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Introduction

Two-dimensional shapes can be described in two different
ways:

Á)  Use of the object boundary and its Use of the object boundary and its featuresfeatures (e.g. (e.g. 
boundary length)boundary length). This method is directly connected to 
edge and line detection. The resulting description 
schemes are called external represantationsexternal represantations..

Â) Description of the region occupied by the object Description of the region occupied by the object on on 
thethe image plane.image plane. This method is linked to the region 
segmentation techniques. The resulting representation 
schemes are called internal representations.internal representations.
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Introduction

Shape representation schemes must have certain desirable
properties:

UniquenessUniqueness. This is of crucial importance in object 
recognition, because each object must have a unique 
representation

CompletenessCompleteness. This refers to unambiguous representations

Invariance under geometrical transformationsInvariance under geometrical transformations.
Invariance under translation, rotation, scaling and 
reflection is very important for object recognition 
applications.
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Introduction

SensitivitySensitivity. This is the ability of a representation scheme
to reflect easily the differences between similar objects

Abstraction from detailAbstraction from detail. This refers to the ability of the
representation to represent the basic features of a shape
and to abstract from detail. This property is directly 
related to the noise robustness of the representation.
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• The chain code depends on the start point of boundary
following.

• An advantage of chain code is that it is translation 
invariant.

• Scale invariance can be obtained by changing the size 
of the sampling grid, producing seldom, however, 
exactly the same chain code.

• Rotation invariance is obtained by using the difference difference 
chain chain codecode..

Chain codes
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Chain codes

Chain code of the digital boundary

Figure 1: Directions of boundary segments of a chain code for 
(a) a 4-connected chain; (b) an 8-connected chain.

(a)                              (b)
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The difference code chaindifference code chain is given by:

{
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• Chain codes provide a good compression of boundary 
description.

• Chain codes can also be used to calculate certain 
boundary features.

Chain codes
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The boundary perimeter T is given by:
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Chain codes can be used in the calculation of object area

The boundaries of binary objects can be easilly followed by
employing an algorithm similar to Papert’s turtle:Papert’s turtle:

Figure 2: Turtle procedure in binary object boundary following

Chain codes
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Polygonal approximations

•Digital boundaries carry information which may be 
superfluous for certain applications. Boundary 
approximations can be sufficient in such cases. Linear Linear 
piecewisepiecewise (polygonal) approximations(polygonal) approximations are the most 
frequently used.

••The optimal linear piecewise approximationThe optimal linear piecewise approximation can be 
obtained by choosing the polygon vertices in such a way 
that the overall approximation error is minimized.
•Error measures:

•Mean square 2
ii
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••Splitting techniquesSplitting techniques divide a curve segment recursively 
into smaller segments, until each curve segment can be 
approximated by a linear segment within an acceptable 
error range.

Polygonal approximations
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Figure 3: 
Splitting method
for polygonal
approximations

Figure 4:
Splitting method
for the linear picewise
approximation
of a closed curve

Polygonal approximations
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•A basic advantage of the splitting approach is that it can
detect the inflection points on a curve and can use them
in curve representation.

••Merge techniques in the polygonal approximationMerge techniques in the polygonal approximation
operate in the opposite way.

•The primary disadvantage of the merge algorithm is that
polygon vertices do not coincide with curve inflection
points.

•This problem can be solved by combining split and merge
techniques.

Polygonal approximations
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Fourier descriptors

Signal representation using Fourier descriptorsFourier descriptors
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Figure 5: Parametric curve representation
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Fourier representation propertiesFourier representation properties

A)A) The coefficient Æ(0) represents the centre of gravitycentre of gravity
of the curve.

B)B) Fourier coefficients Z(k) represent slowly and rapidly
varying shape trends for small and large indices k
respectively.

C)C) A translation in curve coordinates by z0 :
zt(n)=z(n)+z0 , z0=x0+iy0

affects only the term Z(0) of the representation:
Zt(0)=Z(0)+z0

Fourier descriptors
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D)D) A rotation of the curve coordinates by angle è :
zr(n)=z(n)eiè

results in a phase shift of the transform coefficients by an
equal amount:

Zr(k)=Z(k)eiè

E)E) A scaling operation by a factor á, results in a scaling of
Fourier coefficients by an equal amount:

zs(n)=áz(n)
Zs(k)=áZ(k)

Fourier representation propertiesFourier representation properties

Fourier descriptors
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F) F) A change in the starting point of curve traversal:
zt(n)=z(n-n0)

produces modulationmodulation of the Fourier descriptors:
Zt(k)=Z(k)e-i2ðn0k/N

Fourier descriptors have interesting invariance properties
that can be used in object recognition applications.
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Fourier representation propertiesFourier representation properties

Fourier descriptors



7.20
THESSALONIKI 1998

I. Pitas Digital Image Processing Fundamentals
Shape description

Quadtrees

•Quadtrees are based on the following recursive approach:
if a binary image region of size 2n × 2n consists of both 0s
and 1s, it is declared inhomogeneous and is split into four
square subregions R0, R1, R2, R3, having size 2n-1×2n-1 each.
•This procedure continues until all subregions are
homogeneous. 
•The resulting representation is a quadtreequadtree.
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Figure 6: (a) Binary image (b) Quadtree representation

Quadtrees
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Pyramids

•• MultiresolutionMultiresolution representations employ several copies of
the same image at different resolutions.
• Multiresolution techniques applied to greyscale or binary
images lead to the so-called image pyramids.image pyramids.
• An image pyramid is a series fk(i,j), k=0,…,n of image
arrays, each having size 2k × 2k .

fk(i,j)=g(fk+1(2i,2j), fk+1(2i,2j+1), fk+1(2i+1,2j), fk+1(2i+1,2j+1))

g(·) is a mapping function
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Figure 7:
(a) Image pyramid

(b) Mapping from one
pyramid level to the
next level.

Pyramids
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•Pyramids techniques enjoy a certain popularity for 
image analysis and compression applications, because 
they offer abstraction from image details.

•Binary image pyramids can be used in multiresolution 
edge detection and region segmentation.

•The total space required for the storage of a pyramid 
(and of a quadtree) is 4/3 × (2n × 2n) where 2n × 2n is the 
size of the original image. Of course, the pyramid can be 
simply stored on n+1 arrays of size 2k × 2k, k=0,..,n.

Pyramids
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Pyramids

Figure 8:
(a) Original
binary
image

(b) Image
pyramid

(c) Output of
the pyramid
edge detector

(d) Edge
pyramid
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Shape features

Geometrical shapes possess certain features (e.g. perimeter)
that carry sufficient information for some object recognition
applications. Such features can be used as object descriptors
resulting in a significant data compression, because they can
represent the geometrical shape by a relatively small feature
vector.

Shape features can be grouped in two large classes:
boundary featuresboundary features
regionregion featuresfeatures
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Object perimeterperimeter::
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Shape features
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Curvature Curvature magnitudemagnitude::

ds
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Shape features
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Bending Bending energyenergy::
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Shape features
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ObjectObject areaarea
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Object width and heightwidth and height
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where XkXl is the direction of the line segment

Shape features
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Topological descriptors can give useful global information
about an object. Two important topological features are the
holes Hholes H and the connected components Cconnected components C of an object.

EulerEuler numbernumber
E = C E = C -- HH

Letters A, B, C, have Euler numbers 0, -1, 1, respectively.

Shape features
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Moment descriptors

The moments moments of an image f(x,y)f(x,y) are given by:

∫ ∫
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Moment relations for discrete imagesMoment relations for discrete images
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Moment descriptors
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Coordinates of the centre of gravityCoordinates of the centre of gravity
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Moment descriptors
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Object eccentricityeccentricity
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Moment descriptors
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Moment descriptors

Figure 9: Definition of object orientation
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Thinning algorithms

ThinningThinning can be defined heuristically as a set of succesive
erosions of the outermost layers of  a shape, until a
connected unit-width set of lines (skeleton) is obtained.

Thinning algorithms satisfy the following two constraints:

1. They maintain connectivity at each iteration. They do1. They maintain connectivity at each iteration. They do
not remove border pixels that may cause discontinuitiesnot remove border pixels that may cause discontinuities

2. They do not shorten the end of thinned shape limbs.2. They do not shorten the end of thinned shape limbs.
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Figure 10:
(a) Border pixel whose removal may cause discontinuities;
(b) border pixel whose removal will shorten an object limb;
(c) local pixel notation used in connectivity check.

Thinning algorithms

(a)                            (b)                           (c)
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Figure 11: Central window pixels belonging to: (a) an 
East boundary; (b) a South boundary; (c) a North-West 
corner point.

Thinning algorithms

(a)                         (b)                          (c)



7.41
THESSALONIKI 1998

I. Pitas Digital Image Processing Fundamentals
Shape description

Figure 12: Central window pixels belonging to: (a) a North 
boundary; (b) a West boundary; (c) a South-East corner.

Thinning algorithms

(a)                           (b)                           (c)
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Thinning algorithms

First thinning algorithm
•Check in a local neighborhood 3×3

•If the number of the pixels of the object (except the 
central) Í(p0) is: 2 < Í (p0) < 8) 

•we check if the removal of the central pixel would 
break object connectivity.

Check

•The pixel sequence is formed p1p2p3...p8p1.

•If the number of 0→1 transitions is 1, then the 
central pixel that has value 1 is removed.
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Thinning algorithms

where Ô(p0) denotes the number of the 0→1                        
transitions. 

) =.p.p)&&(p=.p.p)&&(p)=)&&(T(p)N(p:(P

) =.p.p)&&(p=.p.p)&&(p)=)&&(T(p)N(p:(P

0  0  162

0  0162

7517310     0 2

753531   0     0 1

≤≤
≤≤

Second thinning algorithm
•Step 1: a logical rule P1 is applied in a 3×3
neighbourhood and flags the border pixels that can be 
deleted.

•Step 2: a logical rule P2 is applied in a 3×3
neighbourhood and flags the border pixels that will be 
deleted.
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Figure 13:
Sobel edge
detector
output

Binary
image

Output of 
the one-pass
thinning
algorithm

Output of
the two-pass
thinning
algorithm

Thinning algorithms
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Mathematical morphology

Mathematical morphology uses a set theoretic approach to
image analysis.

The morphological transformations must possess the
following properties:

1. Translation invariance1. Translation invariance
Ø(Ø(XXzz)=[)=[Ø(Ø(X)]X)]zz

2. Scale invariance2. Scale invariance
ØØëë((X)=ëX)=ëØ(ëØ(ë--11X)X)
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3. Local knowledge. 3. Local knowledge. Transformation Ø(×) must require
only information within a local neighbourhood for its
operation

4. Semicontinuity. 4. Semicontinuity. The morphological transformation Ø(×)
must possess certain continuity properties.

Basic morphological transformations
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− XBEzXBX z
Bb
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}{ XBEzXBX z
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b
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Mathematical morphology



7.47
THESSALONIKI 1998

I. Pitas Digital Image Processing Fundamentals
Shape description

Erosion and dilation are special cases of MinkowskiMinkowski setset
additionaddition and Minkowski Minkowski set subtractionset subtraction

Mathematical morphology

U
Bb

bXBX
∈

=⊕ I
Bb

b
s XBX

∈

=

(a)                                         (b)                 (c)

Figure 14: (a) thresholded image (b) eroded and (c) dilated 
image by the structuring elements SQUARE. 
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Erosion, dilation, Minkowski set addition and subtraction
have the following interesting properties:

CommutativityCommutativity::

ABBA ⊕=⊕

Mathematical morphology

AssociativityAssociativity::

CBACBA ⊕⊕=⊕⊕ )()(
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Translation Translation invarianceinvariance::
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Increasing Increasing propertyproperty::
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Mathematical morphology
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DistributivityDistributivity::
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Mathematical morphology
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Opening ×Opening ×ÂÂ:: }{U XBBBBXX zz
s

B ⊂=⊕= :)(

Closing XClosing XBB:: }{I c
z

c
z

sB XBBBBXX ⊂=⊕= :)(

Mathematical morphology

(a)                                                     (b)

Figure 15: (a) opened image (b) closed image. 
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Opening and closing propertiesOpening and closing properties

DualityDuality::

Bcc
B

B
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=

Mathematical morphology

Extensivity and Extensivity and antiextensivityantiextensivity::
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XX
B

B

⊃
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Increasing Increasing propertyproperty::
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Mathematical morphology
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Definition of binary dilationDefinition of binary dilation

}{ I 0: ≠∈=⊕ XBEzBX z
s

Definition of binary erosionDefinition of binary erosion

}{ XBEzBX z
s ⊂∈= :

An alternative way for the calculation of binary erosionAn alternative way for the calculation of binary erosion
and dilationand dilation
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Mathematical morphology
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Greyscale morpholgy

The tools for greyscale morphological operations are simple
functions g(x) having domain G. They are called
structuring functionsstructuring functions

Figure 16: A example of a structuring function. 
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Greyscale dilation and erosion of a function f(x) by g(x)Greyscale dilation and erosion of a function f(x) by g(x)
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Implementation of greyscale dilation and erosion inImplementation of greyscale dilation and erosion in
pipelinepipeline
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Dilation and erosion of a function by a setDilation and erosion of a function by a set
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Greyscale morpholgy
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CloseClose--opening filter (CO)opening filter (CO)

)]()[( xfy G
G=

openopen--closing filter (OC)closing filter (OC)

)]()[( xfy G
G=

The algebraic difference y=f (x)-fnB(x) is a nonlinear
high-pass filter, called toptop--hat transformation.hat transformation.

Greyscale morpholgy
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Figure 17: Opening as a rolling ball transformation
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(a)                                                     (b)

Figure 18: (a) Thresholded image, (b) Result of top-hat filtering
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Skeletons

Object skeletonskeleton is an important topological descriptor of
a two-dimensional binary object

(a)                                                             (b)

Figure 19: (a) Grassfire propagation model of medial axis;
(b) maximal disk definition of skeleton.
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Skeletons

Figure 20: Illustration of morphological skeletonization
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Skeletons

Figure 21: (a) Fast skeletonization algorithm;
(b) fast object reconstruction from skeleton subsets.

(a)

(b)
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• A complex object X can be decomposed into a union of 
‘simple’ subsets X1,…, Xn, thus providing an intuitive 
object description scheme called shape decomposition.shape decomposition.

• Shape decomposition must use simple geometrical 
primitives in order to conform with our intuitive notion 
of simple shapes.

• The complexity of the decomposition must be small 
compared with the original description of X. 

• A small noise sensitivity is desirable.
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Morphological shape decompositionMorphological shape decomposition
Recursive relation:
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Figure 22: (a) Original binary image;
(b) first 16 components of its morphological shape decomposition.

Shape decomposition
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Blum ribbonsBlum ribbons
Simple objects Xi of the form:

BnLX iii ⊕=
Disadvantages of morphological shape decompositionDisadvantages of morphological shape decomposition

It is susceptible to boundary noise.

The representation produced is not close to human shape
perception if the object consists of unions, intersections
and differences of various geometrival primitives. This
can be alleviated by combining morphological techniques
with constructive solid geometry, (CSG).constructive solid geometry, (CSG).

Shape decomposition
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Main advantage of CSG over skeleton representation orMain advantage of CSG over skeleton representation or
morphological shape decompositionmorphological shape decomposition

• CSG uses a multitude of geometrical primitives
(e.g. squares) instead of one.

• This fact not only enhances the descriptive power of CSG
but also conforms to our intuitive notion of simple
geometrical shapes.


