
CHAPTER W8

Optical Properties of Materials

W8.1 Index Ellipsoid and Phase Matching

In the discussions so far† the effect of the crystalline lattice has been omitted. The
description of light propagation in solids must take account of the breaking of rotational
symmetry by the solid. In this section such effects are considered.

Light propagation in an anisotropic medium is often accompanied by birefringence
(i.e., a speed of light that depends on the polarization of the light as well as its direction
of propagation). In this section it is shown how the concept of the index ellipsoid can be
utilized to determine the index of refraction. Then it is demonstrated how, by cleverly
making use of birefringence, one may achieve the phase-matching condition, which is
necessary for efficient nonlinear optical effects.

Start with Maxwell’s equations, Eqs. (W8A.1) to (W8A.4), in a nonmagnetic mate-
rial and imagine a plane electromagnetic wave, such as that drawn in Fig. 8.1 of the
textbook with frequency ω and wave vector k propagating through it. Assuming that
the fields vary as exp[i�k · r � ωt�], the equations become

k × E D ωB,
1

�0
k × B D �ωD, �W8.1�

k · D D 0, k · B D 0. �W8.2�

For a linear, anisotropic dielectric

D D 	0
$	r Ð E, �W8.3�

where $	r is the dielectric tensor. Taking the vector product of Faraday’s law with
k and combining it with the other equations leads to an algebraic form of the wave
equation:

k ×�k × E� D k�k · E�� k2E D ��0ω
2D. �W8.4�

Form the scalar product of this equation with D to obtain

D ·
1

$	R
· D D

( ω
kc

)2
D2 D

(
D

n

)2

. �W8.5�

† The material on this home page is supplemental to The Physics and Chemistry of Materials by
Joel I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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Figure W8.1. Polariton branches for MgO, from Eq. (W8.16) using 	�0� D 9.8, 	�1� D 2.95,
and ωT D 7.5 ð 1013 rad/s.

Here 1/$	r is the inverse of the $	r matrix. The dielectric tensor is symmetric and will
therefore be diagonal in some reference frame (called the principal axis coordinate
system). Choose that frame, defined by the mutually perpendicular unit vectors f Ouig,
and write, using dyadic notation,

$	r D n2
1 Ou1 Ou1 C n2

2 Ou2 Ou2 C n2
3 Ou3 Ou3, �W8.6�

where ni D √$	ri . Usually, the set f Ouig will coincide with the symmetry axes of the
crystal. Thus one finally obtains the pair of equations

∑
i

(
n OD Ð Oui
ni

)2

D 1, �W8.7�

where OD D D/D is the direction of the displacement vector, and∑
i

ODi Ð Oui Oui Ð k D 0. �W8.8�

The first formula is the equation of an ellipsoid in D space whose axes are aligned
with the principal axes and centered at the origin. It is called the index ellipsoid. The
second equation is that of a plane through the origin in D space. The intersection
of the plane with the ellipsoid produces the polarization ellipse. The intersection of
this ellipse with the unit sphere determines the two pairs of possible directions for
polarization of the wave.

Suppose that the vectors D and k are projected onto the principal axes:

OD D Ou1 sin � cos C Ou2 sin � sin C Ou3 cos �, �W8.9�

k D k� Ou1 sin˛ cosˇ C Ou2 sin˛ sin ˇ C Ou3 cos˛�. �W8.10�

Then the two conditions become

cos � cos˛C sin � sin˛ cos�ˇ �  � D 0, �W8.11�
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(
sin � cos 

n1

)2

C
(

sin � sin 

n2

)2

C
(

cos �

n3

)2

D 1

n2
. �W8.12�

If one were to choose a direction of propagation perpendicular to one of the principal
axes (e.g., Ou3), then ˛ D �/2 and sin � cos� � ˇ� D 0. There are two possibilities:

sin � D 0, n D n3 � no, �W8.13a�

or

j � ˇj D �

2
,

(
sin � sin ˇ

n1

)2

C
(

sin � cosˇ

n2

)2

C
(

cos �

n3

)2

� 1

n2
e���

.

�W8.13b�
Here no is referred to as the ordinary index and ne��� as the extraordinary index.

For crystals, the number of independent indices of refraction depends on the
symmetry. For the monoclinic, triclinic, and orthorhombic crystals there are three
independent indices. For the hexagonal, tetragonal, and trigonal crystals there are
two independent indices. For the cubic class there is only one independent index.
For amorphous materials the number of independent elements depends on whether or
not there is any remnant orientational or positional order. A glass, which is random
on the scale of the wavelength of light, is isotropic and has only one independent
element. Liquid crystals may have two independent elements. Quantum-well devices
may have two or even three independent elements, depending on the symmetry of the
structure. One refers to materials with two independent components as being uniaxially
symmetric. In that case, if n1 D n2, the extraordinary index is given by

(
sin �

n1

)2

C
(

cos �

n3

)2

D 1

n2
e���

. �W8.14�

A list of indices of refraction for various optical materials is given in Table W8.1. A
list of indices of refraction for various semiconductors is given in Table 11.7.

As discussed in Section 8.9, in any nonlinear optical process there are input waves
and output waves. One constructs a net input wave by forming the product of the input
waves. A similar construct may be formed for the output waves. Associated with these
net waves are phases. For the nonlinear process to proceed efficiently, these phases
must match each other. There can then be coherent transformation of the net input
wave to the output waves over a considerable length in space. The necessity for phase
matching occurs in nonlinear optics in processes where photons interact with each other
by means of a nonlinear optical material. For example, one may have second-harmonic
generation (SHG), where two ordinary wave photons of frequency ω and wave vector
k D ωno�ω�/c combine to form an extraordinary wave photon of frequency 2ω and
wave vector 2ωne�2ω, ��/c. Conservation of momentum then determines the angle �
for which phase matching occurs, via no�ω� D ne�2ω, ��. Other possibilities exist, such
as when an ordinary and an extraordinary photon at frequency ω combine to produce
an extraordinary photon at 2ω, where ne�2ω, �� D [ne�ω, ��C no�ω�]/2, and so on.

All nonlinear optical processes make use of phase matching to increase their effi-
ciency. These include third-harmonic generation, three- and four-wave mixing, para-
metric down-conversion, and stimulated Raman and Brillouin scattering.
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TABLE W8.1 Indices of Refraction for Materials at l = 589 nm (in Vacuum) at
T = 300 K

Material Symmetry n1 n2 n3

AgCl Cubic 2.071 — —
AgBr Cubic 2.253 — —
NaCl Cubic 1.544 — —
KCl Cubic 1.490 — —
ZnSe Cubic 2.89 — —
MgO Cubic 1.736 — —
C (diamond) Cubic 2.417 — —
SrTiO3 Cubic 2.403 — —
Al2O3 (alumina) Hexagonal 1.768 1.760 —
CaCO3 (calcite) Trigonal or

hexagonal
1.658 1.486 —

MgF2 Tetragonal 1.378 1.390 —
TiO2 (rutile) Tetragonal 2.616 2.903 —
As2S3 (orpiment) Monoclinic 2.40 2.81 3.02
SiO2 (˛-quartz) Hexagonal 1.544 1.553 —
SiO2 (fused silica) Amorphous 1.458 — —
SiO2 (trydimite) Trigonal 1.469 1.470 1.471
Na3AlF6 (cryolite) Monoclinic 1.338 1.338 1.339
Cu2CO3(OH)2 (malachite) Monoclinic 1.875 1.655 1.909
KH2PO4 — 1.510 1.469 —
PMMA — 1.491 — —
Polycarbonate — 1.586 — —
Polystyrene — 1.590 — —

Source: Data from M. J. Weber, Handbook of Laser Science and Technology, Vol. III, CRC Press, Boca
Raton, Fla., 1986, and other sources.

W8.2 Polaritons

Infrared radiation propagating through crystals at frequencies close to the optical
phonon frequencies propagates as coupled photon–phonon modes, called polaritons.
Consider, for example, transverse modes. A simple description of these modes follows
from combining the optical dispersion formula ω D kc/

p
	r�ω� with a Lorentz oscil-

lator model for the dielectric function introduced in Eqs. (8.23), (8.25), and (8.28). It
may be rewritten as

	r�ω� D 	r�0�C [	r�1�� 	r�0�]ω2
T

ω2 � ω2
T C i�ω

�W8.15�

for the case of a single oscillator of frequency ωT. Solving the resulting quadratic
equation in the variable ω2 yields two branches:

ω2
š D

	r�0�ω2
T C k2c2 š

√
�	r�0�ω2

T C k2c2�2 � 4	r�1��kcωT�2

2	r�1�
, �W8.16�
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where � ! 0. These branches are plotted in Fig. W8.1 for the case of MgO. The lower
branch has long-wavelength behavior given by ω D kc/

p
	r�0�, corresponding to a low-

frequency photon. The upper branch has the asymptotic behavior ω D kc/
p
	r�1�, as

for a high-frequency photon. The polaritons display the reststrahl gap, discussed in
Section 8.4, between the frequencies ωT and ωL D ωT

p
	r�0�/	r�1�. The fact that

there is no polariton mode between these two frequencies means that propagation of
light through the crystal is blocked there and it behaves as a good mirror in that
frequency range.

Appendix W8A: Maxwell’s Equations

The laws governing electricity and magnetism are Maxwell’s equations. They consist
of four equations, which will be presented in SI units:

1. Gauss’s law,
r · D D �, �W8A.1�

where D is the electric displacement vector and � is the charge density
2. Gauss’s law for magnetism

r · B D 0, �W8A.2�

where B is the magnetic flux density
3. Faraday’s law

r × E D �∂B
∂t
, �W8A.3�

where E is the electric field
4. Ampère’s law, as generalized by Maxwell:

r × H D J C ∂D
∂t
, �W8A.4�

where H is the magnetic field intensity and J is the current density

These equations are supplemented by the constitutive equations

D D 	0E C P, �W8A.5�

where 	0 D 107/�4�c2� ³ 8.854 ð 10�12C2N�1m�2 is the permittivity of free space
and P is the electric polarization vector (the electric dipole moment per unit volume).
In addition,

B D �0�H C M�, �W8A.6�

where �0 D 4� ð 10�7 Wb A�1m�1 is the magnetic permeability of free space and M
is the magnetization vector (the magnetic dipole moment per unit volume).

For linear isotropic materials, one writes Eq. (W8A.5) as

D D 	E D 	r	0E, �W8A.7�
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where 	 is the permittivity of the material and 	r is its dielectric function or relative
permittivity. The electric susceptibility is defined as  e D 	r � 1, so P D  e	0E. Thus
	 D �1 C  e�	0 and 	r D 1 C  e. Also, Eq. (W8A.6) is written as

B D �H D �r�0H, �W8A.8�

where � is the permeability of the material and �r is its relative permeability. The
magnetic susceptibility is defined as  m D �r � 1.

Two useful theorems follow from Maxwell’s equations. The first is the
continuity equation, the microscopic form of the law of conservation of charge.
Equations (W8A.7) and (W8A.8) will be assumed to apply. Then

r · J C ∂�

∂t
D 0, �W8A.9�

which follows from taking the divergence of Eq. (W8A.4) and combining it with
the time derivative of Eq. (W8A.1), using the identity r Ð r × H D 0. The second is
Poynting’s theorem, the microscopic form of the law of conservation of energy:

r · S C ∂u

∂t
D �E · J, �W8A.10�

where S is the Poynting vector, whose magnitude is the power per unit area (intensity)
carried by the electromagnetic field, defined by

S D E × H, �W8A.11�

and u is the electromagnetic field energy density, given by

u D 1

2

∫
�E · D C B · H� dr. �W8A.12�

The right-hand side of Eq. (W8A.10) gives the work done by the currents on the fields.
Equation (W8A.10) follows from taking the scalar product of E with Eq. (W8A.4),
subtracting the scalar product of H with Eq. (W8A.3), and making use of the identity
r · �E × H� D H · r × E � E Ð r × H.

Appendix W8B: Nonlocal Dielectric Function

The nonlocal relation between the electric displacement vector and the electric field
vector (for linear isotropic materials) is

D�r, t� D
∫∫

	�r � r0, t � t0�E�r0, t0� dr0 dt0. �W8B.1�

Since the wavelength is much larger than the interatomic spacing, it is reasonable to
assume that the dielectric function relating the fields at two points should depend only
on the displacement between the two points. The assumption concerning its dependence
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on the time difference is valid at frequencies low compared with electronic excitation
frequencies. It is an approximation at higher frequencies.

One makes a Fourier expansion of the fields,

D�r, t� D
∫∫

D�q, ω�ei�q·r�ωt� dqdω, �W8B.2�

E�r, t� D
∫∫

E�q, ω�ei�q·r�ωt� dqdω, �W8B.3�

and inserts these expressions in Eq. (W8B.1) to obtain

D�q, ω� D 	�q, ω�E�q, ω�, �W8B.4�

where the Fourier-transformed dielectric function is given by

	�q, ω� D
∫
drdt	�r, t�e�i�q·r�ωt�. �W8B.5�

Appendix W8C: Quantum-Mechanical Derivation of the Dielectric Function

In this appendix the quantum-mechanical derivation of the dielectric function will be
given. The Hamiltonian is taken to be

H D H0 � m · E0 cos�ωt� exp�˛t� � H0 CH1. �W8C.1�

(For technical reasons one introduces a switching factor, with parameter ˛ ! 0C, so
that the field is turned on slowly from a value of zero at t D �1.) Let the nth electronic
eigenstates of H0 be denoted by jni, where

H0jni D 	njni. �W8C.2�

To solve the time-dependent Schrödinger equation

Hj i D ih̄
∂

∂t
j i, �W8C.3�

one writes the wavefunction (approximately) as

j i D exp
(

� i

h̄
E0t

)
j0i C

∑
n>0

an�t� exp
(

� i

h̄
Ent

)
jni �W8C.4�

and proceeds to solve for the coefficients an�t�. Assuming that the system starts out in
state j0i at t D �1, one obtains

an�t� D � i

h̄

∫ t

�1
eiωn0t0 hnjH1j0idt0, �W8C.5�
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where ωn0 D �En � E0�/h̄. The expectation value of the scalar product of the dipole
operator with a constant vector C0 is

h jm · C0j i D � 1

2h̄

∑
n>0

⌊
h0jm · C0jnihnjm · E0j0i

ð
(

e�iωt

ω � ωn0 C i˛
� eiωt

ω C ωn0 � i˛

)
C c. c.

⌋
, �W8C.6�

where c.c. means complex conjugate.
The notation is now modified so that the initial state (previously labeled j0i) can be

any of a set fjmig, with associated probability fm, given by a Fermi factor. Then, by
rearranging the indices, one may write

h jm · C0j iD� 1

2h̄

∑
nm

[
hnjm · C0jmihmjm · E0jni e�iωt

ω�ωmnCi˛ �fn�fm�Cc. c.
]
.

�W8C.7�
Dividing by the volume, the expression becomes

1

V
h jm · C0j i D 1

2
	0C0 Ð $ �ω� Ð E0e

�iωt C c. c., �W8C.8�

where the dynamic electric susceptibility dyadic is

$ �ω� D � 1

	0h̄V

∑
m,n
m 6Dn

hnjmjmihmjmjni fn � fm
ω � ωmn C i˛

. �W8C.9�

The dielectric function is
$	r�ω� D $

I C $ �ω�, �W8C.10�

where
$
I is the unit dyadic. In the special case of a crystal, the states are labeled by

the quantum numbers fn, k, sg and the energy eigenvalues are given by 	n�k�. Instead
of having discrete energy levels, the levels are broadened into bands. The expression
for the optical dielectric function becomes

$	r�ω� D $
I C 1

	0V

∑
nn0

∑
kk0

∑
s

hnkjmjn0k0ihn0k0jmjnki
	n0�k0�� 	n�k�� h̄ω � ih̄˛

[fn�k�� fn0�k0�].

�W8C.11�
From Eq. (W8C.11) one sees that the oscillator strengths are determined by the transi-
tion matrix elements (i.e., the dipole matrix elements connecting electronic states of the
system). Comparing Eqs. (W8C.11) and (8.28), one sees that the resonance frequencies
are just the energies of the quantum states divided by Planck’s constant.


