I CHAPTER W18

Optical Materials

W18.1 Optical Polarizers

A polarizer is basically an optically anisotropic material for which the transmission
depends on the direction of polarization of the light relative to the crystal axes. The
ability to control the polarization permits one to build such optical elements as modu-
lators and isolators.

Suppose that a plane electromagnetic wave propagates along the z direction. The
electric field vector lies in the xy plane and may be characterized by two complex
amplitudes: Ey = on + Eo, f The intensity of the light (i.e., its power per unit area),

is written as
_ € 2 € 2 2\
I= ﬁlEoI = ;(IEOXI +|Eo, ") =1 +1,, (W18.1)

where I, and I, are the intensities of x and y polarized light. If I, and I, are the
same, the light is said to be unpolarized. If they are different, the light may be linearly
polarized. The degree of linear polarization, Py, is given by

I, —1,
pp =22 (W18.2)
I, +1,

where it is assumed that I, > I, so as to make 0 < P, < 1.If I, =0, then P, =1 and
there is 100% linear polarlzatlon If P =0 the light is unpolanzed fO0<PL<l,
the light is partially linearly polarized.

A more detailed description of the light involves information concerning the rela-
tive phases of the electric field components as well as the intensity and degree of
polarization. It is convenient to construct the complex column vector

_ | Eo,
Xo = [Eo} (W18.3)

and form the two-dimensional matrix, called the density matrix,

* *
Eo,Ej, EO.YEO,] (W18.4)

+

(If the light is fluctuating in time, one generally performs a time average and replaces
XoXxs by {xoxg).) Note that the matrix is Hermitian (i.e., its transpose is equal to
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its complex conjugate). A general complex two-dimensional matrix needs eight real
numbers to specify its elements, but the Hermitian condition reduces this number to
four. This matrix may be expanded in terms of four elementary Hermitian matrices.
The Pauli spin matrices (used coincidentally to describe the electron spin operator in
Appendix WC) and the identity matrix are chosen for this purpose. Thus multiplying
the column vector xo by the row vector x; formed from the two complex conjugate
elements gives

po = Xox§ = 3(SgI+S" - 0), (W18.5)
where
o — 0 1 o — 0 —i o — 1 0 I— 1 0
7\l 0/ YT 0/’ T\ —-1)° —\0 1
(W18.6)

The real numbers S?(i =0,1,2,3) are called the Stokes parameters and fully char-
acterize the state of polarization, including the relative phase relations. They are
given by

S0 = |Eo,I* + |Eqo, I%, (W18.7a)
S = |Eo,|* = |Eq, %, (W18.7b)
S} = Eo,Ej, + Eo,Ej (W18.7¢)
S5 = i(Eo,Ej, — Eo,Ep). (W18.7d)

From Eq. (W18.1) one sees that Sg is proportional to the intensity, I. The quantity
P = S83/S is the degree of linear polarization and Pc = S9/S) is the degree of

circular polarization. The degree of total polarization is given by Py = 1/P2c + P2

The Stokes parameter S contains information concerning the relative phase of the
x- and y-polarized light, or equivalently, between the right- and left-circularly polar-
ized light.

Consider the transmission of unpolarized light through a polarizer. Assume for the
moment that the principal axes of the polarizer are aligned with the x and y axes.
After transmission, the field is changed to E = Exf +E, f, where the new amplitudes
are related to the old amplitudes by

E.=Eye®p,  E,=Eye"p,. (W18.8)

The parameters p, and p, are dimensionless attenuation constants, depending on the
absorption coefficients when the electric field is directed along the principal optical
axes. Thus p, = exp(—a,L) for a polarizer of thickness L, and similarly for p,. These
coefficients may be frequency dependent, a phenomenon called dichroism. Henceforth,
as a simplification, it will assumed that the phase factors ¢, and ¢, are zero.

The Stokes parameters may be arranged as a four-element vector and the effect
of the polarizer will then be described by a four-dimensional matrix called the 4 x 4
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Mueller matrix, M,

5, pitry 0 0 =TS8 a0 o0 1[50
si| 1 0  popy O 0 S o c o of S
S| 2 0 0  pipy 0 9 ~10 0 C o0 9
5 pi-p: 0 0 pi+pillLlsy BO0 AT g

(W18.9)

If the principal axes were rotated with respect to the x and y axes by angle 6, this
could be described by rotating the M matrix by the rotation matrix 7"

1 0 0 0

0 sin26 0 cos26

0 0 1 0 ’
0

T = (W18.10)
—sin20 0 cos26
and the Mueller matrix becomes
A Bsin260 0 Bcos?26
. . 2 2 o .
M@©) = TMT' = Bsin26 Asin“20+ Ccos“20 0 (A — C)sin260cos?26
0 0 C 0
Bcos20 (A—C)sin20cos20 0 Acos?26+ Csin®26
(W18.11)

Various types of polarizing sheets have been devised. They are generally based
on the use of dichromophore molecules (i.e., molecules that produce dichroism). The
H-sheet, invented by E. H. Lamb, consists of molecules of polyvinyl alcohol (PVA)
stretched along a particular direction, to which an iodine-based dye is added. When
light has its electric field parallel to the long axis of the molecules, they become
polarized and develop large fluctuating electric-dipole moments. This sets up large
local fields near the molecules and their excitation is readily transferred to the iodine-
based dye molecules, where the energy is absorbed and thermalized. Light oriented
perpendicular to the molecules does not cause as large a polarization and is therefore
not transferred to the dye efficiently. Consequently, the perpendicularly polarized light
is transmitted with higher efficiency than light oriented parallel to the PVA molecules.
The PVA molecules are in laminated sheets consisting of cellulose acetate butyrate for
mechanical support and chemical isolation.

Later the J-sheet was introduced, consisting of needlelike dichroic crystals of herap-
athite oriented parallel to each other in a matrix of cellulose acetate. A variation of this
is the K-sheet, in which rather than achieving dichroism by adding a stain (an additive
that absorbs at a particular color or colors), hydrogen and oxygen are removed by a
dehydration catalyst. The material is stretched to produce aligned polyvinylene poly-
mers. Another variation, the L-sheet, relies on organic dye molecules to achieve the
dichroism. Typical dye molecules are aminil black, Erie green, Congo red, and Niagara
blue. It is also possible to embed thin parallel metal wires in a substrate to create a polar-
izer. Typically, fine Al wires are placed in substrates of glass, quartz, or polyethylene.

For a dichromophore molecule or crystallite to be successful, it must exhibit a large
anisotropy. In combination with the dye molecule it must be strongly absorbing for
one state of polarization and weakly absorbing for the other state.

An example of the spectral dependence of the polarization parameters on wavelength
is given in Fig. W18.1, where p? and pi are presented for the polarizer KN-36 (a
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Figure W18.1. Spectral parameters p? and pi plotted as a function of the wavelength X for the
polarizer KN-36. (Adapted from E. Collett, Polarized Light, Marcel Dekker, New York, 1993.)

commercial polarizer of the K-sheet variety). The filter is called a neutral polarizer
because these parameters are approximately flat across the visible spectrum.

It should be noted that the concept of a polarizer may be extended to any device that
modifies the Stokes parameters of the transmitted light. A large number of physical
parameters is associated with the Mueller matrix of the device. Full characterization
of a general polarizer is rarely given.

W18.2 Faraday Rotation

In Section W18.1 polarization of light was obtained by means of dichroism. In this
section attention is given to how the direction of polarization may be changed with
little attenuation. The polarization of an electromagnetic wave is rotated when it prop-
agates through a medium along the direction of a magnetic field, a phenomenon called
Faraday rotation. The angle of rotation, 6, is determined by the magnetic induction
or flux density, B = Bk = woH k, the length of propagation, z, and the Verdet constant
of the material, V:

0 = VHz. (W18.12)

The process is illustrated in Fig. W18.2.

Figure W18.2. Rotation of the electric polarization vector of light propagating along a mag-
netic field.
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To obtain an expression for V, one may model the electrons as a collection of
Lorentz oscillators interacting with the light and the magnetic field imposed. The model
is general enough to include both bound and free electrons. The classical equation of
motion for an oscillator is

2
[% + y% + wg} r(t) = —mic <E(t) + % x B> : (W18.13)
with B along the positive z direction. For free electrons m, is the cyclotron effective
mass of the electrons (see Problem W18.1), whereas for bound electrons m, is replaced
by the free-electron mass, m. If the electrons are bound, then wy represents an electronic
resonance frequency of the medium, while for free electrons it may be taken to be zero.
Assuming harmonic variations for E(¢) and r(z) of the form exp(—iwt), one obtains
the following equations for the amplitudes x and y:

(@R — & — iwy)x = ——(E, — iwBYy) (W18.14a)
me

(@R — & — iwy)y = ——(E, + iwBY). (W18.14b)
me

Letting xy =x +iy, E4 = E, £iE,, and o, = eB/m, (the cyclotron frequency) gives

E
(@)= —— . (W18.15)
me wj — w* — iwy F oo,
The polarization vector of the medium is expressed similarly as
Pi = —nex4 — XiEOEis (W1816)

where n is the concentration of oscillators. The relative permittivity or dielectric
constant is €,, = 1 + .

The wave vector is different for right- and left-circularly polarized light: k4 =
w, /€ /c. Introducing the dielectric function for zero magnetic field,

0)2

€ =1 W18.17
0 w? — W} + iwy ¢ )

where ), is the plasma frequency, one finds that

1 - Cr
— €ro . (W18.18)
1+ (o /a?)(1 —ep)

€, =1

To first order in B, the difference in the wave vectors is

We w : (1 - ero)z
ky —ko=——) —2L, (W18.19)
c wp €r

After propagating a distance z through the medium, this leads to a phase-angle difference,

e (o) (1—e, )2
Op = (ky —k_)z = ( ) V%) (W18.20)

mec \ ®p €5,
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The Verdet constant is therefore
P
w) € MZCE0 (42 — @2)¥2 J? — w} — ?

©mec
where the damping constant is neglected in the last expression.

This formula displays the factors influencing the size of the Verdet constant: the
concentration of oscillators, the cyclotron effective mass of the carriers, and the reso-
nance frequency relative to that of the light. In semiconductors, the effective mass
could be small and the value of V could be large. In the neighborhood of an electronic
resonance, the value of V could likewise become large.

Typical values for the Verdet constant for several nonmagnetic materials are presented
in Table W18.1. It is customary to express V in arc-minutes/Oe-m, where 1 Oe =
1,000/47 A/m. A magnetic induction of B = 4w x 107’ T corresponds to a field
intensity H of 1 A/m. The Faraday and Kerr effects in magnetic materials are discussed
in Chapter 17 of the textbook.” Magneto-optical applications are also given there.

An optical isolator may be constructed from a polarizer and Faraday rotator that
rotates the polarization vector by 45°. If light is partially reflected from some interface

(W18.21)

TABLE W18.1 Verdet Constants for Several Non-
magnetic Materials

A v
Material (nm) (arc-min/Oe-m)
Diamond 589.3 2.3
NaCl 589.3 35
KCl 589.3 2.8
SiO, 589.3 1.7
B,0Os 633 1.0
Al,O4 546.1 2.4
SrTiO3 620 14
ZnSe 476 150
496 104
514 84
587 53
633 41
TbyAlsO4, 520 —103.9 (300 K)
520 —343 (77 K)
520 —6480 4.2 K)
KH,PO,4 (KDP) 632.8 1.24

Source: Data from M. J. Weber, Handbook of Laser Science and
Technology, Vol. 4, CRC Press, Boca Raton, Fla., 1986; and
D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 75th
ed., CRC Press, Boca Raton, Fla., 1994.

T The material on this home pate is supplemental to The Physics and Chemistry of Materials by Joel 1.
Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-references
to material in the textbook appear without the “W.”
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after it passes through the isolator, the direction of its electric field vector will be
reversed by the reflection. As it propagates backward through the Faraday rotator, the
electric field vector will experience a further 45° rotation. Since the field will then be
perpendicular to the polarizer, it will be blocked by it. This prevents the reflected light
from propagating backward and possibly causing damage to optical components.

W18.3 Theory of Optical Band Structure

Band-structure engineering may be applied to more complex structures than were
considered in Section 18.6. In this section an analysis is given of one such structure,
consisting of a one-dimensional periodic array. Each unit cell of the array contains
two layers of transparent material with different indices of refraction. The propagation
of electron waves in one-dimensional periodic structures is studied in Chapter 7, and
it forms the basis for understanding the band theory of solids. Here the concept is
extended to the optical case.

Consider the passage of light through two materials in the case where the photon
energy is less than the bandgap. Barring any other absorption processes, both materials
would, separately, be transparent. Next construct a stratified structure in which alternate
layers of the two materials are stacked in a periodic fashion. It will be shown that for
some wavelengths, propagation cannot occur and the structure acts as a mirror. Other
colors, however, will pass through and the structure therefore acts as a color-selective
filter. These effects come about due to the destructive and constructive interference of
reflected light waves, in much the same way as electronic band structure results from
the interference of scattered electron waves in solids.

Let the indices of refraction for the two materials be n; and n,, and let the thick-
ness of layer n; be b and the thickness of layer n, be a — b. The structure has a
periodicity of size a (Fig. W18.3). For transverse waves propagating along the x direc-
tion, the problem of wave propagation reduces to solving the Helmholtz equation
[V2 4+ k*(x)]E = 0, where k; = wn,/c, ks = wn,/c, and E is the electric field of the
light. The solution in medium 1 is

E(x) = A;ef10i0 4 gemhmia)if jq < x < ja+b, (W18.224a)

Ny

ny

1 1 1 1 1 1
ja jatb  (f+1)a (j+1)a+b X

Figure W18.3. Stratified layers of optically transparent materials.
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and in medium 2 is
E(x) = C;e07J 4 Dm0 if ja+ b < x < ja+a. (W18.22b)
Matching E and dE/dx at x = ja + b yields
Ajet? 4 Biem b = C b 4 piemhb, (W18.23a)
kiAje™? — kiBje ™ = kyC ™ — kyDje b (W18.23b)

Repeating the match at x = (j 4 1)a yields

Ajs1 +Bjy1 = Cje™ + Dje ke (W18.24a)
kiAjy1 — kiBjy1 = kyC ™ — kyD e, (W18.24b)
Let
£ = ke, £ = ek, m = ekt 1y = efeb. (W18.25)
After eliminating C; and D; from the equations above, one arrives at the recurrence
formula
(gj:) =M (2/{) , (W18.26)
where the 2 x 2 transfer matrix M is
(k1 + k2)*m3mi62 (k3 — ki n3é
M= 1 —(ky — ka)*E5m1m2 —(k3 — kg (W18.27)
dkiky | (ki — k3)nsmé —(ky — ki)*nin3é

— (ki — k&2 +(k1 + k2)*E3nin2

Note that M is independent of the index j. The sum of the diagonal elements is called
the trace:

1
Tr(M) = m[(kl + k2)* (s mi&2 + mani&) — (ki — k> (Emimz + &y

(W18.28)
The determinant of the M matrix is 1.
The eigenvalues of the M matrix are defined as the roots of the characteristic
equation

My —pn M,
My, My —pn

2
[y = %Tr(M) +4/ GTr(M)) — 1. (W18.30)

The product of the two eigenvalues is equal to 1, the determinant. If both eigenvalues
are real, one of them is larger than 1 and the other is smaller than 1. On the other

’ =0=p>—puTr(M) + 1, (W18.29)

and are
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hand, if one of the eigenvalues is complex, the other is its complex conjugate and
each eigenvalue has magnitude 1. If the eigenvalue is real, repeated application of
the transfer matrix will cause the amplitudes A; and B; to grow exponentially with
increasing j, leading to an unphysical situation. Under such circumstances, propagation
is not possible. The condition for propagation is therefore that ©i be complex [i.e.,
that (TrM)? < 4]. This will define what is called a propagation band. The condition
may be recast as the condition

{(ki + k) cos[(ka — k)b — kaa] — (ki — ka)? cosl(ka + ki)b — kaal}* < (4kik)’.
(W18.31)
In Fig. W18.4 the allowed propagation band for the special case b = a/2 is illus-
trated. Let
ki + Ky ko — ky ka qa
q =

X =— y=—. (W18.32)

k = 9 9 K
2 2 2 2

Then the propagation-band conditions are

y?cos? y < x% cos’ x, y?sin? y < x

2 sin’ x. (W18.33)
Some wavelengths are able to propagate through the structure and others are blocked.

Typical materials for use in these devices, which may serve as either mirrors or
filters, are TiO, (n = 2.4) and SiO, (n = 1.46). Other combinations are MgF, (n =
1.38) and ZnS (n = 2.35) or MgF, with TiO,. A one-dimensional array of air holes
in a Si strip on top of an SiO, substrate has been fabricated’ which displays a 400-nm
gap centered around A = 1.54 pm.

To withstand bursts of light that may arise in pulsed lasers, one generally wants
matched coefficients of thermal expansion and high thermal conductivity. The reason
is that mismatched thermal expansion between successive layers will generate strains
upon heating that could produce dislocations at the interface. Repeated thermal expan-
sion may enlarge these dislocations and could eventually crack the material. The high
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Figure W18.4. Region of parameter space for the propagation band.

3. S. Foresi et al, Nature, 390, 143(1997).
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thermal conductivity permits the material to cool rapidly. Optical damage is considered
further in Section W18.4.

The extension of the periodic structure to two or three dimensions has led to the
construction of what are called photonic crystals. By creating an array of holes in
a dielectric slab a photonic crystal operating in the microwaves has been built." By
stacking Si rods in a face-centered tetragonal array with air filling the interstices, it
has been possible to fabricate* a photonic crystal with a bandgap in the infrared (10 to
14.5 um). Similarly, a periodic array of air-filled spheres in a titania crystal has been
fashioned to serve as a photonic crystal in the visible region of the spectrum.’

Just as electrons may be localized in a medium with random scatterers, the same
is true of electromagnetic radiation. Localization in the microwave region has been
demonstrated by using a three-dimensional metal-wire network with random scatterers.
It is clear that band-structure engineering is still at its early stage of development and
that new and exciting developments are rapidly emerging in the field.

W18.4 Damage

Laser damage to optical components, such as laser crystals, mirrors, polarizers, fibers,
electro-optic crystals, and prisms, is of concern in applications involving high power,
in both pulsed and continuous wave (CW) operation. Due to the optical absorption,
the materials heat up. Materials with a low heat capacity and low thermal conductivity
are more likely to reach high temperatures. In layered structures the mismatch in
thermal expansion coefficients can lead to crack formation and propagation. Typically,
bulk damage results for 10-ns pulses when the power density is in the range 200 to
4000 TW/m?.

One of the prime concerns is the phenomenon of self- focusing. This can occur in a
medium with a positive value of the nonlinear index of refraction, n,/. A laser beam
generally has a cross-sectional intensity profile with a higher intensity, /(R), near the
axis than away from it. A typical form for the profile is Gaussian; that is,

2P ,
I(R) = =2 2RI (W18.34)
f?

where R is the radial distance, Py the power in the beam, and f a measure of the
beam radius. The nonlinearity causes a larger value for the index of refraction, n(R) =
ni + nyl(R), near the axis, when n, > 0. The medium behaves as a lens, and this tends
to focus the radiation [i.e., make f(z) decrease with increasing propagation distance,
z]. However, there is a competing effect due to diffraction, which tends to defocus the
radiation. This defocusing effect becomes stronger the smaller the value of f. There
exists a critical value of P, for which the focusing effect of the nonlinearity dominates
over the defocusing effect of diffraction and the beam focuses. When it does so, the
focal spot can become as small as a wavelength of light and the intensity can become

T E. Yablonovitch et al, Phys. Rev. Lett., 67, 2295 (1991).

£S.Y. Lin et al, Nature, 394, 251 (1998).

§7. Wijnhoven and W. Vos, Science, 281, 803 (1998).

M. Stoychev and A. Z. Genack, Phys. Rev. B, 55, R8617 (1997).
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very large. A crude estimate of the critical power may be obtained by setting f = 1/k,
where k is the wave vector, and setting n| ~ n,I. This gives P, ~ n| /n2k2.

Often, the electric field of the light can exceed the strength of the typical electric
fields in the solid and electrons can be accelerated to high energies, causing radiation
damage such as atomic displacements. The highly concentrated beam could cause local
melting, vaporization or ionization.

The situation is exacerbated when there are preexisting cracks or dislocations in the
material. When subjected to the (uniform) electric field of the laser, the local electric
field in the vicinity of the defect could be nonuniform, with particularly strong fields
being generated near sharp features. The same effects occur near a lightning rod, where
the strongest field occurs near the sharpest point. Local breakdown is likely to occur
near the defect, often inflicting additional damage there.

Defects are usually introduced into optical components during their fabrication stage.
For example, YAG is seen to have edge dislocations, helical dislocations, and zigzag
dislocations. Laser crystals are often plagued by secondary phases of crystals mixed in
with the primary phase. Bubbles are often present. These larger features can also serve
as scattering centers which deplete the laser beam of power and couple their signals to
other optical components. For this reason it is important that the optical components
be largely free of defects before being used in high-power applications.
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PROBLEM

W18.1 The effective-mass tensor for an electron is diagonal in the xyz-coordinate
system and has elements m7, m5, and m3. A magnetic induction B is directed
in an arbitrary direction. If the cyclotron resonance frequency is eB/m,, find
an expression for m,.



