DIGITAL IMAGE PROCESSING

CHAPTER 7

SHAPE DESCRIPTION

|. Pitas Digital Image Processing Fundamentals
Shape description THESSALONIKI 1998




Contents
" INTRODUCTION

- CHAIN CODES

- POLYGONAL APPROXIMATIONS

- FOURIER DESCRIPTORS

- QUADTREES

- PYRAMIDS

- SHAPE FEATURES

7.2 |. Pitas Digital Image Processing Fundamentals
Shape description

THESSALONIKI 1998




Contents

- MOMENT DESCRIPTORS

- THINNING ALGORITHMS

- MATHEMATICAL MORPHOLOGY

- GREYSCALE MORPHOLOGY

- SKELETONS

- SHAPE DECOMPOSITION

|. Pitas Digital Image Processing Fundamentals
Shape description

THESSALONIKI 1998




| ntroduction

Two-dimensional shapes can be described in two different
way's.

A) Use of the object boundary and its features (e.g.
boundary length). This method Is directly connected to
edge and line detection. The resulting description
schemes are called external represantations.

A) Description of the region occupied by the object on
the image plane. This method is linked to the region
segmentation techniques. The resulting representation
schemes are called internal representations.
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| ntroduction

Shape representation schemes must have certain desirable
properties.
Unigueness. This is of crucial importance in object

recognition, because each object must have a unigque
representation

Completeness. Thisrefers to unambiguous representations

Invariance under geometrical transformations.
Invariance under trandation, rotation, scaling and
reflection is very important for object recognition

applications.
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| ntroduction

Sengitivity. Thisisthe ability of arepresentation scheme
to reflect easily the differences between ssmilar objects

Abstraction from detail. Thisrefersto the ability of the
representation to represent the basic features of a shape

and to abstract from detail. This property is directly
related to the noise robustness of the representation.
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Chain codes

 The chain code depends on the start point of boundary
following.

 An advantage of chain code is that it Is trandation
Invariant.

» Scale invariance can be obtained by changing the size
of the sampling grid, producing seldom, however,
exactly the same chain code.

 Rotation invariance is obtained by using the difference
chain code.
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Chain codes

Figure 1: Directions of boundary segments of a chain code for
(a) a4-connected chain; (b) an 8-connected chain.
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Chain codes

The difference code chain is given by:

diff (x ,x_,) 1fi1tl
{ diff (x Xy ) 1f1=1

 Chain codes provide a good compression of boundary
description.

e Chan codes can aso be used to calculate certain
boundary features.
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Chain codes
The boundary perimeter T is given by:

Tan

if x. mod2=0 (in case of an
where: N = { 8-connected
5

T % mod2=1 " chain code)

The object width w and height h are given by:

) (in case of an
,h=gh  4-connected
i=1 chain code)

0] If x=0,2,3
1 If x = 1 If x =1
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Chain codes

Chain codes can be used in the calculation of object area

The boundaries of binary objects can be easilly followed by
employing an algorithm similar to Papert’sturtle:

N\ O.- N\ r' ht "
* Fir pixel value:' 7 turn : g and advance one pixel
o left

N\

Hi==1i==10
meiiem
Bz

Figure 2: Turtle procedure in binary object boundary following
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Polygonal approximations

Digital boundaries carry information which may be
superfluous for cetain applications. Boundary
approximations can be sufficient in such cases. Linear
piecewise (polygonal) approximations are the most

frequently used.

*The optimal linear piecewise approximation can be
obtained by choosing the polygon vertices in such a way

that the overall approximation error i1s minimized.
*Error measures. N1

‘Meansquare E, =g x - d |

| =2
‘Maxima E__ = max |x - d
X 2FEN -1 . |
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Polygonal approximations

*Splitting techniques divide a curve segment recursively
Into smaller segments, until each curve segment can be
approximated by a linear segment within an acceptable
error range.
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Polygonal approximations

Figure 3:
Splitting method
for polygonal
approximations

Figure 4:

Splitting method

for the linear picewise
approximation

of aclosed curve
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Polygonal approximations

A basic advantage of the splitting approach isthat it can
detect the inflection points on a curve and can use them
IN curve representation.

*Merge technigues in the polygonal approximation
operate in the opposite way.

*The primary disadvantage of the merge algorithm is that
polygon vertices do not coincide with curve inflection
points.

*This problem can be solved by combining split and merge
techniques.
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Fourier descriptors

Figure 5: Parametric curve representation

Signal representation using Fourier descriptors

Z(k) = & z(n) expZ j KO
n=0 e N ﬂ

Am=L8 Z(K)expa?z'or‘k‘j
N k=0 N g
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Fourier descriptors

Fourier representation properties

A) The coefficient AHO) represents the centre of gravity
of the curve.

B) Fourier coefficients Z(k) represent slowly and rapidly
varying shape trends for small and large indices k
respectively.

C) A trandation in curve coordinates by z,:

z(n)=2(n)+7, , Z=Xg+ 1Yy
affects only the term Z(0) of the representation:

Z(0)=2(0)+7
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Fourier descriptors

Fourier representation properties

D) A rotation of the curve coordinates by angle e
z(n)=z(n)ec

results in a phase shift of the transform coefficients by an

equal amount:

Z (K)=2Z(K)e®

E) A scaling operation by afactor a, resultsin a scaling of
Fourier coefficients by an equal amount:

2(n)=42(n)
Z(=4Z(K
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Fourier descriptors

Fourier representation properties
F) A change in the starting point of curve traversal:

2(n)=2(n-1p)

produces modulation of the Fourier descriptors:
Zt(k)= Z(k)e-i26nok/N

Fourier descriptors have interesting invariance properties
that can be used in object recognition applications.

. ( Error measure for

N -
& 2 i
E=a (ZKk)]|- |Z,(Kk)| matching two curves
k= z,(n) , 2,(n) )
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Quadtrees

*Quadtrees are based on the following recursive approach:
If abinary image region of size 2"~ 2" consists of both Os
and 1s, it is declared inhomogeneous and is split into four
sguare subregions R,, R;, R,, R;, having size 21" 21 egch.
*This procedure continues until all subregions are

homogeneous.
*The resulting representation is a quadtree.

Maximal
number
of nodes
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Quadtrees

Figure 6: (a) Binary image (b) Quadtree representation
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Pyramids

e Multiresolution representations employ severa copies of
the same image at different resolutions.

e Multiresolution techniques applied to greyscale or binary
Images lead to the so-called image pyramids.

* An image pyramid isa seriesf,(i,]), k=0,...,n of image
arrays, each having size 2k” 2k

)= (e 1(21,20), Fe2(20,2 1), fe 221+ 1,25), o (2+1,21+ 1))

g(-) isa mapping function

... 1g ¢ . .
f.(l,])=—a a f...(2 +1,2]+m)

4 |=0 m=0
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Pyramids

Figure 7.
(@) Image pyramid

(b) Mapping from one
pyramid level to the fioa (21 2))

fk+1I:2i._ Zj - 1;"
next level.

fir1(21 +1,25) fi 1(214+1,24+1)
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Pyramids

*Pyramids techniques enjoy a certain popularity for
Image analysis and compression applications, because
they offer abstraction from image details.

*Binary image pyramids can be used in multiresolution
edge detection and region segmentation.

*The total space required for the storage of a pyramid
(and of a quadtree) iIs4/3° (2" 2") where 2" 2" isthe
size of the original image. Of course, the pyramid can be
simply stored on n+1 arrays of size 2k” 2k, k=0,..,n.
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Pyramids

Figure 8:
(@) Original
binary
Image

(c) Output of
the pyramid
edge detector
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Shape features

Geometrical shapes possess certain features (e.g. perimeter)
that carry sufficient information for some object recognition
applications. Such features can be used as object descriptors
resulting in a significant data compression, because they can

represent the geometrical shape by arelatively small feature
Vector.

Shape features can be grouped in two large classes:
boundary features
region features
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Shape features

Object perimeter:

T = &/ X2(t) + y2(t)dk

N-1

N-1
(o) (o) .
T=3d = o X1,-- Xy - DOUNdary
iazl | iazllx' X1 | coordinate list

Curvature magnitude:

D o ° xo

k@) F = W
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Shape features

Curvature magnitude:

Ik(n)l=é>&/[><(n- 1)- 2¢n)+Xx(n+1)]*+[ y(n- 1)- 2y(n)+yn+1)]
Another curvature definition:

k(s) = % where ds=./dx? +dy’

Approximaton of the local curvature: .

1
2
..g,forx odd

Xy = X1 _t
) O Ly e K=
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Shape features

Bending energy:
1 7 >
E:—me|m

1 n-1
=—a|k(l)| Where1<n<N

> 2Pk o Cal culated from boundary

E = a|Z(k)| T - Fourier descriptors

e T g
gi_pg Circle bending energy

ﬂ 2

— ECITCG — 4p

Normalization of E, =1- = _I = b 2 N
bending energy S Ta [k(1)]
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Shape features

Object area

dy ¢ o using a differential
A= %@(t)a- X0 dt ﬂ geometry formula

Compactness or circularity

2
g = T A normalized version

ApA
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Shape features

Object width and height

W = max X(1) - mti nx(t)

h=max y(t) - miny(t)

Object diameter

D= max d(X,, X,)

X , X, TR

where X, X, is the direction of the line segment
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Shape features

Topological descriptors can give useful global information
about an object. Two important topological features are the
holes H and the connected components C of an object.

Euler number
E=C-H

/

Letters A, B, C, have Euler numbers 0, -1, 1, respectively.
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Moment descriptors

The moments of an image f(x,y) are given by:

=3, 8, Y F(xy)ddy, p.g=012..

Centre of gravity of an object

)—(—rn_LO y:rrbl

Mo Mo

Central moments

My =0, 0, (X~ X°(y- 9)*F(x y)dxdy, p.q=012..
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Moment descriptors

Moment relations for discrete images
m,=a ai’i*fa i
Pg _ _ !
]

Me=a a - x°(- Qi

Moment relations for binary images
_2 o .5.q
my,=aai’l
]

Me=a a (- x)°(j- v
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Moment descriptors

Coordinates of the centre of gravity

x== &i y=_ &
N (i,j) R N (i,j) R

where | isthe area of an image in pixels

Object orientation e: can be derived by minimizing the
function:
O O . _ . _ .
S@)= aall-X)cosq- (j- y)snq]*

(i,i)d R
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Moment descriptors

ODbject eccentricity

em)zcoszq +m,Sin“q - m,sin2c

em)zsm ( + M, CoS’g - M, COSC

g(m)z my)” +4m, U

& A v
Object spread or size

S=(my, +my)
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Moment descriptors

Figure 9: Definition of object orientation
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Thinning algorithms

Thinning can be defined heuristically as a set of succesive
erosions of the outermost layers of ashape, until a
connected unit-width set of lines (skeleton) Is obtained.

Thinning algorithms satisfy the following two constraints:

1. They maintain connectivity at each iteration. They do
not remove border pixelsthat may cause discontinuities

2. They do not shorten the end of thinned shape limbs.
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Thinning algorithms

Figure 10:

(a) Border pixel whose removal may cause discontinuities,
(b) border pixel whose removal will shorten an object limb;
(c) local pixel notation used in connectivity check.
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Thinning algorithms

Figure 11: Central window pixels belonging to: (a) an
East boundary; (b) a South boundary; (c) a North-West
corner point.
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Thinning algorithms

Figure 12: Central window pixels belonging to: (a) a North
boundary; (b) a West boundary; (c) a South-East corner.
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Thinning algorithms

First thinning algorithm
*Check in alocal neighborhood 3" 3

If the number of the pixels of the object (except the
central) 1(py) is: 2<1(py) < 8)
swe check If the remova of the central pixel would
break object connectivity.

Check
*The pixel sequence isformed p;p,ps..-PgP;,

o[f the number of O® 1 transitions is 1, then the
central pixel that hasvalue 1 isremoved.
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Thinning algorithms

Second thinning algorithm
Step 1. a logical rule P, is applied in a 3 3
nelghbourhood and flags the border pixels that can be
deleted.

Step 2. a logical rule P, is applied in a 3 3
nelghbourhood and flags the border pixels that will be

del eted.

R (2EN(R)£6)& & (T(p,)=1)& & (P. P R~0)& & (PR, p~0)

P (2£N(p) £6)& & (T(p,)=1)& & (P, P, P=0)& & (p. 1. p=0)
where O(p,) denotes the number of the 0®1
transitions.
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Thinning algorithms

Figure 13:
Sobel edge
detector

Output of L L7 2 Output of
theone-pass - .h -/ | gt 5/ thetwo-pass

thinning
algorithm

thinning
algorithm
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Mathematical morphology

Mathematical morphology uses a set theoretic approach to
Image analysis.

The morphological transformations must possess the
following properties.

1. Trangation invariance
D(X)=[D(X)],

2. Scale invariance
B(X)=&3(&1X)
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Mathematical morphology

3. Local knowledge. Transformation @(*) must require

only information within alocal neighbourhood for its
operation

4. Semicontinuity. The morphological transformation &(x)
MUSt POSSESS certain continuity properties.

Basic morphological transformations

dilation XA BS:UX-b:{ZT E:B)X 0]
bl B

erosion XOB* =X, ={zl E:B,i X}
bl B

7.46 |. Pitas Digital Image Processing Fundamentals
Shape description THESSALONIKI 1998




Mathematical morphology

Erosion and dilation are special cases of Minkowski set
addition and Minkowski set subtraction

(©)
Figure 14: (a) thresholded image (b) eroded and (c) dilated
Image by the structuring elements SQUARE.
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Mathematical morphology

Erosion, dilation, Minkowski set addition and subtraction
have the following interesting properties.

Commutativity:

AAB=BA A

Associativity:

AA (BAC)=(AAB)AC
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Mathematical morphology

Tranglation invariance:
A A B=(AAB),
A e B=(AeB),
AeB,=(AeB),

| ncreasing property:
Al Bb AADI BAD
Al Bb AeDIl BeD
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Mathematical morphology

Distributivity:
(A JB)AC=(AAC) J(BAC)
AA (B JC)=(AA B)[ J(AAC)
Ae(B[ JC)=(AeB)(|(AeC)

(A"B)eC =(AeC)(|(BeC)
Ae(BAC)=(AeB)eC
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Mathematical morphology
Opening xz: Xz =(X©B)AB=(J{B,:B,1 X}

Figure 15: (a) opened image (b) closed image.

|. Pitas Digital Image Processing Fundamentals
Shape description THESSALONIKI 1998




Mathematical morphology

Opening and closing properties

Duality:

(X®)"=(X)g
(Xg)®=(X)"

Extensivity and antiextensivity:
Xgl X
X®E X
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Mathematical morphology

| ncreasing property:
X, 1 X b (X)g I (Xy)g

N\

Xll XZD (Xl)B\I (XZ)B

| dempotence;
(Xg)g = Xg
(XB)B — XB
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Mathematical morphology

Definition of binary dilation
XA B ={zl E:B()X1 Of
Definition of binary erosion
XxeB ={zl E:B,1 X}

An alternative way for the calculation of binary erosion
and dilation

XAB =(]X,
b B

XeB* =X,
b B
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Greyscale morpholgy

The tools for greyscale morphological operations are ssimple
functions g(x) having domain G. They are called
structuring functions

Figure 16: A example of a structuring function.
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Greyscale morpholgy

Greyscale dilation and erosion of a function f(x) by g(x)
fA g = max {f(2)+g(z- X

7 D,z-x D

feg’l(x)=_min {f(2)- g(z- X}

7 D,z-x D

Greyscale opening and closing
f,(0) =[(feg’)A gl(x) =[f(xeg(- ]A g(x)
FO09 =[(f A gegl(®=[f()A g(- ¥]eg(x)
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Greyscale morpholgy

| mplementation of greyscale dilation and erosion in
pipeline
fAg=(..((fFAg)Ag,)A..Ag)
feg=(..(feg)e9,)e..89,)
Dilation and erosion of a function by a set

[fAGS(X) =[f A g°]1(x) = max{f(i- V)., f(i),.., f(i+Vv)
[fOG*](X) =[fO g°1(x) =min{ f (i - V),...,  (i),..., f (i +V)}

Opening and closing of a function by a set
fa(0) =[(fEG*)AG](x)
Fe() =[(f AG)eG](x)
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Greyscale morpholgy

Close-opening filter (CO)
y=[(f*)sc](¥)

open-closing filter (OC)
y =[(f5)°1(x)

The algebraic difference y=f (x)-f.g(X) Isanonlinear
high-pass filter, called top-hat transformation.
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Greyscale morpholgy

Figure 17: Opening as arolling ball transformation
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Greyscale morpholgy

Figure 18: (a) Thresholded image, (b) Result of top-hat filtering
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Skeletons

Object skeleton is an important topological descriptor of
atwo-dimensional binary object

Figure 19: (a) Grassfire propagation model of medial axis;
(b) maximal disk definition of skeleton.
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Skeletons

Figure 20: Illustration of morphological skeletonization
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Skeletons

Figure 21: (@) Fast skeletonization algorithm;
(b) fast object reconstruction from skeleton subsets.

|. Pitas Digital Image Processing Fundamentals
Shape description THESSALONIKI 1998




Shape decomposition

* A complex object X can be decomposed into a union of
‘ssmpl€e’ subsets X,,..., X, thus providing an intuitive
object description scheme called shape decomposition.

» Shape decomposition must use simple geometrical
primitives in order to conform with our intuitive notion

of simple shapes.

* The complexity of the decomposition must be small
compared with the original description of X.

* A small noise sensitivity Is desirable.
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Shape decomposition

Morphological shape decomposition
Recursive relation:

X =(X- Xiq:l)niB

Figure 22: (a) Original binary image;
(b) first 16 components of its morphological shape decomposition.
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Shape decomposition

Blum ribbons
Simple objects X; of the form:

X. =L AnB

Disadvantages of morphological shape decomposition

It is susceptible to boundary noise.

The representation produced is not close to human shape
perception If the object consists of unions, intersections
and differences of various geometrival primitives. This
can be alleviated by combining morphological techniques
with constructive solid geometry, (CSG).
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Shape decomposition

Main advantage of CSG over skeleton representation or
mor phological shape decomposition

e CSG uses amultitude of geometrical primitives
(e.g. squares) instead of one.

 Thisfact not only enhances the descriptive power of CSG
but also conforms to our intuitive notion of simple
geometrical shapes.
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