
CHAPTER W5

Phonons

5.1 Monatomic Lattice with Random Interactions

In a disordered material the periodicity of the solid is broken, and this affects the phonon
spectrum. Various types of disorder are possible, including bond disorder, isotopic
mass disorder, or a breaking of the lattice periodicity. In this section a simple model
exhibiting bond disorder is studied: a monatomic lattice in one dimension with nearest-
neighbor (NN) interactions but with random spring constants. These are assumed to
have only two values, KA or KB, with probabilities pA and pB D 1 � pA, respectively.

The squares of the mode frequencies, ω2
�, are determined by finding the eigenvalues

of the random matrix D defined by

Dn,n D Kn C Kn�1

M
, Dn,nC1 D �Kn

M
, Dn,n�1 D �Kn�1

M
, �W5.1


where n D 1, 2, . . . , N labels the atoms in the monatomic lattice (with the subscript
convention 0 ! N and N C 1 ! 1). All other matrix elements are zero. Rapid numer-
ical techniques are available for diagonalizing such matrices.

The density of states (per unit frequency) per atom,

��ω
 D 1

N

∑
�

υ�ω � ω�
, �W5.2


will be compared with the corresponding function expected for the uniform lattice with
an average spring constant K D pAKA C pBKB. The density of states per atom for the
uniform lattice is obtained using the dispersion relation of the book,† Eq. (5.7). Thus
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† The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel I.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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Figure W5.1. Phonon densities of states for random and uniform lattices. The calculation was
performed with N D 125.

where ω2 � 4K/M. The results are presented in Fig. W5.1, where units are chosen so
that M D 1, KA D 1, KB D 2, and pA D pB D 0.5. An N D 125 lattice was used and
an ensemble average over different sets of random bonds was made. The frequencies
corresponding to the pure KA or pure KB lattices are ωA D 2�KA/M
1/2 and ωB D
2�KB/M
1/2 (2 and 2.828 in the figure). The differences between the random and
uniform lattice (with K D 0.5KA C 0.5KB D 1.5) are striking. At low frequencies the
density of states follows the trend expected for the infinite uniform lattice. In the
high-frequency region (ωA < ω < ωB) there is a irregular structure for the density of
states. It is found that as N increases, the high-frequency structure remains basically
unchanged, except for the appearance of finer irregular features.

W5.2 Debye–Waller Factor

In this section the derivation of the Debye–Waller factor is sketched. For the sake of
simplicity consider a monatomic lattice of atoms with mass M. Let the instantaneous
position of the atom be denoted by R C u�R, t
. The electron density is

n�r, t
 D natom�r � R � u�R, t

. �W5.4


The analysis proceeds as in Chapter 3. The scattering amplitude F�q, t
 is

F�q, t
 D fatom�q

∑

R

exp[�iq · �R C u�R, t

] D fatom�q
S�q, t
. �W5.5


When evaluated at a reciprocal lattice vector q D G, the geometric structure factor
becomes

S�G, t
 D
∑

R

exp[�iG · u�R, t
]. �W5.6


The strength of the coherent x-ray scattering is proportional to the absolute square of
S�G
. It is useful to work in the interaction representation of quantum mechanics, in



PHONONS 37

which the operators are not time dependent. Begin by writing

jS�G
j2 D
∑
RR0

exp[iG · �u�R0
 � u�R

]. �W5.7


In the absence of fluctuations, this would be N2. In the presence of fluctuations, expand
the displacements as a sum of phonon modes [see Eq. (W5A.5)]:

u�R
 D
√

1

N

∑
EQ

O�Q[uQ exp�iQ · R
 C uC
Q exp��iQ · R
], �W5.8


where uQ and O�Q are the amplitude and polarization of a phonon with wave vector Q
and frequency ωQ. It follows that

jS�G
j2 D
∑
RR0

∏
Q

exp
(

ip
N

G · O�QfuQ[exp�iQ · R0
 � exp�iQ · R
] C h.c.g
)
,

�W5.9

where h.c. is the Hermitian conjugate of the first term. This must be averaged over
a thermal distribution of phonons. The exponential is expanded into a power series.
Note that uQ is a Gaussian random variable with the first two moments being

huQi D 0, hjuQj2i D Nh̄

2MωQ

(
nQ C 1

2

)
. �W5.10


Averages of products of Gaussian random variables are expressible in terms of the first
two moments alone,

huQ1uQ2uQ3uQ4i D huQ1uQ2ihuQ3uQ4i C huQ1uQ3ihuQ2uQ4i C huQ1uQ4ihuQ2uQ3i,
�W5.11


where the expansion includes all distinct permutations of the indices. Thus only even
powers in the power series are nonvanishing. The series may then be resummed to
give

hjS�G
j2i D
∑
RR0

∏
Q

exp
{

� 2

N
�G · O�Q


2juQj2[1 � cos Q · �R � R0
]
}
. �W5.12


In a three-dimensional crystal the term [1 � cos�Ð
] averages to 1
2 and one obtains

hjS�G
j2i D N2 exp

�
∑

Q
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2
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2

)
h̄

MωQ

 D N2e�2W. �W5.13


This gives the desired expression for the Debye–Waller factor, exp��2W
. In the
high-temperature limit, the Bose–Einstein distribution function may be replaced by
nQ ! kBT/h̄ωQ. It is also possible to use the Debye theory, used in Chapter 5 to
evaluate the specific heat, to evaluate the Debye–Waller factor.
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Appendix W5A: Quantization of Elastic Waves

In this appendix the classical elastic field will be quantized, that is, replaced by a
set of phonons. It is a twofold procedure. First the elastic field is replaced by a set
of independent harmonic oscillators, one for each normal mode. Then each of these
is quantized in the same way that the simple harmonic oscillator is quantized. For
the sake of simplicity, attention is restricted in this appendix to the one-dimensional
monatomic lattice.

The starting point is the classical equation of motion for the particle displacements,
given by Eq. (5.2):

MRun D K�unC1 � un
 � K�un � un�1
, n D 1, 2, . . . , N. �W5A.1


The energy of the system, or Hamiltonian, is the sum of the kinetic energy and the
potential energy:

H D 1

2M

N∑
nD1

p2
n C K

2

N∑
nD1

�unC1 � un

2. �W5A.2


Here pn represents the momentum conjugate to un. The equation of motion is obtained
from Hamilton’s equations of mechanics:

Pun D ∂H

∂pn
D pn

M
, �W5A.3


Ppn D � ∂H

∂un
D K�unC1 C un�1 � 2un
. �W5A.4


Eliminating pn from these equations gives Eq. (W5A.1).
Introduce a new set of coordinates fQjg and momenta fPjg, which we call normal-

mode coordinates and momenta, defined by

un D 1p
N

N∑
jD1

Qje
inakj , �W5A.5


pn D 1p
N

N∑
jD1

Pje
inakj , �W5A.6


where a is the lattice constant and kj is defined in Eq. (5.4). It is convenient to impose
periodicity and define QNCj D Qj and PNCj D Pj. Two powerful identities may be
proved. The first involves a sum over lattice positions:

N∑
nD1

exp[ina�kj � kl
] D Nυj,l, �W5A.7


and the second involves a sum over modes:

N∑
jD1

exp[ikja�n � m
] D Nυn,m. �W5A.8
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As Figs. W5A.1 and W5A.2 show, the sums will be zero when summed either over
lattice positions with a given wave vector or summed over modes with a given lattice
position. The one exception to both cases is when the lattice position is zero or when
the wave vector is zero. For un and pn to be real numbers, one can show from
Eqs. (W5A.5) and (W5A.6) that

QŁ
N�j D QŁ

�j D Qj, PŁ
N�j D PŁ

�j D Pj. �W5A.9


By making use of the identities (W5A.7) and (W5A.8), the Hamiltonian may be
rewritten in terms of the P’s and Q’s:

H D
N∑

jD1

(
PŁ
jPj

2M
C Mω2

j

2
QŁ

jQj

)
. �W5A.10


In this form, the Hamiltonian is expressed as the sum of N independent harmonic
oscillators, each representing one of the normal modes of the lattice. The Pj and Qj
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Figure W5A.1. Representation of the sum over lattice positions given in Eq. (W5A.7). Note
that the vector sum is zero. In this diagram N D 8 and j � l D 1.
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Figure W5A.2. Representation of the sum over modes given in Eq. (W5A.8). Note that the
vector sum is zero. In this diagram N D 8 and n � m D 1.
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coordinates are also expressible in terms of pn and un:

Qj D 1p
N

N∑
nD1

une
�inakj , �W5A.11


Pj D 1p
N

N∑
nD1

pne
�inakj . �W5A.12


The quantization procedure is straightforward. One regards fung and fpng as sets
of quantum-mechanical operators obeying the usual equal-time commutation relations
(see Appendix WC):

[un, um] D 0, [pn, pm] D 0, [pn, um] D �ih̄υm,n. �W5A.13


Hamilton’s equations of motion are regarded as equations governing the time evolution
of these operators. The Hamiltonian H, given above, is now an operator. Using the
commutation rules, it can be shown that

[Pj,Ql] D �ih̄υj,l, [Pj, Pl] D 0, [Qj,Ql] D 0. �W5A.14


A further simplification of the problem results from introducing specific linear
combinations of the P’s and Q’s,

aj D 1√
2Mωjh̄

�MωjQj C iPj
, aC
j D 1√

2Mωjh̄
�MωjQN�j � iPN�j
.

�W5A.15

These operators are referred to as ladder operators. They obey the commutation rules

[aj, al] D 0, [aC
j , a

C
l ] D 0, [aj, a

C
l ] D υj,l. �W5A.16


The P and Q operators become

Qj D
√

h̄

2Mωj
�aj C aC

�j
, �W5A.17


Pj D �i

√
Mh̄ωj

2
�aj � aC

�j
. �W5A.18


The Hamiltonian finally becomes

H D
N∑

jD1

h̄ωj�a
C
j aj C 1

2 
. �W5A.19


The quantity nj D aC
j aj is the number operator for phonons in mode j. Its eigenvalues

are the non negative integers 0, 1, 2, . . . . Its eigenfunctions are states with a definite
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number of phonons of mode j. Thus a given phonon mode may be unoccupied, have
one phonon, two phonons, and so on. The corresponding energy is

Ej D (
nj C 1

2

)
h̄ωj. �W5A.20


The problem has thus been reduced to a system of noninteracting harmonic oscillators,
each corresponding to a different mode, j. Note the presence of energy even in the
absence of phonons (nj D 0). This is called zero-point energy.

Appendix W5B: Dispersion Relations in the General Case

Consider a crystal structure and select any point O in the crystal to serve as an origin.
Translate it through the Bravais lattice, thereby replicating O through the set of trans-
lation vectors fRg. Denote the replicated points by fORg. The set of points in space
which are closer to O than any other OR is called the Wigner–Seitz (WS) cell and has
a polyhedral shape. (Note that this definition is slightly more general than the previous
definition of the WS cell in Chapter 3. in that point O need not be on an atom). Due
to the periodicity of the lattice, the WS cell contains exactly s atoms. Around each of
the origins fORg one may similarly construct a WS cell, thereby filling all of space.

In a phonon excitation the amplitude of vibration of atoms in a neighboring cell
fORg is simply related to the excitations of atoms in the base cell O:

u.�R
 D u. exp�ik · R
, . D 1, 2, . . . , s. �W5B.1


Rather than using the spring constants directly, note that the expression for the
elastic energy [see Eq. (5A.2)] is written as a quadratic form. This permits the intro-
duction of an alternative set of elastic coefficients and expressing the energy in a
simpler form. Let the ˛th component of the displacement of the .th atom of cell R
be denoted by u.˛�R
. Expand the elastic energy of the crystal in terms of the atomic
displacements and truncate the expansion at second order, a procedure known as the
harmonic approximation. The zeroth-order term is just a constant added to the energy
and may be neglected. The first-order term vanishes because the elastic energy has a
minimum at the equilibrium state. The second-order term is thus

U D 1

2

∑
.,.0

∑
˛,˛0

∑
R,R0

u.˛�R
L.,.0
˛,˛0 �R � R0
u.

0
˛0 �R0
, �W5B.2


where the set of elastic coefficients is defined in terms of the second derivatives:

L.,.0
˛,˛0 �R � R0
 D ∂2U

∂u.˛�R
∂u.
0

˛0 �R0

. �W5B.3


The indices . and . 0 range over f1, 2, . . . , sg, and the indices ˛ and ˛0 over f1, 2, 3g.
Note that invariance of the crystal under Bravais lattice translations dictates that L
depends only on R � R0. One sees from the definition that L is symmetric, that is,

L.,.0
˛,˛0 �R � R0
 D L.0,.

˛0,˛ �R
0 � R
. �W5B.4
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The dynamical equations become

M. Ru.˛�R, t
 D �
∑
.0

∑
˛0

∑
R0

L.,.0
˛,˛0 �R � R0
u.

0
˛0 �R0, t
. �W5B.5


This represents a set of 3Ns coupled second-order differential equations for the ampli-
tudes.

If the atomic displacements were all made equal [i.e., u.˛�R
 D d˛ (for all . and
R)], there would be no restoring force and both sides of the equation would be zero.
Thus

0 D �
∑
.0

∑
˛0

∑
R0

L.,.0
˛,˛0 �R � R0
d˛0 . �W5B.6


This is true for any vector d. Also note that as R0 sweeps over the Bravais lattice, so
does the vector R � R0. Thus one obtains the sum rule:

∑
.0,R0

L.,.0
˛,˛0 �R0
 D 0. �W5B.7


Using the symmetry of the L matrix [Eq. (W5B.4)] this may also be written as

∑
.,R0

L.0,.
˛0,˛ �R

0
 D 0. �W5B.8


For a mode with frequency ω and wave vector k the dynamical equations become

M.ω
2u.˛ D

∑
.0

∑
˛0

D.,.0
˛,˛0�k
u.

0
˛0 , �W5B.9


where the dynamical matrix is defined as

D.,.0
˛,˛0�k
 D

∑
R0

L.,.0
˛,˛0 ��R0
 exp�ik · R0
. �W5B.10


Equation (W5B.9) is a set of only 3s coupled algebraic equations, so considerable
simplification has been achieved. A solution to these equations determines the phonon
frequencies as the eigenvalues and the polarizations of the phonons as the eigenvectors.
This procedure usually involves the numerical diagonalization of a matrix with 3s rows
and 3s columns.

Appendix W5C: Van Hove Singularities

In this appendix an analysis is made of the density of states in the neighborhood of
a van Hove singularity at position k0. The first-order term in the expansion of the
frequency vanishes so, to second order

ω��k
 D ω��k0
 C 1

2

∑
˛,ˇ

�k � k0
˛�k � k0
ˇ
∂2ω�

∂k˛∂kˇ
C Ð Ð Ð . �W5C.1
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Introduce a new coordinate system which is both translated, so that the new origin is
k0, and rotated, so that the matrix

h˛ˇ D 1

2

∂2ω��k

∂k˛∂kˇ

�W5C.2


is diagonalized. In this new fk0g coordinate system

ω��k
 D ω��k0
 C
∑
˛

h˛k
02
˛ , �W5C.3


where h˛ are the eigenvalues of h˛ˇ. Assuming that none of the h˛ vanishes, one may
further rescale the coordinates by defining

k00
˛ D jh˛j1/2k0

˛. �W5C.4


Note that translating or rotating a vector does not alter the size or shape of a volume
element in k space, but the scale transformation does, so dk00 D jh1h2h3j1/2dk. Let

ω��k
 D ω��k0
 C ω, �W5C.5


so

��ω
 D
0∑
�

V

�2�
3jh1h2h3j1/2

∫
dk00υ

[∑
˛

k
002
˛ sgn�h˛
 � ω

]
. �W5C.6


The fsgn�h˛
g numbers are š1, depending on the nature of the extremum. For
an absolute minimum the signature is fC1,C1,C1g. For an absolute maximum
it is f�1,�1,�1g. Saddle points are characterized by having mixed signs [e.g.,
fC1,C1,�1g, fC1,�1,C1g, etc.]. Thresholds occur at the van Hove singularities.
On one side of the threshold there is an added (or subtracted) density which varies as
jωj1/2. Depending on the type of extremum, it could rise, fall, lie to the left, or lie
to the right of the critical point.


