
APPENDIX WB

Statistical Mechanics

Statistical mechanics provides the theoretical link between the microscopic laws of
physics and the macroscopic laws of thermodynamics. Rather than attempt to solve
the microscopic laws in their entirety (which is presumably very difficult), one abstracts
some key concepts, such as conservation laws, and augments them with certain statis-
tical assumptions about the behavior of systems with large numbers of particles in
order to make the problem tractable.

The first goal will be to make contact with the first law of thermodynamics,
T dS D dU C P dV, as given in Eq. (WA.1) (for constant N). Consider a system of
N particles whose possible energy is Ei. One way to obtain statistical information is
to create an ensemble (i.e., one replicates this system a large number of times, M,
and imagines that the various systems can exchange energy with each other). Let Mi

denote the number of systems with energy Ei. The total number of systems must
be M, so ∑

i

Mi D M. �WB.1


Conservation of energy requires that

∑
i

MiEi D E, �WB.2


where E is the total energy of the ensemble.
The total number of ways in which M systems can be distributed into groups with

(M1,M2, . . .) members in each group, respectively, is

W D M!

M1! M2! . . .
. �WB.3


One wishes to find the most-probable set of values for the Mi. Therefore, one looks for
the set that maximizes W [or equivalently ln(W)] subject to the constraints imposed by
Eqs. (WB.1) and (WB.2). Thus, introducing Lagrange multipliers ˛ and ˇ to enforce
the constraints, one has

υ

[
ln W � ˛

(∑
i

Mi � N

)
� ˇ

(∑
i

MiEi � E

)]
D 0. �WB.4
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Use is made of Stirling’s approximation, ln M! ³ M ln M � M for M × 1, to write
this as

υ

[
M ln M � M �

∑
i

�Mi ln Mi � Mi
 � ˛

(∑
i

Mi � M

)
� ˇ

(∑
i

MiEi � E

)]
D 0.

�WB.5

One may now differentiate with respect to the individual Mi and set the derivatives
equal to zero. This leads to

Mi D e�˛�ˇEi. �WB.6


The probability of finding a particular state i in the most-likely probability distribution
is given by the formula

pi D Mi

M
D e�ˇEi∑

i e�ˇEi
, �WB.7


where, clearly,
∑

pi D 1. Equation (WB.7) indicates that it less probable to find high-
energy states than low-energy states.

Introduce the canonical partition function for the N-particle system

ZN D
∑

i

e�ˇEi . �WB.8


The function ZN is given by a sum of terms, each term representing the relative
probability for finding the system in the state i with energy Ei. The mean entropy of
a system is defined as

S D kB

M
ln W D �kB

∑
i

pi ln pi, �WB.9


where use has been made of Eq. (WB.7). The mean energy of the system, interpreted
as the internal energy, U, is given by

U D
∑

i

piEi. �WB.10


Note that if a small change were made in the fpig, the corresponding changes in
the entropy and internal energy would give rise to

υ

(
U � S

kBˇ

)
D
(∑

i

Eiυpi C 1

ˇ

∑
i

ln piυpi C 1

ˇ

∑
i

υpi

)
�WB.11


since
∑

i υpi D 0. This is consistent with the first law of thermodynamics dU � T dS D
�P dV, when T and V (and N) are held constant. Thus one may interpret the parameter
ˇ D 1/kBT as being proportional to the inverse absolute temperature. The Helmholtz
free energy is F D U � TS and, from Eqs. (WB.7), (WB.8), and (WB.9), is simply
related to the partition function

ZN D e�ˇF. �WB.12
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Now consider an N-particle system of noninteracting identical particles. The
individual energies for a given particle will be denoted by �i. A state of the system is
defined by specifying the number of particles in each state (i.e., by a set of integers
fnig). Thus

N D
∑

i

ni, �WB.13


E�n1, n2, . . .
 D
∑

i

ni�i. �WB.14


From Eq. (WA.1) recall that the first law of thermodynamics for a system with a
variable number of particles may be written as T dS D dU � � dN C P dV, where �
is the chemical potential. The analysis proceeds much as before, with the exception
that one now will be measuring the energies of the particles relative to the chemical
potential. The average number of particles in a given state is given by

hnji D
∑

n1

∑
n2

Ð Ð Ð nje�ˇi��i��
ni∑
n1

∑
n2

Ð Ð Ð e�ˇi��i��
ni
D
∑

nj
nje�ˇ��j��
nj∑

nj
e�ˇ��j��
nj

. �WB.15


For particles with spin 1
2 , 3

2 , . . . obeying Fermi–Dirac statistics, such as electrons
(spin 1

2 ), the only possible values for nj are 0 or 1. This leads to the mean number of
particles in a given state:

f��j, T
 D hnji D 1

eˇ��j��
 C 1
. �WB.16


This is known as the Fermi–Dirac distribution function. For particles with spin 0,
1, 2,. . . obeying Bose–Einstein statistics, such as photons or phonons, any nonneg-
ative integer is acceptable for nj. Performing the sums in Eq. (WB.15) leads to the
Bose–Einstein distribution function:

hnji D 1

eˇ��j��
 � 1
. �WB.17


In the high-temperature limit, Eqs. (WB.16) and (WB.17) both reduce to the
Maxwell–Boltzmann distribution when �j � � × kBT:

hnji ���! e�ˇ��j��
. �WB.18



