Errata for Loss Models, 2nd ed., July 6, 2006
Items marked with a * have been corrected in the second printing. Items marked ** have been corrected in the third printing. Items marked ${ }^{* * *}$ have been corrected in the fourth printing. All other items have not appeared in a later printing.
***Page 35: In Figure 3.6 the caption should refer to Model 3.
*Page 49: In the development of μ_{k}^{\prime}, the word "integral" in the last line should be "integer."
*Page 62: In Example 4.31, the resulting distribution is inverse Burr, not Burr.
Page 77: In lines two to four from the bottom change "long" to "heavy" and "short" to "light". While heavy/light and long/short are both used to describe tails, these changes bring a consistent use of heavy/light throughout the text.
*Page 102: In Example 4.61, delete the expression " $\mid \theta$ " in the two places it appears. *Pages 103-104: In the solution to Example 4.64, the sentence at the bottom of page 103 should be: This means that about 94% of drivers were "good" with a risk of $\lambda_{1}=0.11$ expected accidents per year and 6% were "bad" with a risk of $\lambda_{2}=0.70$ expected accidents per year.
**Page 106: Change Example 4.69 to read "Use the above results and (4.31) to demonstrate ..."
***Page 123: In Exercise 5.13 change "that" to "given it".
***Page 128: In Exercise 5.16 change Y to Y^{P} both times it appears.
**Page 139: At the end of the paragraph following (6.2) change "Such distributions are said to be infinitely divisible" to "Such distributions can be shown to be infinitely divisible"
*Page 142: Equation (6.6) requires a second power on the final term of the second equation. The correct equation is

$$
\operatorname{Var}(S)=\mu_{S 2}=\mu_{N 1}^{\prime} \mu_{X 2}+\mu_{N 2}\left(\mu_{X 1}^{\prime}\right)^{2}
$$

***Page 170: In Exercise 6.36 replace f_{i+1} with f_{i} and set $i=1,2, \ldots$ not $i=0,1,2, \ldots$. Page 171: In Exercise 6.41(a) the left hand side should be $f_{s}(x)$, not $f_{X}(x)$. Page 192: In line 1 change "long" to "heavy". See comment on Page 77 errata. ***Page 275: In Definition 9.16 add "random" between "a pair of" and "values". **Page 276: In Example 9.17, the first line of the solution, it should state $\operatorname{Var}(\hat{\theta})=\sigma^{2} / n$. ***Page 277: In Exercise 9.11, in part (b) add "as in equation (9.4)" and in part (c) add "as in Example 9.18".
**Page 292: In Exercise 10.2, eliminate part (b) and change (c) to (b).
***Page 293: Add a footnote to the sentence just before Definition 10.12-Technically, for the interval from c_{j-1} to $c_{j}, x=c_{j}$ should be included and $x=c_{j-1}$ excluded in order for $F_{n}\left(c_{j}\right)$ to be the empirical distribution function.
**Page 295: In Exercise 10.5, in part (b) the reference should be to part (a).
Page 299: In equation (11.2) change the middle line to (number of x_{i} S equal to y_{j-1}). The current version is correct, this reflects the fact that by definition x s are always equal to $y s$.
Page 303: The second integral at the top of the page should be $\int_{0}^{t} h(u) d u$.

Page 316: In Exercise 11.20 change /two2 to two.
***Page 325: At the end of the sentence that ends on the third line add ", noting that policy 33 is assumed to enter at mid-duration, 1.5."
**Page 359: In Exercise 12.64, use the data from Exercise 12.44, but do not assume that α is known.
Page 360: In Exercise 12.66(c) the expression should be $\operatorname{Vâ}(\hat{\mu})=\frac{\hat{\mu}^{2}}{n \tau^{2}}$.
Page 366: In the last paragraph of Example 12.37 change "The solid vertical bars" to "The thinner vertical bars"
*Page 379: In Exercise 12.75(a) the pdf should be

$$
f_{X_{j}}\left(x_{j}\right)=\frac{\Gamma\left(\alpha+\frac{1}{2}\right)}{\sqrt{2 \pi \beta} \Gamma(\alpha)}\left[1+\frac{1}{2 \beta}\left(x_{j}-\mu\right)^{2}\right]^{-\alpha-1 / 2},-\infty<x_{j}<\infty .
$$

Note that the two appearances of β have have been moved.
*Page 380: In Exercise 12.79 replace "also a parameter" with"a known parameter."
***Page 417: In Exercise 12.103 rewrite the last sentence as "Determine a 95\% linear confidence interval for $\beta_{1}-\beta_{2}$ and then use the result to obtain a confidence interval for the relative risk of a male child compared to a female adult.
*Page 494: In the definition of the curvature-adjusted cubic spline, the requirement in parentheses should be (m_{0} and m_{n} fixed). There is no requirement that they also be equal.
***Page 508: In line 2 the reference should be to equation (15.15). In the equation just after the phrase "after dividing the derivative by 2 " the right hand side should be $\mathbf{0}^{T}$ instead of 0 .
***Page 520: In the second line following (16.5) the integral should be
$\int E(X \mid Y=y) f_{Y}(y) d y$.
***Page 530: In line 2 of Section 16.3 change "part of the century" to "1900s".
Page 534: In the second line of Case 2 change $\operatorname{Var}\left(Y_{j}\right)$ to $\operatorname{Var}\left(X_{j}\right)$.
***Page 540: In Exercise 16.10 the reference should be to Example 16.9, not 16.10.
*Page 541: In Exercise 16.18 add an assumption that the number of claims has the Poisson distribution.
Page 552: In the second to last line $\mu=\alpha \beta$ should be $\mu_{n+1}=\alpha \beta$.
*Page 567: About one-third way down the page replace "Suppose, for example," with "We parameterize such".
*Page 616: In the table near the top of the page, in the column "the simulated value is" the entries should be $0,1,2,3$, and 4 rather than all zeros.
***Page 617: The middle part of the sentence about two-thirds the way down the page should be $\ldots a$ is the greatest integer less than or equal to $0.9 n+0.5-1.96 \sqrt{0.9(0.1) n}$, b is the smallest integer greater than or equal to $0.9 n+0.5+1.96 \sqrt{0.9(0.1) n}$, and the process terminates when both ...
*Page 618: In Exercise 17.4, the term 1\% in the last line should be 2\%.
***Page 624: In the first equation on the page, delete the 27 from the denominator and multiply the last term in the numerator by (1/27). The correct expression is
$(2-4)^{2}(1 / 27)+\left(\frac{7}{3}-4\right)^{2}(3 / 27)+\cdots+(7-4)^{2}(1 / 27)=14 / 9$.
***Page 640: The formula for $\mathrm{E}\left[(X \wedge x)^{k}\right]$ for the single-parameter Pareto distribution only applies for $x \geq \theta$.

Errata for the Solutions Manual to Accompany Loss Models, 2nd ed., July 6, 2006. All remain uncorrected in published versions. Those marked with a * are new since the November 2005 errata list.
Page 20, Exercise 4.10: The first sentence should state that the density if the sum of five, not six, function.
Page 23, Exercise 4.14: The gamma and lognormal densities are equal at 2,221, not 2,617 . The gamma density is $0.62851 x^{-0.8} e^{-0.002 x}$.
Page 27, Exercise 4.25: The differential $d \lambda$ is missing from the end of the first line.
Page 30, Exercise 4.35: The last entry should read $1-F_{Y}(2.2)=(2.2 / 1.1)^{-3}=0.125$.
Page 37, Exercise 4.50: In the last line replace $\sum_{i=1}^{n} m \lambda_{i}$ with $\sum_{i=1}^{n} \lambda_{i}$.
*Page 62, Exercise 6.16: $E(A)=50 k^{-1}-50+12.5 k$. When set equal to $50 k$ the solution of $k=2 / 3$ is correct.
*Page 66, Exercise 6.31: The correct calculation, using μ for the mean is $E(S)=E[E(S \mid \mu)]=E(\mu)=300,000$.
*Page 72, Exercise 6.46: With $f_{2}=11 / 29$ the expected number of claims is $29(11 / 29)=11$.
Page 115: Exercise 9.10: Because the problem did not specify which MSE should be in the numerator, $0.32 / 0.2=1.6$ is also a correct answer.
Page 119, Exercise 10.2: Delete the solutions to (b) and (c) and reletter (d) to (b).
Page 121, Exercise 10.5: Delete part (a) and reletter part (b) to (a) and part (c) to (b).
Page 136, Exercise 11.25: The last column in Table 11.7 should be headed $q_{j}^{\prime(w)}$ rather than $q_{j}^{\prime(d)}$.
Page 136, Exercise 11.26: In Table 11.8 the second entry in the first column should be 45.4 instead of 45.6 . This changes the second r value to 7 . The five probabilities in the last column should be $0.875,0.750,0.656,0.549$, and 0.438 . The answer is then $\hat{q}_{45}=0.250$ and $\hat{q}_{46}=0.416$.
*Page 142, Exercise 12.13: Delete part (a) and remove the lable (b) from the second part.
Page 152, Exercise 12.43: Delete part (b).
*Page 159, Exercise 12.60(b): Referece should be to Exercise 12.43.
Page 160, Exercise 12.64: Delete the reference to Exercise 12.14.
*Page 161, Exercise 12.66(b): The last term in the expression for $\ln f(x)$ should be $+(\tau-1) \ln x$ and not $-(\tau-1) \ln x$. Make the same change in the expression for $l(\mu)$.
Page 163, Exercise 12.67: Change $W=\ln Y-100$ to $W=\ln Y-\ln 100$.
Page 166, Exercise 12.75(a): In line 2, the extra e should be deleted; in line 3 the a in the superscript should be α; and in line 4 the β should be under the square root along with the 2π.
Page 167, Exercise 12.78: In the second to last line, the variable is X, not x, so write $\mathrm{E}(X)=\mu(\theta)$.
Page 169, Exercise 12.80: The last line should be - But $\pi(\theta \mid s) \propto f(s \mid \theta) \pi(\theta) \propto \frac{e^{-\theta s}}{\left[q(\theta)^{n}\right.} \pi(\theta)$.
*Page 175, Exercise 12.98(e): $\hat{q}=0.166 / 7=0.0237143$.

Page 206, Exercise 15.5: For part (c), the fifth line should be $f_{0}^{\prime \prime}(0)=0, f_{1}^{\prime \prime}(0)=4$. Page 212, Exercise 16.2(d): Using fractions, the exact variance of 0.6 can be obtained.
Page 216, Exercise 16.11: There is no error here, but there may be confusion because λ is defined not as the expected number of claims per policy, but rather as the expected total number of claims. In this problem λ and λ_{0} are identical.
Page 218, Exercise 16.22(h): The $\frac{1}{6}$ should be outside the brackets and the first term inside the brackets should be $\frac{25(1)}{900}$. The answer is correct.
Page 227, Exercise 16.30: In the last line, add a minus sign to produce $p(m, x)=\left(\frac{m}{2 \pi x^{3}}\right)^{1 / 2} \exp \left(-\frac{m}{2 x}\right)$
Page 227, Exercise 16.31(d): Replace the given text with "This is the usual Bühlmann-Straub credibility premium, updated with inflation.
Page 228, Exercise 16.32: In the first and second lines, remove the negation in the exponents of the pgfs. Then $P_{X_{j}}(z \mid \theta)=e^{\theta(z-1)}$ and $P_{S}(z \mid \theta)=e^{n \theta(z-1)}$.

