I CHAPTER W10

Mechanical Properties of Materials

W10.1 Relationship of Hooke’s Law to the Interatomic U(r)

Since the macroscopic deformation of a solid reflects the displacements of individual
atoms from their equilibrium positions, it should not be surprising that the elastic
response of a solid is determined by the nature of the interactions between neighboring
atoms. In fact, Hooke’s law can be derived from the form of the potential energy
of interaction U(r) for a pair of atoms, as shown for a pair of hydrogen atoms in
Fig. 2.1 of the textbook.” The equilibrium separation of the two atoms corresponds to
the minimum in the U(r) curve at r = ry. Since U(r) is a continuous function, it can
be expanded in a Taylor series about r = ry, as follows:

dU —r)? (d*U
U(r)=U(ro)+(r—ro)(;) +%(ﬁ) 4ol (W10.1)

The first derivative, (dU/dr),,, is equal to zero at the equilibrium separation r = ry.
In addition, cubic and other higher-order terms can be neglected since (r — ry) <K rp
for the (typically) small displacements from equilibrium.

It follows that the force acting between a pair of atoms can be approximated by

ﬁfl
A
~
N
|
|
Il

2
—(r —roy) <dU> = —k(r — ro), (W10.2)
dr? ),
where k is a constant. This result has the same form as Hooke’s law since the displace-
ment (r — ry) of atoms from their equilibrium positions is proportional to the restoring
force F. This displacement is also inversely proportional to the curvature (d>U/dr?),,
of the potential energy curve at r = ry, which for a given material is a constant in a
given direction.

It can be seen from Eqgs. (10.21) and (W10.2) that Young’s modulus E is proportional
to the curvature (d°U/dr?),, of the potential energy. This is a reasonable result since the
macroscopic deformations that correspond to the microscopic displacements of atoms
from their equilibrium positions will be more difficult in materials where the potential
energy well is deeper and hence U(r) increases more rapidly as the atoms are displaced

T The material on this home page is supplemental to The Physics and Chemistry of Materials by Joel
I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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(a) high E

u(n)
(b) low E

Figure W10.1. Schematic potential energies of interaction U (r) for “deep” and “shallow” poten-
tial wells and corresponding stress—strain curves

from their equilibrium positions. This is illustrated schematically in Fig. W10.1 for
the cases of “strong” and “weak” bonding between pairs of atoms, corresponding to
“deep” and “shallow” potential wells, respectively. For the case of a material with
strong bonding and a deep potential well, the curvature (d>U/dr?),, is high. Such a
material will have a high stiffness £ and a high slope for the initial linear portion of
its stress—strain curve, as shown in the inset of this figure. The opposite will be true
for a material having weak bonding, a shallow potential well, and a corresponding
low curvature (42U /drz),o. In this case the material will have a low stiffness E. It
should be noted that the stress—strain curve will eventually become nonlinear as the
stress increases, due to the nonparabolicity of the interatomic potential U(r) for large
displacements (r — rp).

Estimates for the magnitude of the elastic modulus E and its dependence on mate-
rial properties can be obtained by noting that E, as a measure of the stiffness of a
material, should be proportional to the stress needed to change the equilibrium separa-
tion between atoms in a solid.” For many materials with ionic, metallic, and covalent
bonding, this stress is itself approximately proportional to the magnitude of the inter-
atomic Coulomb force F = g?/4med?, where ¢ is the ionic charge, d the interatomic
separation, and e the electric permittivity of the material. This stress should also be
inversely proportional to the effective area, &~ d?, over which the interatomic force
acts. Thus the stress, and hence E, should be proportional to g2/d*.

A test of this relationship is presented in Fig. W10.2, where the bulk modulus B,
defined in Section 10.6, is shown plotted as a function of the interatomic separation d
in a logarithmic plot for three classes of materials with ionic, metallic, and covalent
bonding, respectively. For each class of materials the measured values of B fall on a
straight line with a slope close to —4, as predicted by the simple argument presented
above. It is clear from this result that high elastic stiffness is favored in materials
where the ions have large effective charges and are separated by small interatomic
separations.

The magnitude of the elastic constants can also be estimated from the expression
E =~ ¢*/4med* by using 1/4me ~ 9 x 10° N-m?/C?, g =e=1.6 x 107" C, and d ~

T See the discussion in Gilman (1969, pp. 29—42).
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Figure W10.2. Logarithmic plot of the bulk modulus B versus the interatomic separation d
for three classes of materials with ionic, metallic, and covalent bonding, respectively. (From
A. G. Guy, Introduction to Materials Science, McGraw-Hill, New York, 1972. Reprinted by
permission of the McGraw-Hill Companies.)

0.2 nm. The result obtained, E ~ 100 GPa, is consistent with the experimental values
shown in Fig. W10.2 and listed in Table 10.2.

W10.2 Zener Model for Anelasticity

An interesting and useful model for describing anelastic processes has been proposed
by Zener. This model deals with a standard linear solid, a solid in which the stress
o, the strain ¢, and their first derivatives do/dt and de/dt are related to each other in
a linear equation. Although Zener’s model may not be sufficiently general to describe
all types of anelastic effects, it is quite useful for the purpose of illustrating important
general aspects of anelasticity.

In the Zener model the following equation is used to describe the anelastic effects
illustrated in Fig. 10.9:

do oe
M — . W10.3
o+rgat <8+rat) ( )
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Here . is the time constant for the relaxation of stress under conditions of constant
strain, and 7, is the time constant for relaxation of strain under conditions of constant
stress.” The quantity E, is the relaxed elastic modulus, that is, the stress/strain ratio
o/e after all relaxation has occurred in the solid and when do/0t and de/0¢t are zero.
If the changes in stress and strain in the material occur so rapidly (e.g., at sufficiently
high frequencies) that relaxation cannot proceed to completion, it can be shown that
the stress/strain ratio is given by the unrelaxed elastic modulus E, = E, T,/ T,.

The solutions of Eq. (W10.3) for the conditions shown in Fig. 10.9a (i.e., after
relaxation has occurred) are as follows:

0 =o0p and do/0ot =0 : e(f) = €00 + (80 — €0)e /.
(W10.4)
o=0and do/0t =0: e(r) = exoe %,

Here ¢o, = 0y/E,. These expressions illustrate the kinetics to be expected for simple
relaxation processes where the fraction of the relaxation completed in time ¢ is f(¢) =
1 — e~"/*. Analogous equations can be derived for the time dependence of o for the
conditions shown in Fig. 10.9b.

The mechanical response of materials to dynamic conditions of stress and strain
is of interest both for applications and for fundamental studies of anelasticity. Under
dynamic conditions, stress and strain are often periodic functions of time, that is,

o(t) = ope ™ and e(t) = gpe ", (W10.5)
where the amplitudes oy and gy can be complex quantities. Upon substitution of o(r)
and e(¢), Eq. (W10.3) becomes

(1 —iwte)oy = E. (1 —iwt,)ey. (W10.6)
A complex elastic modulus E. can then be defined as

_ E.(1—-iwt,) 00

E, (W10.7)

1 —iwt, g0

For a stress amplitude oy that is real, this corresponds to a complex amplitude &y for
the strain.

Under dynamic conditions and due to either elastic aftereffects or strain relaxation,
the strain ¢ will in general lag behind the stress o by a phase angle ¢ (i.e., e(t) =
go exp[—i(wt — ¢)]), whose tangent is given by

Im E, . o(Ty — Te)
T ReE. 14?1,

(W10.8)

The quantity tan ¢, known as the loss coefficient, is often used as a measure of the
magnitude of the internal friction or energy loss in a material. When tan ¢ is small,

T While the use of a single relaxation time is appropriate for some materials, other materials, such as
polymers, can have a large number of relaxation times, spanning many orders of magnitude.
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it can be shown that tan¢ ~ AU /27U, = 1/Q, where AU /U, is the fraction of
elastic energy dissipated per oscillation. (Q is the quality factor of an electrical circuit,
with 1/Q being a measure of energy dissipation.)

The predicted frequency dependence of the internal friction is illustrated in
Fig. W10.3, where tan ¢ is shown as a function of frequency, specifically w(t,,)!/? =
w(t). It can be seen that tan¢ has a maximum value at w(t) =1 [i.e., at wnax =
(t57:)~"/?] and falls to zero for both @ < Wpax and @ > wpay. For low frequencies,
® K Wmax, the solid is fully relaxed, the elastic modulus is E,, and the internal friction
is close to zero in the Zener model, since the strain has sufficient time to follow the
applied stress (i.e., the phase angle ¢ ~ 0). At high frequencies, @ > wpn,x, the solid
is unrelaxed, the elastic modulus is E,, and the internal friction is again close to zero.

Note that £, > E, in Fig. W10.3, which follows from 7, > .. In this case the
strain relaxes more slowly than the stress [see the definitions given earlier for 7, and
7. in Eq. (W10.3)]. It follows that the material will be stiffer at high frequencies than
at low frequencies. The hysteresis loops for such material will actually be closed,
straight lines with slopes given by E, and E, at very low and very high frequencies,
respectively. Thus Hooke’s law will be valid for o > wpax and @ < @omax. At @ =
®max the hysteresis loop will have its maximum width and maximum area AUy.

Zener has pointed out that although this model for a standard linear solid has several
general features that are observed for real materials, it does not in fact correspond
in detail to the behavior observed for any real solid. Nevertheless, measurements of
internal friction as a function of frequency often show the behavior predicted by Zener’s
model, as shown in Fig. W10.4 for German silver, an alloy of Cu, Ni, and Zn.

W10.3 Typical Relaxation Times for Microscopic Processes

See Table W10.1, from which it can be seen that lattice vibrations, the motion of
elastic waves, and the dissipation of heat are “fast” processes at 7 ~ 300 K, while the
diffusion of interstitial atoms and the motion of grain boundaries can be considered to
be “slow” processes.
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Figure W10.3. Magnitude of the internal friction tan¢ as a function of (1) = w(t,7,)"/>.
(Adapted from C. Zener, Elasticity and Anelasticity of Metals, University of Chicago Press,
Chicago, 1948).
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Figure W10.4. Magnitude of the internal friction tan¢ = 1/Q for German silver as a function

of frequency. (From C. Zener, Elasticity and Anelasticity of Metals, University of Chicago Press,
Chicago Copyright© 1948 by the University of Chicago. Reprinted by permission.)

TABLE W10.1 Typical Relaxation Times t for Microscopic Processes in
Solids at T = 300 K

Time Scale for 7 (s) Microscopic Process
10714 Electron collisions in metals
1012 Vibrations of atoms (lattice vibrations)
1071
1078 Radiative recombination of electrons and holes
1076
Elastic wave traverses solid (as in brittle fracture)
1074
Dissipation of heat (thermal relaxation)
1072
10°=1
(Time of typical tensile test = #i)
10+2
104 Diffusion of interstitial atoms
(1 week ~ 6 x 10° s)
10+6
(1 year ~ 3 x 107 s) Motion of grain boundaries
108 Creep

Flow of inorganic glasses

W10.4 Further Discussion of Work Hardening

The phenomenon of work hardening is difficult to treat theoretically, the most difficult
aspect being to predict how the density and distribution of dislocations vary with
the strain in the material. There is in fact no unique correlation between the level
of strain and the resulting distribution of dislocations. The experimental situation is
complicated by the fact that there can exist three distinct regions of work hardening
when the plastic deformation is presented in the form of a shear stress—shear strain



MECHANICAL PROPERTIES OF MATERIALS 93

€ €

y

Figure W10.5. Shear stress—shear strain t—¢ curve for a typical single-crystal FCC metal.
Three inelastic regions are shown, with the rate of work hardening in each region characterized
by the slope dt/de, denoted by 6y, 6y, and 6y, respectively

curve (i.e., T versus €). Such a curve is shown schematically in Fig. W10.5 for a typical
FCC metal in the form of a single crystal. Beyond the elastic region which extends up
to the shear yield stress t,, there can exist in some materials three inelastic regions,
I, 11, and III. The rate of work hardening in each region can be characterized by the
slope dt/de, which is denoted by 6y, 6y, and Oy, respectively. The higher the slope,
the greater the rate at which work hardening occurs for a given increment in applied
shear stress t.

Although all may not be present in a given material, these regions have the following
characteristics:

Region I. Plastic deformation in region I begins with the onset of “easy glide” or slip
occurring on the primary slip system, as described in Section 10.14. A relatively low
rate of work hardening occurs in region I. This region corresponds to the existence of
long, straight slip lines in a single crystal. Region I is absent in polycrystals.

Region Il. This is the linear work-hardening region, with 6;; & 106y and 6 ~ G /300,
where G is the shear modulus (i.e., the slope dt/de in the elastic region). Plastic
deformation in this region results in the interaction of dislocations and occurs via the
mechanism of slip. The resulting distribution of dislocations is very inhomogeneous.
The shear stress in region II is often observed to be proportional to the square root of
the dislocation density p, that is,

T,(p) = Ty0 + aGb./p. (W10.9)

Here 1,0 is the shear yield stress (i.e., the shear stress needed to move a disloca-
tion when no other dislocations are present), b is the Burgers vector, and o (= 0.3
to 0.6) is a constant. Note that p is given by the total length of all the disloca-
tions divided by the volume of the material and has units of m~2. It is clear from
this expression that p is an increasing function of shear stress [i.e., T,(0) — Tyol.
Typical values for single-crystal or polycrystalline Cu are p &~ 10'® m=2 for T, A
100 MPa.
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Region Ill. In this region the slope dt/de decreases continuously with increasing
stress, with the dependence of 7 on ¢ usually observed to be close to parabolic, that is,

() = O0mve — ¢, (W10.10)

where &' is a constant.

Various theories can reproduce the form of Eq. (W10.9) observed in the linear
region II or the parabolic dependence of T on & observed in region III. None of the
theories of work hardening is completely satisfactory, however, which should not be
surprising given the complexity of the problem. One of the first approaches, presented
by Taylor, considered the source of work hardening to be the interactions between edge
dislocations and the pinning that results. If / is the average distance that dislocations
move before being pinned, the resulting shear strain & corresponding to a dislocation
density p is

e =Kpbl, (W10.11)

where K is a constant that depends on orientation.

For a material containing a uniform distribution of edge dislocations, the average
separation between the dislocations is L &~ p~!/2. The applied shear stress required
to move two dislocations past each other must overcome the effective internal stress
acting on one dislocation due to the other. This can be written as

kGb
T=—0, (W10.12)
L
where k is a constant. Since L ~ ,0_1/ 2 it follows that
T~ kGb./p, (W10.13)

which has the form of Eq. (W10.9). When Egs. (W10.11) and (W10.13) are combined,
the following dependence of 7 on ¢ is obtained:

be £
~ — =~ kG-, W10.14
we) ~ kGy/ \[ ( )

where k' is another constant. This prediction corresponds to the parabolic dependence
of 7 on ¢ observed in region III. The predictions of Taylor’s theory therefore agree
with the observed dependencies of T on p and on ¢ despite the simplifying assumptions
made, including the assumption of a uniform distribution of edge dislocations. Taylor’s
theory does not, however, explain the linear work hardening observed in region II.

W10.5 Strengthening Mechanisms

Dispersion Strengthening. Dispersion strengthening is a process in which small
particles of a hard phase such as alumina (Al,O3) or silica (SiO;) are distributed
uniformly in the matrix of a weaker material (e.g., a copper alloy), either by precip-
itation in situ or by sintering the materials together. This process strengthens the
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weaker host material and increases its resistance to plastic deformation. Dispersion-
strengthened materials can have high hardness at high temperatures when the dispersed
particles are of a refractory nature and very hard. This is an advantage of this strength-
ening method over precipitation hardening. The Orowan expression relating the yield
stress o to the interparticle spacing A is described in Chapter W21 with regard to the
dispersion strengthening of steels

Precipitation Hardening. Precipitation hardening is a process in which a second
phase is precipitated from a supersaturated solid solution in a matrix via heat treat-
ment. Important examples include the precipitation of particles of Fe;C or FeyN in
iron and of particles of the intermetallic compound CuAl, in Al, as described in
detail in Chapter W21. Both dispersion strengthening and precipitation hardening arise
from short-range interactions between dislocations and the dispersed particles or the
precipitate. As a result, the dislocations are pinned and cannot move freely through
the material. The Orowan expression mentioned earlier is also applicable to these
short-range interactions between dislocations and precipitate particles.

Long-range interactions between precipitate particles and dislocations are also possi-
ble due to the internal stresses created by the difference in average atomic volumes of
the precipitate and the host matrix. Mott and Nabarro obtained the following estimate
for the average shear strain &,, in a single crystal due to a volume fraction f of
spherical precipitate particles:

gy = 2¢f. (W10.15)

Here ¢ = Ar/rg = (r — rg)/ro is the fractional radial misfit resulting from the insertion
of a particle of radius r in a cavity of radius ry < r within the host matrix. The resulting
strain leads to an increase in the critical shear yield stress by the amount

Aty = Geyy = 2Gef, (W10.16)

where G is the shear modulus. According to this prediction, the critical shear yield
stress should be independent of the particle sizes and interparticle separations. In fact,
the precipitate particles will have little effect on the motion of the dislocations when
the particles are small and closely spaced and also when they are large and far apart.
Only at intermediate sizes and separations will they have a strong effect.

Solid-Solution Strengthening. An example of solid-solution strengthening is
doubling of the yield strength of Fe—C solid-solution alloys at a C/Fe atom ratio of
only 1/10*. As mentioned in Section 10.12, interstitial C atoms in octahedral sites cause
tetragonal distortions of the BCC crystal structure of «-Fe. These lattice distortions in
turn impede the motion of dislocations, thereby strengthening the Fe. This strengthening
mechanism is described further for the case of steels in Chapter W21.

W10.6 Creep Testing

Typical creep tests at 0.57,, < T < T, and constant applied stress are shown in
Fig. W10.6, where three distinct stages are shown for the dependence of the nominal
strain on time. Results are shown at two applied stresses o. It can be seen that the
creep rate de/0dt is an increasing function of o, as expected, and also of temperature 7.
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Failure

Time t

Figure W10.6. Typical creep test for 0.57,, < T < T,, and constant applied stress. Three dis-
tinct stages are evident for the dependence of the nominal strain € on time.

In stage I of primary creep the creep strain rate de/dt actually slows down, probably
as a result of work hardening, and reaches a value that typically remains constant in
the most important stage II of secondary or quasiviscous creep. In stage III of tertiary
creep the creep rate increases, nonuniform deformation begins, and failure eventually
occurs. The creep strength of a material can be defined as the stress that will produce
a given strain in a given time at a given temperature 7. For example, a typical low-
carbon nickel alloy has a creep strength of 60 MPa for 1073% elongation per hour
at T = 534°C. The stress for fracture oy due to creep is lower the longer the time
of loading. Extrapolation of the results of creep tests to longer times is required for
predicting the performance of materials in service (e.g., predicting when failure will
occur under a given load or stress condition). This is due to the fact that creep tests
generally do not extend to the point of failure, particularly when carried out at low
stress levels and low temperatures.

Various models have been proposed to describe the dependencies of creep or the
creep rate € = dg/0t on time, temperature, and stress. There is no universal model, but
expressions such as

£(t) = eo + £,(1 — e™™) + &1, (W10.17)
2

% _ aorexp [~ (W10.18)
ot kgT

have been proposed. In Eq. (W10.17), g is the initial strain in the material, the second
term describes creep in stage I, and the term &,¢ (which is linear in time) represents
stage II. Equation (W10.18) is proposed to be valid for the secondary creep rate in
stage II, with A and n being constants and Q. the thermal activation energy for creep.
For a number of pure metals it has been found that n = 5 and that Q. ~ E,(diff), the
measured thermal activation energy for self-diffusion in the metal.

A useful way of graphically illustrating the stress and temperature regions in which
various deformation mechanisms are dominant (i.e., rate controlling) is the Weertman—
Ashby map, shown in Fig. W10.7 for pure nickel. This map presents a plot of normal-
ized tensile stress 0/G (where G is the shear modulus) versus 7/T,, and corresponds
to a critical strain rate &. of 107® s=!. Coble creep and Nabarro creep correspond to
diffusion of vacancies within the boundaries of the grains and within the bulk of the
grains, respectively, and can be seen in Fig. W10.7 to be dominant in different regimes
of temperature and stress.
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Figure W10.7. The Weertman—Ashby map presented here for pure nickel is a semilogarithmic
plot of normalized tensile stress /G versus T/T,, for a critical strain rate & of 1078 s7!,
(Reprinted from Acta Metallurgica, Vol. 20, M. F. Ashby, p. 887. Copyright © 1972, by permis-
sion from Elsevier Science.)

W10.7 Further Discussion of Fatigue

When fatigue occurs under conditions of low true-stress amplitude o,, the response
of the material is primarily elastic and the number of cycles to failure N is large. In
this case the range Ag, over which the elastic component of the strain varies can be
described by

20,

- E

20} b
ase= == —Lan ), (W10.19)

where b is the fatigue strength exponent and a} is the fatigue strength coefficient,
equal to the stress intercept for 2N ; = 1. The quantity 0} is approximately equal to

oy, the fracture stress under monotonic loading. The exponent b can be expressed in
terms of the cyclic hardening coefficient n” by

n/

= (W10.20)
14 5n’

Fatigue life thus increases with decreasing |b|, i.e. decreasing n'.
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When fatigue occurs under conditions of higher stress amplitude o, and the response
of the material has an inelastic or plastic component, the number of cycles to failure
N will be smaller. The range of variation Ag, of the plastic strain component can be
described by the Manson—Coffin relation,

Ae, = 26/, 2N 5 )", (W10.21)

where 8_’f, the ductility coefficient in fatigue, is equal to the strain intercept for 2N = 1,
and c is the ductility exponent in fatigue. Smaller values of ¢ correspond to longer
fatigue life. In the limit of high strain and low number of cycles c is given by

1
1+ 5n"

(W10.22)

As a result, fatigue life in this limit increases with increasing n’.
When a material is subjected under cyclic loading to both elastic and plastic strain,
the fatigue strength will be determined by the total strain:

20’
Ag, = Ag, + Agp = Yf(zzvf)b + 26/, 2N )" (W10.23)

The separation of a Ag; — N curve into its elastic and plastic components is illustrated
schematically in Fig. W10.8. It can be seen that Ag, approaches the plastic curve at
high strain levels and the elastic curve at low strain levels.

W10.8 Hardness Testing

Hardness is often measured by the indentation of a harder material, typically a diamond
indenter, into a softer material or by a scratch test. Indentation methods can be quan-
titative, while scratch testing gives essentially qualitative results. The most common
methods of indentation hardness testing include the Brinnell and Rockwell tests and
microindentation or microhardness tests such as the Knoop and Vickers tests. Hardness
values are expressed using hardness scales with the same names. A common scale for

log Ag,
Agy

Total strain

Elastic strain
(slope = b)

Agy

Plastic strain
(slope = ¢)

log 2N¢

Figure W10.8. Separation of a Ag,—N ;¢ fatigue curve into its elastic and plastic components.



MECHANICAL PROPERTIES OF MATERIALS 99

minerals is Mohs hardness, determined by a scratch test, which extends from 1 for talc
to 10 for diamond.

The Knoop hardness test is a microindentation test that uses an indenter in the form
of an elongated pyramid while the Vickers test uses a square pyramid of diamond. The
Knoop and Vickers hardnesses are defined as the ratio of the applied force or load to
the surface area of the indentation. The Vickers hardness VHN is given by

1.854F

VHN = ,
d?

(W10.24)

where F is the load in kilograms force (kgf) and d is the length of the diagonal of
the square indentation in millimeters. Some Vickers hardness values for metals and
other hard materials are given in Table 10.6. These hardness values, as with many
other mechanical properties, are sensitive to processing treatments that the material
may have received, especially those affecting the surface region.

The indentation of the Knoop indenter in the material under test is shallower than
that of the Vickers indenter, thus making the Knoop method more appropriate for
brittle materials and for thin layers. Because of the shallowness of the indentation, the
surfaces of materials to be tested for Knoop hardness must be very smooth.

W10.9 Further Discussion of Hall-Petch Relation

The Hall-Petch relation was originally justified on the basis of the assumption that
the effect of grain boundaries is to pin dislocations, but more recent interpretations
emphasize the emission of dislocations by grain boundaries. An approach by Li takes
the onset of plastic deformation in polycrystalline materials as due to the activation of
dislocation sources, which are assumed to be grain-boundary ledges. The shear yield
stress for the motion of a dislocation relative to a distribution of other dislocations has
been given in Eq. (W10.9) by

7,(p) = T, + aGb/p, (W10.25)

where p is the dislocation density and the other symbols are as defined earlier. If it is
assumed that there is a uniform distribution of dislocation sources on the surfaces of all
grain boundaries, regardless of their size, the dislocation density p will be proportional
to S,, the grain boundary area per unit volume. If the grains are all taken to be cubes
of volume d°, S, will be given by

_led*

3
=== 10.2
Si=5r = (W10.26)

where the initial factor of % accounts for the fact that each cube face (i.e., each grain
boundary) is shared by two grains. The Hall-Petch relation of Eq. (10.43) is obtained
when the result that p o« S, o 1/d is used in Eq. (W10.25).

3. C. M. Li, Trans. TMS-AIME, 227, 239 (1963).
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The yield stress can also be increased by solid-solution strengthening, as discussed
in Section W10.5. The typical example is dilute alloys of C in BCC «-Fe, where
oy =0y + klec/ ? Here N¢ is the atomic fraction of C present in Fe.

W10.10 Analysis of Crack Propagation

When fracture occurs in a ductile material in which significant amounts of plastic
deformation can occur, the critical stress will be increased above the prediction of
Eq. (10.48) since the strain energy required for the generation of plastic deformation
near the crack must be included. Plastic deformation of the material surrounding the
crack tip can take the form of a dense array of dislocations and microcracks whose
presence can slow down and even stop the propagation of the crack. The effective
surface energy y, associated with the plastic deformation is equal to the work per
unit area required to carry out the plastic deformation. When y, is added to y; in
Eq. (10.48), Griffith’s criterion in its general form becomes

3 Ty )E
o, = | EV T VE (W10.27)
wa

For many ductile materials y, > y;, so that

E
o=/ 22 (W10.28)
Ta

for the case of ductile fracture. The effect of the plastic deformation is to blunt the
crack tip, thus relaxing the stress concentration there by increasing the local radius of
curvature. As a result, ductile fracture requires higher stress levels than brittle fracture.

Correlations of fracture toughness K. with density p, Young’s modulus E, and with
strength o for several classes of engineering materials (alloys, plastics, elastomers,
composites, ceramics, glasses, etc.) have been presented by Ashby in the form of
materials property charts.” These charts and the accompanying discussions are helpful
in that they present and condense a large body of information and reveal correlations
between the properties of materials. A striking feature of the charts is the clustering
of members of a given class of materials. This clustering and the relative positions of
the various clusters on the charts can be understood in terms of the type of bonding,
the density of atoms, and so on, in the materials. Within each cluster the position of a
given material can be influenced by the synthesis and processing that it receives. The
following charts are also presented by Ashby: E versus p, o versus p, E versus oy,
and E/p versus o /p.

The rate of elastic strain energy release by a crack is G(el), defined by

1 0AUyq 7o’a
Glel) = —— _ e

— (W10.29)
2d  da E

T M. F. Ashby, Materials Property Charts, in ASM Handbook, Vol. 20, ASM International, Materials Park,
Ohio, 1997.
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At the point of fracture G(el) = G.(el) and the critical fracture stress can therefore be
expressed in terms of G.(el) by

EG. (el
o, = 1) D (W10.30)
wa

By comparing this result with Eqs. (W10.27) and (10.49), it can be seen that

K. = VEG.(el). (W10.31)

The quantity G.(el) is also known as the critical crack extension force, with units
of N/m.
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PROBLEMS

W10.1 A bar of a solid material undergoes two consecutive deformations along the
x axis corresponding to nominal normal strains &; and &, as defined by
g1 = (x1 —xp)/xo and & = (x2 — x1)/x1.

(a) Show that these two nominal strains are not additive [i.e., that gy =
(x2 — x0)/x0 # €1 + €2].

(b) Show, however, that the corresponding true strains &gyye(1) and gy (2),
as defined in Eq. (10.8), are additive.

(¢) Find the difference between ¢ and &y for Al = 0.11,.

W10.2 From the expressions given for the shear modulus G and the bulk modulus B
in Table 10.4, show that Poisson’s ratio v for an isotropic solid must satisfy
-1l<v< %

W10.3 Derive the expression for the elastic energy density u. (g) for a cubic crystal
given in Eq. (10.32).

W10.4 Using the general definitions for strains as ; = du,/ox, &s = du,/0z + du,/ox,
and so on, show that the equation of motion, Eq. (10.35), can be written as

the wave equation given in Eq. (10.36).

W10.5 Consider the values of E, G, B, and v given in Table 10.2 for several poly-
crystalline cubic metals.
(a) Show that the values of E, G, and v are consistent with the expressions

for isotropic materials given in Table 10.4.

(b) Show that the same cannot be said for the values of B.

W10.6 If the changes in stress and strain in a material occur so rapidly (e.g., at suffi-
ciently high frequencies) that no relaxation occurs, show that the stress/strain
ratio is given by the unrelaxed elastic modulus, E, = E, 7,/ T,.

W10.7 (a) For the conditions shown in Fig. 10.9a after relaxation has occurred,
derive the solutions of Eq. (W10.3) presented in Eq. (W10.4).
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(b) Also derive the analogous equations for the time dependence of o for the
conditions shown in Fig. 10.9b.
W10.8 Let oy be real and set gy = gogpe”'? in Eq. (W10.5) so that the strain &(¢)
lags behind the stress o(¢) by a phase angle ¢. Using these expressions (i.e.,
o(t) = opexp(—iwt) and &(t) = ggp exp[—i(wt + ¢)]), in Eq. (W10.6), show
that tan ¢ is given by Eq. (W10.8).
W10.9 The relaxation time 7 for a piece of cross-linked natural rubber is 30 days at
T =300 K.
(a) If the stress applied to the rubber at 7 = 300 K is initially 1 MPa, how
long will it take for the stress to relax to 0.5 MPa?
(b) If the relaxation time for the rubber at T = 310 K is 20 days, what is the
activation energy E, for the relaxation process? See Eq. (10.41) for the
definition of E,.
W10.10 Repeat Problem 10.9 for the (0001), (1100), and (1010) planes of HCP Cd
and for the three (1120) directions in the (0001) plane.



