
CHAPTER W14

Polymers

W14.1 Structure of Ideal Linear Polymers

The first quantity characterizing the polymer is the molecular weight. If M1 is the mass
of a monomer unit, the mass of the polymer molecule is

MNC1 D �NC 1�M1. �W14.1�

Often, there will be a distribution of values of N in a macroscopic sample, so there
will be a distribution of masses. We return to this point later.

If one were to travel along the polymer from end to end, one would travel a distance
Na, where a is the length of a monomer unit. The end-to-end distance in space,
however, would be shorter than this, due to the contorted shape of the polymer. The
mean-square end-to-end distance hr2

Ni of a polymer with N intermonomer bonds may
be calculated. Figure W14.1 shows a chain in which the monomer units are labeled
0, 1, 2, . . . , N. One endpoint is at 0 and the other is at N. The vector from monomer 0
to monomer n is denoted by rn. Thus r0 D 0, the null vector, whereas rN is the end-
to-end vector. The vector from monomer m to monomer mC 1 is denoted by a OumC1,
where f Ouj, j D 1, 2, . . . , Ng are a set of unit vectors.

In the ideal polymer it will be assumed that these unit vectors are uncorrelated with
each other, so that if an ensemble average were performed,

h Ouji D 0 and h Ouj Ð Ouki D υj,k, �W14.2�

where υj,k D 0 or 1, depending on whether j 6D k or j D k, respectively. It follows that

rN D
N∑
nD1

a Oun, �W14.3�

r2
N D a2

N∑
nD1

N∑
mD1

Oum Ð Oun. �W14.4�

Performing an ensemble average yields

hrNi D 0, �W14.5�

hr2
Ni D a2

N∑
nD1

N∑
mD1

h Oum Ð Ouni D a2
N∑
nD1

N∑
mD1

υm,n D a2
N∑
nD1

1 D Na2. �W14.6�
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Figure W14.1. Structure of an ideal linear polymer chain.

One may also look at the shadows of the vector rN on the yz, xz, and xy planes.
Denote these by xN, yN, and zN, respectively. It follows that

hxNi D hyNi D hzNi D 0. �W14.7�

Due to the isotropy of space, it also follows that the mean-square end-to-end shadow
distances (ETESDs) are

hx2
Ni D hy2

Ni D hz2
Ni D 1

3 hx2
N C y2

N C z2
Ni D 1

3 hr2
Ni D 1

3Na
2. �W14.8�

For an ensemble of polymers there will be a distribution of end-to-end distances.
This distribution may be found from a simple symmetry argument. Let FN�x2

N�dxN
be the probability for finding the ETESD within a bin of size dxN at x D xN. This
may be written as an even function of xN since there is nothing to distinguish right
from left in the problem. The probability for finding the vector rN in volume element
dV D dxN dyN dzN is

dP D F�x2
N�F�y

2
N�F�z

2
N� dV D G�r2

N� dV, �W14.9�

where, by the isotropy of space, dP can depend only on the magnitude of rN. Here
GN�r2

N� dV gives the probability for finding the end-to-end distance in volume element
dV. If the relation above is differentiated with respect to x2

N, the result is

F0�x2
N�F�y

2
N�F�z

2
N� D G0�r2

N�. �W14.10�

Dividing this by
F�x2

N�F�y
2
N�F�z

2
N� D G�r2

N� �W14.11�

results in
F0�x2

N�

F�x2
N�

D G0�r2
N�

G�r2
N�
. �W14.12�
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Since rN may be varied independently of xN (e.g., by varying yN), both sides of this
equation must be equal to a constant. Call this constant �˛N. Integrating the resulting
first-order differential equation produces

FN�x
2
N� D ANe

�˛Nx2
N. �W14.13�

Since this represents a probability it must be normalized to 1, that is,

1 D
∫ 1

�1
FN�x

2
N� dxN D

∫ 1

�1
ANe

�˛Nx2
N dxN D AN

√
�

˛N
, �W14.14�

so AN D �˛N/��1/2.
Use this probability distribution, FN, to compute hx2

Ni:

hx2
Ni D

∫ 1

�1

√
˛N
�
x2
Ne

�˛Nx2
N dxN D 1

2˛N
D Na2

3
, �W14.15�

where the last equality follows from Eq. (W14.8). Thus

FN�x
2
N� D

(
3

2�Na2

)1/2

e�3x2
N/2Na

2
, �W14.16�

GN�r
2
N� D

(
3

2�Na2

)3/2

e�3r2
N/2Na

2
. �W14.17�

A plot of the end-to-end distance probability distribution function as a function of
� D r/a

p
N is given in Fig. W14.2. In this graph the volume element has been written

as 4�r2
N drN. Note that the most probable value of r is a�2N/3�1/2, as may be verified by

finding the extremum of the curve. This N1/2 dependence is characteristic of processes
involving a random walk of N steps.
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Figure W14.2. End-to-end distance probability distributionGN�R2
N� for the ideal linear polymer.
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The center of mass of the polymer is defined (approximately, by neglecting end-
group corrections) by

R D 1

NC 1

N∑
nD0

rn. �W14.18�

Let sn be the location of the nth monomer relative to the center of mass:

sn D rn � R. �W14.19�

Define a quantity s2 that is the mean square of sn:

s2 � 1

NC 1

N∑
nD0

hs2ni. �W14.20�

In the polymer literature the parameter s is referred to as the radius of gyration, although
its definition conflicts with that used in the mechanics of rigid bodies. Thus

N∑
nD0

hs2ni D
N∑
nD0

h�rn � R�2i D
N∑
nD0

hr2
ni � �NC 1�hR2i. �W14.21�

Note that
N∑
nD0

hr2
ni D

N∑
nD0

na2 D N�NC 1�

2
a2. �W14.22�

Also

hR2i D
(

1

NC 1

)2 N∑
mD1

N∑
nD1

hrn·rmi. �W14.23�

Note that

hrn·rmi D a2
n∑
jD1

m∑
kD1

h Ouj Ð Ouki D a2
n∑
jD1

m∑
kD1

υj,k D a2 min�m, n�, �W14.24�

where min�m, n� D m when m < n, and vice versa. It follows that

hR2i D 1

�NC 1�2

N∑
nD1

N∑
mD1

a2 min�m, n� D
(

a

NC 1

)2 N∑
nD1

(
n∑

mD1

m C
N∑

mDnC1

n

)

D
(

1

NC 1

)2 N∑
nD1

[
n�nC 1�

2
C n�N� n�

]

D
(

a

NC 1

)2 N

6
�2N2 C 3NC 1� D a2

6

N

NC 1
�2NC 1�. �W14.25�
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For large N this approaches

hR2i ³ Na2

3
. �W14.26�

By coincidence, this is the same as the expression given in Eq. (W14.15). An expression
for the square of the radius of gyration is finally obtained:

s2 D a2

6

N�NC 2�

NC 1
���! N

a2

6
. �W14.27�

It is also possible to obtain a formula for the mean-square distance of a given
monomer to the center of mass:

hs2ni D hr2
ni � 2hR · rni C hR2i. �W14.28�

Using

hR · rni D a2

NC 1

(
n∑

mD1

m C
N∑

mDnC1

n

)
D a2

NC 1

[
�n

2

2
C n

(
NC 1

2

)]
�W14.29�

results in

hs2ni D N2a2

NC 1

{
1

3
[w3 C �1 � w�3] C 1

6N

}
���! N

a2

3
[w3 C �1 � w�3], �W14.30�

where w D n/N.
Finally, the symmetry argument employed previously may be used to obtain an

expression for the probability distribution function, P�sn�, for the distances sn. Isotropy
of space leads to a Gaussian functional form for P:

P�sn� D Ae�!s2n . �W14.31�

Using this to evaluate hs2ni leads to the expression

hs2ni D

∫
d3sns

2
n exp��!s2n�∫

d3sn exp��!s2n�
D 3

2!
D N

a2

3

[( n
N

)3 C
(

1 � n

N

)3
]
, �W14.32�

so

! D 9

2

(
N

a

)2 1

n3 C �N� n�3
, �W14.33�

A D
(!
�

)3/2
. �W14.34�
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W14.2 Self-Avoiding Walks

There are two constraints that a linear-chain polymer must obey: each monomer must
be attached to the previous monomer in the chain, and no monomer can cross another
monomer. The case of a single molecule is considered first, followed by a dense
collection of molecules. If only the first constraint is imposed, the result has already
been derived: the end-to-end distance grows as

p
N, just as in a random walk. It will

be seen that the effect of the second constraint is to transform this to rN / N", where
" D 0.588 š 0.001. The fact that the distance grows as a power of N greater than
that for the overlapping chain model is expected. After all, since certain back-bending
configurations are omitted because they lead to self-overlap, it is expected that the
chain will form a looser, more-spread-out structure. The precise value of the exponent
depends on the results of a more detailed calculation.

In Table W14.1, results are presented for a random walk on a simple cubic lattice.
For a walk of N steps, starting at the origin, there are 6N possible paths. The 6 comes
from the fact that at each node there are six possible directions to go: north, south,
east, west, up, or down. The table presents the number of self-avoiding walks and also
the mean end-to-end distance. The exponent may be estimated by a simple argument.
At the simplest level (N D 2) the effect of nonoverlap is to eliminate one of the six
possible directions for the second step (Fig. W14.3). The mean end-to-end distance
is therefore �2 C 4

p
2�/5 D 1.531371 . . . . For a polymer of length N, imagine that it

really consists of two polymers of length N/2. These two half-polymers are assumed
to combine with the same composition rule as the two one-step segments above did.
Assuming the scaling formula rN D AN", one obtains

AN" D A

(
N

2

)" 2 C 4
p

2

5
, �W14.35�

which leads to " D 0.6148237 . . . . Successive refinements of the exponent are obtained
by applying the scaling prescription above to the entries in Table W14.1. Acceleration
of the convergence of the exponent is obtained by averaging successive values of the
exponents.

TABLE W14.1 Self-Avoiding Walks on a Cubic Lattice

Number Number of Possible Number of Self-Avoiding Mean End-to-End
of Steps Paths Paths of Length N Distance
N n (paths) n (SAW paths) hsi
1 6 6 1.00000
2 36 30 1.53137
3 216 150 1.90757
4 1,296 726 2.27575
5 7,776 3,534 2.57738
6 46,656 16,926 2.88450
7 279,936 81,390 3.14932
8 1,679,616 387,966 3.42245
9 10,077,696 1,853,886 3.62907

10 60,466,176 8,809,878 3.89778
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Figure W14.3. A polymer “path” starts at O and after two steps ends up at positions a, b, c, d,
or e. Path O–a has length 2; the other paths have length

p
2.

3

2

1

0

G
(r

2 )

0 1 2 3

r

RW

SAW

Figure W14.4. Comparison of the end-to-end distance distributions G�r2� for the random walk
(RW) and the self-avoiding walk (SAW). The units are arbitrary.

In Fig. W14.4 the distribution of end-to-end distances for the random walk (RW)
is compared to the distribution of distances for the self-avoiding walk (SAW). The
curves were generated by constructing a chain of 100 spheres, with each successive
sphere touching the previous one at a random location. An ensemble average of 10,000
random chains was made. One verifies that the SAW distribution is more extended than
the RW distribution.

Next consider a dense polymer. Each monomer is surrounded by other monomers,
some belonging to its own chain and some belonging to others. The no-crossing rule
applies to all other monomers. By extending the chain to larger sizes, the chain will
avoid itself, but it will more likely overlap other chains. Thus there is nothing to gain
by having a more extended structure. The net result is that there is a cancellation effect,
and the chain retains the shape of a random walk. Thus in the dense polymer the mean
end-to-end distance grows as

p
N.

W14.3 Persistence Length

On a large-enough length scale, a long polymer molecule will look like a random curve.
On a short-enough length scale, however, a segment of the polymer may look straight.
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Figure W14.5. Various possible bend locations in a polymer.

The question is at what length scale the transition occurs. The characteristic distance
is called the persistence length, Lp. A simple statistical argument provides an estimate
of this length. Refer to Fig. W14.5 to see the enumeration of bending configurations.

Select a monomer at random and look at its NN and subsequent neighbors down
the chain. Let p be the probability that two neighboring bonds are not parallel to
each other and q D 1 � p be the probability that they are parallel to each other. The
probability of forming a bend after moving one monomer down the chain is P1 D
p. The probability of forming the first bend after traversing two bonds is P2 D qp.
Similarly, the probability of traversing n bonds before the bend is

Pn D qn�1p. �W14.36�

Note that the probability is properly normalized, since

1∑
nD1

Pn D
1∑
nD1

�1 � p�n�1p D p

1 � �1 � p�
D 1. �W14.37�

The mean number of parallel bonds before a bend occurs is

hni D
1∑
nD1

Pnn D p

q

1∑
nD1

nqn D p
∂

∂q

1

1 � q
D 1

p
. �W14.38�

The persistence length is obtained by multiplying this by the bond length, a:

Lp D a

p
. �W14.39�

Suppose that the bend formation requires an activation energy Eb and that there are
g possible ways of making the bend. Then

p D ge�ˇEb

1 C ge�ˇEb ³ ge�ˇEb, �W14.40�

where it is assumed that Eb × kBT. Thus

Lp D a

g
eˇEb . �W14.41�
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At low temperatures the persistence length of an isolated polymer will be long. At high
temperatures Lp becomes shorter. This assumes, of course, that there are no obstacles
in the way to prevent coiling and uncoiling of the polymer. In a dense polymer melt,
however, the steric hindrance due to the presence of the other molecules prevents this
coiling–uncoiling from occurring.

W14.4 Free-Volume Theory

The concept of packing fraction has already been encountered when analyzing crys-
talline order and the random packing of hard spheres. The same concept carries over
to the case of polymers. When the polymer is below the melting temperature, Tm, and
is cooled, it contracts by an amount determined by the volume coefficient of thermal
expansion, ˇ. Consistent with a given volume there are many possible configurations
that a polymer molecule may assume. As the temperature is lowered closer to the
glass-transition temperature, Tg, the volume shrinks further and the number of possible
configurations is reduced. Concurrent with the decrease of volume and reduction in
the number of configurations is a rapid increase in the viscosity of the polymer. These
trends may be related by introducing the free-volume theory, or the closely related
configurational-entropy approach.

Free volume is defined as the difference in the volume that a sample has and the
volume it would have had if all diffusion processes were to cease. Recall that at
T D 0 K all thermal motion ceases. For low temperatures, atomic vibrational motion
occurs, but the atoms retain their mean center-of-mass positions. Below the Kauzmann
temperature, TK, all atoms on a polymer chain are sterically hindered by other atoms
and there can be no diffusion of the individual atoms on the polymer chain. At a
temperature above the Kauzmann temperature there can be some diffusion of the atoms
comprising the polymer, but the polymer as a whole still cannot move, since some of
its atoms are pinned by the steric hindrance of other atoms. It is not until a temperature
Tg > TK is reached that the molecule as a whole may begin to move. This motion
usually involves the concerted motion of a group of atoms. For the group of atoms to
diffuse, there must be a space for it to move into. The free volume is a measure of that
space. It is important to distinguish free volume from void space. In both the crystalline
state and the random close-packed structure there is void space but no free volume.
If PF is the packing fraction, 1 � PF is a measure of that void space. Free volume
begins to form when the volume constraint on the system is relaxed and the atoms are
permitted some “breathing room.” The packing fraction when there is free volume is
f < PF. Free volume plays the same role in amorphous polymers as vacancies play
in crystals.

Imagine that the polymers are partitioned into molecular groups (i.e., groups of
atoms on the polymer chain that are free to diffuse above TK). It will be assumed that
this distribution costs no energy, the partitioning being based just on probabilities. Let
Vf be the total free volume available to a system of N such molecular groups. The
average free volume per molecular group is

vf D Vf
N
. �W14.42�

Imagine that the free volume available to a molecular group comes in various sizes,
which will be labeled vi. Let Ni be the number of groups assigned the volume vi. Then
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there are two constraints: ∑
i

Ni D N �W14.43�

and (neglecting possible overlaps of free volume)

∑
i

Nivi D Vf. �W14.44�

The number of ways to partition N molecular groups into classes with N1 in the first
class, N2 in the second class, and so on, is given by the multinomial coefficient W:

W D N!

N1!N2! Ð Ð Ð D N!∏
i Ni!

. �W14.45�

The most probable distribution is sought [i.e., the one with the maximum configu-
rational entropy, S D kB ln�W�]. This involves maximizing W subject to the two prior
constraints. First use Stirling’s approximation, ln�N!� ³ N ln�N��N, to write

ln�W� D N ln�N��N�
∑
i

[Ni ln�Ni��Ni]. �W14.46�

When ln�W� is maximized with respect to the Ni, W will also be maximized. Intro-
duce Lagrange multipliers ! and 4 to maintain these constraints and vary the quantity
ln�W�� !

(∑
Ni �N

)� 4
(∑

Nivi � Vf
)

with respect to the variables Ni, to obtain

∂

∂Ni

{
N ln�N��N�

∑
i

[Ni ln�Ni��Ni] � !

(∑
i

Ni �N

)

�4
(∑

i

Nivi � Vf

)}
D 0, �W14.47�

so
� ln�Ni�� ! � 4vi D 0. �W14.48�

Solving this for the probability of obtaining a given volume yields

pi D exp��4vi�∑
i exp��4vi� . �W14.49�

The value of 4 is fixed by the constraint

vf D
∑
i

pivi D � ∂

∂4
ln
∑
i

exp��4vi�. �W14.50�

A further approximation is called for. Introduce a volume density of states

��v� D
∑
i

υ�v � vi� �W14.51�
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and write ∑
i

exp��4vi� D
∫
��v� exp��4v� dv. �W14.52�

It will be assumed that the volume density of states may be approximated by a constant,
although other possible variations may be imagined. Then

∑
i

exp��4vi� D
∫ 1

0
�0 exp��4v� dv D �0

4
, �W14.53�

and vf D 1/4.
The next assumption involves arguing that motion of a molecular group cannot

occur until a minimum amount of free volume, vŁ, is assigned to it. The probability
for having v > vŁ is

pŁ D
∑
i

pi�vi � vŁ� D

∫ 1

vŁ
��v� exp��v/vf� dv∫ 1

0
��v� exp

(
� v

vf

)
dv

D exp
(

� vŁ

vf

)
. �W14.54�

Recall from elementary physics that a hole in a solid expands when the solid
expands. This concept applies to the free volume as well, so

dvf
dT

D ˇ�vf C vK�, �W14.55�

where ˇ is the volume thermal-expansion coefficient and vK is the volume per molecular
group at the Kauzmann temperature, TK. Integrating this, and assuming for simplicity’s
sake that ˇ is constant, leads to

vf�T� D vK�e
ˇ�T�TK� � 1� ³ vKˇ�T� TK�, �W14.56�

where it is assumed that the exponent is small enough to be linearized. Thus

pŁ D exp
[
� vŁ

vKˇ�T� TK�

]
. �W14.57�

By assumption, the viscosity 6 varies inversely as pŁ. Normalize it to the value 6g,
the viscosity at temperature Tg:

6�T�

6g
D exp

[
vŁ

vKˇ

(
1

T� TK
� 1

Tg � TK

)]
. �W14.58�

This leads to the Williams–Landel–Ferry (WLF) equation

log10
6�T�

6g
D � C1�T� Tg�

C2 C T� Tg
. �W14.59�
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Empirically, it is found that C1 D 17.4 and C2 D Tg � TK D 51.6 K are the average
values for many polymers. This means that the glass-transition temperature is on the
average about 51.6 K above the Kauzmann temperature. Also, the free volume at the
glass-transition temperature amounts to 2.5% of the critical volume for diffusion:

vf,g D vkˇ�Tg � TK� D vŁ

C1
log10 e D 0.025 vŁ. �W14.60�

The time–temperature superposition principle presupposes the existence of a univer-
sal connection between viscosity and temperature. The WLF formula shows that this
supposition is, in fact, warranted. The free-volume theory also predicts that diffusion of
gases through the polymer should increase considerably above TK and should increase
further above Tg. It also predicts that the application of pressure, which compresses
the material and hence removes free volume, should serve to increase the viscosity.
This prediction is consistent with experiment.

One may measure the free volume by relating it to the thermal expansion of the solid.
Write the total volume of a sample at temperature T as the sum of three terms, V�T� D
Vp C Vv C Vf, where Vp is the volume occupied by the polymer atoms, Vv is the void
space, and Vf�T� is the free volume. At T D Tg, Vf�Tg� D 0 and V�Tg� D Vp C Vv �
Vg. For T > Tg, V�T� D Vg[1 C ˇ�T� Tg�]. Then Vf�T� D Vgˇ�T� Tg�. In practice
one takes for ˇ the difference in the values of the volume coefficient of thermal
expansion above and below Tg.

Note that the distinction between TK and Tg really exists only for macromolecules
such as polymers. For small molecules the movement of individual atoms is tantamount
to the motion of the molecule as a whole.

It is now believed that free-volume theory was a useful milestone in the approach to
a full understanding of the glass transition but is not the ultimate explanation. Modern
advances in what is known as mode-coupling theory provide a more fundamental
approach toward this understanding.

W14.5 Polymeric Foams

Foams constructed from polymers offer a variety of uses, including filters, supports for
catalysts and enzymes, and possible applications as electrodes in rechargeable batteries.
Examples range from polyurethane cushions to polystyrene coffee cups. Here the focus
is on one example of such a foam made of cross-linked polystyrene. Most of this
material consists of empty space, with the void volume typically occupying more than
90% of the total. There is a fully interconnected network of empty chambers connected
by holes whose size can vary between 2 and 100 µm in diameter, with a fairly uniform
size distribution (š20%). The density is typically in the range 20 to 250 kg/m3.

The foam is created by an emulsion technique that combines water, oil (containing
styrene), and an emulsifier, followed by vigorous agitatation of the mixture. The
emulsifier keeps the small oil droplets formed from recombining into larger droplets.
The water droplets can be made to occupy more than the 74% needed to form a
close-packed structure of uniform spheres by including additional smaller droplets.
The emulsion resembles soap bubbles, but with the air being replaced by water
(Fig. W14.6). Persulfates are present as an initiator for the polymerization and
divinylbenzene serves as the cross-linker as in the vulcanization process discussed
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Figure W14.6. Two-dimensional representation of a foam. The region between the circles
(spheres) is the portion occupied by the polymer. The spheres are empty.

in Section 14.1. The process of initiation is discussed in Chapter 21 of the textbook.†

The cross-linked matrix is rigid. Once the polymer foam has formed, there is a need
to remove the water and clean out the residual chemicals. The resulting material may
be sliced into useful shapes.

Other polymers may be used to create carbon foams. For example, a foam made
from polymethacrylonitrile (PMAN) with divinylbenzene serving as the cross-linker
may be pyrolyzed to leave behind a carbon shell in the form of the original foam.

Interest has now expanded to low-density microcellular materials (LDMMs) compo-
sed of low-atomic-weight elements (e.g., C or Si polymers). They are porous and have
uniform cell size, typically in the range 0.1 to 30 µm. They exhibit very low density,
and because of the uniform cell size, the mechanical properties are homogeneous. An
example is ultralow-density silica gel, which can have a density of 4 kg/m3 — only
three times that of air! These materials are both transparent and structurally self-
supporting. They have promising applications as thermal or acoustical insulators.

W14.6 Porous Films

The sports world is enriched by the existence of garments made of breathable micro-
porous films. These materials permit gases such as air and water vapor to pass through
them readily while offering protection against water droplets. An example of such a
porous film has the brand name Gore-tex, a Teflon-based material. Here the pores are
generated by heat-casting a film sheet and stretching it, thereby expanding the preex-
isting defects until they form a connected network of pores. The pore sizes are typically
0.2 µm long and 0.02 µm wide. Water droplets cannot pass through the network because
this would involve greatly expanding the droplets’ surface area, and consequently the
surface energy. Porosity levels of 40% are achievable.

† The material on this home page is supplemental to The Physics and Chemistry of Materials by
Joel I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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Recently, it was found that polypropylene contains two crystalline phases, an ˛-
phase (monoclinic) and a ˇ-phase (hexagonal), in addition to the amorphous phase.†

The lower-density ˇ-form (see Table 14.1) is less stable than the ˛-form and has a lower
melting temperature. By applying stress to the material, it is possible to transform ˇ to
˛. When this occurs there is a volume change, and void spaces are produced next to
where the converted ˇ-phase was. These voids percolate to form a network of pores.
By adding fillers and rubbers into the pores and stretching the material it is possible
to enlarge the pores to the optimal size.

Another way of preparing porous films is to irradiate the polymer film with high-
energy ions. The ions create radiation damage as they penetrate the material, resulting
in the breaking of polymer bonds along their tracks. By etching with acid or base, the
damaged regions may be removed, leaving behind pores. Pore diameters as small as
20 nm may be produced by this technique.

W14.7 Electrical Conductivity of Polymers

It has been found experimentally that some polymers possess very high electrical
conductivities when doped with small amounts of impurities. The electrical conductiv-
ities can approach those of copper [8Cu D 58.8 ð 106�9 Ð m��1 at T D 295 K; see
Table 7.1]. An example of such a polymer is trans-polyacetylene doped with Na
or Hg (n-doping) or I (p-doping). Other highly conducting polymers are polypyr-
role (C4H2NH)n, polythiophene (C4H2S)n, polyaniline (C6H4NH)n, and TTF-TCNQ
(tetrathiafulvalene-tetracyanoquinodimethane). The conductivity tends to be highly ani-
sotropic, with conductivity parallel to the polymer backbone strand being typically 1000
times larger than conductivity perpendicular to the strand. The precise origin of this
high conductivity has been the subject of considerable debate.

Observe that strands of polyacetylene make almost perfect one-dimensional solids,
with the molecule being typically 100,000 monomers in length. Furthermore, the cova-
lent bonds comprising the polymer are energetically highly stable. Any doping of
the sample proceeds by having donors or acceptor ions contribute carriers, without
these ions actually entering the strands themselves. Since shielding is absent in a one-
dimensional solid, these ions can be expected to interact with whatever mobile carriers
may be present in the string via a long-range Coulomb force. As will be seen later,
this is ineffective in backscattering the carriers, making the resistance of the polymer
very small.

In Fig. W14.7, two bonding configurations are presented for the trans state of poly-
acetylene and also the cis configuration. Unlike the case of the benzene molecule, where
a resonance structure is formed by taking a linear combination of the two bonding
configurations, in long polymers each configuration maintains its distinct character. In
benzene, the energy gap between the bonding and antibonding states is sufficiently
large that the system relaxes into the bonding state. In polyacetylene the gap is very
small. It is known that the carbon–carbon bond distances are different for the various
bonding states: 0.12 nm for the triple bond (e.g., acetylene), 0.134 nm for the double
bond (e.g., ethylene), and 0.153 nm for the single bond (e.g., ethane). By way of
comparison, benzene has 0.140 nm, intermediate between the single- and double-bond
values.

† P. Jacoby and C. W. Bauer, U.S. patent 4,975,469, Dec. 4,1990.
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Figure W14.7. Two arrangements of the alternating single and double carbon–carbon bonds in
polyacetylene, trans-A and trans-B. Also shown is the cis configuration.

The polyacetylene polymer may be modeled as a one-dimensional tight-binding
dimerized chain with two carbon atoms (labeled A and B) per unit cell and unit cell
length a. The amplitudes for having an electron reside on the nth A-atom site and the
nth B-atom site will be denoted by An and Bn, respectively. The NN hopping integrals
will be denoted by t and t0 for the single- and double-bond distances, respectively. The
details of the tight-binding equations are similar to those presented in Section 7.8, but
extended here to the case of two atoms per unit cell. Thus

t0AnC1 C tAn D ;Bn, �W14.61a�

tBn C t0Bn�1 D ;An. �W14.61b�

These equations may be simplified with the substitutions An D ˛ exp�inka� and Bn D
ˇ exp�inka�, leading to

;ˇ D �t C t0eika�˛, �W14.62a�

;˛ D �t C t0e�ika�ˇ. �W14.62b�

This leads to the solution for the energy eigenvalues

;4�k� D š
√
t2 C t02 C 2tt0 cos�ka�, �W14.63�

where 4 D š and with the first Brillouin zone extending from ��/a to �/a. There
are two allowed energy bands separated by a gap. The allowed bands extend from
�jt C t0j to �jt � t0j and from jt � t0j to jt C t0j, respectively. The gap is from �jt � t0j
to jt � t0j. In virgin polyacetylene the lower band is filled and the upper band is empty.
The material is a semiconductor, with a bandgap of 1.4 eV.

To describe the doping by an impurity atom (taken to be a donor, for the sake of
definiteness), assume that the donor atom has an ionization energy Ed. The Hamiltonian
for the chain-impurity system is

H D EdjIihIj C
∑
k,4

[;4�k�jk, 4ihk, 4j C V4�k��jk, 4ihIj C jIihk, 4j�], �W14.64�
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where V4�k� governs the hopping back and forth between the donor ion and the polymer
chain. The Schrödinger equation Hj i D ;j i may be solved with a state of the form

j i D gjIi C
∑
k,4

c4�k�jk, 4i, �W14.65�

and with the simplifying assumptions hIjk, 4i D 0, hIjIi D 1 and hk040jk4i D υ4,40υk,k0 .
This leads to

EdgC
∑
k,4

V4�k�c4�k� D ;g, �W14.66�

;4�k�c4�k�C gV4�k� D ;c4�k�. �W14.67�

Solving the second equation for c4�k� and inserting it into the first equation results in
the eigenvalue equation

Ed C
∑
k,4

V2
4�k�

;� ;4�k�
D ;. �W14.68�

Assume that V4�k� D V (independent of 4, k) and replace the sum over k states by an
integral over the first Brillouin zone. Then

;� Ed D V2

2�

∫ �/a

��/a
dk

2;

;2 � t2 � t02 � 2tt0 cos ka

D 2V2

a

;√
�;2 � t2 � t02�2 � 4t2t02

. �W14.69�

A graphical solution of the resulting sextic equation,

�;� Ed�
2[�;2 � t2 � t02�2 � 4t2t02] D 4V4;2

a2
, �W14.70�

shows that (at least) one discrete eigenstate will reside within the gap, irrespective of
the location of Ed. This will be referred to as the impurity level. At T D 0 K this level
is occupied.

For T > 0 K, electrons are donated to the polymer conduction band. (A similar
description applies to holes contributed by acceptor dopants.) Resistance is brought
about by the backscattering of these carriers by the charged impurity ions. Imagine that
the electrons move along the z direction, the direction of alignment of the polymers.
The distance of the impurity from the chain is denoted by D. The Coulomb potential
presented by an ion at z D 0 is then V�z� D �e/4�;0

p
z2 C D2. The matrix element

for backscattering is, for kD × 1,

M D h fjVj ii D � e2

4�;0

∫ 1

�1

e2ikz

p
D2 C z2

dz ���! �2
e2

4�;0

√
�

4kD
e�2kD,

�W14.71�
which is seen to fall off rapidly for large values of kD. Thus the high mobility may be
due, in part, to the small probability for backscattering events.
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However, if the conduction in polyacetlyene is really one-dimensional, and elec-
tron–electron interactions are neglected, random scattering will serve to localize the
electrons. The net result will be that it will be an insulator. More realistically, the
electron–electron interaction is not negligible but is important. The electron–electron
interaction serves to keep the electrons apart due to their Coulomb repulsion and lack
of screening. This introduces strong correlations in the electronic motions and may
override the tendency for localization.

Another approach to explaining the high conductivity of polyacetylene has to do
with bond domain walls, called solitons. Imagine that one portion of the polymer
chain is trans-A phase and a neighboring part is trans-B phase. This is illustrated in
Fig. W14.8, which depicts the domain wall as an abrupt change in bonding configu-
ration, a situation that is not energetically favorable. A lower-energy solution allows
for the transition to take place more gradually, on a length scale on the order of 10
lattice constants. In a sense, one must introduce the concept of a partial chemical
bond, making a transition from a single to a double bond over an extended distance.
A more complete model, put forth by Su et al.† includes the elastic and kinetic energy
of the lattice as well as the tight-binding Hamiltonian and a coupling between the
phonons and the electrons. It may be shown that the undimerized chain (i.e., where
there is only one atom per unit cell) is not the state of lowest energy, and a Peierls
transition to the dimerized state occurs. This opens a gap at the Fermi level, as in
the previous discussion, and makes the polymer a semiconductor rather than a metal.
The spatial structure encompassing the foregoing transition from trans-A to trans-B,
called a soliton, appears as a midgap discrete state. It is electrically neutral (i.e., the
polymer is able to make the transition from trans-A to trans-B without the need to
bring up or reject additional charge). However, it may be populated by donor electrons,
as illustrated in Fig. W14.8.

The charged solitons may propagate along the chain and are difficult to scatter.
Since the charge is spread out over an extended distance, it couples weakly to Coulomb
scattering centers. The solitons consist of a correlated motion of the electron and the
lattice and are similar in some ways to the polarons, familiar from three-dimensional
solids. On the downside, however, the solitons may be trapped by defects and this can
block their propagation. It is probably a fair statement to say that the final word on the
mechanism responsible for the high conductivity of polyacetylene has not been fully
decided upon.
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Figure W14.8. Domain walls between A and B phases of trans-polyacetylene.

† W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Polyacetylene Phys. Rev. Lett., 42, 1698 (1979).
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In some ways the situation in polyacetylene parallels that of the high mobility
found for the modulation doping of GaAs–GaAlAs quantum-well structures (see
Section W11.8). In the latter case the interface can be made nearly perfect, with
electrons confined to move along the quantum well by the confining walls of the
neighboring layers. Since the impurities do not reside in the wells, the Coulomb
interaction is weaker and spread out over a large region of space. The impurities
are not effective in scattering carriers, hence contributing to the high mobility.

W14.8 Polymers as Nonlinear Optical Materials

Optoelectronic devices are often based on nonlinear optical materials. As seen in
Section 8.9, such a material is one in which the polarization vector (electric-dipole
moment per unit volume) is a nonlinear function of the electric field of the light. One
may make a power series expansion in the electric field(s) and write (employing the
summation convention)

Pi�ω� D ;0B
�1�
i,j �ω�Ej�ω�C ;0d

�2�
i,j,k�ω;ω1, ω2�Ej�ω1�Ek�ω2�

C ;0d
�3�
i,j,k,l�ω;ω1, ω2, ω3�Ej�ω1�Ek�ω2�El�ω3�C Ð Ð Ð , �W14.72�

where d�2� and d�3� are the second- and third-order nonlinear optical coefficients,
respectively [see Eq. (8.46)]. For the case where ω1 D ω2 D ω/2, the quantity d�2�

determines the strength of second-harmonic generation (SHG), in which two photons
of frequency ω/2 may be combined to form a single photon of frequency ω. Similarly,
when ω1 D ω2 D ω3 D ω/3, the value of d�3� governs third-harmonic generation. The
more general case of unequal photon frequencies covers various types of three- and
four-wave mixing, as well as the dc Kerr effect, in which one of the photons has zero
frequency.

For molecules with inversion symmetry, d�2� vanishes identically. Hence, for SHG in
polymers, one must choose noncentrosymmetric molecules or solids. For efficient SHG
the phase-matching condition must be satisfied; that is, photon energy and momentum
must both be conserved:

k1 C k2 D k, ω1 C ω2 D ω, �W14.73�

where ω D kc/n�ω�, ω1 D kc/n�ω1�, and ω2 D kc/n�ω2�, n being the index of refrac-
tion of the material. The goal is to design materials with as large values for the nonlinear
susceptiblities as possible and to have these materials be thermally, mechanically, and
chemically stable. These polymers may then be fashioned into fibers, sheets, or bulk
material. The custom design of polymers, such as polydiacetylenes, has proved useful
in attaining this goal.

To obtain high values for the nonlinear optical coefficients, use is made of the
delocalized nature of the � electrons in hydrocarbon molecules. Generally, a “donor”
group is placed at one end of a molecule and an “acceptor” group is placed at the
other end. They are separated by a bridge region in which there are � electrons. This
molecule is then incorporated into a polymer. The values of the susceptibilities depend
on dipole matrix elements between electronic states and the differences of energies
between these states. Generally, the larger the dipole matrix element, the larger the
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susceptibility, and the closer an energy difference matches a photon energy, the larger
the susceptibility. It is therefore expeditious to keep the donor group as far away from
the acceptor as possible. A virtually excited electron from the donor makes a transition
to the acceptor with a concurrent large value for the transition-dipole moment. In d�2�

three dipole transitions and two energy denominators are involved. In d�3� there are
four transitions and three denominators.

It is important for the various regions of the polymer to act coherently, and therefore
it is important that there is alignment of the chain molecules. Since there is generally
a static electric-dipole moment associated with the molecule, it may be aligned in
an applied dc electric field, in a process called poling. The sample is heated above
the glass-transition temperature, Tg, the material is poled, and then the temperature is
lowered below Tg. The field is then removed and the sample has become an electret,
with a net electric-dipole moment per unit volume. This itself has interesting appli-
cations in designing piezoelectric materials (in which a strain gives rise to an electric
field, and vice versa) and electro-optic materials (in which the index of refraction may
be altered by applying external electric fields). An example of a polymer that is used
as a nonlinear optical material is 6FDA/TFDB. The molecule is shown in Fig. W14.9.
An example of a nonlinear chromophore that may be adjoined to a polymer appears
in Fig. W14.10 and is the 3-phenyl-5-isoxazolone compound.

One of the interesting features of polymers is the dependence of d�3� on the length
of the chain (/ N3.5 for N < 100). This may be understood as follows. The end-to-
end distance grows as N", with " ¾ 3

5 . One imagines a virtual excitation involving a
“surface” state at the end of the chain. Since there are four transition moments entering
d�3�, this would give an exponent 4". Finally, there areNmonomers per chain molecule,
so a net exponent of 4"C 1 D 3.4 could be expected. For very large polymers, however,
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the dipole approximation would break down and higher frequency-dependent multipole
moments would determine the nonlinear optical coefficients.

Recent attention has been directed to photorefractive polymers, such as doped
poly(N-vinylcarbazole), for use as an optical information-storage material. The physics
here is linear rather than nonlinear. A localized light beam directed at the polymer
causes a real donor-to-acceptor transition of an electron. This produces a localized
electric field that alters the local index of refraction. This constitutes the “write” step.
A weak probe laser beam is able to detect the altered index of refraction in the “read”
step. Poling in a strong external electric field restores the electrons to the donors, and
thus the material is erasable. Since light is involved, one may attain several orders
of magnitude greater read and write rates than with conventional magnetic media. By
using two write lasers rather than one, it is possible to etch holographic interference
patterns into the material.

PROBLEMS

W14.1 Consider a freely rotating chain consisting of N bonds, with the angle between
successive bonds constrained to be equal to � � D.
(a) Show that h Ouj Ð OujCki D cosk D.
(b) Show that the radius of gyration s is given by

s2 D Na2

6

1 C cos D

1 � cos D
.

W14.2 Show that the radius of gyration of a cyclic freely jointed chain is given by
s2 D Na2/12.


