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DIGITAL
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| ntroduction

¢ Direct implementation of two-dimensional FIR digital
filters

¢ Fast Fourier transform implementation of FIR digital
filters

¢ Block methods in the linear convolution calcul ation

¢ |nversefilter implementations

¢ Wiengr filters

¢ Median filter agorithms
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| ntroduction

¢ Digital filters based on order statistics

¢ Adaptive order statistic filters

¢ Histogram and histogram equalization techniques
¢ Pseudocolouring algorithms

¢ Digital image halftoning

¢ |Image interpolation algorithms

|. Pitas Digital Image Processing Fundamentals

Digital Image Filtering THESSALONIKI 1998




Direct | mplementation of 2D FIR digital filters

The output of atwo-dimensional FIR filter is given by the
linear convolution:

M,-1IM,-1

y(n.n) = & & hk, k)x(n, - k,,n, - ky)

k=0 k, =0

If the region of support of the FIR filter is[-v,,v;]" [-V,, V5]
where M,=2v.+1 , 1=1,2 , then:

Vi Vo

y(n,n,)= a  a hik,k,)x(n - k,n, - k,)

Ki=-v; kKr=-V,
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Direct | mplementation of 2D FIR digital filters

 Moving Average filter:

k& 1 05 &
y(nl’nZ)ngM Ta a x(n-k,n,-k;)

2 K= vy ko=-V,

where M,=2v.+1, 1=1,2.

Characteristics of the moving average filter:

— It iIsvery effective in removing white additive Gaussian
noise.
— It tends to blur edges and image details (e.g. lines) and
degrade image quality.
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Moving Average Filter

(a) Baboon image,
(b) Filtered Baboon image by a3~ 3 moving average filter.

|. Pitas Digital Image Processing Fundamentals

Digital Image Filtering THESSALONIKI 1998




Direct implementation of 2D FIR digital filters

o Zero-phase FIR filters can satisfy H(u,,u,)=H"(u,,u,)
having the spatial symmetry:

h(ny,ny)=h(-ny,-n,)
This reduces the number of multiplications amost to half:

g

V)= & &Nk k)XM - k- k) +X( +uh, k)]

k= K=V,

+ & ik OIX(N, - K, y) +X(1, +k, )] +h(00)X(n, 1)

k=1
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FFT implementation of FIR digital filters

Discrete Fourier Transform(DFT):

N 1N -1
X(kuky) = & & x(n.n, W WL

n=0n,=0
Circular Convolution:

y(nl nz) =h(n,n,) AAx(n;,n,)
= a a X(k1 K, )h(((n, - k), (N - K;))y, )

n=0n,=0
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FFT implementation of FIR digital filters

|mportant Property of DFT for Circular Convolution:

y(n,n,) =h(n,n,)A Ax(n,n,) #®
Y (k. Kk,) = H(k, K,) X (k;, k)

Circular Convolution Calculation using DFT:
y(n;,n,) = IDFT[DFT[x(n;,n,)]DFT[h(ny,n,)]]
Linear Convolution can be calculated in the same way |If

both sequencesx (N, ~ N,) and h (M;"~ M,) are augmented
todimensionsL;2 N+ M:-1, 1=1,2.
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FIR digital filter implementation

Remarks

 For small filter window dimensions, direct implementation
Is faster than FFT implementation of FIR filters, provided
that:

MM, < 6l0g,(N;N,) + 4

 Memory requirements of the FFT implementation approach
are relatively higher than the ones of the direct one.
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Block methods in the linear convolution calculation

Overlap-add method

The overlap-add method is based on the distributive property
of linear convolution and is given as follows:

y(n,ny) = x(n,n,)**h(n;,n,)

Ki K Ki Ko

=a a (x;(n,n,)**h(n,n,)) =3 a v, (n,n,)

=1 =1 i=1 j=1
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Overlap - Add Block Method

y{:n] 1 H'.?-.]

N

Overlap-add method for linear convolution.

() Non-overlapping blocks

(b) convolution output block when h is defined over [O,M,) © [O,M,)
(c) convolution output block when h is defined over [-i,i,] * [-15,15].
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Block methods in the linear convolution calculation

Overlap-save method
It is based on a ssimple property of convolution:

the linear convolution output y'(n,,n,) Isequal to the
circular convolution output of extent N, © N, only within
therectangle: [M;-1,N,] © [M,-1,N,] :

y'(n,n,) =w(n, n,)**h(n;,n,) =w(n,n,) A Ah(n;,n,)
forM,-1£n <N, M,-1£n,<N,

w(n,,n,) is asequence defined over [O,N,) © [O,N,).
h(n,,n,) is an impulse response defined over [O,M,) © [O,M,).
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Overlap - Save Block Method

x(ny,ng)

y(ng,ng)

Overlap-save method for linear convolution.

(a) Result of the circular convolution of two sequensces without zero padding
(b) partition of the input sequence in overlapping blocks

(c) output blocks of the overlap-save method
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Block methods in the linear convolution calculation

Characteristics of the overlap-add and overlap-save methods

» Both methods have approximately the same computa-
tional load, if the block sizes used are approximately
equal in both methods.

o If the block size Is carefully chosen, they give very good
computational savingsin comparison to the direct method.

 Although both methods are ssimilar, sometimes the
overlap-add method is preferred due to its conceptual
simplicity.
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| nverse filter implementations

Inversefiltering (for digital image restoration)

G(Wl’WZ)
H (Wl’WZ)

F (Wl’WZ) =

where H(u,,U,) is the a priori known degradation function and
G(u4,U,) isthe observed (degraded) image.

Characteristics:

* [t cannot be defined in regions (u,, u,) of the transform
domain, where H(u,U,) Is zero.

e It Isvery sensitive to the presence of the formation noise.
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| nverse filter implementations

._'u_, e Lo

[}
Sl s

(a)

(@) Original image,
(b) Image corrupted by horizontal blur of length I, = 5 and white
additive Gaussian noise having variance equal to 20.
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| nverse filter implementations

The last problem can be solved by using a pseudoinverse
filter:

i 1
H™ (w;,w,) _I' C (w,,w,)
{10 otherwise

If |Hw,w,)|>e

| mplementation of theinversefilter usingthe DFT

eG(k,, k, )u
&H (k,, k,) g

f(nl,nz) = IDFT &
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| nverse filter implementations

|ter ative implementation of theinversefilter

Fk+1(W1,W2) — Fk Wl,Wz) + rr[G(Wl,Wz) - Fk(W11W2)H (W1’W2)]

Characteristics of the iterative implementation

» The advantage of the iterative method is that it can be
stopped after a certain number of iterationsif the
filtering output Is acceptable.

» The convergence parameter i can be changed in order
to alter the convergence speed.
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Wiener filters

Non-casual Wiener filter

Psg (Wl’WZ)

H W(Wl’WZ) -

ng (Wl’WZ)
P, and P, are the cross-power spectrum of s (original), g (observed
Image) and the power spectrum of g respectively.
o If the signal s(n,,n,) Is uncorrelated with noise n(n,,n,):
P (W, W,)

H (w,,wW,)=
ol W) P (W, W,) + Py, (W;,w,)

 Thisimplementation can be efficiently used for additive
noise removal.
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Wiener filters

M odification of the Wiener filter used in digital image
restoration

H * (Wl’WZ)Pff (Wl’WZ)

H, (W,W,) =
W( 1 2) | H (W1’W2) |2 Pﬁ (Wl,WZ) + Pnn (W11W2)

An important problem in the design and implementation of
Wiener filters is the estimation of the blur transfer function
H(u,,u,) and of the power spectra Pi(u,,u,), P,,(U,U,).
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Median filter algorithms

The median value is the middle observation X, of the
statistically ordered observations x;, 1=1,..,n:
. Xy < X@) SO< X
Xy MINIMuM, X): maximum
A two-dimensional median filter is defined as follows:
y(i,j)=med{ x(i+r,j+s), (r,9) 1 A (i,j)1 Z2}

Median filter properties

* They have |low-pass characteristics and they remove
additive white noise.

* They are very efficient in the removal of noise that has
along-tailed distribution (e.g. Laplacian distribution).
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Median filter algorithms

Median filter properties

continued

 The median becomes unreliable only when more than
50% of the data are outliers.

 The robustness properties of the median make it very
suitable for impulse noise filtering.

* The median filter tends to preserve edge sharpness.

e The median filter not only smooths noise in homoge-
neous image regions but tends to produce regions of
constant or nearly constant intensity.
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Median filter algorithms

Baboon image The output image The output image
corrupted by ofa7x7 ofa7x7
mixed impulsive median filter moving average
noise filter
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Median filter algorithms

Separable 2D median filter

It results from two successive applications of 1D median

filters of length n along rows and then columns (or vice-
Versa):

yij:med(zi,j-v1 e 1 Lja e ’Zi,j+v)

Zi=med(X.yj s o s Xij o oon 1 Xigy)
n=2i+1.
Advantage: Low computational complexity in comparison to

that of the non-separable median filter because it sorts n
numbers two times instead of n?.
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Median filter algorithms

Recursive median filter

Yi=med(Yiy s - Vi s %o e s Xin)

e |ts output tends to be much more correlated than that of
the standard median filter.

* Recursive median filters have higher immunity to
Impulsive noise than the non-recursive median filters.

Separablerecursive median filter
Vi =mMeA(Yijy s - Yija s Gj o oo s Zja)

Z;=med(Z s - Zigj Xj o een s Xiwyj)
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Median filter algorithms

Weighted median filter

The weighted median Is the estimator T that minimizes the
weighted L, norm of the form:

n
O

aWw|[x-T|® min

i=1
The weighted median filter is described by:

y=med{w,, o, ... , W, 2%, }
where wex denotes duplication of X (X,...,X, w times)
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Median filter algorithms

Multistage median filter

y;;=med(med(z,,z,,;) , med(z;,2,,%;) , X;)
zlzmec(xi,j_v, an g X g o ,xi,jﬂ,)
zZ:mec(xi_V,j ) aca g 5 g e ,xi+v,j)

z3:mec(xi+v,j_v, a0 g 04 g o ,xi_v,jﬂ,)
Z=MEA(Xi_yjy s ooe s Xij s oo s Xy )

It can preserve edges In horizontal, vertical and diagonal
directions.
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Digital filters based on order statistics

Ranked order filters

Anr-th ranked filter of the signal x; isthe r-th order
statistic:

y;=r-th order statisticof {x_,,, ... , X, ... , Xi,o}

e It Introduces a strong bias in the estimation of the
mean,when the rank is small or large.

* The biasis even stronger when the input data have a
long-tailed distribution.
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Digital filters based on order statistics

The maximum

Max/min filters

Xy and the minimum X, are the two

extremes of the ranked-order filters.

e The maximum filter effectively removes negative impulses
In an image. The minimum filter removes positive impul ses.

e Both fi
e Both fi
e Both fi

tersfail in the removal of mixed impulse noise.

ters have good edge preservation properties.

ters tend to enhance the bright and the dark regions

of the image respectively (max/min).

3.30
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Digital filters based on statistics

Max/min filters

Baboon image The output of a
corrupted by cascade of a
mixed impulsive noise min and a max
filter
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Digital filters based on statistics

Max filter (running implementation)

T %3 V4
|f XI < yi_land Xi-n = yi—l

|f XI < yi_land Xi-n — yi—l

In average, only 3 comparisons are needed. A similar algorithm
exists for min filtering.
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Digital filters based on order statistics

a-trimmed mean filters

- 1 n-éan
n(l' 23) j:an+i((1)

Y

* The a-trimmed mean filter rgjects 8% of the smaller and &% of the
larger observation data.

* |t can be used as a compromise between the median filter and the
moving average filter for varying a

e |ts performance is poor for short-tailed distributions.

e . 1
The midpoint is defined asfollows; MP = E(X(l) + X))
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Digital filters based on order statistics

Modified trimmed mean filter (M TM)
y” — é é Aarsxi+r,j+s
' aa ad.

Its coefficients _11 X jes - MEOUXHE Q
are chosen by: %s %o otherwise

Modified nearest neighbour filter (MNN)
Its coefficients 11 X st X% EQ
are chosen by: ° % =1 otherwise

This filter trims out pixels deviating strongly from the central pixel.
Therefore it has good edge preservation properties.
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Digital filters based on order statistics

L-filters
The L-filter (or order statistic) filter is defined as follows:
n

| ocation |nvariance constraint:
n

aa =ae=1
j=1
Choice of coefficient vector after M SE minimization:
R'e
e'R e

a=

|. Pitas Digital Image Processing Fundamentals

Digital Image Filtering THESSALONIKI 1998




Digital filters based on order statistics

L-filters
e The optimal L-filter for the Gaussian noise is the
moving average.

e The optimal L-filter for the Laplacian distribution is
close to the median.

* The optimal L-filter for the uniform distribution is the
midpoint.

* The L-filter has no streaking effects, provided that its
coefficients are not ssimilar to those of the median.

e It has greater computational complexity than the median
or the moving average.
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Adaptive order statistic filters

Minimal Mean Square Error filter (MM SE)

An adaptive filter for additive white noise:
X =S+
Linear Minimal Mean Square Error filter output:

AN

Sj — (1_

SZ/\

S 2

~5)%; + 5 m,

* The MM SE filter preserves edges, although it does not
filter the noise in edge regions.

 The performance of the adaptive MM SE filter depends
on the choice of the local measures of signal mean and
standard deviation and of the noise standard deviation.
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Adaptive order statistic filters

Decision-directed filters

* They can take into account both edge and impulsive
noise information.

 Impulses, when detected, can be removed from the
estimation of the local mean, median and standard
deviation.

 \When an edge is detected, the windows of the filter can
become smaller so that edge blurring is minimized.

» Such an impulsive-sensitive filter is the adaptive
window edge detection (AWED) filter.
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Adaptive order statistic filters

Two-component model filters

An adaptive filter based on the two-component mode! is the
signal-adaptive median (SAM) filter:

Modified

Window
Adaptation

Impulse Detection
Local SNR
Estimation

The SAM filter has excellent performance in noise filtering,
edge and image detail preservation.
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Adaptive order statistic filters

Two component modéd filters

Original Lenna image The output of a
Lenna image corrupted by Gaussian SAM filter
noise (variance=100) and
mixed impulsive noise
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Histogram and histogram equalization techniques

The histogram p; (empirical pdf) is given by the relation:

0. (f, :”—r‘; k=01..L-1

* The image quality can be enhanced by modifying its
histogram.

 This can be performed by atechnigue called histogram
equalization.
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Histogram and histogram equalization techniques

(a) Histogram of a dark image,
(b) Histogram of a bright image,
(c) Histogram of an image with two intensity concentrating regions
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Histogram and histogram equalization techniques

Histogram equalization

e Transformation function:

T()=Q P, (Wdw

* T(f) can be calculated from the following relation:

Ok :T(fk):é, p:(f;)= .

J=0
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Histogram and histogram equalization techniques

LT

(a) Original image, (b) image after histogram equalization

Histogram modification
e Transformation function:

g=G T(f)]
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Pseudocolouring algorithms

Pseudocolouring encoding of the intensity of black and white
(BW) images by using colour information:

Pseudocolouring isadigital image transformation of the form:

c(X,y) =T(T(x,y))

where f(x,y) iIsaBW image and c(x,y) Is a colour image.

» The choice of the transformation function is heuristic based
on subjective image quality evaluation
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Pseudocolouring algorithms

Original Image
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Pseudocolouring algorithms

| ntensity Quantization (slicing) method

It is equivalent to the following non-uniform transformation
function, that occurs after histogram equalization g=G(f) :

if.eLu

o ifigggEs k)< +1)§ﬁ‘é‘

¢, if (N- 1)2_;375 G(f (k1)) <L

(]
(]
N\

|
!
T ={  i=0L.,N-2
i
|
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Pseudocolouring algorithms

Filtering Approach

h, (k,), hg(k,l), hy(k,): impulse responses of alow-pass, a
bandpass and a high-pass linear FIR filter.

They are used to produce the colour image components of the
pseudocol oured image:

Cr(k,1) =T (k,1)**hy(
Co (K,1) = T(K,1)**hg (
Ce (k1) = T(k,1)**h(
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Digital image halftoning

Binary Thresholding

i1 if f(k1)3T

K,) =1 _
9(k.) }O otherwise

f(k,l): greyscale image (input)
g(k,D): thresholded image (output)

I Threshold selection T can be based on the image histogram.

I A locally adaptive threshold is better than a global one.

I Binary thresholding does not produce halftone images.

3.49 |. Pitas Digital Image Processing Fundamentals

Digital Image Filtering THESSALONIKI 1998




Digital image halftoning

Binary Thresholding

Origina Image Thresholded Image Thresholded Image
with O=100 with O=200
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Digital image halftoning

Greyscale Binary Fonts

I The greyscale image f(k,l) has L grey levels.

I The halftone image g(k,I) must have N perceived grey levels
(N<<L, N=nxn+1).

I N matrices F; of size nxn containing 1s can be used for
halftoning:

eLu éLu .

+1)x—n i =01,...,N- 2
SNH &N f
eL u

I If f(k,]
TFN1 (N - 1)8 H£ (k,1) <L

I The method is conceptually simple and easy to implement
I It creates false lines and contours in homogeneous regions

£ (k1)<
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Digital image halftoning

Greyscale Binary Fonts

Original Image Original Image Halftoned Image by
subsampled by using greyscale binary
afactor of 2 fonts
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Digital image halftoning

Pseudorandom Thresholding
I It adds random noise to the image and then thresholds.

I This is equivalent to thresholding with a random threshold.

I Dither matrices containing pseudorandom thresholds are
used, denoted by D" if their sizeisn ™ n. A 2" 2 dither matrix

IS defined by: 52 €0 2
_S’a X
I Halftoning is performed by:

11 if f(k,1)>T(K,I)

K,I) =
9(k.1) = :O otherwise

T(k,1)=D"(kmodn,| modn)
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| mage interpolation algorithms

I Zero-order hold interpolation: a (x,y) point is assigned the
value of the geometrically closest pixel in the image array. It
produces regions with constant intensity and leads to zooming
by a factor of 2"~ 2"

f,(n,n,) = f(n,/2).[n,/2])
I First-order (linear) interpolation: it produces smoother
Interpolated Images

T(xy)=@- D)d- B,) 1(n,n,)*+1- D,)D, T(n,n, +1)+
Dl(l' Dz) f (nl +1, nz) +D,b, f (nl +1n, +1)

— y- nsz
T2

D,
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| mage interpolation algorithms

I p-order interpolation: it is performed by convolving the
appropriately formed image with the convolution matrix H
p times (e.g. cubic spline interpolation, p=3).

First we interlace the image to be interpolated with zeros.

(”1 n,

If n, = pk,n, = pl
f¢n,, nz)_ 0’ b N =PpK,n, =P
4 0 otherwise

An example of a convolution matrix H is:
{31_/4 1/2 1/4@

— u
H_guz 1 1’29
/4 1/2 1/4§
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BABOON
Image

Output image
after
linear

Interpolation

Output image
after
zero-order
Interpolation

Output image
after
cubic spline

S é interpolation
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