
CHAPTER W9

Magnetic Properties of Materials

W9.1 Jahn–Teller Effect

Another effect that should be mentioned is the distortion of the octahedral arrangement
of the six NN O2� ions by 3d4 or 3d9 cations such as Mn3C or Cu2C, respectively.
Due to the occupation of the dx2�y2 and dz2 atomic orbitals by the 3d electrons in these
ions, additional asymmetric Coulomb forces will cause shifts in the positions of the
cations and anions, thus producing additional tetragonal or octahedral distortions of
the crystal. These distortions, which are a result of the Jahn–Teller effect, can remove
the degeneracy of the lowest energy level. The Jahn–Teller effect corresponds to the
removal of the ground-state degeneracy for a magnetic ion in a site of high symmetry
by distortions of the structure which lower both the energy and the symmetry of the
system. In the context of crystal field theory, the Jahn–Teller theorem states that such
distortions are in fact expected to occur under certain specific conditions (e.g., when
the symmetric ground state is not a Kramers doublet and when the effect is strong
enough to dominate thermal effects and the effects of spin–orbit interaction).

W9.2 Examples of Weak and Strong Crystal Field Effects

The ionic complexes Fe3C(F�)6 and Fe3C(CN�)6 are examples of the weak- and strong-
field limits, respectively, for the Fe3C ion in an octahedral crystal field. In the former
case the 3d5 Fe3C ion has spin S D 5

2 , as expected from Hund’s rules for a free ion,
while in the latter case the Fe3C spin S D 1

2 , corresponding to a single unpaired d
electron. These values of the spin S are consistent with the predictions of crystal
field theory presented in Table 9.2 of the textbook.† Crystal field theory is thus able
to explain the variation in magnetic properties of the same ion in different crystal
structures. In terms of the alternative molecular orbital theory, highly covalent bonding
between the Fe3C cation and the surrounding anions is proposed to occur in the strong-
field Fe3C(CN�)6 complex, while in the weak-field Fe3C(F�)6 complex the bonding
between cation and anions is primarily ionic with only a small covalent component.

W9.3 Crystal Fields and Cr3Y in Al2O3

The effects of crystal fields on a Cr3C ion with a 3d3 electronic configuration in an
octahedral site will now be considered in greater detail. Examples include Cr3C in

† The material on this home page is supplemental to The Physics and Chemistry of Materials by
Joel I. Gersten and Frederick W. Smith. Cross-references to material herein are prefixed by a “W”; cross-
references to material in the textbook appear without the “W.”
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76 MAGNETIC PROPERTIES OF MATERIALS

the solid antiferromagnetic oxide Cr2O3 or as an impurity or dopant ion in ruby (i.e.,
Al2O3), where each Cr3C replaces an Al3C ion. The latter example actually corresponds
to the first solid-state material to exhibit laser action, as described in Chapter 18. In
each of these examples six O2� ions are the NNs of each Cr3C ion. The free-ion
ground state of the 3d3 Cr3C ion is 4F3/2 (S D 3

2 , L D 3, J D L � S D 3
2 ) according to

Hund’s rules (see Table 9.1). The free-ion energy levels of Cr3C and their splitting in
an octahedral crystal field are shown in Fig. W9.1.†

The splitting of the energy levels of the Cr3C ion by the crystal field is much larger
than the splitting due to the spin–orbit interaction, not shown in Fig. W9.1, between
free-ion energy levels with the same S and L but different J, (i.e., J D L � S D 3

2 , 5
2 ,

7
2 , up to J D L C S D 9

2 . The ground-state 4F3/2 configuration of the free Cr3C ion,
which is (2SC 1
�2L C 1
 D 28-fold degenerate, is split into three levels in the crystal
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Figure W9.1. Free-ion energy levels of Cr3C and their splitting in an octahedral crystal field
shown in a Tanabe–Sugano diagram. The ground state of the 3d3 Cr3C ion, 4F3/2 �S D 3

2 ,
L D 3, J D L � S D 3/2), is split into three levels in the crystal field: a lower 4A2 level and two
upper levels, 4T2 and 4T1. The value o ³ 1.8 eV for Cr3C in Al2O3 is obtained from optical
absorption spectroscopy.

† Energy-level diagrams known as Tanabe–Sugano diagrams for ions with 3dn configurations in both
octahedral and tetrahedral crystal fields are shown as functions of crystal field strength in Sugano et al.
(1970, pp. 108–111). The transitions from the high-spin state (o < U) to a state with lower spin (o > U)
are shown in these diagrams to occur at critical values of o for ions with 3d4, 3d5, 3d6, and 3d7

configurations.
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TABLE W9.1 Mulliken Symbols for Crystal Field Representationsa

Symbol
M Dimensionality Symmetry

A One Symmetric with respect to rotation by
2�/n about the principal Cn axis.

B One Antisymmetric with respect to rotation
by 2�/n about the principal Cn axis.

E Two
T Three
g (subscript) — Attached to symbols for representations

that are symmetric with respect to
inversion

e (subscript) — Attached to symbols for representations
that are antisymmetric with respect to
inversion

aFor additional details, see F. A. Cotton, Chemical Application of Group Theory, 3rd ed., Wiley-Interscience,
New York, 1990, p. 90.

field, a lower fourfold degenerate 4A2 level and two upper levels, 4T2 and 4T1, each of
which is 12-fold degenerate. These new levels in the crystal field are denoted by the
group-theoretic labels 2SC1M, where M refers to the Mulliken notation. The meanings
of the Mulliken symbols are summarized briefly in Table W9.1.

Note that L is no longer a good quantum number in the presence of the crystal field
and so can no longer be used to designate the new levels. The 4A2 level remains the
lowest energy level for all crystal field strengths, and therefore a high-spin to low-
spin transition is not observed for Cr3C in octahedral crystal fields, as expected from
Table 9.2.

The crystal field splittings o of the energy levels of the Cr3C ion are also typically
larger than splittings due to the Coulomb interaction between free-ion levels with
different L (e.g., between the 4F3/2 ground state and the 4P, 2P, 2G, 2D, 2H, and 2F
excited states shown in Fig. W9.1). As a result of crystal field splitting, the ground
state of the ion is no longer �2L C 1
 D sevenfold orbitally degenerate. Instead, orbitals
with different values of ml now have different energies in the solid. The splitting of
the ground-state level in a magnetic field therefore lifts only the degeneracy due to the
spin S. As a result, the ion acts magnetically as if J D S, with an effective magneton
number p D gpS�SC 1
. This is consistent with the p observed for Cr3C, presented
in Table 9.1.

The value of the crystal field splitting o (often referred to in the literature as 10Dq)
for Cr3C in Al2O3 has been obtained from optical spectroscopy. The optical absorption
spectrum observed for Al2O3 containing Cr3C as an impurity cannot be explained as
being due to absorption by the Al2O3 host or to transitions between energy levels in
the free Cr3C ion. Instead, the absorption is due to transitions between the new energy
levels of the Cr3C ion in the octahedral crystal field. The specific transitions involved
are from the ground-state 4A2 level to the excited-state levels shown in Fig. W9.1,
including the 2E, 2T1, 4T2, 2T2, and 4T1 levels. The value o D 1.8 eV is obtained in
this way. These energy levels for the Cr3C ion lie within the energy gap of the Al2O3

host, as is often the case for transition metal impurities in insulating materials.
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The crystal field quenches the orbital angular momentum L by splitting the originally
orbitally degenerate levels into levels separated by energies that are much greater than
mH, where m is the magnetic moment of the atom or ion. In this case the magnetic
field can split the spin-degenerate levels of the ground state only into the �2SC 1

nondegenerate levels, which are responsible for the paramagnetic susceptibility of the
ion, discussed in more detail in Section 9.4.

W9.4 Experimental Results for c in the Free-Spin Limit

Experimental results† for the contribution of Mn spins to the low-field magnetic suscep-
tibility % of a series of six dilute alloys of Mn in Au are shown in Fig. W9.2, plotted
in this case as % versus T/n on a logarithmic plot. The fact that Mn impurities at
dilute concentrations tend to act as free spins in Au is clear since the measured values
of % for the six alloys lie close to a single straight line with a slope of �1, consis-
tent with Curie law behavior. Note also that since the measured values of % D M/H
are much less than 1, it follows that M− H. This justifies the use of the approxi-
mation B D &oH. Assuming that g D 2, the value of the magnitude of the spin for
Mn in Au obtained from the Curie constant C is S D 2.25 š 0.1, which is close to
the Mn2C free-ion value of S D 2.5 (see Table 9.1). This value of S is the same as
that obtained from the measured saturation magnetization for the same alloys, using
S D Msat/ng&B.

Evidence for the appearance of interactions at high n and low T can be seen in
Fig. W9.2 where % at low T for the highest-concentration AuMn alloy falls below the
straight line that represents the Curie law behavior observed for the lower-concentration
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Figure W9.2. Experimental results for the contribution of Mn spins to the low-field magnetic
susceptibility % of a series of six dilute alloys of Mn in Au are shown plotted as % versus T/n
on a logarithmic plot. The concentration n of Mn spins is given in parts per million (ppm).
[From J. C. Liu, B. W. Kasell, and F. W. Smith, Phys. Rev. B, 11, 4396 (1975). Copyright 
1975 by the American Physical Society.

† J. C. Liu, B. W. Kasell, and F. W. Smith, Phys. Rev. B, 11, 4396 (1975).
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alloys. This result indicates that the spins in the most concentrated alloy are not as
“susceptible” as free spins in their response to external magnetic fields. Instead, their
coupling to and interaction with each other limits their ability to respond to external
fields and hence lowers their susceptibility %. The type of interaction responsible for this
behavior in AuMn alloys is an indirect interaction mediated by the conduction electrons.

W9.5 Spin Glasses and the RKKY Interaction

Clear evidence for the existence of the RKKY interaction has been found from studies
of the magnetic properties of dilute alloys (e.g., Mn in Au, Ag, Cu, and Zn). When the
spins of magnetic Mn2C ions are coupled to each other via the conduction electrons, the
average energy of the spin–spin interaction hURKKYi is given by nV0, where n is the
concentration of Mn2C ions per unit volume. This energy of interaction between spins
competes with the energy of thermal disorder kBT, with the result that the free-spin
Curie law %�T
 D C/T is modified and becomes instead

%�T
 D C

TC ) . �W9.1


Here C is again the Curie constant as defined in Eq. (9.26) and ) ³ nV0/kB > 0
is the Curie–Weiss temperature.† Equation (W9.1) is known as the Curie–
Weiss law for the magnetic susceptibility and is valid for T× ) (i.e., for kBT×
nV0).

Note that %�T
 D C/�TC )
 with ) > 0 is smaller than the free-spin susceptibility
%�T
 D C/T for all T, indicating again that spin–spin interactions reduce the ability
of the interacting spins to respond to external magnetic fields. This behavior has
already been illustrated in Fig. W9.2, where, as stated previously, % for the highest-
concentration AuMn alloy at low T falls below the straight line that represents the
Curie law behavior observed at higher T .

As T! 1 the Curie and Curie–Weiss laws become essentially identical since
thermal fluctuations will always overcome magnetic interactions in this limit. The most
significant difference is found for T− ), where %�T
 D C/�TC )
 reaches a finite
value while %�T
 D C/T for free spins diverges as T! 0. The dependence of % on
T expressed by the Curie–Weiss law in Eq. (W9.1) is also observed in ferromagnetic
and antiferromagnetic materials in their paramagnetic states above their respective critical
temperatures Tc. For ferromagnets it is found that ) < 0, whereas for antiferromagnets
) > 0.

W9.6 Kondo Effect and s–d Interaction

One more interesting effect involving localized spins and the conduction electrons
in metals can be mentioned. At sufficiently low temperatures the s–d or exchange
interaction given in Eq. (9.32) can lead to a complicated many-body ground state
of the system of the spin S and the conduction electrons of the metal. As already
mentioned, the scattering of an electron from a magnetic ion can cause the spin of
the scattered electron to flip (i.e., to change its direction), with a compensating change

† A. I. Larkin and D. E. Khmel’nitskii, Sov. Phys. JETP, 31, 958 (1970).
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TABLE W9.2 Competing Effects for Localized
Spins in Metals: Thermal, RKKY, and Kondo
Effects

nV0 × kBTK: spin–spin interactions are dominant.
kBT × nV0 Free spins
kBT − nV0 Frozen spins (spin glass behavior)

kBTK × nV0: single-spin effects are dominant.
T× TK Free spins
T− TK Compensated spins

occurring in the direction of the localized spin. The onset of this new ground state is
typically signaled by the appearance of a minimum in the resistance of the metal as the
temperature is lowered. It has been predicted that below a characteristic temperature
TK the spin S of the magnetic ion will be effectively canceled or compensated by
the oppositely directed spins of the conduction electrons that interact with S. This
behavior is known as the Kondo effect, and the magnitude of the Kondo temperature
TK increases as the strength of the s–d interaction increases.

The s–d interaction, if sufficiently strong, can lead to complete mixing of the
conduction electrons and the localized d electrons of the magnetic ion and therefore to
the disappearance of the localized spin S. An example of this behavior is provided by
Mn2C ions, which do not retain well-defined magnetic moments in certain dilute alloys
such as Mn in Al. In this case the characteristic temperature TK for the s–d interaction
is apparently very high, ³ 1000 K, since for T < TK, the spin will be compensated
and hence effectively absent.

The three competing effects that ultimately determine the behavior and possibly
even the existence of localized spins in metals are thermal effects, effects due to the
spin–spin RKKY interaction, and the single-spin Kondo effect.† The characteristic
energies that determine the strengths of these three effects are kBT, nV0, and kBTK,
respectively. The possible regimes of behavior are defined in terms of the relative
magnitudes of these three energies in Table W9.2. It can be seen that free-spin behavior
should in principle always be observed in solids at sufficiently high T. The term spin
glass used in the table is defined in the discussion of magnetism in disordered materials
in Section W9.11.

W9.7 c.T/ for Ni

A test of the Curie–Weiss law %�T
 D C/�T� TC
 for the ferromagnet Ni is shown
in Fig. W9.3, where %�1

. is plotted as a function of T. It can be seen that signifi-
cant deviations from Curie–Weiss behavior occur just above TC D 627 K. It is found
experimentally for Fe that % is proportional to �T� TC
�/ as T! TC from above.
Here / is measured to be 1.33 instead of the value 1 predicted by the Curie–Weiss
law. The molecular field theory fails near TC since it does not include the effects of
fluctuations of the local magnetization.

† An alternative approach to the question of the existence of localized spins in metals has been developed
by Anderson (P. W. Anderson, Phys. Rev., 124, 41 (1961) and by Wolff (P. A. Wolff, Phys. Rev., 124,
1030 (1961).) For a useful discussion of this approach, see White and Geballe (1979).
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Figure W9.3. Test of the Curie–Weiss law %�T
 D C/�T� TC
 for the ferromagnet Ni in the
form of a plot of %�1

. as a function of T . Deviations from Curie–Weiss behavior are observed just
above TC D 627 K. The straight line is the extrapolation of the results obtained for T > 700 K
and is given by %�T
 D C/�T� )
 where ) D 650 K. [Data From J. S. Kouvel et al., Phys.
Rev., 136, A1626 (1964).]

W9.8 Hubbard Model

An approach that attempts to include both itinerant and localized effects and also
electron correlations within the same model is based on a proposal by Hubbard.† In
the Hubbard model the oversimplified view is taken that the electrons in the partially
filled shell of the free ion enter a single localized orbital in the solid. There are
two important energies in the Hubbard model. The Coulomb repulsion energy U > 0
represents the effects of electron correlations between pairs of opposite-spin electrons
occupying the same orbital on a given ion, and the hopping or tunneling energy is t.
The parameter t is effectively the matrix element between states on neighboring ions
which differ by one electron of a given spin direction and is therefore related to the
energy required for an electron to hop from one site (i.e., one ion) to one of its NNs
without changing its spin direction. In a one-state Hubbard model there is one orbital
per atom and each orbital can be occupied by electrons in four different ways: (1) the
orbital is empty: (�,�), (2) and (3) the orbital is occupied by either a spin-up or a
spin-down electron: (#,�) or (�,"), or (4) the orbital is doubly occupied: (#,").

In the limit U × t and when there are just as many electrons as ions, there will be
a strong preference for occupation of each orbital by a single electron (i.e., case 2 or 3
above). This limit corresponds to an antiferromagnetic insulator in which the effective
exchange integral is J D �4t2/U, with adjacent orbitals occupied by opposite spin
electrons. In the opposite limit of U − t, the electrons are not localized but instead,
form a band of itinerant electrons. Thus the Hubbard model is capable of describing
a wide range of magnetic behavior in solids, depending on the relative values of the
two parameters U and t. In addition, the Hubbard model has the advantage that it can
be formulated so that the condition for local magnetic moment formation is not the
same as that for the occurrence of long-range order in the spin system. The negative-U
limit of the Hubbard model has been applied to charged defects in semiconducting
and insulating solids. The defect is negatively charged when the orbital in question is

† J. Hubbard, Proc. R. Soc. A, 276, 238 (1963); 277, 237 (1964); 281, 401 (1964).



82 MAGNETIC PROPERTIES OF MATERIALS

doubly occupied, or positively charged when the orbital is unoccupied. The energy U
can be effectively negative when lattice relaxations occur that favor negatively charged
defects.

The Hubbard model goes beyond the one-electron tight-binding approximation
presented in Chapter 7, in that it includes electron–electron interactions when two
electrons reside on the same site. The application of the Hubbard model to high-Tc
oxide-based superconductors is described briefly Chapter W16.

W9.9 Microscopic Origins of Magnetocrystalline Anisotropy

The microscopic origins of magnetocrystalline anisotropy can be viewed as arising from
anisotropic interactions between pairs of spins when these interactions are significant
and also from the interaction of a single spin with its local atomic environment (i.e.,
the crystal field). The pair model of Van Vleck, developed in 1937, attempts to explain
the change of the energy of interaction of pairs of spins according to their directions
relative to their separation r. This type of interaction is called anisotropic exchange, in
contrast to the isotropic Heisenberg exchange interaction of Eq. (9.30). The spin–orbit
interaction is believed to be an important source of the magnetic anisotropy. In the
pair model the first-order anisotropy coefficient K1 is predicted to be proportional to a
high power of the spontaneous magnetization Ms in the ferromagnet. This result can
explain the observed rapid decrease of K1 with increasing temperature, with Ms and
K1 both falling to zero at TC.

The direction of the spin of a magnetic ion in a material can also depend on the
nature of the crystal field acting on the ion. In this way the local atomic environment
can influence the direction of the magnetization M, hence giving rise to anisotropy. In
fact, the electronic energy levels of the ion are often modified by the interaction with
the crystal field, as discussed in Section 9.3.

W9.10 c|| and c⊥ for Antiferromagnetic Materials

The predicted differences between %jj and %? discussed in the textbook are clear
evidence that the magnetic properties of antiferromagnetic materials can be expected
to be anisotropic below TN. For example, in MnO the preferred directions for the
sublattice magnetizations MsA and MsB, and hence the directions corresponding to %jj,
can be seen from Fig. 9.17 to be the [101] and [101] directions in the f111g planes.
Also, if an antiferromagnet were perfectly isotropic below TN, it would follow that
%jj D %?. Since %? > %jj for T < TN, it can be energetically favorable for the spins to
rotate so that the spin axis is perpendicular to the applied field. This “flopping” of the
spin axis occurs at a critical applied magnetic field which is determined by the relative
strengths of the magnetocrystalline anisotropy and the antiferromagnetic interactions.

W9.11 Magnetism in Disordered Materials

Spin glasses (i.e., dilute magnetic alloys) are the focus of this section, due to the fairly
simple, yet important ideas involved in the explanation of their magnetic behavior.
In general, nonuniform internal molecular fields Beff whose magnitudes and directions
vary from spin to spin are present in amorphous magnetic materials. The probability
distribution P�Beff
 of the magnitudes of these internal fields in spin glasses (e.g.
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Cu0.99Fe0.01) will be nonzero even at Beff D 0. Thus there will always be spins with
Beff D 0 which are effectively free to respond to thermal excitations and to external
magnetic fields. This is clearly not the case in the magnetically ordered materials
discussed in the textbook, in which every spin experiences a nonzero molecular field,
at least below the critical temperature TC or TN for magnetic ordering.

In sufficiently dilute spin glasses and at relatively high temperatures each spin can
in principle be thought of as being free or as interacting with at most one other spin
in the material. The spins typically interact via the indirect RKKY interaction through
the conduction electrons. In this case the contributions of the interacting spins to the
magnetization M, the magnetic susceptibility %, and the magnetic contribution CM to
the specific heat obey the following scaling laws involving temperature T and magnetic
field H:

M�H,T


n
D FM

(
T

n
,
H

n

)
,

%�T
 D F%
(
T

n

)
, �W9.2


CM�T


n
D FC

(
T

n

)
.

Here n is the concentration of magnetic impurities, and FM, F%, and FC are functions
only of H and T through the reduced variables H/n and T/n. These scaling laws
follow from the 1/r3 dependence of the RKKY interaction on the separation r between
spins, as presented in Eqs. (9.33) and (9.34).

Since the average separation hri between randomly distributed spins can be approx-
imated by n�1/3, it follows that the average strength hJRKKY�r
i of the interaction
between spins is proportional to hV0/r3i (i.e., to nV0), where V0 is a constant for a
given combination of magnetic impurity and host material. The value for V0 in dilute
CuMn alloys† is V0 D 7.5 ð 10�50 J Ð m3. Taking a Mn concentration of 0.1 at % D
1000 parts per million (ppm) in Cu yields n D 8.45 ð 1025 Mn spins/m3 and nV0 D
6.3 ð 10�24 J ³ 4 ð 10�5 eV. This concentration corresponds to an average distance
between Mn spins of about 2 nm. The value of Jsd for CuMn can be obtained from
Eq. (9.35) using the result given above for V0, a density of states for Cu of .�EF
 D
2.34 ð 1047 J�1m�3. The value so obtained is Jsd D 3.45 ð 10�19 J D 2.16 eV.

The scaling behavior of %�T
 predicted above has already been demonstrated in
Fig. W9.2, where % is shown plotted as a function of T/n for several AuMn alloys.
The measured magnetization M for three of these AuMn alloys at a fixed value of T/n
is shown in Fig. W9.4 plotted as M/n versus H/n. The scaling behavior predicted
is again observed. The magnetization M�H
 shown here falls well below the corre-
sponding Brillouin function M D ng&BJBJ�g&BJB/kBT
, which would apply if the
spins were free (i.e., completely noninteracting).

Experimental results for the magnetic contribution CM to the specific heat of a
series of dilute alloys of Mn in Zn are shown in Fig. W9.5, where CM/n is plotted as
a function of T/n. Scaling is observed for the more-concentrated alloys where RKKY

† F. W. Smith, Phys. Rev. B, 14, 241 (1976).
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interactions dominate, whereas evidence for single-impurity effects, possibly due to
the Kondo effect, is observed for the more dilute alloys at higher values of T/n. The
peak observed in the measured specific heat at T/n ³ 20 K/(at % Mn) corresponds to
a value of the ratio kBT/nV0 of thermal to RKKY interaction energies approximately
equal to 2. At lower T (i.e., for kBT < nV0) interactions between the spins cause them
to “freeze” in the local molecular field due to their neighboring spins. At T = 0 K the
spin glass is magnetically “frozen” and the spins are oriented along the direction of
their local molecular field. As T is lowered it is found experimentally that CM / n2,
indicating that interactions first appear between pairs of spins. The typical size of an
interacting cluster of spins increases as T decreases or n increases until the interactions
extend throughout the entire spin system.

The magnetic behavior of dilute spin glasses can thus be understood as resulting
from RKKY interactions between pairs of spins. Evidence for clusters of spins can
be found in more concentrated spin glasses, such as Cu containing more than a few
atomic percent Mn or in alloys such as CuxNi1�x and FexAl1�x. Although the magnetic
behavior is much more complicated in these concentrated alloys, the RKKY interaction
still plays an important role. The term mictomagnetism is sometimes used to describe
such materials in which the orientations of the spins are disordered and frozen at low
temperatures.
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PROBLEMS

W9.1 Using Hund’s rules, find the values of S, L, and J for the atoms in the 4d
transition element series (Y to Pd). Compare these values with the corresponding
results given in Table 9.1 for the 3d series.

W9.2 From Fig. 9.5 it can be seen that, relative to the degenerate spherically symmetric
level, the dxy , dyz, and dxz orbitals are shifted lower in energy by 2o/5 for
the octahedral case and higher in energy by 2t/5 for the tetrahedral case.
The corresponding opposite shifts for the dx2�y2 and dz2 orbitals are by the
amount 3o/5 or 3t/5 for the octahedral and tetrahedral cases, respectively.
Show that these energy shifts are such that the total energy of the 3d10 config-
uration will be the same in both the spherically symmetric and crystal-field-
split cases.

W9.3 Using the schematic energy-level diagrams shown in Fig. 9.5, calculate the
crystal field stabilization energies (CFSEs) and spins S [assuming that orbital
angular momentum L is quenched (i.e., L D 0)]:
(a) For the 3dn ions in octahedral sites. Compare your results with the values

presented in Table 9.2.
(b) For the 3dn ions in tetrahedral sites.
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(c) In a ferrite such as Fe3O4, will Fe2C ions prefer to enter octahedral or
tetrahedral sites on the basis of their crystal field stabilization energy CFSE?
What about Fe3C ions?

W9.4 Show that the induced saturation magnetizationMsat for a system of n D 1026/m3

free spins in a material makes a negligible contribution to the magnetic induc-
tion B .

W9.5 Derive the general expression for the Brillouin function BJ(x) given in Eq. (9.24).
W9.6 Consider a dilute magnetic alloy that contains n D 2 ð 1023 spins/m3. At low T

the spins can be saturated in a field H ³ 4 ð 106 A/m, withMsat measured to be
5.56 A/m. At high T the spins obey a Curie–Weiss law %�T
 D C/�TC )
 with
Curie constant C D 7.83 ð 10�6 K and Curie–Weiss temperature ) D 0.1 K.
(a) From these data determine the spin J and g factor of the spins.
(b) Are the spins free? If not, what type of spin–spin interaction would you

conclude is present in the alloy?
W9.7 Consider a spin S in a ferromagnet interacting only with its z NN spins (z D 12

for an FCC lattice).
(a) Using Eq. (9.41) show that the Curie–Weiss temperature ) is given by ) D
zS�SC 1
J�RNN
/3kB, where the exchange integral J�r
 is evaluated at the
NN distance RNN.

(b) Using the approximate values ) ³ TC D 1043 K and S ³ 1 for BCC ferro-
magnetic ˛-Fe, calculate the value of J(RNN).

W9.8 Show that at the Néel temperature TN, the predicted maximum value for the
magnetic susceptibility % according to the molecular field model is %max D
�1/5AB > 0. Explain why this prediction that %max is proportional to 1/5AB is
physically reasonable.

W9.9 Calculate the Pauli paramagnetic susceptibility %P for Na metal according to the
free-electron theory.


