atoms in a nearly tetrahedral arrangement, with bond lengths close
to the crystalline value but with a significant spread of bond angles, ³ 7o, centered
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around the ideal value of 109.47o. As a result, a-Si and crystalline Si (c-Si) are similar
in many respects, including atomic density and the fact that both are semiconduc-
tors with similar energy gaps. They differ appreciably in other important respects,
including carrier mobility and ease of doping. The most important defects in a-Si
correspond to broken or dangling bonds that are likely to be associated with voids in
the material and that give rise to electronic levels lying deep within the energy gap.
In addition, distorted or weak Si–Si bonds can give rise to electronic states, referred
to as tail states, that are localized in space and that lie within the energy gap near the
band edges.

The electron densities of states of c-Si, a-Si, and a-Si:H in and near the energy gap
are shown schematically in Fig. W11.6. The density of states for c-Si has sharp edges
at E D Ev and at E D Ec. While the densities of states for the amorphous case are
very material dependent, there exists a strong similarity between the overall shapes of
the curves except in the gap region itself. The dangling-bond defect states in a-Si pin
the Fermi energy EF, thereby preventing its movement in the gap. These defect states
thus interfere with the doping of this material and consequently with its electronic
applications.

The optical dielectric functions of c-Si and a-Si are compared in Fig. W11.7a.
The optical response in the crystalline and amorphous phases is qualitatively the same,
especially at low energies where /1	0
 D n2	0
 is essentially the same since the atomic
density of the sample of a-Si is only slightly less than that of c-Si. At higher energies
it can be seen that the structure in /1 and /2 observed in c-Si which is related to the
existence of long-range order is absent in the amorphous material where k conservation
is no longer required. The value of the optical energy gap Eopt in amorphous semicon-
ductors such as a-Si and a-Si:H is often obtained using the Tauc law for band-to-band
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the energy gap.
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Figure W11.7. Comparison of the optical properties of crystalline and amorphous Si. (a) The
quantities /1 (dashed lines) and /2 (solid lines) of c-Si and a-Si are plotted versus photon
energy E D h̄ω. (From B. G. Bagley et al., in B. R. Appleton and G. K. Celler, eds., Laser and
Electron-Beam Interactions with Solids, Copyright 1982, with permission from Elsevier Science).
(b) The logarithm of the optical absorption coefficient ˛ is plotted as a function of photon energy
h̄ω for c-Si, a-Si, and a-Si:H. (Data from E. D. Palik, Handbook of Optical Constants of Solids,
Vol. 1, Academic Press, San Diego, Calif., 1985.)

absorption:

/2	ω
 D B	h̄ω � Eopt
2

	h̄ω
2
, 	W11.24


where B is a constant and Eopt ³ Ec � Ev. The parameter Eopt can therefore be obtained
from a plot of h̄ω

p
/2 versus h̄ω. Absorption at lower energies involving the tail states at

either the valence- or conduction-band edges is often observed to depend exponentially
on h̄ω, according to the Urbach edge expression:

˛	ω
 D ˛o exp
(
h̄ω

Eo

)
. 	W11.25


Here Eo is the Urbach edge parameter and is related to the width of the tail-state regions,
while ˛o is a constant. In high-quality a-Si:H films, Eo can be as low as 0.05 eV.

Even though the optical energy gap is larger for a-Si, ³ 1.6 eV, than for c-Si, light
is still absorbed in a-Si for energies below 1.6 eV. In fact, as shown in Fig. W11.7b,
both a-Si and a-Si:H have much higher absorption coefficients than c-Si in the region
of the visible spectrum up to 3 eV, at which point direct transitions begin in c-Si. This
is due in part to the fact that in c-Si the absorption corresponds to indirect transitions
for energies below 3 eV and also to the fact that absorption in a-Si can occur below the
optical gap due to transitions from localized to extended states, and vice versa. Thus
films of a-Si:H in photovoltaic solar cells with thicknesses ³ 1 µm are thick enough
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to absorb most of the solar spectrum, while much thicker films of c-Si are required for
the same purpose.

In a-Si and other amorphous semiconductors such as a-Ge there exist mobility edges
located at Ev and Ec, respectively, as shown in Fig. W11.6. These mobility edges for
charge carriers typically lie in the tail-state regions and divide electron states in the gap
which are spatially localized from those in the energy bands that extend throughout
the material. The corresponding charge-carrier mobilities �e and �h are essentially
zero within the gap and are finite for E < Ev and E > Ec within the bands. Thermally
activated conduction of charge can still occur within the localized states in the gap
and at low temperatures will take place via variable-range hopping, as described in
Chapter 7.

Hydrogenated amorphous Si (a-Si:H) is a particularly useful alloy in which the
incorporation of H atoms leads to the removal of localized defect states from the energy
gap of a-Si by forming Si–H bonds with most of the Si atoms which otherwise would
have dangling bonds. The tail states associated with weak Si–Si bonds in a-Si can also
be eliminated via the formation of pairs of strong Si–H bonds. The electrons occupying
the strong Si–H bonds have energy levels lying within the valence band of the material,
well below the band edge at Ev. In this way the concentration of electrically active
defects can be reduced from ³ 1026 eV�1 m�3 in a-Si (about one active defect per
103 Si atoms) to ³ 1021 eV�1 m�3 in a-Si:H (one active defect per 108 Si atoms). The
density of states in a-Si:H resulting from the incorporation of hydrogen is also shown
in Fig. W11.6. A schematic model of a segment of the continuous random network
(CRN) corresponding to the bonding in a-Si:H is shown in Fig. W11.8. Four H atoms
are shown completing the Si bonds at a Si monovacancy. This is an example of the
type of three-dimensional CRN structure discussed in Chapter 4. Films of a-Si:H are
typically formed by plasma deposition from the vapor phase onto substrates usually
held at T ³ 250°C.

The a-Si:H alloys can be successfully doped n- or p-type during deposition using
the standard dopant atoms P and B and as a result have found important applications
in photovoltaic solar cells and in the thin-film transistors (TFTs) used as switching
elements in flat panel displays. These applications are described in Sections W11.8 and

v

Si atom

Si vacancy

H atom

v

Figure W11.8. Model of a segment of the continuous random network corresponding to the
bonding in a-Si:H. Four H atoms are shown completing the Si bonds at a Si monovacancy.
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W11.10. The extended-state carrier mobilities in a-Si:H, �e ³ 10�4 to 10�3 m2/VÐs and
�h ³ 3 ð 10�7 m2/VÐs, are well below those found in crystalline Si, �e ³ 0.19 m2/VÐs,
due to the disorder and increased scattering present in the amorphous material. The
electrical conductivities attainable in a-Si:H by doping, �n ³ 1 ��1 m�1 and �p ³
10�2 ��1 m�1, are also well below those readily attainable in c-Si, � ³ 104 ��1 m�1.

In amorphous alloys based on Si, C, and H, the optical gap can be varied from
Eg ³ 1.8 eV for a-Si:H to above 3 eV for a-Si0.5C0.5:H, thus making the latter material
useful as a “window” layer in photovoltaic solar cells. The attainment of even larger
gaps at higher C contents is limited by the tendency in carbon-rich alloys for a mixture
of tetrahedral (i.e., diamond-like) and trigonal (i.e., graphite-like) bonding of the C
atoms to be present. The amorphous graphitic component of hydrogenated amorphous
carbon, a-C:H, has an energy gap Eg ³ 0.5 eV.

Amorphous semiconducting chalcogenide-based glasses such as a-Se and a-As2S3

have both covalent and van der Waals components in their chemical bonding, as
discussed in Section 2.2. These amorphous materials can contain molecular units such
as (Se)8 and therefore have networks of lower dimensionality and greater structural
flexibility than a-Si and a-Ge in which the bonding is three-dimensional. A schematic
model of the essentially two-dimensional CRN of a-As2S3 and other related mate-
rials is shown in Fig. 4.12. In these chalcogenide glasses, group V elements such as
As are threefold coordinated and group VI elements such as S and Se are twofold
coordinated, as in the crystalline counterparts. The highest-filled valence band in these
materials typically consists of electrons occupying lone-pair orbitals on the chalco-
genide atoms rather than electrons participating in chemical bonds with their NNs.
These glasses are typically formed by rapid quenching from the liquid phase. Appli-
cations of amorphous chalcogenide-based glasses include their use in xerography as
photoconductors, as described in Chapter 18.

Oxide Semiconductors. Some well-known oxide semiconductors include Cu2O
(cuprite), CuO, and CuO2. Some group III–V compounds which include oxygen as
the group V element are listed in Table 11.9. Semiconducting oxides such as SnO2,
In2O3, ITO (indium–tin oxide), Cd2SnO4, and ZnO can be prepared as transparent,
conducting coatings and have found a wide range of applications (e.g., as transparent
electrodes for photovoltaic solar cells).

Copper-based oxides such as La2CuO4 with Eg ³ 2.2 eV and with the perovskite
crystal structure have received considerable attention recently due to the discovery of
the high-Tc superconductivity that is observed when they become metallic through
doping or alloying. For example, when La2CuO4 becomes p-type through the replace-
ment of La3C by Sr2C, the resulting material La2�xSrxCuO4 is metallic for x > 0.06
and becomes superconducting at low temperatures, as described in Chapter 16.

Organic Semiconductors. Conjugated organic materials such as polymers
possessing resonant ,-electron bonding can be classified as semiconductors when the
energy gap Eg associated with the ,-electron system is in the range 1 to 3 eV. The
one-dimensional polymer polyacetylene, (CH)n, with alternating single and double
carbon–carbon bonds, can possess very high electrical conductivities, exceeding that
of copper, when suitable n-type (Na or Hg) or p-type (I) dopants are introduced. Other
polymers, such as polypyrrole and polyaniline, can also exhibit high conductivities
when suitably doped. A detailed description of the electronic structure and doping of
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polyacetylene is presented in Chapter W14. The large nonlinear optical effects found
in these materials may lead to important optoelectronic applications. Other applications
include their use as photoconductors in xerography.

Semiconducting organic molecular crystals can also exhibit strong electrolumines-
cence and photoluminescence and thus have potential applications in organic light-
emitting diodes.

Magnetic Semiconductors. Wide-bandgap ZnS and CdTe and narrow-bandgap
HgTe group II–VI semiconductors when alloyed with magnetic impurities such as
Mn (e.g., Zn1�xMnxS with 0 � x � 0.5) have potentially important applications based
in part on the “giant” Faraday rotations and negative magnetoresistances which they
can exhibit. The sp–d exchange interaction between the s and p conduction-band elec-
trons and the d electrons of the magnetic ions leads to very large Zeeman splittings at
the absorption edge and also of the free-exciton level. This sp–d interaction provides
the mechanism for the Faraday rotation observed for light propagating in the direction
of an applied magnetic field. The magnetic properties of these materials, known as
dilute magnetic semiconductors, are discussed briefly in Chapter W17.

Porous Si. An interesting form of Si that may have useful light-emitting applications
is porous Si, prepared via electrochemical etching of the surfaces of Si wafers. Porous
Si is believed to be a network composed of nanometer-sized regions of crystalline
Si surrounded by voids which can occupy between 50 to 90% of the volume of the
material. A transmission electron micrograph of porous Si in which the Si columns
are about 10 nm in diameter and the pore spaces are about 50 nm wide is shown
in Fig. W11.9. Tunable room-temperature photoluminescence in porous Si has been
achieved from the near-infrared to the blue-green region of the visible spectrum.

Proposals for the origins of the light emission from porous Si have focused on the
quantum confinement of charge carriers in Si regions with dimensions of 2 to 3 nm.
Other possible explanations are that oxidized regions with their larger bandgaps or the
effects of impurities such as hydrogen can explain the emission of light. It seems clear
in any case that oxygen and hydrogen play important roles in chemically passivating
the surfaces of the Si nanocrystals. These surfaces would otherwise provide surface
recombination sites that would quench the observed luminescence.

Figure W11.9. Transmission electron micrograph of porous Si in which the Si columns are
about 10 nm in diameter and the pore spaces are about 50 nm wide. (Reprinted with permission
of A. G. Cullis. From R. T. Collins et al., Phys. Today, Jan. 1997, p. 26.)
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W11.7 Further Discussion of Nonequilibrium Effects and Recombination

The buildup and decay of pn	t
 according to Eqs. (11.74) and (11.77), respectively,
are illustrated in Fig. W11.10. Band-to-band radiative recombination can be impor-
tant in highly perfect crystals of direct-bandgap semiconductors such as GaAs but is
very unlikely to be important in Si, Ge, and GaP. Indirect-bandgap semiconductors
have much longer recombination times (i.e., minority-carrier radiative lifetimes) than
direct-bandgap materials as a result of the requirement that a phonon participate in
the band-to-band recombination process. Some calculated values for minority-carrier
band-to-band radiative lifetimes are given in Table W11.2. These lifetimes have been
calculated using the van Roosbroeck–Shockley relation and are based on measured
optical properties (i.e., the absorption coefficient ˛ and index of refraction n), and on
the carrier concentrations of these semiconductors. The van Roosbroeck–Shockley
relation expresses a fundamental connection between the absorption and emission
spectra of a semiconductor and allows calculation of the band-to-band recombina-
tion rate in terms of an integral over photon energy involving ˛ and n. Note that
the calculated intrinsic lifetimes span the range from hours for Si to microseconds
for InAs.

Measured values of (p and (n in semiconductors such as Si and GaAs are often much
lower than the calculated values because of enhanced recombination due to defects and

pn

pn(t)

t

1

2

po

GI = 0

GI = 0GI > 0

po+GIτp(1)

Figure W11.10. Buildup and decay of the minority-carrier hole concentration pn	t
 in an n-type
semiconductor under low-level carrier injection for two different minority-carrier lifetimes, with
(p	1
 < (p	2
.

TABLE W11.2 Calculated Minority-Carrier Band-to-Band Radiative Lifetimes at
T = 300 K

Lifetime

Semiconductor ni (m�3) Intrinsica Extrinsicb

Si ³8 ð 1015 4.6 h 2.5 ms
Ge ³2 ð 1019 0.61 s 0.15 ms
InAs ³2 ð 1021 15 µs 0.24 µs

aLifetimes are calculated values obtained from R. N. Hall, Proc. Inst. Electr. Eng., 106B, Suppl. 17, 923
(1959).
bThe extrinsic lifetimes correspond to carrier concentrations of 1023 m�3.
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surfaces, to be discussed later. Typical measured minority-carrier lifetimes in extrinsic
Si are 1 to 100 µs, whereas in extrinsic GaAs they are 1 to 50 ns.

Minority-carrier recombination times can be on the order of picoseconds in amor-
phous semiconductors, due to the strong disorder and very high concentrations of
defects. Amorphous semiconductors can therefore be very “fast” materials with regard
to the speed of their response to external carrier excitation. The recombination times
(p and (n in crystalline semiconductors are typically much longer than the average
collision times h(i ³ 10�13 to 10�12 s.

Electron–hole recombination in the indirect-bandgap semiconductors Si, Ge, and
GaP is much more likely to occur via the participation of defects and surfaces. These
two extrinsic recombination mechanisms are discussed next.

Defect-Mediated Recombination. Defects such as metallic impurities and dislo-
cations disturb the periodic potential of the lattice and as a result introduce energy
levels deep within the energy gap of the semiconductor, often near midgap, as shown
in Fig. 11.22 for Si. The recombination rate will then be enhanced when electrons in
the conduction band fall first into the empty defect levels and then fall further into
empty levels in the valence band. The defect-mediated recombination rate is propor-
tional to the concentration of defects that have empty energy levels in the energy gap.
These defects with deep levels in the gap are often referred to as recombination centers
or traps. The carrier wavefunctions associated with traps are highly localized. While
band-to-band recombination can be expected to be the dominant recombination process
at high temperatures when n, p, and their product np are all large due to thermal
generation, defect-mediated recombination will often be the dominant recombination
mechanism at lower temperatures.

The case of defect levels with two charge states, neutral (unoccupied) and negative
(occupied by a single electron), has been treated in detail by Hall and by Shockley and
Read.† Only a brief outline is presented here. The key idea is that empty defect levels
near midgap will greatly increase the rate of recombination of electrons and holes due
to the fact that such transitions are enhanced when the energy involved is smaller (e.g.,
³ Eg/2) than the energy Eg for band-to-band recombination.

The possible transitions involving electrons and holes resulting from a defect level
at the energy Et in the gap are presented in Fig. W11.11. Transitions 1 and 2 corre-
spond to the capture by the defect of an electron from the conduction band and of a
hole from the valence band, respectively, with transitions 1 C 2 together resulting
in the recombination of an electron with a hole. Transitions 3 and 4 correspond
to the emission by the defect of a hole into the valence band and of an electron
into the conduction band, respectively, with transitions 3 C 4 together resulting in the
creation of an electron–hole pair. These defect levels are also effective in deactivating
donors and acceptors in semiconductors through the capture of the donor electrons and
acceptor holes.

When the rates of the individual transitions 1 to 4 are considered along with the
probabilities of occupation of the levels, the following results are obtained for the
steady-state emission probabilities of electrons and holes from the levels [for details,
see Grove (1967)].

† R. N. Hall, Phys. Rev., 87, 387 (1952); W. Shockley and W. T. Read, Phys. Rev., 87, 835 (1952).
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Eg

Et

1
Electron
capture

Electron
emission

Hole
capture

Hole
emission

4

2 3

E = 0

Figure W11.11. Possible transitions involving electrons and holes and resulting from a defect
level at the energy Et in the gap. 1, Capture of an electron; 2, capture of a hole; 3, emission of
a hole; 4, emission of an electron.

Absence of Carrier Injection (GI D 0). The total emission rates for holes and electrons,
transitions 3 and 4, respectively, will be proportional to the following rates:
Transition 3:

hole emission rate ep D vpth�pNv exp
(

� Et
kBT

)
	W11.26


Transition 4:

electron emission rate en D vnth�nNc exp
(

�Eg � Et
kBT

)
	W11.27


Here vpth D √
3kBT/mŁ

h and vnth D √
3kBT/mŁ

e are the thermal velocities, �p and �n
are the capture cross sections (³ 10�19 m2), and Nv and Nc are the effective densities
of states defined in Eq. (11.27), all for holes and electrons, respectively. The rates
of transitions 1 to 4 will also be proportional to the concentration of recombination
centers Nt and to the probabilities expressed in terms of the Fermi–Dirac distribution
function that the final state is empty.

Low-Level Carrier Injection (GI > 0). Net recombination rate due to defects (assuming
that �n D �p D �):

U D R�GT D �	vnthvpth
1/2Nt	pn� n2
i 


nC pC 2ni cosh[	2Et � Eg
/2kBT]
. 	W11.28


Here the carrier concentrations n and p depend on the injection rate GI, and Nt is the
density of defects whose energy levels lie in the gap at an energy Et. The recombination
rate U has its maximum value for a given GI when Et D Eg/2 (i.e., when the hyperbolic
cosine term in the denominator has its minimum value of unity). Thus recombination
centers or traps are most effective when their energy levels are located at midgap.
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In an n-type semiconductor the defect energy levels at Et will ordinarily be occupied
by electrons since n × p. These electrons can be thought of as originating directly
from the donor levels. As a result, the effective donor concentration will be reduced
to Nd �Nt in an n-type semiconductor containing a concentration Nt of recombina-
tion centers. This phenomenon, which can also occur in p-type semiconductors, is
known as majority-carrier removal and leads to an increase of the resistivity of the
semiconductor.

The lifetime for the minority-carrier holes in an n-type semiconductor containing
recombination centers and under low-level injection is determined by their rate of
capture by these centers. The capture lifetime can be shown to be given by

(p D 1

�pvpthNt
. 	W11.29


A similar equation for (n is valid for electrons in a p-type semiconductor but with
�p and vpth replaced by �n and vnth. As soon as a hole is captured by a recombi-
nation center in an n-type semiconductor (transition 2 in Fig. W11.11), an electron
will be captured essentially immediately by the center (transition 1) due to the high
concentration of electrons in the conduction band. Thus the rate-limiting step for elec-
tron–hole recombination in a semiconductor containing recombination centers will be
the capture by the center of minority carriers. As a result, the minority-carrier lifetime
is an important parameter in semiconductor devices.

The minority-carrier lifetimes (p or (n can be determined experimentally from the
decay of the photoconductivity associated with photogenerated carriers. This lifetime
is typically much longer than h(i, the average elastic scattering time, which determines
the mobility of the charge carriers. The minority-carrier lifetimes (p or (n can be
determined reliably only for low levels of illumination or injection.

Surface Recombination. The recombination rates of electrons and holes can be
enhanced at the surface of a semiconductor due to the presence of surface states (i.e.,
electron energy levels lying deep within the energy gap which result from distortions
near the surface of the bulk periodic lattice potential). These levels in the energy gap can
arise from broken or reconstructed chemical bonds at the surface of the semiconductor,
as described in Chapter 19. When surface recombination is important, the electron and
hole concentrations will vary spatially and both will be depressed near the surface of
the semiconductor due to the enhanced recombination occurring there.

The recombination rate per unit area of surface for holes in an n-type semicon-
ductor under low-level injection is usually taken to be proportional to (pn � p0) and
of the form

Rsurface D sp	pn � p0
, 	W11.30


where sp is the surface recombination velocity and has units of m/s. This velocity can
be shown to be given by

sp D �pvpthNts, 	W11.31


where Nts is the concentration of recombination centers per unit area at the surface.
Typical values of sp for Si surfaces are ³ 1 m/s but can be as high as 103 m/s. The value
of sp for Si can be reduced to 10�2 to 10�1 m/s when the Si surface is oxidized. The
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removal of these centers by passivation of the surface (e.g., by growing or depositing a
surface film of a-SiO2) is an important step in the fabrication of semiconductor devices
(see Chapter W21). The spatial dependence p(x) of the hole concentration near the
surface due to recombination can be obtained by solving the continuity equation (11.65)
with the incorporation of an appropriate hole diffusion term. In addition, the effect of
a space-charge region near the surface on the recombination rate can be determined.
For details of these calculations, see Grove (1967).

The total minority-carrier recombination rate in a semiconductor is given by

1

(
D 1

(r
C 1

(nr
, 	W11.32


where (r and (nr are the radiative and nonradiative lifetimes, respectively. Another
useful expression for 1/(p in an n-type semiconductor when all three types of recom-
bination are important is

1

(p
D k1n0 C �pvpthNt C �pvpthNts

ds
, 	W11.33


where Eqs. (11.72), (W11.29), and (W11.31) have been used. Here ds is the width of
the region near the surface where surface recombination is effective.

W11.8 Transistors

The relative suitability of semiconductors for given types of applications is often eval-
uated on the basis of relevant figures of merit (FOMs) which are specific functions
of the properties of the semiconductors. For example, the Johnson FOM for the
power capacity of high-frequency devices is JM D 	Ecvsat/,
2, the Keyes FOM for
the thermal dissipation capacity of high-frequency devices is KM D !

p
vsat//, and

the Baliga FOM for power-loss minimization at high frequencies is BHFM D �E2
c . In

these expressions Ec is the critical electric field for breakdown, vsat the saturated carrier
drift velocity, ! the thermal conductivity, / the permittivity, and � the carrier mobility.
Figures of merit for various semiconductors, normalized to 1 for Si, are presented in
Table W11.3.

TABLE W11.3 Figures of Merit for Various Semiconductors

Eg JM KM BHFM
Semiconductor (eV) 	Ecvsat/,
2 	!

p
vsat//
 	�E2

c


Si 1.11 1.0 1.0 1.0
InP 1.27 13 0.72 6.6
GaAs 1.42 11 0.45 16
GaP 2.24 37 0.73 38
3C-SiC (ˇ-SiC) 2.3 110 5.8 12
4H-SiC 3.27 410 5.1 34
C (diamond) 5.4 6220 32 850

Source: Data from T. P. Chow and R. Tyagi, IEEE Trans. Electron Devices, 41, 1481 (1994).
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The entries in Table W11.3 indicate that the semiconductors listed with wider
bandgaps than Si offer in many cases potential order-of-magnitude improvements
in performance in high-power, high-frequency electronic applications. This is to be
expected since Ec is observed to increase with increasing Eg.

Transistors are semiconductor electronic devices with at least three electrodes, as
shown in Fig. W11.12 for the case of an npn bipolar junction transistor. The term
bipolar refers to the fact that both electrons and holes flow within the device in
response to applied voltages. Other transistor structures in which only electrons or
holes respond to applied voltages include field-effect transistors (FETs) such as the
junction FET and the metal–oxide–semiconductor FET (MOSFET). A wide variety
of structures are employed for transistors, depending on the application (e.g., ampli-
fication or switching involving high frequency, high power, high speed, etc.). Only a
brief outline of transistor action and the most important transistor structures will be
presented here.

Bipolar Junction Transistor. A Si bipolar junction transistor consists physically of
three distinct regions of Si with different types and levels of doping and separated by
p-n junctions of opposite polarity in series with each other. These three regions can
either be embedded in a single piece of Si or can consist of layers of Si grown epitax-
ially on a Si substrate. The latter configuration is found in planar device technology,
as described in Chapter W21. The two possible types of bipolar junction transistors
are npn and pnp. The physical principles of operation are the same in each type, but
with electrons and holes switching roles, and so on. When the npn junction transistor
is connected to an external circuit as shown in Fig. W11.13, the left-hand side is the
n-type emitter, the central region is the p-type base, and the right-hand side is the
n-type collector. The built-in electric fields in the n-p and p-n junctions are in oppo-
site directions, as shown in Fig. W11.12. The electron energy bands at zero bias are
shown for the case when all three regions are nondegenerate, but with the emitter more
heavily doped (i.e., nC) than the base or the collector.

The operation of the npn transistor consists of forward biasing of the emitter–base
n-p junction and a stronger reverse biasing of the base–collector p-n junction, as shown
in Fig. W11.13. The electron energy bands are also shown for the npn transistor when
biased as described above. Electrons are injected from the emitter into the base where
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n+ n

Figure W11.12. An npn bipolar junction transistor: (a) directions of the built-in electric fields
at the two junctions; (b) electron energy bands across the transistor at zero bias.
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Figure W11.13. Operation of an npn transistor. (a) The emitter-base n-p junction is forward
biased, while the base–collector p-n junction is given a stronger reverse bias. The directions
of the three resulting currents Ie, Ib, and Ic for the emitter, base, and collector are shown.
(b) Symbol used for an npn junction transistor in a circuit diagram. The arrow on the emitter
indicates the direction of the conventional electric current. The direction of this arrow would be
reversed for a pnp junction transistor. (c) Electron energy bands for the biased npn transistor.

they diffuse rapidly across the narrow base region whose thickness is less than the
electron diffusion length Le D p

De(n. The electrons that cross the p-type base region
without recombining with the majority-carrier holes are then swept across the reverse-
biased base–collector n-p junction by its built-in electric field into the collector. The
motions of the electrons are shown on the energy-band diagram for the junction, with
the smaller hole current from base to emitter also indicated.

The directions of the three resulting currents Ie, Ib, and Ic for the emitter, base, and
collector are shown in Fig. W11.13a. The emitter current is given by

Ie D Ib C Ic D 	1 C ˇ
Ib, 	W11.34


where ˇ D Ic/Ib is the current gain of the transistor. For alternating currents the small-
signal current gain of the transistor is dIc/dIb. The ratio of the collector current to the
emitter current is given by

Ic
Ie

D ˇ

1 C ˇ
� 1. 	W11.35


Since most of the electrons injected from the emitter are able to travel across both
the base and the base–collector junction into the collector without recombining with
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holes, it follows that Ic is almost as large as Ie and that the base current is usually
much smaller than either Ie or Ic. Therefore, the current gain defined by Eq. (W11.34)
can be ˇ ³ 100 to 1000. A very thin base with a high diffusion coefficient and a
very long lifetime for minority carriers is required for high current gains in bipolar
junction transistors. Defect-free Si with its indirect bandgap, and hence very long
minority-carrier lifetimes, is clearly an excellent choice for this type of transistor.

A simplified circuit illustrating the use of an npn transistor as an amplifier of a
small ac voltage v	t
 is shown in Fig. W11.14. The dc voltage sources Veb and Vbc
provide the biasing of the two p-n junctions and the source of the input signal v	t

is placed in the base circuit. Kirchhoff’s loop rule applied to the emitter–base circuit
can be written as

Vbc C v	t
 D Vb � Ve � IeRe. 	W11.36


Since the emitter–base junction is forward-biased, the voltage drop Vb � Ve across
the n-p junction will in general be much smaller than the other terms in this equation.
Therefore, Eq. (W11.35) can be rewritten with the help of Eq. (W11.36) as

Ic D � ˇ

1 C ˇ

Vbc C v	t


Re
³ Vbc C v	t


Re
. 	W11.37


The additional output voltage Vc	t
 appearing across the resistor Rc in the collector
circuit and due to the input voltage v	t
 is equal to [Ic	v
� Ic	v D 0
]Rc. The voltage
gain of this transistor can therefore be shown to be

G D Vc
jvj D Rc

Re
. 	W11.38


Thus a small ac voltage in the base circuit can result in a much larger voltage in the
collector circuit. Typical voltage gains of junction transistors are ³ 100. In addition to
being used as an amplifier, transistors can also function as switches. In this case, by
controlling the base current Ib using the base voltage, the much larger collector current
Ic can be switched from a very high value to a very low value.

Vbc

Vb

Ib

Ic

Ie

Re

Rc

Vc

Ve

Veb

+

−
+
−

v(t)

Figure W11.14. Simplified circuit illustrating the use of an npn transistor as an amplifier of
a small ac voltage v	t
. The dc voltage sources Vbc and Veb provide the biasing of the two
junctions and the source of the input signal v	t
 appears in the base circuit.
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The intrinsic switching speed of the npn junction transistor described here is limited
by the time it takes the minority-carrier electrons to travel across the base region of
thickness d. Since the distance traveled by a diffusing electron in time t is given by
d D p

Dt, where D is the electron’s diffusivity, the electron transit time or switching
time of the transistor is

ttr ¾D d2

D
D ed2

�ekBT
. 	W11.39


Here �e is the mobility of the minority-carrier electrons, and the Einstein relation
given for D in Eq. (11.81) has been used. To achieve high switching speeds and
operation at high frequencies (i.e., a rapid response of the transistor to changes in
applied signals), it is important to make the base region as thin as possible and also to
fabricate the transistor from a semiconductor with as high a mobility as possible. With
D ³ 5 ð 10�3 m2/s for Si and d ³ 1 µm, the value of ttr is ³ 2 ð 10�10 s, while for
GaAs, values of ttr can be as low as 4 ð 10�11 s for the same value of d due to its
much higher diffusivity D ³ 0.023 m2/s. When the transit time ttr is shorter than the
minority-carrier lifetime (, the minority carriers can travel across the base ballistically
(i.e., without being scattered). Ballistic propagation of charge carriers can occur in a
device as its dimensions shrink in size and, as a result, the usual concepts of average
scattering time h(i and mobility � D eh(i/mŁ

c play much less important roles in limiting
the drift velocities of the carriers and operation of the device. Under these conditions
very high device speeds can be achieved.

Transistor action in a bipolar npn junction transistor thus corresponds to the injection
of minority-carrier electrons across the forward-biased emitter–base n-p junction into
the p-type base region. These electrons diffuse across the base and then drift and diffuse
in the accelerating electric field of the reverse-biased base–collector p-n junction,
where they then appear as collector current. The base current Ib, which limits the
current gain ˇ D Ic/Ib, corresponds to the back injection of holes from the base to
the emitter across the emitter–base n-p junction. The analysis of the operation of
a transistor must take into account the exact spatial distributions of dopants in the
emitter, base, and collector regions and must include the possible effects of high-level
injection.

A type of bipolar transistor that provides better gain and higher-frequency operation
than the bipolar junction transistor just discussed is the heterojunction bipolar transistor
(HBT). In an npn HBT the emitter is an n-type semiconductor with a wider bandgap
than the base and collector semiconductors. The electron energy-band diagram for an
HBT shown in Fig. W11.15 indicates that a potential barrier exists in the valence band
which hinders the back injection of holes from the p-type base into the emitter, thereby
limiting the current Ib flowing in the base circuit and increasing the current gain ˇ D
Ic/Ib. Due to the very fast, ballistic transport across the base, in contrast to the slower
diffusive transport that is ordinarily observed in bipolar junction transistors, HBTs
have been developed into the fastest devices of this kind and are used in microwave
applications and wireless communication devices.

In one successful HBT structure composed of group III–V semiconductors, InP
with Eg D 1.27 eV is grown epitaxially on a lattice-matched In0.53Ga0.47As alloy
with Eg ³ 0.8 eV. Electrons from the InP emitter reach the heavily doped pC-type
In0.53Ga0.47As base region with excess kinetic energy and travel essentially ballisti-
cally to the collector. The high cutoff frequency of 165 GHz and average electron
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Figure W11.15. Electron energy-band diagram for a heterojunction bipolar transistor (HBT).
In the npn HBT shown here the emitter has a wider bandgap than the base and collector
semiconductors. A potential barrier exists in the valence band that hinders the back injection of
holes from the p-type base into the emitter. (From A. F. J. Levi et al., Phys. Today, Feb. 1990,
p. 61. Copyright  1990 by the American Institute of Physics.)

velocity of 4 ð 105 m/s measured at T D 300 K in the active region correspond to a
total delay of less than 1 ps in the active region between the emitter and the bulk
of the collector. The extreme process control ideally required for the fabrication of
such HBT devices is indicated by the need to maintain an atomically flat interface
between the InP emitter and the base and to restrict the width of the emitter–base
doping profile to about 5 nm. Molecular beam epitaxy, described in Chapter W21, is
capable of achieving the control needed in the deposition process. Nevertheless, due
to the extreme deposition control needed and due to the lack of a reliable native oxide,
these group III–V-based devices are unlikely to replace Si technology, despite their
outstanding characteristics.

Another material demonstrating impressive performance and high speed in HBT
structures is alloys of SiGe grown heteroepitaxially on Si substrates. The lower-bandgap
p-type SiGe base region in Si–SiGe HBTs allows carriers to travel much faster across
the base and thus operation at higher frequencies.

A class of transistors whose operation involves only majority carriers is known as
field-effect transistors (FETs). These devices are simpler than bipolar junction tran-
sistors and correspond in practice to a resistor whose resistance is controlled by an
applied voltage and the resulting electric field in the semiconductor. They therefore
operate on a completely different physical mechanism than the bipolar junction tran-
sistors. Instead of having an emitter, collector, and base, FETs consist of a source and
a drain for electrons and a gate that is used either to control or create a conducting
channel in the semiconductor. FETs can be viewed as electronic switches that are in
either an “on” or an “off” state. As a result, an FET corresponds in a real sense to
a single bit (i.e., a binary unit of information). The junction field-effect transistor is
discussed briefly next. The metal–oxide–semiconductor FET (MOSFET) is described
in Chapter 11.



128 SEMICONDUCTORS

Junction Field-Effect Transistor. The configuration of a junction FET in a rect-
angular bar of n-type Si is shown schematically in Fig. W11.16. The two metallic
electrodes at the ends of the bar are the source and drain and the conducting channel
in the n-type Si between them is controlled by the two pC-type gates at the center
of the bar. The bar of Si acts as a resistor whose resistance R is controlled by the
reverse-bias gate voltage Vg. As Vg is increased, the depletion regions at the two
reverse-biased pC-n junctions widen and effectively restrict the cross-sectional area
of the path or conducting channel of the majority-carrier electrons as they flow from
source to drain. The conductance G D 1/R of the Si bar is therefore controlled by the
gate voltage Vg. The junction FET is “on” when the channel is open and conducting
and is “off” when it is closed and nonconducting. The speed of the junction FET is
controlled by the transit time of the majority carriers through the channel and so is
inversely proportional to the gate length.

Current–voltage characteristics of a junction FET are also presented in Fig. W11.16
in the form of the source-to-drain current Id versus the source-to-drain voltage Vd for
a series of gate voltages Vg. For a given Vg, the current Id is observed to increase
linearly and then to saturate. The analysis of the current response of a junction FET is
complicated by the fact that the widths of the two depletion regions on opposite sides
of the bar are not constant along the channel. As shown in Fig. W11.16, the width
will be greater near the drain, where the voltage Vd adds its contribution to the reverse
biasing of the two pC-n junctions. The conducting channel will be “pinched” (i.e., will
decrease in cross-sectional area to a small value) when the two depletion regions are
very close to each other near the drain electrode. The current Id does not in fact go to
zero due to this “pinching” effect but instead, saturates, as observed. As the channel
shrinks in cross section, the electric field lines are squeezed into a smaller area. As a
result, the electric field in the channel increases and current continues to flow. In this
case, Ohm’s law will no longer be valid when the electric field reaches a value where
the mobility of the majority carriers starts to decrease due to inelastic scattering effects
associated with “hot” carriers, as described in the discussion of high-field effects in
Section 11.7.

The rapid increase in drain current Id that is observed to occur in Fig. W11.16 as
either Vg and/or Vd increase in magnitude is just the junction breakdown which occurs
when the pC-n junctions are strongly reverse-biased. It can be seen that both Vg and
Vd contribute to the breakdown of the junction FET.

In the junction FET the gate voltage effectively controls the resistance R or conduc-
tance G of the p-type Si region and so controls the flow of current through the device.
The transconductance of the transistor is defined by

gm D ∂Id
∂Vg

. 	W11.40


Here gm expresses the degree of amplification and control of the source-to-drain current
Id by the gate voltage Vg and is one of the most important characteristics of the
transistor.

Other Types of Transistors. An intrinsic problem in semiconductor devices is
that the doping procedure which provides the majority carriers can also lead to a
decrease in the carrier mobility at high doping levels, as illustrated in Fig. 11.15. This
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Figure W11.16. Properties of a junction FET. (a) Configuration of a junction FET in a rect-
angular bar of n-type Si. The two metallic electrodes at the ends of the bar are the source and
drain, and the conducting channel between them is controlled by the p-type gates at the center
of the bar. (b) Current–voltage characteristics of the 2N3278 junction FET in the form of the
source-to-drain current Id versus the source-to-drain voltage Vd for a series of gate voltages Vg.
(c) The width of the depletion regions is greater near the drain electrode, where the drain voltage
Vd adds its contribution to the reverse biasing of the two pC-n junctions. (From B. Sapoval and
C. Hermann, Physics of Semiconductors, Springer-Verlag, New York, 1993.)

decrease occurs because the ionized donor and acceptor ions act as charged scattering
centers, and this additional scattering leads to a decrease in the average scattering or
momentum relaxation time h(i. A procedure that can minimize this effect makes use
of heterostructures or superlattices and is known as modulation doping. Modulation
doping involves introduction of the dopant atoms into a wider-bandgap layer (e.g.,
AlxGa1�xAs with Eg up to 2.2 eV) and the subsequent transfer of the carriers across
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the interface to lower-lying energy levels in an adjacent layer with a narrower bandgap
(e.g., GaAs with Eg D 1.42 eV). The carriers are thereby spatially separated from the
charged scattering centers, as shown in Fig. W11.17. Much higher carrier mobilities,
up to 150 m2/VÐs in GaAs at T ³ 4.2 K, can be achieved using modulation doping than
are ordinarily attainable using normal doping procedures. Very fast electronic devices
which can be fabricated using modulation doping and in which the charge carriers
move ballistically include MODFETs (i.e., modulation-doped FETs) and HEMTs (i.e.,
high-electron-mobility transistors).

In applications related to information technology, such as displays and photocopiers,
where larger, rather than smaller, physical dimensions are needed, it is advantageous to
be able to deposit large areas of semiconducting thin films which can then be processed
into devices such as thin-film transistors (i.e., TFTs). A semiconducting material that is
useful for many of these applications is hydrogenated amorphous Si, a-Si:H, that can
be deposited over large areas onto a wide variety of substrates via plasma deposition
techniques and that can be successfully doped n- and p-type during the deposition
process, as discussed in Chapter W21.
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Figure W11.17. Modulation doping in GaAs-AlxGa1�xAs superlattices. The carriers are
spatially separated from the charged scattering centers associated with the dopant impurity ions.
(From R. Dingle et al., Appl. Phys. Lett., 33, 665 (1978). Copyright  1978 by the American
Institute of Physics.)
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Although a-Si:H is inferior to c-Si in its electronic properties (e.g., a-Si:H possesses
an electron mobility �e ³ 10�4 m2/VÐs compared to �e D 0.19 m2/VÐs for c-Si), these
properties are sufficient for applications in field-effect TFTs (or thin-film FETs), which
act as the switches which, for example, control the state of the pixels in large-area
liquid-crystal displays. A common configuration of an a-Si:H field-effect TFT is shown
in Fig. W11.18, along with its source-to-drain current Id versus gate voltage Vg transfer
characteristic, which is similar to that of a conventional MOSFET. At the transition
from the “on” to the “off” state, the source-to-drain resistance Rd increases by about
six orders of magnitude. Other large-area applications of a-Si:H films in photovoltaic
solar cells are discussed in Section W11.10. Polycrystalline Si has a higher mobility
than a-Si:H and thus can operate at higher frequencies in TFTs.

Another material with significant potential for electronic device applications is SiC.
SiC is considered to be a nearly ideal semiconductor for high-power, high-frequency
transistors because of its high breakdown field of 3.8 ð 108 V/m, high saturated elec-
tron drift velocity of 2 ð 105 m/s, and high thermal conductivity of 490 W/mÐK. Its
wide bandgaps of 3.0 and 3.2 eV in the hexagonal 6H– and 4H–SiC forms, respec-
tively, allow SiC FETs to provide high radio-frequency (RF) output power at high
temperatures. In addition, SiC has the important advantage over most group III–V and
II–VI semiconductors in that its native oxide is SiO2, the same oxide that provides
passivation for Si.

A SiC metal–semiconductor field-effect transistor (MESFET) is shown schemati-
cally in Fig. W11.19. The gate configuration in the MESFET consists of a rectifying
metal–semiconductor Schottky barrier at the surface of a doped epitaxial layer of
SiC that is grown on either a high-resistivity substrate or a lightly doped substrate of
the opposite conductivity type. When used in RF applications, an RF voltage that is
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Figure W11.18. Common configuration of an a-Si:H field-effect TFT, along with its
source-to-drain current Id versus gate voltage Vg transfer characteristic. (From R. A. Street,
Mater. Res. Soc. Bull., 17(11), 71 (1992).)
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Figure W11.19. SiC metal–semiconductor field-effect transistor (MESFET). The gate config-
uration in the MESFET consists of a rectifying metal–semiconductor Schottky barrier at the
surface of a doped, epitaxial layer of SiC. (From K. Moore et al., Mater. Res. Soc. Bull., 23(3),
51 (1997).)

superimposed on the dc gate voltage Vg modulates the source-to-drain current in the
conducting channel, thereby providing RF gain. The SiC MESFET can provide signif-
icantly higher operating frequencies and higher output power densities than either Si
RF power FETs or GaAs MESFETs.

W11.9 Quantum Hall Effect

The study of the electrical properties of the two-dimensional electron gas (2DEG)
has yielded some remarkable and unexpected results. In the experiment† that led
to the discovery of the quantum Hall effect, a high-mobility silicon MOSFET was
used to create the 2DEG, and its electrical properties were studied at low tempera-
tures, T ³ 1.5 K, and high magnetic fields, B ³ 15 T. More recent studies utilize the
GaAs–AlGaAs heterostructure to create the 2DEG. Consider the geometry shown in
Fig. W11.20, in which a magnetic induction B is imposed perpendicular to the 2DEG,
which lies in the xy plane. The longitudinal resistivity, �xx D 	VL/I
	w/L
, and Hall
resistivity, �xy D VH/I, are measured in two dimensions, where w is the width and L
is the length of the 2DEG, respectively. The electrons are in the ground quantum state
of a potential well in the z direction, perpendicular to the plane of motion. The spatial
extent of the wavefunction in the z direction is small compared with w and L.

Prior to the experiments, the a priori expectations for the behavior of these resis-
tivities as a function of B were simple. If N is the number of electrons per unit area
in the 2DEG, then, in analogy with the discussion in Section 7.3, it was expected that
�xy D B/Ne (i.e., the Hall resistivity should be proportional to the magnetic field and
inversely proportional to the number of electrons per unit area, N). The naive Drude
expectation for �xx was that it shows no magnetoresistance. However, Shubnikov and

† K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett., 45, 494 (1980).
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Figure W11.20. Geometry of the measurement of the quantum Hall effect for the
two-dimensional electron gas.

de Haas† had found oscillatory structure in the magnetoresistivity of three-dimensional
conductors as a function of 1/B. The period of this structure is given by a formula
derived by Onsager, 	1/B
 D 2,e/h̄AF, where AF is the area of the equatorial plane
of the Fermi sphere in k space with the magnetic field along the polar axis. The physical
origin involves Landau levels (discussed in Appendix W11A) crossing the Fermi level
as the magnetic field is varied. Similar oscillations were expected in two-dimensional
conductors. In place of a Fermi sphere there would be a Fermi circle in the 	kxky

plane.

A sketch of the experimental data for the integer quantum Hall effect (IQHE) is
presented in Fig. W11.21. A steplike structure with exceedingly flat plateaus is found
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Figure W11.21. Experimental results for the Hall resistivity �xy and magnetoresistivity �xx
for the two-dimensional electron gas. (Reprinted with permission of H. Iken. Adapted from
B. I. Halperin, The quantized Hall effect, Sci. Am., Apr., 1986, p 52.)

† W. J. de Haas, J. W. Blom, and L. W. Schubnikow, Physica 2, 907 (1935).
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for �xy as a function of B. The flatness is better than 1 part in 107. The resistivity for
the nth step is �xy D h/ne2 D 25,812.8056 �/n, where n D 1, 2, 3, . . . , and is now
used as the standard of resistance. In addition, �xx consists of a series of spikelike
features as a function of B. The location of the spikes coincides with the places where
the transitions between the plateaus occur. In between the spikes it is found that the
longitudinal resistivity vanishes.

In the absence of a magnetic field, the density of states (number of states per unit
energy per unit area) for a free-electron gas in two dimensions is predicted to be
constant (see Table 11.5). Thus, for a parabolic conduction band,

�	E
 D 1

A

∑
k,ms

υ	Ek � E
 D
∫

2d2k

	2,
2
υ

(
h̄2k2

2mŁ
e

� E

)
D mŁ

e

,h̄2	E
, 	W11.41


where mŁ
e is the effective mass of the electron and 	E
 is the unit step function. The

Fermi energy is obtained by evaluating

N D
∫
dE�	E
	EF � E
 D mŁ

eEF
,h̄2 . 	W11.42


The radius of the Fermi circle is given by kF D p
2,N.

In the presence of a magnetic field, the density of states is radically transformed.
The spectrum degenerates into a series of equally spaced discrete lines called Landau
levels. The states are labeled by three quantum numbers: a nonnegative integer n, a
continuous variable kx, and a spin-projection quantum number ms. Details are presented
in Appendix W11A. The energies of the Landau levels are given by the formula
Enkxms D 	nC 1

2 
h̄ωc C g�BBms, where ωc D eB/mŁ
e is the cyclotron frequency of the

electron in the magnetic field. Note that the energy does not depend on kx. The energy
formula includes the Zeeman splitting of the spin states. The density of states becomes
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∑
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	W11.43

A sketch of the density of states is presented in Fig. W11.22. Figure W11.22a corre-
sponds to the case where there is no magnetic field. Figure W11.22b shows the
formation of Landau levels when the magnetic field is introduced but when there is no
disorder. The degeneracy per unit area of each Landau level, D, is readily evaluated
by taking the limit ωc ! 0 and converting the right-hand sum to an integral over n.
The result may then be compared with Eq. (W11.41) to give D D mŁ

eωc/2,h̄ D eB/h.
The filling factor is defined by ? D N/D. For ? D 1 the first Landau level (with n D 0
and ms D � 1

2 ) is filled, for ? D 2 the second Landau level (with n D 0 and ms D 1
2 ) is

also filled, and so on for higher values of n. Each plateau in �xy is found to be asso-
ciated with an integer value of ? (i.e., �xy D h/?e2). The filling of the Landau levels
may be controlled by either varying B or N. The areal density N may be changed by
varying the gate voltage in a MOSFET or by applying the appropriate voltages to a
heterostructure.

The boundaries of the 2DEG in a magnetic field act as one-dimensional conductors.
In the interior of a two-dimensional conductor the electrons are believed to be localized
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Figure W11.22. Density of states for a two-dimensional electron gas: (a) in the absence of a
magnetic field; (b) in the presence of a magnetic field, but with no disorder; (c) in the presence
of a magnetic field and with disorder. The smaller Zeeman spin splitting of the Landau levels
is not shown.

by scattering from the random impurities. On the edges, however, the electrons collide
with the confining potential walls and the cyclotron orbits consist of a series of circular
arcs that circumscribe the 2DEG. Electrons in such edge states are not backscattered
and carry current. Recalling the mechanism responsible for weak localization discussed
in Section W7.5, it is observed that the edge states cannot become localized. As a result,
edge states are delocalized over the entire circumference of the 2DEG. Phase coherence
is maintained around the circumference. If one were to follow an electron once around
the 2DEG, Eq. (W11A. 5) implies that its wavefunction accumulates a phase shift of
amount

υ@ D e

h̄

∮
A·dl D e

h̄

∫
B· OndS D e

h̄
, 	W11.44


where A is the vector potential, dS an area element, and  the magnetic flux through
the sample. Uniqueness of the wavefunction requires that υ@ D 2,NF, where NF is
an integer. Thus  D NF0, where 0 D h/e D 4.1357 ð 10�15 Wb is the quantum
of flux. Each Landau level contributes an edge state that circumscribes the 2DEG.
Eventually, as the Hall electric field builds up due to charge accumulation on the
edges, the cyclotron orbits of the edge states will straighten out into linear trajectories
parallel to the edges.

States with noninteger ? are compressible. If N/D is not an integer, one may imagine
compressing the electrons into a smaller area A0 so that N0 will be the new electron
density in that area. Because of the high degeneracy of the Landau level, this may
be done without a cost in energy until N0/D reaches the next-larger integer value. To
compress the electron gas further requires populating the next-higher Landau level,
which involves elevating the electronic energies. Therefore, states with integer ? are
incompressible.

The zero longitudinal resistivity of the 2DEG for integer ? may be a consequence
of the incompressibility of the filled Landau levels. If all the electrons flow as an
incompressible fluid across the 2DEG sheet, there is considerable inertia associated
with this flow. Furthermore, the fluid interacts simultaneously with many scattering
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centers, some attractive and some repulsive. Consequently, as the fluid moves along,
there is no net change in the potential energy of the system and no net scattering.

It is worth examining the condition ? D N/D in light of the condition for quantized
flux. Suppose that ? is an integer. Let there be a total of Ne conduction electrons in
the 2DEG. Then

? D N

D
D Neh

e
D Ne
NF

. 	W11.45)

Thus associated with each flux quantum are ? electrons.
For an electron to be able to pass through the sheet without being deflected by the

magnetic field, the magnetic force must be equal in magnitude, but opposite in direction,
to the Hall electric force (i.e., evB D eEH). The Hall electric field 	EH D VH/w
 is
due to charge that accumulates along the edges of the sample. Thus

VH D wvB D v

L
 D v

L
NF0 D NFvh

eL
. 	W11.46


The current carried by the 2DEG is given by

I D Nvew D Neve

L
. 	W11.47


The Hall resistivity is therefore given by

�xy D VH
I

D NFh

Nee2
D h

?e2
. 	W11.48


It is believed that the plateaus in the Hall resistivity coincide with regions where the
Fermi level resides in localized states between the Landau levels. The localized states
are a consequence of disorder. When there is disorder present, the density of states
no longer consists of a series of uniformly spaced delta functions. Rather, each delta
function is spread out into a broadened peak due to the local potential fluctuations set
up by the scattering centers. The states associated with the region near the centers of
the peaks are extended throughout the 2DEG, while those in the wings of the peak
are localized. This is illustrated in Fig. W11.22c, where the shaded regions correspond
to localized states and the unshaded regions correspond to extended states. The area
under each peak is D. As the magnetic field is varied and ωc changes, the Landau
levels move relative to the fixed Fermi level. When the Fermi level resides in the
localized states these states do not contribute to the conductivity. As long as no new
extended states are added while the localized states sweep past the Fermi level, �xy
remains constant. When B increases and EF enters a band of extended states, a charge
transfer occurs across the 2DEG which causes �xy to increase. Laughlin† has presented
a general argument based on gauge transformations showing how this happens.

The conductivity tensor is the inverse of the resistivity tensor. Thus, in the plateau
regions the Hall conductivity is �xy D ��xy/	�xx�yy � �xy�yx
 ! 1/�yx, since �xx D 0.
Thus j�xyj D ?e2/h. This is expected from the Landauer theory of conduction. The

† R. B. Laughlin, Phys. Rev. B, 23, 5632 (1981).
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current is carried by the edge states, with each Landau level contributing an edge state.
Note that both edges of the 2DEG can conduct through each edge state.

Further investigations of the quantum Hall effect at higher magnetic fields for
the lowest Landau level† have revealed additional plateaus in the Hall resistivity at
fractional values of ?. The phenomenon is called the fractional quantum Hall effect
(FQHE). If ? is expressed as the rational fraction ? D p/q, only odd values of q are
found. For the case p D 1, this is equivalent to saying that each electron is associated
with an odd number, q, of flux quanta.

The system of electrons that exhibits the FQHE is highly correlated, meaning that
the size of the electron–electron interaction is larger than the kinetic energy of the
electron. Instead of describing the physics in terms of bare electrons, one introduces
quasiparticles. One such description involves the use of what are called composite
fermions.‡ In this picture each electron is described as a charged particle attached
to a flux quantum. It may further become attached to an additional even number
of flux quanta. In such a description the composite fermion may be shown to obey
Fermi–Dirac statistics. The FQHE is then obtained as an IQHE for the composite
fermions.

In another description of the quasiparticles§ it is useful to think of the fractioniza-
tion of charge. For example, in the case where ? D 1

3 , the quasiparticles are regarded
as having charge eŁ D e/3. This does not mean that the actual physical charge of
the electron has been subdivided but that the wavefunction of a physical electron is
such that the electron is as likely to be found in three different positions. These posi-
tions may, however, independently undergo dynamical evolution and may even change
abruptly due to tunneling. Experiments on quantum shot noise¶ have, in fact, shown that
the current in the FQHE is carried by fractional charges e/3. More recent shot-noise
experiments have shown that the ? D 1

5 FQHE involves carriers with charge e/5.

W11.10 Photovoltaic Solar Cells

The photovoltaic effect in a semiconductor can occur when light with energy h̄ω > Eg
is incident in or near the depletion region of a p-n junction. The electron–hole pairs
that are generated within a diffusion length of the depletion region can be separated
spatially and accelerated by the electric field in the depletion region. They can thus
contribute to the drift current through the junction. This additional photo-induced drift
current (i.e., photocurrent) of electrons and holes upsets the balance between the drift
and diffusion currents that exists for Vext D 0 when the junction is in the dark. The
photocurrent flows from the n- to the p-type side of the junction (i.e., it has the same
direction as the net current that flows through the junction under reverse-bias conditions
when Vext < 0
. The total current density that flows through an illuminated junction
when a photo-induced voltage (i.e., a photovoltage) V is present is given by

J	V,GI
 D J	GI
� J	V
 D J	GI
� Js[exp	eV/kBT
� 1], 	W11.49


† D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett., 48, 1559 (1982).
‡ J. K. Jain, Phys. Rev. Lett., 63, 199 (1989).
§ R. B. Laughlin, Phys. Rev. Lett., 50, 1395 (1983).
¶ R. de Picciotto et al., Nature, 389, 162 (1997).
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Figure W11.23. Predicted current–voltage characteristics for a photovoltaic solar cell in the
form of a p-n junction, both in the dark (GI D 0) and illuminated (GI > 0), shown schematically
when the solar cell is connected to an external circuit. The generation rate of photo-excited
electron–hole pairs is given by GI. Also shown are the processes giving rise to the photo-induced
current.

where GI is the rate of generation or injection of carriers due to the incident light and
J	V
 is the voltage-dependent junction current given by Eq. (11.103).

Current–voltage characteristics predicted by Eq. (W11.49) are shown schematically
in Fig. W11.23 for a p-n junction connected to an external circuit, both in the dark
(GI D 0) and when illuminated (GI > 0). Also shown are the equivalent circuit of
the solar cell comprised of the p-n junction with series and shunt resistances and, in
addition, the processes giving rise to the photo-induced current. The useful current that
can be derived from the photovoltaic effect and which can deliver electrical power to
an external circuit corresponds to the branch of the J-V curve in the fourth quadrant
where V > 0 and J < 0. The voltage Voc is the open-circuit voltage that appears across
the p-n junction when J	GI,V
 D 0 (i.e., when no current flows). This voltage can be
obtained from Eq. (W11.49) and is given by

Voc D kBT

e
ln
[
J	GI


Js
C 1
]
. 	W11.50


The short-circuit current density at V D 0 is Jsc D J	GI
. Note that Voc corresponds to
a forward-bias voltage and has a maximum value for a given semiconductor equal to the
built-in voltage VB of the p-n junction, as defined in Eq. (11.94). The magnitude of the
short-circuit current density Jsc will be proportional to the integrated flux of absorbed
photons and to the effective quantum efficiency Ceff of the device (i.e., the fraction
of absorbed photons that generate electron–holes pairs, which are then collected and
contribute to the photocurrent). Note that Voc and Jsc change in opposite ways as the
energy gap of the semiconductor is varied. The voltage Voc increases with increasing
Eg, while Jsc, being proportional to number of carriers excited across the bandgap,
decreases with increasing Eg.

The optimal operating point of the p-n junction solar cell is in the fourth quadrant,
as shown. At this point the product JV has its maximum value 	JV
max (i.e., the
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Figure W11.24. Typical J–V curve for an a-Si:H Schottky-barrier solar cell under illumination
of 650 W/m2. (From M. H. Brodsky, ed., Amorphous Semiconductors, 2nd ed., Springer-Verlag,
New York, 1985.)

inscribed rectangle has the maximum possible area). The fill factor (FF) of the solar cell
is defined to be FF D 	JV
max/JscVoc, and a value as close to 1 as possible is the goal.
For a typical crystalline Si solar cell it is found that Voc ³ 0.58V, Jsc ³ 350 A/m2,
and FF ³ 0.8. A typical J-V curve for an a-Si:H Schottky barrier solar cell under
illumination of 650 W/m2 is shown in Fig. W11.24.

The efficiency of a photovoltaic solar cell in converting the incident spectrum of solar
radiation at Earth’s surface to useful electrical energy depends on a variety of factors,
one of the most important of which is the energy gap Eg of the semiconductor. There
are, however, two conflicting requirements with regard to the choice of Eg. To absorb as
much of the incident light as possible, Eg should be small. In this case essentially all of
the solar spectrum with h̄ω > Eg could be absorbed, depending on the reflectance R of
the front surface of the cell, and so on. Most of the photo-generated electrons and holes
would, however, be excited deep within their respective energy bands with considerable
kinetic energies (i.e., their energies relative to the appropriate band edge would be a
significant fraction of h̄ω). As a result, these charge carriers would lose most of their
kinetic energy nonradiatively via the process of phonon emission as they relax to the
nearest band edge. Only the relatively small fraction Eg/h̄ω of each photon’s energy
would be available to provide useful electrical energy to an external circuit.

An alternative solution would involve the use of a semiconductor with a high energy
gap so that a greater fraction of the energy of each absorbed photon could be converted
to useful electrical energy. Although this is true, the obvious drawback is that many
fewer photons would be absorbed and thus available to contribute to the photo-induced
current. From a consideration of both effects, it has been calculated that the optimum
energy gap for collecting energy at Earth’s surface in a single-color solar cell (i.e.,
a solar cell fabricated from a single semiconductor) would be Eg ³ 1.4 eV, which is
close to the energy gap of GaAs. In this case the maximum possible efficiency of the
solar cell would be ³ 26%.

For crystalline Si with Eg D 1.11 eV, the maximum possible efficiency is ³ 20%.
It has been possible so far to fabricate Si solar cells with efficiencies of ³ 15%. An
alternative to crystalline Si is a-Si:H since a-Si:H films with thicknesses of 1 µm are
sufficient to absorb most of the solar spectrum. Even though its energy gap Eg ³ 1.8 eV
is relatively high, a-Si:H is a direct-bandgap semiconductor due to the breakdown of
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selection rules involving conservation of wave vector k for optical absorption. As a
result, a-Si:H has higher optical absorption than c-Si (see Fig. W11.7b). In addition,
a-Si:H is much less expensive to produce than c-Si and so has found applications
in the solar cells that provide power for electronic calculators and other electronic
equipment. Other materials that are candidates for use in terrestrial solar cells include
the chalcopyrite semiconductor CuIn1�xGaxSe2 with Eg D 1.17 eV from which cells
with ³ 17% efficiency have been fabricated.

A possible solution to the problem associated with the choice of energy gap is to
fabricate two-color or multi color solar cells, also known as tandem solar cells. In
a two-color cell two p-n junctions fabricated from semiconductors with energy gaps
Eg1 and Eg2 > Eg1 are placed in the same structure, with the semiconductor with
the higher gap Eg2 in front. In this way more of the energy of the incident photons
with h̄ω > Eg2 would be collected by the front cell, while the back cell would collect
energy from the photons with Eg2 > h̄ω > Eg1 which had passed through the front cell.
Although higher conversion efficiencies can be achieved in this way, the higher costs
of fabricating such cells must also be taken into account. The cost per watt of output
power of a photovoltaic solar cell will ultimately determine its economic feasibility.

W11.11 Thermoelectric Devices

The most common devices based on thermoelectric effects are thermocouples, which
are used for measuring temperature differences. These are typically fabricated from
metals rather than semiconductors. Thermoelectric effects in semiconductors have
important applications in power generation and in refrigeration, due to the observed
magnitude of the thermoelectric power S in semiconductors, ³ 1 mV/K, which is 100
to 1000 times greater than the thermoelectric powers typically observed in metals. Ther-
moelectric energy conversion and cooling are achieved via the Peltier effect described
in Section W11.4. An important advantage of these thermoelectric power sources and
refrigerators fabricated from semiconductors is that they have no moving parts and so
can have very long operating lifetimes.

Schematic diagrams of a thermoelectric power source or generator and a thermo-
electric refrigerator are shown in Fig. W11.25. In the thermoelectric generator two
semiconductors, one n-type and the other p-type, each carry a heat flux from a heat
source at a temperature Th to a heat sink at a temperature Tc; see Fig. W11.4 for a
schematic presentation of the processes involved. In practice, many such pairs of semi-
conductors are used in parallel in each stage of the device. When a complete electrical
circuit is formed, a net current density J D I/A of majority carriers travels from the
hot to the cold end of each semiconductor.

The net heat input into the semiconductors from the heat source is given by

dQ

dt
D ITh	Sp � Sn
CKT� I2R

2
, 	W11.51


where the combined thermal conductance K and electrical resistance R of the pair of
semiconductors are defined, respectively, by

K D
[(
!A

L

)
n

C
(
!A

L

)
p

]
,
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R D
[(
�L

A

)
n

C
(
�L

A

)
p

]
. 	W11.52


Here ! is the thermal conductivity, � the electrical resistivity, and A and L the cross
section and length of each semiconductor, respectively.† The semiconductors are ther-
mally insulated and therefore lose no heat through their sides to the surroundings. The
three terms on the right-hand side of Eq. (W11.51) represent the rates of heat flow
either out of or into the heat source via the following mechanisms:

1. ITh	Sp � Sn
 D I	p �n
. This term represents the rate at which heat is
removed from the heat source at temperature Th via the Peltier effect at the junc-
tions between each semiconductor and the metallic contact. The thermopower Sm
of the metallic contacts cancels out of this term, and in any case, Sm is typically
much smaller than either Sp or Sn. Note that both components of the Peltier heat
are positive since “hot” electrons and “hot” holes enter the n- and p-type semi-
conductors, respectively, from the metallic contacts in order to replace the “hot”
carriers that have diffused down the thermal gradients in the semiconductors.

2. KT D K 	Th � Tc
. This term represents the rate at which heat is conducted
away from the heat source by charge carriers and phonons in the semiconductors.

3. I2R/2. This rate corresponds to the Joule heat that is generated in the semicon-
ductors, one half of which is assumed to flow into the heat source.

The electrical power P made available to an external load resistance RL can be
shown to be given by the product of the current I and the terminal voltage Vt:

P D IVt D I[	Sp � Sn
T� IR], 	W11.53


where 	Sp � Sn
T is the total thermoelectric voltage due to the Seebeck effect. The
efficiency of this thermoelectric generator in converting heat energy into electrical
energy is given by C D P/ PQ. It can be shown that C is maximized when the combined
material parameter Z given by

Z D 	Sp � Sn
2

	
p
�n!n C p

�p!p
2
	W11.54


is maximized. When Sp and Sn have the same magnitude but are of opposite signs, and
when the two semiconductors have the same thermal conductivities ! and electrical
resistivities �, Z takes on the following simpler form:

Z D S2

�!
. 	W11.55


† It is assumed here for simplicity that the thermopowers S, thermal conductivities !, and electrical resis-
tivities � of the two semiconductors are independent of temperature. In this case the Thomson heat is zero
and need not be included in the analysis.
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High values of S are needed to increase the magnitudes of the Peltier effect and
the thermoelectric voltage, low values of � are needed to minimize I2R losses, and
low values of ! are needed to allow higher temperature gradients and hence higher
values of Th. The dimensionless product ZT is known as the thermoelectric figure
of merit. Despite extensive investigations of a wide range of semiconductors, alloys,
and semimetals, the maximum currently attainable value of ZT is only about 1. When
maximum power transfer is desired, independent of the efficiency of the transfer, the
parameter to be maximized is then Z0 D S2/�.

Typical efficiencies for thermoelectric devices are in the range 10 to 12%. Ther-
moelectric power sources that obtain their heat input from the decay of radioactive
isotopes are used on deep-space probes because of their reliability and convenience
and because solar energy is too weak to be a useful source of electrical energy in deep
space far from the sun.

Thermoelectric refrigeration employs the same configuration of semiconductors
as used in thermoelectric generation, but with the load resistance RL replaced by
a voltage source V, as also shown in Fig. W11.25. In this case, as the current I
flows around the circuit, heat is absorbed at the cooled end or heat “source” and is
rejected at the other end, thereby providing refrigeration. As an example of thermo-
electric refrigeration, when n- and p-type alloys of Si0.78Ge0.22 are used, the value
S D Sp � Sn D 0.646 mV/K is obtained. With Th D 270 K and I D 10 A, each n-p
semiconductor pair can provide a cooling power of P D ITh S D 1.74 W. While the
use of thermoelectric refrigeration is not widespread due to its low efficiency compared
to compressor-based refrigerators, it is a convenient source of cooling for electronics
applications such as computers and infrared detectors.

Since different semiconductors possess superior thermoelectric performance in
specific temperature ranges, it is common to employ cascaded thermoelements in
thermoelectric generators and refrigerators, as shown in the multistage cooling device

Heat
source
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Heat
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Cooling

dQ
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dQ
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Figure W11.25. Schematic diagrams of (a) a thermoelectric power generator and (b) a ther-
moelectric refrigerator. In the thermoelectric generator or thermopile two semiconductors, one
n-type and the other p-type, each carry a heat flux from a heat source to a heat sink. In the
thermoelectric refrigerator the same configuration of semiconductors is employed, but with the
load resistance RL replaced by a voltage source V. In this case, as the current I flows around
the circuit, heat is absorbed at the cooled end or heat “source” and is rejected at the other end,
thereby providing refrigeration.
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Figure W11.26. Cascaded thermoelements are employed in thermoelectric generators and
refrigerators, as shown in the cooling module pictured here. (From G. Mahan et al., Phys.
Today, Mar. 1997, p. 42. Copyright  1997 by the American Institute of Physics.)

pictured in Fig. W11.26. In this way each stage can operate in its most efficient
temperature range, thereby improving the overall efficiency and performance of
the device. Temperatures as low as T D 160 K can be reached with multistage
thermoelectric refrigerators.

The semiconductor material properties involved in the dimensionless figure of merit
ZT for both power generation and for refrigeration are usually not independent of
each other. For example, when the energy gap Eg or the doping level Nd or Na of
a semiconductor are changed, the electronic contributions to all three parameters, S,
�, and !, will change. It is reasonable, however, to assume that the lattice or phonon
contribution !l to ! D !e C !l is essentially independent of the changes in the electronic
properties. To illustrate these effects, the values of S, �, and ! and their changes with
carrier concentration are shown at room temperature in Fig. W11.27 for an idealized
semiconductor. It can be seen that the quantity Z D S2/�! has a maximum value in this
idealized case near the middle of the range at the relatively high carrier concentration
of ³ 1025 m�3. As a result, the dominant thermoelectric materials in use today are
highly doped semiconductors.

The parameter Z has relatively low values in both insulators and metals. At the lower
carrier concentrations found in insulators, Z is low due to the resulting increase in the
electrical resistivity � and also at the higher carrier concentrations found in metals due
both to the resulting increase in the electronic contribution to the thermal conductivity
! and to the decrease of S. The decrease in S with increasing carrier concentration
occurs because a smaller thermovoltage is then needed to provide the reverse current
required to balance the current induced by the temperature gradient. These decreases
in S with increasing n or p can also be understood on the basis of Eqs. (W11.17) and
(W11.18), which indicate that Sn / 	Ec � �
 while Sp / 	�� Ev
. Either 	Ec � �

or 	�� Ev
 decrease as the chemical potential � approaches a band edge as a result of
doping. It is important that thermal excitation of electrons and holes not lead to large
increases in carrier concentrations at the highest temperature of operation, Tmax, since
this would lead to a decrease in S. It is necessary, therefore, that the energy gap Eg of
the semiconductor be at least 10 times kBTmax.

A useful method for increasing the efficiency C of thermoelectric devices is to
increase the temperature Th of the hot reservoir, thereby increasing both the Peltier
heat  D TS and the figure of merit ZT. In this way the Carnot efficiency limit
	Th � Tc
/Th will also be increased. The temperature Th can be increased by reducing
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Figure W11.27. Effects of changing the carrier concentration on the thermoelectric parameter
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the phonon mean free path, thereby decreasing !l through a disturbance of the periodic
lattice potential. This is typically accomplished by alloying or by introducing lattice
defects such as impurities. Another method of decreasing !l is to choose a semicon-
ductor with a high atomic mass M since the speed of the lattice waves is proportional
to M�1/2.

Current research into the development of new or improved thermoelectric materials
involves studies of a wide range of materials, including the semiconductors PbTe,
Si:Ge alloys, Bi2Te3, and Bi:Sb:Te alloys, which are in current use. It can be shown in
these “conventional” semiconductors that maximizing ZT is equivalent to maximizing
N	mŁ
3/2�/!l, where N is the number of equivalent parabolic energy bands for the
carriers, and mŁ and � are the electron or hole effective mass and mobility, respectively.
Other novel materials under investigation include crystals with complicated crystal
structures, such as the “filled” skudderite antimonides with 34 atoms per unit cell and
with the general formula RM4Sb14. Here M is Fe, Ru, or Os, and R is a rare earth
such as La or Ce. These crystals can have very good thermoelectric properties, with
ZT ³ 1. This is apparently related to the lowering of !l due to the motions of the rare
earth atoms inside the cages which they occupy within the skudderite structure.

Appendix W11A: Landau Levels

In this appendix an electron in the presence of a uniform magnetic field is considered.
The Hamiltonian is

H D 1

2mŁ
e

	p C eA
2, 	W11A.1


where A is the vector potential. The magnetic induction is given by B D r × A,
which automatically satisfies the condition r · B D 0. A uniform magnetic field in
the z direction may be described by the vector potential A D �ByOi. The Schrödinger
equation H D E for motion in the xy plane becomes

1

2mŁ
e

	px � eBy
2 C p2
y

2mŁ
e

 D E . 	W11A.2


This may be separated by choosing  	x, y
 D u	y
 exp	ikxx
, so

[
p2
y

2mŁ
e

C mŁ
eω

2
c

2

(
y � h̄kx

eB

)2

� E

]
u	y
 D 0, 	W11A.3


where ωc D eB/mŁ
e is the cyclotron frequency. This may be brought into the form

of the Schrödinger equation for the simple harmonic oscillator in one dimension by
making the coordinate transformation y0 D y � h̄kx/eB. The energy eigenvalues are
E D 	nC 1/2
h̄ωc, where n D 0, 1, 2, . . . . The effect of electron spin may be included
by adding the Zeeman interaction with the spin magnetic moment. Thus

E D
(
nC 1

2

)
h̄ωc C g�BBms, 	W11A.4
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where �B is the Bohr magneton, g ³ 2, and ms D š 1
2 . The energy is independent of

the quantum number kx.
From Eq. (W11A.1) it is seen that the solution to the Schrödinger equation in a

region of space where the vector potential is varying as a function of position is

 	r
 D exp
(
ik · r � i

e

h̄

∫ r

A	r0
 · dr0
)
. 	W11A.5
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PROBLEMS

W11.1 Prove that holes behave as positively charged particles (i.e., that qh D �qe D
Ce) by equating the current Je D 	�e
	�ve
 D Ceve carried by the “extra”
electron II in the valence band in Fig. 11.6 with the current Jh carried by the
hole.

W11.2 Derive the expressions for the intrinsic carrier concentration ni	T
 and pi	T
,
given in Eq. (11.29), and for the temperature dependence of the chemical
potential �	T
, given in Eq. (11.30), from Eq. (11.27) by setting ni	T
 D
pi	T
.

W11.3 Consider the high-temperature limit in an n-type semiconductor with a
concentration Nd of donors and with no acceptors. Show that the approximate
concentrations of electrons and holes are given, respectively, by n	T
 ³
ni	T
CNd/2 and p	T
 ³ pi	T
�Nd/2). [Hint: Use Eq. (11.35).]

W11.4 Calculate the average scattering time h(i for defect or phonon scattering at
which the broadening of the two lowest energy levels for electrons confined in
a two-dimensional quantum well of width Lx D 10 nm causes them to overlap
in energy. Take mŁ

c D m.

W11.5 Derive the expression RH D 	p�2
h � n�2

e
/e	n�e C p�h
2 for the Hall coef-
ficient for a partially compensated semiconductor from the general expression
for RH for two types of charge carriers given in Eq. (11.48).

W11.6 If V is the voltage drop that exists as a result of a temperature difference
T in a semiconductor in which no current is flowing, show that V and
T have the same sign for electrons and opposite signs for holes and that the
correct expression for calculating the thermoelectric power is S D �V/T.
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W11.7 (a) Using Vegard’s law given in Eq. (11.62) and the data presented in
Table 11.9, find the composition parameter x for which Al1�xBxAs alloys
(assuming they exist) would have the same lattice parameter as Si.

(b) What value of Eg would Vegard’s law predict for an alloy of this compo-
sition? [Hint: See Eq. (11.64).]

W11.8 Using the data presented in Table 2.12 for rcov	Ga
 and rcov	As
 and assuming
that d	Ga � As
 D rcov	Ga
C rcov	As
, calculate the parameters Eh, C, Eg,
and fi for GaAs based on the dielectric model of Phillips and Van Vechten.
Note: Estimate kTF using the definition given in Section 7.17.

W11.9 Plot on a logarithmic graph the carrier concentrations n and p and their
product np at T D 300 K as a function of the concentration of injected carriers
n D p from 1020 up to 1026 m�3 for the n-type Si sample with a donor
concentration Nd D 2 ð 1024 m�3 described in the textbook in Section 11.12.
Identify on the graph the regions corresponding to low- and high-level carrier
injection.

W11.10 By integrating Eq. (11.71), show that the buildup of the hole concentration
p	t
 from its initial value p0 is given by Eq. (11.74). Also, by integrating
Eq. (11.76), show that the decay of the hole concentration p	t
 to its equilib-
rium value p0 is given by Eq. (11.77).

W11.11 Using the fact that the additional output voltage Vc in the collector
circuit of the npn transistor amplifier described in Section W11.8 is equal
to [Ic	v
� Ic	v D 0
]Rc, show that the voltage gain G is given by Rc/Re.


