I CHAPTER W3

Diffraction and the Reciprocal Lattice

W3.1 Voronoi Polyhedra

The concept of Wigner—Seitz cells that is used for periodic structures may be carried
over to amorphous solids except that it is given a different name, the Voronoi poly-
hedra. Select a given atom and draw lines to all other atoms. Create bisecting planes
perpendicular to each of these lines. All points that can be reached from the given
atom without crossing one of these planes lie within the Voronoi polyhedron of that
atom. The various Voronoi polyhedra all have differing sizes and shapes, but they do
collectively fill all space without overlap. In the case of a periodic solid, translational
symmetry demands that the polyhedra all have the same size and shape and they reduce
to the Wigner—Seitz cell. An example of a Voronoi polyhedron is given in Fig. W3.1.

W3.2 Molecular Geometry and Basis Structure from Diffraction Data

The location of the diffraction maxima for a crystalline sample provides information
that allows determination of the symmetry of the reciprocal lattice and measurement of
the lattice constants (i.e., the diffraction pattern specifies the Bravais lattice). In itself, it
does not provide information as to the location or identity of the basis atoms comprising
the unit cell. Such information, however, may be extracted from an analysis of the
intensity of the diffraction spots. Since scattering experiments measure the intensity
only and not the phase, the extraction of this information turns out to be a relatively
difficult problem. (If an x-ray laser could be constructed, presumably an x-ray hologram
could be produced that would contain both amplitude and phase information.) Imagine
that one could hypothetically measure the full scattering amplitude, including the phase:
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and assume that the atomic form factors, f ;(q), are known from independent experi-
ments. Restricting q to lie on the reciprocal lattice gives

FG)=N>_ fj(G)e'S. (W3.2)
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Figure W3.1. Voronoi polyhedron for a given atom in a disordered two-dimensional solid.

The unknowns are the set of vectors {s;} and the identity of the atoms at each s;. One
way to find them is to construct a mismatch function

A(s;, ... 80) = |F(G) =N _ f;(G)e'®™ (W3.3)
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and search for the global minimum. At this minimum, if the data are perfectly accurate,
F = 0. In principle, if one measures the complex amplitudes at 3n; points in the
reciprocal lattice, one should be able to determine the n, vectors {s;}

In a realistic case, only the intensities,

1(G) = [F(G)P, (W3.4)

are measured and phase information is lost. Nevertheless, it is still possible to construct
a mismatch function
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and again search for a minimum by adjusting the set {s;}. The search for this minimum
can be an arduous numerical task and limits the size of the unit cell that can be analyzed.
It is useful to introduce the Patterson function,

P(r) = Z 1(G)eCr. (W3.6)
G

Before simplifying this, recall some elementary properties of Fourier series. A periodic
function in one dimension may be expanded as a Fourier series [(see Eq. (3.2) in the
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textbook ' ]:

)= ) eI, (W3.7)
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where the Fourier coefficients are [see Eq. (3.4)]
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Inserting this into formula (W3.8) yields
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implying the formula
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The three-dimensional generalization of the formulas above, involving sums over the
reciprocal lattice, leads to the result
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where Vs is the volume of the Wigner—Seitz cell.
The Patterson function becomes

P) =N*>" f1(G)f j(G)Vwsd(x — (s; —))). (W3.12)
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This function is seen to possess sharp peaks whenever the vector r matches an
interatomic displacement vector s; —s;. Thus, by studying the Patterson map, one
may locate these vectors and attempt to reconstruct the geometric shape of the unit
cell.

The use of the methods described above permit one to obtain short-range structural
information about the basis of the crystal. This method is of particular value in deter-
mining the structure of crystals of biological molecules. It is also of use in studying
materials with complex unit cells, such as catalysts. It is of somewhat less use in
obtaining information concerning intermediate-range order.

" The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel
I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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PROBLEM

W3.1 Define the normalized form factor for a basis by ¢;(G) = f;(G)/%; fi(G) and

assume that it is positive and does not depend on G. Let the normalized scattering
amplitude be given by a(G) = F(G)/NX; f:(G). Use the Schwarz inequality,
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to prove the following inequalities. Show that
(G < 1.
Assuming inversion symmetry of the basis, show that
(G < 31 +a2G)],
which is known as the Harker—Kasper inequality. Also prove that
la(G) + (G| < [1 (G — G'][1 £ a(G + G)].
As an example of the applicability of inequalities to the determination of the

phase of the scattering amplitude, suppose it is known that |o(G)| = 0.8 and
|a(2G)| = 0.6. Determine whether «(2G) is positive or negative.



