
EIKONA

Digital image processing package

Thessaloniki 1997

Manual, Part I

EIKONA for Windows

Users guide

Version 4.0

The JPEG input/output routines were based in part on the work of the Inde-
pendent JPEG Group.

The GIF, BMP, TGA input/output routines were based in part on the PBM-
PLUS toolkit.

The TIFF input/output routines were based in part on the Silicon Graphics
LibTIFF library by Sam Le�er.

The scanner interface was based in part on the TWAIN Toolkit, Release 1.6.
The TWAIN toolkit is distributed as is. The developer and the distributors
of the TWAIN toolkit expressly disclaim all implied, express or statutory war-
ranties including, without limitation, the implied warranties of merchantability,
non-infringement of third party rights and �tness for a particular purpose. Nei-
ther the developers nor the distributors will be liable for damages, whether direct,
indirect, special, incidental, or consequential as a result of the reproduction, mod-
i�cation, distribution or other use of the TWAIN toolkit.

Distributor :

Contents

1 EIKONA for Windows 1
1.1 Introduction 1
1.2 Hardware Requirements 2
1.3 Installation 2
1.4 Overview 2
1.5 Initialization information - The PAR �les 3
1.6 Using EIKONA for Windows 4

1.6.1 File 5
1.6.2 Black and White 6
1.6.3 Color 7
1.6.4 Modules 8
1.6.5 Windows 8
1.6.6 Help 8

2 Users guide 9
2.1 Basic operations 9

2.1.1 Opening an image 9
2.1.2 De�ning the Region Of Interest 11
2.1.3 The Control Window 11
2.1.4 Bu�er management 12

2.2 Examples of grayscale image processing and analysis 13
2.2.1 Basic image processing 14
2.2.2 Image transforms 16
2.2.3 Digital image �ltering and enhancement 20
2.2.4 Nonlinear digital image �ltering 24
2.2.5 Edge detection 27
2.2.6 Region segmentation and texture analysis 30
2.2.7 Shape description 34

2.3 Examples of color image processing and analysis 37

6 Contents

2.3.1 Basic image processing 37
2.3.2 Color transforms 37
2.3.3 Digital image �ltering and enhancement 37
2.3.4 Edge detection 39
2.3.5 Region segmentation and texture analysis 39

3 Writing DLLs for EIKONA 42
3.1 Introduction 42

3.1.1 DLL basics 42
3.1.2 EIKONA DLLs 42
3.1.3 The Example DLL 43

3.2 DLLs for EIKONA 43
3.2.1 Initialization 43
3.2.2 Installing the DLL's menu 45
3.2.3 Installing a message handler 48

3.3 Functions exported by EIKONA 50
3.3.1 Using the exported functions 50
3.3.2 EIKONA library functions 51
3.3.3 Bu�er management functions 52
3.3.4 Thumbnail functions 64
3.3.5 Magni�er functions 66
3.3.6 Window Management functions. 67

3.4 Example DLL source code 71

1

EIKONA for Windows

1.1 Introduction

EIKONA for Windows is a powerful, but yet simple to use, digital image processing
software package that runs under Microsoft Windows 95 and implements over 150
image processing routines in the following areas:

� image display, scanning and printing

� image thresholding, clipping
� addition, subtraction and multiplication of images

� and, or, xor bit-level operations between images
� addition/multiplication of an image by a constant

� various image noise generators
� two dimensional �lters including adaptive and nonlinear �lters

� histogram and cdf histogram computation and equalization

� matrix histogram and cdf matrix histogram computation
� image enhancement and sharpening

� region segmentation

� edge detection

� morphological �lters
� image transforms

� color coordinate transformations
� image mosaicing, registration and watermarking

EIKONA user interface is based completely on pull-down menus, dialog boxes and
common Windows 95 user interface elements. As a consequence, it is extremely
easy to operate even for users not very familiar with image processing. Images are
stored on image bu�ers.All that is needed to apply an image processing function
to an image is to specify the source and destination image bu�er and the related

2 EIKONA for Windows

parameters. Furthermore, implemented functions are grouped into categories ac-
cording to the type of operation that they carry out, in order to facilitate the
search for a speci�c task. The user can choose the image region where processing
is to be performed. Multiple images can be displayed on the screen at the same
time, a valuable feature when comparing the results of di�erent processing func-
tions on the same image. Being a pure 32-bit application, EIKONA fully exploits
the Windows 95
at memory model allowing e�cient handling of big images.

EIKONA supports the following �le formats : TGA, TIFF, uncompressed
BMP, JPEG, GIF and binary (raw) images. Conversion from one image �le format
to another is also possible.

1.2 Hardware Requirements

EIKONA for Windows can run on any 386/486/Pentium computer under Microsoft
Windows 95. However, since many image processing applications are rather time
consuming and since images, especially color images, require large amounts of
memory, a minimum con�guration of a 386 machine with at least 8MByte of RAM
is recommended. Also, in order to take advantage of the image display capabilities
of Eikona for Windows, a color monitor with a SUPER VGA card capable of
displaying at least 32K colors is required.

1.3 Installation

To install EIKONA for Windows insert the setup disk, select Run from the Start
menu and type a:setup. You will be prompted for a destination directory on your
hard drive. The setup program will copy all the relevant �les to this directory and
create a new Windows program group on your taskbar.

1.4 Overview

The central concept in EIKONA is that of a bu�er. EIKONA supports four types
of bu�ers that are used by various image processing functions:

BW bu�ers are used for storing grayscale images. Essentially they are two-
dimensional arrays of unsigned characters. Their format is described in detail
in [PIT93].

Color bu�ers are used for storing color images. They are nothing more than

Initialization information - The PAR �les 3

three BW bu�ers (one for each color channel) that EIKONA groups to-
gether. However the user can view and otherwise act on each channel sepa-
rately as if it was and ordinary BW bu�er. Furthermore three BW bu�ers
can be merged into one color bu�er.

Float matrices are used to store the results of some functions implemented in
EIKONA (most notable examples being the Fast Fourier Transform and the
Discrete Cosine Transform).

Color processing matrices used mainly for color space transformations and
other color image processing functions.

EIKONA can allocate as many bu�ers as required the only limit being the memory
capacity of the computer. Bu�er dimensions are either speci�ed by the user or
determined by EIKONA according to the operation.

EIKONA also allocates 2 one-dimensional
oat bu�ers (referred to as vectors)
that are used internally in some operations e.g. histogram calculation or matrix
histogram calculation. The dimension of these vectors defaults to 256 elements
(although it can be user-de�ned as described in the next section).Their contents
can be saved to disk in decimal format in order to be examined.

1.5 Initialization information - The PAR �les

The EIKONA.PAR �le Certain internal variables of EIKONA can be
customized by the user. These variables control the vector size, the maximum win-
dow size for image �ltering operations and the reference values for color space trans-
formations. During it's initialization phase EIKONA reads the �le EIKONA.PAR

from the directory where it was started.The user can modify this �le to de�ne
these variables. Typical contents of this �le may be the following:

WindowXSize=15

WindowYSize=15

VectorSize=256

Xo_reference=1.0

Yo_reference=1.0

Zo_reference=1.0

These EIKONA.PAR �le contents instruct EIKONA the maximal allowable win-
dow size in image �ltering operations is 15� 15, the vector size is 256 points and
that the reference values for color space transformations are 1.0. EIKONA is not
sensitive to the order of these de�nitions in the EIKONA.PAR �le but it requires
every one of them to be in a separate line.

The WIN x.PAR �les Various �ltering operations require a
oat or in-
teger coe�cient mask. These masks, which are read by EIKONA without user

4 EIKONA for Windows

intervention, are contained in �les WIN F.PAR and WIN UC.PAR that must reside in
the directory EIKONA. The user must edit these �les prior to applying the �ltering
operation and �ll in the �lter coe�cients. The contents of the WIN F.PAR �le could
be the following:

3

3

0.11111

0.11111

0.11111

0.11111

0.11111

0.11111

0.11111

0.11111

0.11111

The �rst two numbers show the column and row number of the
oating point mask
(3�3 in this case). Nine
oating point numbers follow that correspond to the mask
elements written in a row-wise manner. This mask, when used with convolution
corresponds to the moving average �lter. In addition, this mask is used in User
De�ned Color Transformation function. The contents of the WIN UC.PAR �le could
be the following:

3

3

0

1

0

1

1

1

0

1

0

The �rst two numbers show the column and row number of the integer mask (3�3
in this case). Nine integer numbers follow that correspond to the mask elements
written in a row-wise manner.

1.6 Using EIKONA for Windows

To run EIKONA for Windows double-click the EIKONA icon. The EIKONA
main window appears at your screen. The menu that appears on the top side

Using EIKONA for Windows 5

of the window has six menu items i.e. File, Black and White, Color, Modules,

Windows, Help. By clicking each of them a pull-down menu appears that contains
several options. File menu contains �le input/output operations as well as other
general tasks like �le printing, bu�er manipulation etc. Black and White menu
contains all the image processing functions operating on Grayscale images. Color
menu lists all color image functions provided by EIKONA. The Modules menu
is used by external modules that extend EIKONA's capabilities. The Windows

menu provides basic window management functions. Finally Help provides help
on various image processing routines. In the following each of the six menus will be
presented in more detail. It must be noted that EIKONA routines have extensive
error handling capabilities. If an error is detected the job is not executed and a
relevant error message is displayed. In this case the user has to check again the
parameters he fetches to the routine.

1.6.1 File

Open: Load an image �le from disk. Supported image formats include Binary
(raw), TGA (Color and Black and White, certain types), TIFF, BMP (uncom-
pressed), JPEG and GIF. Raw images must be stored row-wise, the �rst row being
the top row.

Open Matrix: Load a matrix �le from disk. The user speci�es the matrix dimen-
sions.

Save: Save images and matrices to disk1. Supported formats are : Binary (raw),
TIFF, TGA and JPEG. Binary color images must be saved in three di�erent �les,
one for each color component. Thumbnail images can also be saved in JPEG
format.

Acquire: Scan an image from a scanner compatible with the TWAIN interface or
select a TWAIN source.

Hide ROI: This is a toggle (on/o�) option. When it is on the region of interest is
not displayed on the active window. If the active window has scroll bars then the
user should zoom out the window if he would like to see the ROI.

Display Control Window : Toggles the Control window on or o�.

Write pixel: The next click of the left mouse button after Write pixel was selected
will place the value 255 as pixel value at the pixel pointed by the cursor. This
function can be used to put "seeds" in image bu�ers.

1The Save option is only available through the EIKONA Save Module.

6 EIKONA for Windows

Print: Print a binary image.

Dump: Write the contents of Region of Interest of a BW bu�er to a �le in decimal
format.

Dump Matrix: Write the contents of the speci�ed
oat bu�er to a �le in decimal
format.

Dump signal: Write the contents of a one-dimensional bu�er (vector) to a �le in
decimal format.

Dump Matrix histogram: Write the contents of a two-dimensional bu�er (vector)
to a �le in decimal format. The vector[0] bu�er contains the X values of matrix
histogram and the vector[1] bu�er contains the corresponding Y values.

Bu�ers: General bu�er management functions.

Exit: Exit EIKONA.

1.6.2 Black and White

This menu contains all routines for the processing, analysis and display of black
and white images. In most cases, the processing routines have one source BW
image bu�er, one destination BW image bu�er and a number of parameters. The
user can either specify an existing bu�er as the destination bu�er or ask for the
creation of a new bu�er. Processing is performed only within the region of interest
(ROI). ROI de�nition is described in the next chapter. The display is automatically
updated to re
ect the result of the operation.

This part of the manual does not contain detailed description of the various
routines, since they are described in detail in the manual of the EIKONA library.

Basic: Sub-menu that contains a number of basic image operations. These include
clearing the contents of an BW bu�er, copying the contents of a bu�er to another
bu�er, bit-level operations between images (and, or, xor), adding a constant to
an image, multiplying an image by a constant, adding/subtracting two images,
transforming an image to matrix and a matrix to image with normalization or
truncation, image halftoning etc.

Processing: Sub-menu that includes negation of an image, image sharpening, im-
age zoom/decimation and also additive and multiplicative noise generators (Gaus-
sian, Uniform, Laplacian) that can be used to corrupt an image for simulation
purposes.

Using EIKONA for Windows 7

Analysis: Edge detection algorithms (Sobel, Laplace, etc.), line and point detec-
tion functions, various algorithms for edge following and related algorithms like
Direct and Inverse Hough transform. Region segmentation algorithms including
thresholding and counting. Texture description and shape analysis algorithms,
along with thinning and pyramid methods. Finally, image and matrix histogram,
Cdf Histogram and Cdf Matrix Histogram are also included in this menu.

Transforms: this sub-menu includes the well-known Fast Fourier Transform
(FFT) for one and two dimensions and the Discrete Cosine Transform. Also Power
Spectrum Density estimation, image convolution etc.

Filtering: Sub-menu containing some of the most widely used �lters in the Digital
Image Processing. These include Histogram equalization, moving average, median,
minimum, rank �lter, L-�lter and many more.

Nonlinear �ltering: Some more nonlinear operators like morphological operators
for grayscale and binary images (opening-closing, erosion-dilation), Signal Adaptive
Median �lter, hybrid, multistage, weighted, separable, median �lters, homomorphic
�lter, harmonic �lter etc.

Merge Channels: Merge three BW bu�ers in a color bu�er.

Display: Display grayscale images. The user speci�es the bu�er to be displayed.
The display window shows the number of the displayed bu�er. It can be moved
around and it can be closed as any other window.

1.6.3 Color

This menu contains all routines for the processing, analysis and display of color
images. In most cases, the processing routines have one color image bu�er, one
destination color image bu�er and a number of parameters. The user can either
specify an existing bu�er as the destination bu�er or ask for the creation of a
new bu�er. Processing is performed only within the region of interest (ROI). ROI
de�nition is described in the next chapter. The display is automatically updated
to re
ect the result of the operation.

This part of the manual does not contain a detailed description of the various
routines, since they are described in detail in the manual of the EIKONA library.

Basic: Sub-menu containing basic color image operations like bit-level operations
(and, or etc.), bu�er copy and clear operations, addition and multiplication of the
three RGB components of an image with the same constant etc.

8 EIKONA for Windows

Processing: Noise generators for the three components of a color image, color
image �lters like marginal median and marginal minimum and also erosion-dilation
operators are included in this sub-menu.

Analysis: Color image edge, line and point detectors.

Color Representation: This sub-menu contains a number of color representation
system transformations. Many of the color coordinate systems that are included,
require
oat color coordinates. Therefore
oat bu�ers must be allocated for such
transforms.

User De�ned Transformation: User De�ned Color Transformation. The user
speci�es the mask of the transformation in the WIN F.PAR �le.

Preview, Display: Both options display a color image bu�er and have the same
e�ect for output devices that can display more than 256 colors. However the two
options are di�erent for 256 color displays. Preview allows the user to view a
color image fast without the best color quality. On the other hand, Display takes
more time to be executed but it obtains a better image display by constructing a
256-color palette according to the histograms of the three color components.

1.6.4 Modules

This menu is used by additional modules that extend EIKONA's capabilities. Ev-
ery option provided by each such module appears under this menu. Three modules
are currently available :

Eikona For Arts with options for automatic or manual mosaicing of a set of
images and simple or combined registration of two images.

Watermarks for casting and detection of digital watermarks on an image.

Crack restoration for restoring old paintings from cracks.

1.6.5 Windows

This menu provides provides basic function for managing open windows.

1.6.6 Help

This version of EIKONA does not support On-line Help.

2

Users guide

2.1 Basic operations

2.1.1 Opening an image

This section will describe how to load and display grayscale as well as color images.
We assume that we are already in the environment of EIKONA for Windows. We
also assume that the current graphics display con�guration can display at least 256
colors. However, the display mode of 16 million colors that is currently available
on most super VGA cards is highly recommended. A moderate alternative is to
use display modes with 32 K colors. Check your Windows setup to ensure that
you have installed the proper graphics mode.

Let us suppose that you have a grayscale image of dimensions 256 � 256
named BABOON.JPG in JPEG format on your current directory. This image can
be loaded as follows:

� Choose option File by mouse.
� Choose option Open.
� A common Open File dialog box appears on screen that can be used to select
the image to be opened (we assume that the user has at least some experience
in using these common Windows 95 user interface elements). Double-click
on the name BABOON.JPG.

EIKONA will load and display the image automatically. The displayed image is
shown in Figure 2.1.1.

The same procedure can be used for loading images in BMP, TARGA, TIFF or
GIF format. For these formats, EIKONA automatically determines the dimensions
of the image and it's type (grayscale or color), creates a suitable bu�er and displays
the image without further user intervention.

10 Users guide

Figure 2.1.1 Grayscale image BABOON.

A slightly di�erent procedure must be used in order to open an image in binary
(raw) format. These images are stored in a row-wise manner. Each pixel is stored
in one byte, the �rst byte in the �le corresponding to the upper left corner of the
image. EIKONA cannot determine the dimensions of such images (it can only make
a rough guess) so it displays the Open Raw dialog box. The Width and Height

�elds of this dialog box display EIKONA's guess about the image's dimensions.
The user can either enter the dimensions directly or use the Guess button to allow
EIKONA to take another guess. A Swap button is also provided in case EIKONA
has guessed the numbers correctly but in the wrong order. As an example assuming
that you have the same image in raw format named BABOON.RAW the procedure
to load it is the following:

� Choose File from the menu bar.
� Choose Open
� Double-click on BABOON.RAW
� The Open Raw dialog box appears. For this image the dimensions should be
correct (EIKONA always guesses correctly for square images) so click OK.

Windows opened by EIKONA can be moved, minimized or closed as any other
window. If the image width / height (or both the width and height) exceeds the
screen's width / height, scrollbars appear on the image display window to allow the

Basic operations 11

user to view parts of the image not currently on display. Multiple windows can be
open and the user can switch between them using the Ctrl - Tab combination.

2.1.2 De�ning the Region Of Interest

The majority of image processing functions implemented by EIKONA are not
applied on the whole image but rather on a rectangular part of it called the Region
of Interest(ROI). Every window opened by EIKONA has an associated ROI which
by default covers the entire bu�er displayed by the window. The ROI is shown
as a rolling dashed rectangle in the currently active window. The user can easily
mark another ROI using the following procedure :

� Activate the window on which you want to de�ne the ROI. This can be done
either by left-clicking on a point of the window or by pressing Ctrl - Tab
repeatedly until the desired window becomes active.

� Move the mouse at one corner of the desired ROI, press and hold down the
right mouse button.

� Drag the selection rectangle that appears to cover the desired area. If the
window has scrollbars moving out of it will cause the scrollbars to follow.

� Release the right mouse button.

The user can also make adjustments to speci�c edges of the ROI. Moving the mouse
over a ROI edge or corner changes the cursor shape appropriately. By pressing and
holding down the right mouse button the user can re�ne his selection (the process is
similar to that of resizing windows). Finally, the user can restore the ROI to cover
the entire bu�er displayed by the active window either by pressing Ctrl - A or
through the Control window as described in the next section.

2.1.3 The Control Window

A number of useful and frequent operations can be instantly accessed through the
Control window. This window is displayed in the upper-right corner of the screen
when EIKONA starts-up. Figure 2.1.2 shows the control window.

Going from top to bottom we can see :

The ROI information section where the coordinates and dimensions of the
ROI rectangle for the currently active window are displayed.

The 'Select Whole Image' button The user can click on this button to make
ROI cover the entire bu�er displayed by the active window.

The cursor position section where the coordinates of the cursor are displayed.
The color space selection buttons the color space in which the color values

will be displayed.

12 Users guide

Figure 2.1.2 The Control window

The color values section where the color values for the pixel at the current
cursor position are shown.

The Zoom In/Out buttons that control the zooming factor for the active win-
dow.

The channel display buttons that control the channel displayed by the active
window. These buttons are enabled only when the active window displays a
color image.

2.1.4 Bu�er management

Bu�er management is done in EIKONA through the option File, Bu�ers which
brings up the Bu�ers dialog box depicted in Figure 2.1.3. The Bu�er Type combo-
box is used to select the type of bu�ers that are displayed in Bu�er List . The
thumbnail at the upper right corner of the dialog box displays the bu�er currently
selected in the Bu�er List listbox. The dimensions and memory used by this bu�er
are displayed just below the thumbnail. The user can click New Bu�er to create a
new bu�er of the type currently selected in Bu�er Type. Clicking on Delete Bu�er

the currently selected bu�er is destroyed (the user is asked to con�rm the deletion
if the currently selected bu�er is part of a multichannel bu�er).

Examples of grayscale image processing and analysis 13

Figure 2.1.3 The bu�er control dialog.

2.2 Examples of grayscale image processing and analysis

Now you are ready to perform some image processing operations. A basic knowl-
edge of digital image processing operations is recommended before proceeding to
the rest of the manual. However, this is not a must, especially for simple image pro-
cessing operations used in producing video e�ects. For more advanced processing
and analysis, it is recommended to refer to the book I. Pitas, Digital image process-
ing algorithms, Prentice Hall, 1993. Basic digital image processing literature can
be found in the section REFERENCES of this manual. If you have any question
on the commands and their operation refer to the second part of this manual by
command name. In the rest of this chapter a sequence of menu item selections that
have to be performed by user in order to perform a certain task will be given as a
sequence of commands in bold, separated by commas. For example the sequence
Black and white, Basic, Copy means that the user must select Black and white

from the main menu, then click on Basic from the pull-down menu that will show
up and �nally select Copy. The �rst example is given in more detail and serves as
a guide to using EIKONA. Now, you are ready to explore the many exciting facets
of image processing.

14 Users guide

2.2.1 Basic image processing

Let us suppose that that the image �le LENNA256.DAT of size 256 � 256 has
already been loaded as described in the previous section. We assume that no other
image bu�ers are currently allocated.

To brighten LENNA, we can add a suitable constant to the grayscale level of
every point. This can be done by the sequence Black and white, Basic, Addc.
The dialog box that appears is shown in Figure 2.2.1. This dialog box is very

Figure 2.2.1 The Add Constant dialog box.

similar to most dialog boxes used in EIKONA for user input, so we'll describe it
in some detail. As can be seen from Figure 2.2.1 it can be divided in three areas.

� The bu�er selection controls are used to specify the source and destination
bu�ers for the operation. EIKONA takes great care to �ll these combo-boxes
only with values valid for the requested operation. The source bu�er control
suggests the bu�er displayed by the active window. The destination bu�er
control is �lled only with bu�ers that have suitable dimensions to hold the
function's result. For most functions (as in this example) there is also an
option to create a new bu�er for the result.

� The bu�er thumbnail view allows the user to see the contents of the bu�er
he selects from the combo-boxes. This is a valuable feature especially when
many bu�ers are allocated but not currently displayed.

� The parameter edit �elds where the user can type in the values for various
parameters the routine may require.

There are also the usual OK and Cancel buttons that allow the user to complete
or cancel the operation.

Examples of grayscale image processing and analysis 15

Returning to our example, by choosing the bu�er were LENNA256.DAT is
loaded as the source bu�er, requesting a new bu�er for output and entering 50
for the constant to be added we get the new brightened image of LENNA. Both
images are shown in Figure 2.2.2.

Figure 2.2.2 LENNA and its brightened image.

Let us suppose that we want to compute the negative of LENNA and store it
on the same bu�er we stored the brightened LENNA. This can be done by choosing
the functions Black and white, Processing, Neg and selecting LENNA and it's
brightened image as the source and destination bu�ers. At the end of the operation
the window displaying the brightened LENNA is repainted and shows the negative
of image LENNA. The negative image is shown in Figure 2.2.3.

Figure 2.2.3 LENNA and its negative image.

If we want to threshold an image we can follow the sequence Black and white,
Analysis, Region Segmentation, Threshold. As an example, if image LENNA is

16 Users guide

currently loaded in BW bu�er 0, we can choose BW bu�er 0 and <New Bu�er>
from the source and destination controls, respectively, and 150 as the threshold
level. The original and the thresholded version of LENNA are shown in Fig-
ure 2.2.4.

Figure 2.2.4 LENNA and its thresholded image.

Let us suppose that images LENNA and BABOON are loaded in BW bu�ers
0, 1 respectively.If you want to mix the two images of bu�ers 0, 1 (BABOON and
LENNA) and store the result on a new bu�er, you choose the option Black and

white, Basic, Mix. You choose bu�ers 0,1 as source bu�ers , <New Bu�er> as
destination bu�er and use 0.5, 0.5 as mixing percentages of the two images. The
mix of the two images is depicted in Figure 2.2.5.

2.2.2 Image transforms

The Transforms option of the Black and White menu contains various implemen-
tations of algorithms concerning transforms of images. The two dimensional FFT is
a typical example which we will examine. We assume that the �le LENNA256.DAT
is already loaded in BW bu�er 0 and that no other bu�ers are allocated. We choose
Black and White,Transforms, 2-D FFT and a message box appears informing as
that at least two
oat bu�ers are required for this operation. After allocating two

oat bu�ers of dimensions 256�256 through the menu File, Bu�ers and repeating
the above selection a dialog box appears where we can choose BW bu�er 0 as the
source and the just allocated
oat bu�ers for the real and imaginary parts of the
Fourier Transform. After the conclusion of the operation we can test the obtained
results through the option Black and White, Transforms, Inverse 2-D FFT and
see if the resulting image resembles our original one. We could also select Black
and white, Basic, Matrix to Image to have either the real or the imaginary

Examples of grayscale image processing and analysis 17

Figure 2.2.5 Result of mixing of LENNA with BABOON.

part of the DFT, converted to image format, in order for us to view it. As an
example, assuming that the imaginary part of the transform was stored in Float
bu�er 1 than selecting Black and white, Basic, Matrix to Image and selecting
Float bu�er 1 and <New Bu�er> as the source and destination bu�ers, we can
convert the imaginary part of the FFT of LENNA to image format as shown in
Figure 2.2.6. We must note, though, that by converting a
oat bu�er to an image
bu�er, e�ectively the
oat bu�er is clipped between the values of 0 and 255. Thus,
the image might not prove to be an accurate representation of the matrix, in this
case.

The Periodogram, AR PSD and Blackman Tukey PSD are used for Power
Spectral Density estimation of images. AR PSD estimation can be easily imple-
mented in EIKONA. Assuming that LENNA is loaded in BW bu�er 0 we can get
an AR PSD estimate, by selecting Black and white, Transforms, AR PSD and
entering 0 as the source image bu�er and <New Bu�er> as the destination bu�er.
If we enter 3, 3, and 3 as the AR model left x, right x and y coe�cient window
sizes, then the result will resemble the one of Figure 2.2.7.

If the grayscale image LENNA256.DAT is loaded in image bu�er 0, we can
get an estimate of the Power Spectral Density by selecting the option Black and

White, Transforms, Periodogram and entering 0 and <New Bu�er> as the source
and destination image, respectively. The periodogram of LENNA is depicted in
Figure 2.2.8. The similarity between the result of this spectral estimation method
and of the one of the AR PSD estimate (shown in Figure 2.2.7) is obvious.

18 Users guide

Figure 2.2.6 Imaginary part of the 2-D FFT of LENNA.

Figure 2.2.7 AR PSD estimate of LENNA.

Examples of grayscale image processing and analysis 19

Figure 2.2.8 Periodogram of LENNA.

20 Users guide

2.2.3 Digital image �ltering and enhancement

EIKONA can be used as a tool to �lter out noise from a digital image. Let's
take for example the case of an image which is corrupted by impulsive (\salt and
pepper") noise [PIT90]. We will assume that the image LENNA is loaded in image
bu�er 0. You can create a corrupted version of this image by following the sequence
Black and white, Processing, Impulsive. In the window that appears, you can
enter 0 and <New Bu�er> as the source and the destination image, respectively.
A commonly used set of values for the noise probability and the minimum and
maximum spike values, are 0.1, 0 and 255, respectively. The result can be seen on
Figure 2.2.9.

Figure 2.2.9 LENNA and its corrupted version.

Now, you can easily �lter out the noise from the corrupted version of LENNA,
by utilizing a median �lter [PIT90]. This can be done, easily, by selecting Black
and white, Filtering, Median. If the corrupted version of LENNA was stored
in BW bu�er 1 than you should enter 1 and <New Bu�er> as the source and
destination bu�ers, respectively. The �ltering window size is also required. A 3�3
window is usually utilized, so you can �ll-in 3, 3 in the remaining window �elds.
The result is shown in Figure 2.2.10.

As you can see, the �ltered image closely resembles the original one. You
could experiment with the other noise models and �ltering operators that EIKONA
supports. For example, using the corrupted image of Figure 2.2.9 as the source
image, what would you expect for the �ltered image to look like, when you utilize
a minimum or maximum �lter (Black and white, Filtering and Mini or Maxi,
respectively)?

Examples of grayscale image processing and analysis 21

Figure 2.2.10 Corrupted and �ltered images of LENNA.

Simulation of photographic �lm noise is also possible by using the noise gener-
ators provided by EIKONA. The e�ect shown in Figure 2.2.11 can be created by us-
ing the option Black and white, Processing, Mult Uni which is a noise generator
that creates multiplicative noise of uniform distribution. We use 0, <New Bu�er>
as source and destination bu�ers and we use noise range 0.3.

Figure 2.2.11 Simulation of photographic �lm noise.

In many cases we are interested in improving the visual quality of an image.
For example, the contrast of an image can be improved, by performing histogram
equalization [PIT90]. In Figure 2.2.12 the histogram for image LENNA, is shown.
It can be computed by Black and white, Analysis, Histogram, Histogram. If

22 Users guide

the image of LENNA is in image bu�er 0, then choose BW bu�er 0 in the window
that appears.

Figure 2.2.12 Histogram of LENNA.

Now, we will perform histogram equalization on LENNA, storing the result-
ing image in a new bu�er. This can be done by the sequence Black and white,

Filtering, Histeq. Enter BW bu�er 0, <New Bu�er> as the source and desti-
nation images, respectively. The resulting histogram equalized image is shown in
Figure 2.2.13, while its histogram is given in Figure 2.2.14.

Figure 2.2.13 Original and histogram-equalized images of LENNA.

We can zoom an image using a variety of interpolation methods through
the option Black and White, Processing, Zoom. Figure 2.2.15 shows LENNA

Examples of grayscale image processing and analysis 23

Figure 2.2.14 Histogram of histogram-equalized LENNA.

zoomed by a factor of 2 using zero-order interpolation.

Figure 2.2.15 LENNA and its zoom version.

EIKONA can also be used for image sharpening. Assuming that image BA-
BOON is loaded in BW bu�er 0 we can sharpen the left half of it as follows: First
we make a copy of the image in a new bu�er using Black and White, Basic, Copy.
Using the mouse we de�ne a ROI that covers the left half of the original image.
Then, we select Black and White, Processing, Sharp and enter the original im-
age and it's copy as the source and destination bu�ers respectively. The result of
image sharpening on the half part of the original image is impressive, as can be
seen from Figure 2.2.16.

24 Users guide

Figure 2.2.16 BABOON with its left side sharpened.

2.2.4 Nonlinear digital image �ltering

EIKONA supports a multitude of nonlinear �ltering operations. You can perform
many median-based �ltering by selecting Black and white, Non-linear �ltering,

Median Filters. We can apply a separable median �lter to the image of LENNA
corrupted by impulsive noise by selecting Black and white, Non-linear �ltering,

Median Filters, Separable Median. Enter the corrupted image as the source
image and <New Bu�er> as the destination bu�er. In the window size �elds enter
3, 3. The resulting image is depicted in Figure 2.2.17.

Another non-linear �lter is the local adaptive �lter, which is based in local
statistics. Let us suppose that we have an image of LENNA corrupted by additive
uniform noise (this can be done by selecting Black and white, Processing, Add
Uni and entering the original image as a source, <New Bu�er> for destination
and 30 for the noise range). Now, the local adaptive �lter can be utilized to �lter
out the noise. This can be done by selecting Black and White, Non-linear
�ltering, Local adapt. �lter. Select the corrupted image and <New Bu�er> as
the source and destination respectively. Since the noise range used for the creation
of the noisy image was 30, enter 75 for the noise variance. The corrupted and
�ltered images are shown in Figure 2.2.18.

Examples of grayscale image processing and analysis 25

Figure 2.2.17 LENNA corrupted by impulsive noise (left) and �ltered by a separable

median �lter (right).

Figure 2.2.18 LENNA corrupted by additive uniform noise and �ltered by a local
adaptive �lter.

26 Users guide

Many morphological operations are also supported. These include both binary
and grayscale morphological operators. Assuming that the thresholded binary im-
age of LENNA, shown in Figure 2.2.4, is loaded in bu�er 1, we can perform a
binary opening operation, by performing a binary erosion followed by a binary di-
lation operation. The �rst step can be performed by selecting Black and white,
Non-linear �ltering, Morphology, Binary Erode and entering the thresh-
olded image as the source and <New Bu�er> for destination. You can use a cross
type structuring element, so enter 2 in the structuring element box. The opened
version of the image of Figure 2.2.4 can be obtained by performing a binary dila-
tion operation on the eroded image. Select Black and white, Non-linear �l-
tering, Morphology, Binary Dilate and enter the eroded image as the source
and <New Bu�er> as the destination. Both the eroded and the opened images
are shown in Figure 2.2.19.

Another well known morphological operation is the skeletonization [PIT93].
It is used to extract the skeleton of an image. EIKONA supports this operation in
binary images. Let us suppose that the binary image RECT.BIN is loaded in BW
bu�er 0. Select Black and white, Non-linear �ltering, Morphology, Skele-
ton. Enter BW bu�er and <New Bu�er> as source and destination image and 2
as the parameter. The original image and its skeleton are shown in Figure 2.2.20.

Figure 2.2.19 Eroded and opened images from thresholded LENNA.

Small details of a binary image can be extracted by the means of the top
hat transformation [PIT93]. Once more, we will use the thresholded image of
LENNA of Figure 2.2.4, as a demonstration of the transformation. Select Black
and white, Non-linear �ltering, Morphology, Top Hat enter the thresholded
image and <New Bu�er> as source and destination respectively and 3, 3 for the
window's dimensions The result is depicted in Figure 2.2.21. It is obvious, that
this morphological transformation yields many small details of the source binary
image.

Examples of grayscale image processing and analysis 27

Figure 2.2.20 The binary image RECT and its skeleton.

2.2.5 Edge detection

There are many ways to perform edge detection in an image, using EIKONA. We
will show most of these operations, since edge detection is an area of image analysis
for which a lot of interest exists.

The compass operation is a directional edge detector. It can detect edges hav-
ing a speci�c direction (slope). Although this seems limiting at �rst, we must take
into account that this detector gives us an e�cient tool to �nd edges, we are looking
for, with speci�c slopes. As an example, if LENNA is loaded in BW bu�er 0, we
can �nd lines that are almost vertical, by selecting Black and white, Analysis,
Edge detection, Compass and entering BW bu�er 0, <New Bu�er> , 90 as the
values of the source and destination images and edge direction, respectively. The
resulting image is given in Figure 2.2.22.

We can perform edge detection on the left half of LENNA as follows: We
copy LENNA in a new bu�er through the option Black and White, Basic, Copy

and de�ne ROI on the original image to cover the left half of the image. We,
then, select Black and White, Analysis, Edge Detection, Sobel and enter the
original LENNA as source and the copy as destination. The result is shown in
Figure 2.2.23.

28 Users guide

Figure 2.2.21 Top hat transformation of LENNA.

Figure 2.2.22 Result of the compass edge detector on LENNA.

Examples of grayscale image processing and analysis 29

Figure 2.2.23 Result of the sobel edge detector on LENNA.

30 Users guide

Remaining in the �eld of Edge Detection, we should give an example of Line
Detection. Select option Black and White, Analysis, Edge Detection, Line
Detect. Assuming that image BW bu�er 0 contains the image LENNA256.DAT,
choose BW bu�er 0 as source and <New Bu�er> for the output bu�er. You
should also select a line direction from the allowable range, which is:0, 45, 90 and
135 degrees. You can check the results of these actions on your monitor. If you
enter 0, 1 and 45 as the source and destination images and line direction, then the
image of Figure 2.2.24 will appear on screen.

Figure 2.2.24 Result of the line detect operation on LENNA.

Concluding the Edge Detection menu we give a typical example of how to
perform Edge Following. Before selecting the option we should �rst make visible the
image bu�er we are interested in, using the option Black and White, Display.
Then we choose the option Black and White, Analysis, Edge Detection,
Edge Following and after we insert the proper bu�er numbers and threshold
values (see [PIT93]), a non-modal window appears instructing us to select the
start pixel by left clicking the desirable point on the image bu�er. We should note
that if some windows overlap we can easily move them in order to make properly
visible the image bu�er of interest.

2.2.6 Region segmentation and texture analysis

We will now explore some applications of EIKONA in the areas of region segmen-
tation and texture analysis.

Examples of grayscale image processing and analysis 31

If the thresholded image of LENNA, of Figure 2.2.4, is loaded in image bu�er
0, we can have EIKONA report the number of distinct binary sets that make up the
whole image. This can be easily done by selecting Black and white, Analysis,
Region Segmentation, Count items. After selecting the thresholded image as
the source an information window will pop-up, informing us that this binary image
of LENNA consists of 82 sets.

EIKONA can also be used to segment a grayscale image to a number of uniform
regions. For example, we can segment the image of LENNA to 4 regions by selecting
Black and White, Analysis, Region Segmentation, Segment and entering 4 for
the number of regions �elds. Figure 2.2.25 depicts the segmented image of LENNA,
where each gray scale represents one of each regions.

Figure 2.2.25 LENNA and the segmented resulting image.

We already saw an example of the Threshold option, so we move to a descrip-
tion of Region Grow. Choose Black and White, Analysis, Region Segmentation,

Region Grow. Select the appropriate input and output image bu�ers and give the
Threshold value which will distinguish one region from another. A non-modal win-
dow will appear letting you select the \seeds" (up to 256) before clicking the OK
button. Figure 2.2.26 shows the result of applying Region Grow on LENNA with
a threshold of 20 and the seeds picked at random all over the image.

The next menu to be described concerns Texture Analysis algorithms. The
Gray Level Di�erences Histogram of an image can be computed in the following
way. Choose option Black and White, Analysis, Texture, Gray Level Dif. His-

togram. Assuming that image bu�er 0 contains the image LENNA, we give BW
Bu�er 0 as the source, <New Bu�er> for output and enter 1, 1 as the displacement
coordinates. Like we saw before, in the Histogram menu, the output is a window
containing the visual information of the Gray Level Di�erences Histogram. It is
given in Figure 2.2.27.

32 Users guide

Figure 2.2.26 Result of a region grow operation on LENNA.

Some valuable information about this histogram can be calculated through the
option Black and White, Analysis, Texture, Gray Lev. Dif. Hist. Parameters.
Check this information on your monitor in conjunction to the previous example.

One other interesting feature of the Texture Menu is the Angular-Radial op-
tion. By choosing Black and White, Analysis, Texture, Angular-Radial we can
obtain visual information about the angular and radial distribution of the power
spectrum of an image in a format similar to the one used to display histograms. For
example, the radial and the angular distribution of the power spectrum of LENNA
is shown in Figures 2.2.28-2.2.29, respectively.

Examples of grayscale image processing and analysis 33

Figure 2.2.27 Gray level dif. histogram of LENNA with displacement values 1,1.

Figure 2.2.28 Radial distribution of PSD of LENNA.

34 Users guide

Figure 2.2.29 Angular distribution of PSD of LENNA.

2.2.7 Shape description

The Shape Analysis menu gives valuable information about objects of grayscale and
binary images. We should remind you that any grayscale image can be transformed
to a binary one by using the Black and White, Analysis, Region Segmentation,

Threshold option and giving the desired number to act as a threshold between 0
and 1.

We can obtain the characteristics of a binary image by selecting Black and

White, Analysis, Shape Analysis, Find Char. Let us suppose that the im-
age RECT.BIN is loaded in BW bu�er 0. By selecting the operation mentioned
above, and entering BW bu�er 0 as the source bu�er and 0 as the threshold value,
EIKONA will respond with a pop-up window, which gives information regarding
the the characteristics of the �rst object to meet in a row wise manner from the
upper left corner (i.e. the rectangle). The reader must have understood by now
that in order to choose another object, he should adjust the ROI appropriately.
For our second example the above mentioned ROI adjustments around an object of
interest also hold. Choose the ROI to be the area surrounding the rectangle. If you
choose the option Black and White, Analysis, Shape Analysis, Chain Coding

and select BW bu�er for source, <New Bu�er> for the output and a moderate
number for the maximum number of chain nodes (in this case 2000), you can check
the results on your monitor. It is obvious that Chain Coding can be used as an-
other Edge Detection algorithm for binary images. Figure 2.2.30 depicts the result
of chain coding.

Examples of grayscale image processing and analysis 35

Figure 2.2.30 Original and chain coded image of RECT.

Figure 2.2.31 Thresholded LENNA and the result of one-pass thinning.

36 Users guide

Concluding this section we will describe the Pyramid and Thinning options.
If we choose Black and White, Analysis, Thinning we come up with a submenu
containing two options: One Pass Thinning and Two Pass Thinning. We should
note that these are the only options having as output image bu�er the input
image bu�er. As a result, we must be very careful when using these two options,
because our original image can be destroyed. If we perform one-pass thining on
the thresholded image of LENNA of Figure 2.2.4, then we'll get the binary image
of Figure 2.2.31.

By choosing Black and White, Analysis, Pyramid and giving the appropriate
input and output image bu�ers, we come up with a very impressive result, as you
can verify from Figure 2.2.32 which shows the pyramid of LENNA. It is obvious
that adjusting correctly the ROI around images and copying or saving, can give
us results similar to those obtained by using the Black and White, Processing,

Decim option.

Figure 2.2.32 Pyramid of thresholded LENNA.

In this section some examples of grayscale and binary image analysis routines
have been given. EIKONA contains several powerful routines for image analysis
(e.g. mathematical morphology) that are a very useful tool for the interested
and/or advanced user. Information on how to use these routines and commands
are found in the library reference manual.

Examples of color image processing and analysis 37

2.3 Examples of color image processing and analysis

In this section we will examine some of the operations on color images, that
EIKONA supports. With some notable exceptions, these operations replicate the
ones used in the section of grayscale image processing and analysis. For this reason,
only a small subset of the operations will be covered here.

2.3.1 Basic image processing

We can easily copy a color image to another by selecting Color, Basic, Copy. We
must enter the source and the destination image bu�ers in the box that appears.

We can also add a constant value to every one of the red, green and blue color
components that compose the color image. This can be done by selecting Color,
Basic, Addc. In the box that appears enter the source and destination color image
bu�er, as well as the constant to be added.

2.3.2 Color transforms

EIKONA implements a large number of color transformations. The CMY trans-
formation essentially produces the "negative" of a color image. As an example,
assuming that the image BABOON is loaded in BW bu�er 0, select Color, Color
repr., From RGB to, CMY and enter BW bu�er 0, <New Bu�er> for source and
destination bu�ers respectively. The resulting image is depicted in Figure 2.3.1.
The negative image can be transformed to positive again by choosing the option
Color, Color repr., To RGB from, CMY and selecting the CMY image as the
source bu�er.

2.3.3 Digital image �ltering and enhancement

Let us suppose that the image �le BABOON.TGA is stored on color bu�er 0. The
image size is 256� 256 pixels. We can enlarge image bu�er 0 by selecting Color,
Basic, Zoom, choosing color bu�er 0, <New Bu�er> as the source and destination
bu�ers respectively and entering the desired zoom factor and interpolation order.
Figure 2.3.2 shows BABOON enlarged by a factor of 2 using a zero-order interpo-
lation. Decimation is also available through the Color, Basic, Decim option. The
user speci�es the source and destination bu�ers and the decimation factor.

Simulation of photographic �lm noise can be performed by using the noise
generators provided by EIKONA. The e�ect shown in Figure 2.2.12 can be created
by using the option Color, Processing, Mult uni which is a noise generator that
creates multiplicative noise of uniform distribution. Figure 2.3.3 depicts the result

38 Users guide

Figure 2.3.1 CMY color model image of BABOON.

of this operation on image BABOON for a noise range of 1.
Histogram equalization can be performed as follows. Let us suppose that the

image BABOON.TGA is stored on color bu�er 0. The histogram of its R,G,B
components can be calculated by choosing option Black and white, Analysis,

Histogram and by selecting Color bu�er 0 - Channel 1 , Color bu�er 0 - Channel

2 and Color bu�er 0 - Channel 3 respectively. The image histogram is used
implicitly to perform image enhancement by histogram equalization. Select Color,
Processing, Histeq. Enter the bu�er holding the BABOON image as source and
<New Bu�er> for destination. The resulting histogram-equalized image is given
in Figure 2.3.4.

Examples of color image processing and analysis 39

Figure 2.3.2 Zoomed image of BABOON.

2.3.4 Edge detection

You can perform edge detection on the left half of image BABOON as follows.
Copy the image to a new bu�er through the Color, Basic, Copy. De�ne a ROI on
the original image that covers the left half of the image. Select Color, Analysis,
Sobel and enter the original image as the source and the copy as the destination.
The result is shown in Figure 2.3.5.

2.3.5 Region segmentation and texture analysis

Region segmentation can be performed by using the option Color, Analysis, Seg-
ment and specifying the source and destination bu�ers and the number of regions
in which we want each channel of the image the image to be segmented. Figure 2.3.6
shows image BABOON segmented into 4 regions.

40 Users guide

Figure 2.3.3 Simulation of photographic �lm noise on color image BABOON.

Figure 2.3.4 Original and histogram-equalized images of BABOON.

Examples of color image processing and analysis 41

Figure 2.3.5 Sobel edge detection on image BABOON.

Figure 2.3.6 Segmentation of image BABOON.

3

Writing DLLs for EIKONA

3.1 Introduction

3.1.1 DLL basics

In the Microsoft Windows operating system dynamic-link libraries (DLL) are mod-
ules that may contain code or data. The functions making up a DLL's code can
be of two kinds :

internal functions which can only be called by other functions de�ned in the
same DLL.

exported functions which can be called by other modules .

A DLL can be loaded at run-time by other programs which can then call the DLL's
exported functions. Thus, DLLs provide a way to modularize applications so that
basic application functionality can be easily updated or extended (through the
DLL's exported code).

3.1.2 EIKONA DLLs

EIKONA makes full use of the bene�ts provided by DLLs. More speci�cally,
EIKONA can dynamically load any DLL that conforms to a well-de�ned interface.
This interface de�nes a set of rules that a DLL should follow in order to be loaded
and used by EIKONA. The rules specify mainly a set of functions that a DLL
should export for EIKONA and a number of functions and services that EIKONA
provides to attaching DLLs. Among others, the DLL can

� Create a private menu under EIKONA'sModulesmenu and install a function
to handle commands from this menu.

DLLs for EIKONA 43

� Bypass default EIKONA message processing (if this is required) and provide
it's own message handler . . .

� . . . or just enjoy the readily available EIKONA GUI while concentrating on
image processing issues.

3.1.3 The Example DLL

The following sections describe in detail the steps required to build a DLL for
EIKONA. The technical details are exempli�ed by use of the Example DLL. This
is a fully functional DLL that can be build and used by EIKONA. It adds one
menu under the Modules menu that provides two options : Grayscale Open

for performing an opening operation on a grayscale image and Region Grow for
segmentation of an image given some seed points on it. Both these functions
are already provided by the main EIKONA executable but they serve well for
demonstration of the EIKONA{DLL interface. The Grayscale Open is a typical
operation requiring a simple dialog box for input of a source and a destination
bu�er. The Region Grow option is more complicated as it needs window message
handling to allow input of the seeds using the mouse. Code fragments from the
Example DLL will be given in the relevant sections. The complete listing is found
in the last section of this chapter.

3.2 DLLs for EIKONA

In this section the DLL's part of the EIKONA{DLL interface will be described. In
particular each of the �ve functions that every DLL should export will be examined
in detail. Types, structures and functions for this functionality are de�ned in the
header �le DLLDEFS.H which should be included for every DLL.

3.2.1 Initialization

A DLL for EIKONA (in fact, every DLL) has the chance to perform initialization
actions through the DllMain1 function. This function is the �rst one called by
EIKONA (more precisely by Windows itself) during the DLL loading process.

1It should be noted that DllMain is not required in a strict sense. In fact, EIKONA will load
and use correctly a DLL without a DllMain function.
Furthermore, the name 'DllMain' is compiler dependent. The runtime library of Vi-

sual C++ v4.2 uses this name ; if you use other tools check your documentation for the DLL
main entry point.

44 Writing DLLs for EIKONA

DllMain

A DLL de�ned callback function that will be called when the DLL is loaded by
EIKONA and when EIKONA closes.

BOOL WINAPI
DllMain (

HANDLE hInstance,

ULONG reason for call,

LPVOID lpReserved

)

Parameters

hInstance

holds the DLL's instance. This is particularly useful for DLLs that have
resources (dialog boxes, bitmaps, icons) since it is required by the relevant
WIN32 functions to access them.

reason for call

For Eikona DLLs this can take the following values:

� DLL PROCESS ATTACH
Meaning that the DLL is being loaded. This is the right time for initial-
ization.

� DLL PROCESS DETACH
Meaning that EIKONA is preparing to close. If there is any clean-up to
be done for this DLL it should be done now.

lpReserved

This is reserved for system use and should not be used by DLL code.

Return Value

When reason for call is DLL PROCESS ATTACH the DllMain function should return
TRUE if the DLL should actually be loaded by EIKONA and FALSE otherwise. For
other values of reason for call DllMain should return TRUE.

The following code fragment shows the Sample DLL's DllMain function and
the relevant declarations.

HINSTANCE ExampleInstance;
BOOL WINAPI

DllMain (HANDLE hInstance, ULONG reason, LPVOID lpReserved)
f

HMODULE EikonaModule;
switch (reason)
f
case DLL PROCESS ATTACH :

// Save the DLL's instance in a global variable. We'll need it

DLLs for EIKONA 45

// later to access our resources.
ExampleInstance = hInstance;

//
// Perform any required initialization here.
// Return TRUE if everything was OK.
//
return TRUE;

default :
return TRUE;

g
g

3.2.2 Installing the DLL's menu

The services provided by a DLL are accessed through the Modules menu of
EIKONA. Clearly, the DLL should create an appropriate entry under theModules

menu and respond to choices from this menu accordingly. This is done in close
cooperation with EIKONA through the EikonaDLLReturnMenu and EikonaDLLRe-
turnCmdHandler function which every DLL should provide.

EikonaDLLReturnMenu

declspec(dllexport)
char **EikonaDLLReturnMenu (void)

Return Value

The function should return a pointer to an array of strings containing the names
of the commands that should be inserted in the DLL's menu. The format of this
array for a menu of N items is shown in the following table :

Element Points to

1 name1

2 name2
...

N nameN

N + 1 NULL
N + 2 MenuName

name1, name2, : : :, nameN should be NULL-terminated strings containing com-
mand names for the DLL's menu. The MenuName should contain the name of the
pop-up menu that will be installed by EIKONA for this DLL under the Modules

menu. The following special characters are recognized in these strings:

46 Writing DLLs for EIKONA

� '&' causes the next character in the string to appear underlined in the menu.
This character will be the item's keyboard shortcut.

� '-' This is recognized only if it is the �rst character in a command name. It
causes EIKONA to insert a horizontal separator just before this item in the
pop-up menu.

Having installed it's menu the DLL should next inform EIKONA about the
function that will handle these menu commands. This is done with the EikonaDLL-
ReturnCmdHandler function.

EikonaDLLReturnCmdHandler

DLL de�ned callback function to return the address of the DLL's menu command
handler.

declspec(dllexport)
CMDHANDLERPROC EikonaDLLReturnCmdHandler (void)

Return Value

The return value is of type CMDHANDLERPROC which is a pointer to a function
that returns nothing and takes one argument of type WPARAM. This is the func-
tion that will be called by EIKONA whenever the user chooses an item from the
DLL's menu.

CommandHandler

DLL-de�ned callback function to handle menu commands for the DLL.

void
CommandHandler (

WPARAM command

)

Parameters

command

Speci�es the command for which handling is required.

Remarks

The name CommandHandler is only a place holder. The function that will be called
by EIKONA when a menu item from the DLL's menu is chosen is the one returned
by EikonaDLLReturnCmdHandler. For a menu of N items command may take values
in the range 0. . .N -1.

DLLs for EIKONA 47

The following excerpt from the Example DLL shows the menu handling code
and declarations.

// Menu table for the EXAMPLE DLL.
char *commands[] = f "Grayscale &Open","-&RegionGrow",NULL,"E&xample"g;

// De�ne some constants for menu commands. Note the correspondence with 'commands' above.
enum command ids f COMMAND OPEN=0, COMMAND REGION GROW g;

// Return the table of menu command names. This is the 'commands' array de�ned above
declspec(dllexport)

char **EikonaDLLReturnMenu(void)
f

return commands;
g

// This is the menu command handler function.
void

ExampleMenuHandler(WPARAM command)
f
//
// Variable declarations.
//
switch(command)
f

case COMMAND OPEN :
//
// Code to handle the 'Open' command.
//

case COMMAND REGION GROW :
//
// Code to handle the 'Region Grow' command.
//

g
g

// Return the command handler function. This is the 'ExampleMenuHandler'
// function de�ned above.
declspec(dllexport)

CMDHANDLERPROC EikonaDLLReturnCmdHandler(void)
f

return ExampleMenuHandler;
g

48 Writing DLLs for EIKONA

3.2.3 Installing a message handler

EIKONA allows an attaching DLL to respond to standard window messages thus
taking control of windows displayed by it. The DLL may install a special proce-
dure to which window messages will be forwarded. The DLL may then process
the message or pass it back to EIKONA if it decides that it should not handle
it. In it's full generality this model allows the DLL to take complete control of
windows. This, however, requires considerable e�ort, knowledge of the WIN32 API
and EIKONA's internal workings (it should be noted here, that even this part of
the chapter is admittedly more demanding). Installation of the message handler is
done with the EikonaDLLReturnMsgHandler function described next.

EikonaDLLReturnMsgHandler

DLL de�ned callback function to install a message handler procedure.

declspec(dllexport)
MSGHANDLERPROC EikonaDLLReturnMsgHandler (

DLLMSGRETURNPROC message return proc

)

Parameters

message return proc

The address of the function the DLL should use to pass message return values
to EIKONA.

Return Value

The function should return the address of the message handler function for this
DLL or NULL if the DLL will not handle window messages. message return proc

should be saved in a global variable since it will be needed in the message han-
dler.The message handler should be a function having the same argument list as a
standard window procedure but of void return type.

The function passed by EIKONA as the argument to the EikonaDLLReturnMs-
gHandler function should be used by the DLL's handler to notify EIKONA about
the result of the message processing. It is described next.

message return proc

Function to return message processing return values.

void
message return proc (

BOOL handled,

LRESULT retvalue

)

DLLs for EIKONA 49

Parameters

handled

Should be TRUE if the message was handled by the DLL or FALSE if not.

retvalue

If handled is TRUE this is the value EIKONA will return to Windows as the
message's return value. Otherwise, it is ignored.

Remarks

The message handler should use this function for every message it receives whether
handled or not.

The following code fragment shows the Example DLL's relevant code.

// De�ne a pointer for the message return procedure;
DLLMSGRETURNPROC DllMsgReturn;

// This is the message handler function.
void

ExampleMsgHandler(HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam)
f

//
// Various declarations and code to decide whether
// we should consider this message or not.
//
switch (message)
f

case WM MOUSEMOVE :
//
// Code to handle this message.
// // Inform EIKONA about the result.
(*DllMsgReturn)(TRUE,0);
break;

case WM RBUTTONDOWN :
//
// Code to handle this message.
// // Inform EIKONA about the result.
(*DllMsgReturn)(TRUE,0);
break;

default :
(*DllMsgReturn)(FALSE, 0);

g
return;

g

// Function to return the address of the message handler procedure.
declspec(dllexport)

MSGHANDLERPROC EikonaDLLReturnMessageHandler(DLLMSGRETURNPROC f)
f

//Save the address passed to us by EIKONA and return the address of our

50 Writing DLLs for EIKONA

//message handler.
DllMsgReturn = f;
return ExampleMsgHandler;

g

3.3 Functions exported by EIKONA

In this section the functions exported by EIKONA for use by DLLs are described
in detail.

3.3.1 Using the exported functions

The functions exported by EIKONA can not be used as regular functions by the
DLL. Rather, the DLL accesses them indirectly through a pointer. The pointer is
returned by the WIN32 GetProcAddress function. The procedure required to use a
function exported by EIKONA is outlined here:

� De�ne a pointer of the correct type for the function you want to use. Function
pointer types are de�ned in the relevant header �les. Suppose, for example
that you want to use the library's sobel function (de�ned in EIKONA.H) and
the Get1Bu�erDialog function (de�ned in the BUFFERS.h �le). You should
de�ne two pointers as shown below

SOBEL PROC sobel;

GET1BUFFERDIALOG PROC Get1Bu�erDialog;

Type names are constructed from the name of the function as it appears
in the documentation by converting all characters to uppercase and adding
the PROC su�x.

� Get the function's address in the pointer. This is done using the WIN32
GetProcAddress function :

fpointer = (typename)GetProcAddress(EikonaInstance,function ordinal);

fpointer is your function pointer. typename should be the appropriate type as
explained above (the cast is nessecary to avoid compiler warnings). EikonaIn-
stance is the instance handle of the EIKONA application (which can be easily
retrieved with the call GetModuleHandle("eikona.exe")). function ordinal is
the function's export ordinal. Constants with suggestive names for function

Functions exported by EIKONA 51

ordinals are de�ned in the �le EXPFUNC.H which should be included by every
DLL. They can be constructed from the function's name as it appears in the
documentation by converting all characters to uppercase. Continuing our
example and assuming that the variable EikInst holds EIKONA's instance
handle, you should initialize the two pointers as shown below:

sobel = (SOBEL PROC)GetProcAddress(EikInst,SOBEL));

Get1Bu�erDialog =(GET1BUFFERDIALOG PROC)

GetProcAddress(EikInst, GET1BUFFERDIALOG);

� To call the function just use the normal C syntax for function calls through
pointers like this

ret = (*fpointer)(argument list);

3.3.2 EIKONA library functions

EIKONA, naturally enough, exports all the image processing routines provided by
the EIKONA Image Processing library. They are accessed using the mechanism
described above. The required types are de�ned in the EIKONA.H �le. To allow
the programmer to get standard library error messages EIKONA also exports the
following function.

error handler

Display a message box with a message appropriate for the speci�ed library error
code.

void
error handler (

int errcode
)

Parameters

errcode

The error code for which to print a message. This should be a value returned
by a library function.

Remarks

The function also sets the mouse cursor to the standard arrow shape so you don't

52 Writing DLLs for EIKONA

have to reset it explicitly every time an error occurs.

3.3.3 Bu�er management functions

EIKONA provides a variety of functions for bu�er management. Included are
functions for creating and deleting bu�ers, counting the number of bu�ers and
getting user's bu�ers selection through dialog boxes. There are also some macros
for accessing common �elds of internal bu�er structures (the user is encouraged
to use these macros rather than directly accessing the structures).The required
types and constants are de�ned in the BUFFERS.H �le which should be included by
every DLL that uses this functionality. We begin by describing the accessor macros

BUFFER TYPE

Get's the speci�ed bu�er's type.

unsigned
BUFFER TYPE (

BUFFER bu�er

)

Parameters

bu�er

A bu�er.

Return Value

Returns bu�er 's type.

BUFFER WIDTH , BUFFER HEIGHT

Get a bu�er's width and height respectively.

int
BUFFER WIDTH (

BUFFER bu�er

)

int
BUFFER HEIGHT (

BUFFER bu�er

)

Functions exported by EIKONA 53

Parameters

bu�er

A bu�er.

Return Value

Return bu�er 's width and height respectively.

UC BUFFER CHANNEL

Get an image bu�er's channel.

image
UC BUFFER CHANNEL (

BUFFER bu�er,

int n
)

Parameters

bu�er

A bu�er who's type is either GRAYSCALE IMAGE or COLOR IMAGE.

n

The number of channel required. It should be 1, 2 or 3.

Return Value

Returns an image which is bu�er 's n'th channel.

Remarks

If bu�ers's type is COLOR IMAGE channels 1, 2 and 3 are its R,G and B compo-
nents respectively. If bu�er 's type is GRAYSCALE IMAGE then channel 0 holds it's
grayscale level and the other channels are guaranteed to be NULL. For other bu�er
types the result is unde�ned.

FLOAT BUFFER CHANNEL

Get a
oat bu�er's channel.

matrix
FLOAT BUFFER CHANNEL (

BUFFER bu�er,

int n
)

Parameters

bu�er

Speci�es the bu�er whose channel is required. It' type should be either
COLOR PROCESSING MATRIX or SINGLE CHANNEL MATRIX.

54 Writing DLLs for EIKONA

n

The channel required. It should be 1, 2, or 3.

Return Value

Returns an image which is bu�er 's n'th channel.

Remarks

For SINGLE CHANNEL MATRIX bu�ers the
oat matrix is stored in channel 0. For
image bu�ers the result is unde�ned.

CreateBu�er

Creates a bu�er of the speci�ed type and dimensions.

BUFFER
CreateBu�er (

int type,
int width,
int height
)

Parameters

type

Can be any of the following

� GRAYSCALE IMAGE
Create a bu�er for a grayscale image.

� COLOR IMAGE
Create a bu�er suitable for a color image (having three grayscale chan-
nels)

� SINGLE CHANNEL MATRIX
Create a
oat matrix.

� COLOR PROCESSING MATRIX
Create a
oat bu�er suitable for color space transformations (having
three
oat matrices).

width

Width of the new bu�er.

height

Height of the new bu�er.

Return Value

Returns a BUFFER if succesfull or NULL if an error occurred.

Functions exported by EIKONA 55

DeleteBu�er

Deletes the speci�ed bu�er.

void
DeleteBu�er (

BUFFER bu�er

)

Parameters

bu�er

The bu�er to be deleted.

CreateBu�erEx

Creates a bu�er allowing more control over the creation parameters.

BUFFER
CreateBu�erEx (

int type,
int width,
int height,
unsigned
ags

)

Parameters

type

See CreateBu�er above.

width

Width of the new bu�er.

height

Height of the new bu�er.

ags

Can be any combination of

� CBE BUFFER IN LIST
The new bu�er will be linked to the list of bu�ers maintained by
EIKONA (the most important consequence of this being that the bu�er
will be visible to the user through the bu�er selection dialog boxes).
If this
ag is not speci�ed the new bu�er will not appear in EIKONA
dialog boxes.

� CBE ALLOCATE CHANNELS
Space will not be allocated for the channels required for this bu�er.

56 Writing DLLs for EIKONA

Return Value

Returns the newly allocated bu�er or NULL if an error occurred.

Remarks

Bu�ers allocated without the CBE ALLOCATE CHANNELS
ag do not have their
channel �elds initialized. The programmer should �ll in these �elds before using
the bu�er (using the xx BUFFER CHANNEL macros).

DeleteBu�erEx

Low-level bu�er deletion routine. See Remarks below.

void
DeleteBu�erEx (

BUFFER bu�er

unsigned
ags

)

Parameters

bu�er

The bu�er to be deleted.

ags

Can be any combination of

� DBE FREE IN LIST
Marks bu�er as deleted in the bu�er list maintained by EIKONA but
does not actually delete it. Useful if you want to hide this bu�er from
user-interface elements.

� DBE FREE CHANNELS
Frees the space used by bu�er 's channels.

� DBE FREE BUFFER STRUCT
Free the space occupied by internal housekeeping structures. Bu�ers al-
located by CreateBu�erEx without the CBE BUFFER IN LIST
ag should
be deleted with this
ag speci�ed.

Remarks

This is a rather low-level function. The user is strongly encouraged not to use this
function except only for deleting a bu�er created by CreateBu�erEx without the
CBE BUFFER IN LIST
ag.

EnoughBu�ers

Checks if there are enough bu�ers of the speci�ed type.

Functions exported by EIKONA 57

BOOL
EnoughBu�ers (

unsigned type,

unsigned nbu�ers

)

Parameters

type

The type of bu�ers for which availability is to be tested.

nbu�ers

The minimum number of bu�ers of type type required.

Return Value

Returns TRUE if there are at least nbu�ers of type type or FALSE if there are not.
In the later case it displays an appropriate message box.

GetNumberOfBu�ers

Get the number of bu�ers of the speci�ed type.

unsigned
GetNumberOfBu�ers (

unsigned type

)

Parameters

type

Speci�es the type of bu�ers to count.

Return Value

Returns the number of bu�ers of type type that where found in EIKONA's global
list of bu�ers.

PrepareLibrary

The PrepareLibrary function prepares the EIKONA image processing library for use
of a speci�ed bu�er by correctly setting up the library's internal state.

void
PrepareLibrary (

BUFFER bu�er

)

Parameters

bu�er

A bu�er.

58 Writing DLLs for EIKONA

Remarks

The function sets MMAX and NMAX (or FMMAX and FNMAX depending on the
bu�er 's type) to the bu�er 's width and height respectively. It should be called
before any library function is used.

The following two functions are designed to ease the process of getting user
input while retaining the familiar EIKONA user interface (combo-boxes for select-
ing bu�ers). They are rather low-level functions since they should be used in a
dialog procedure written by the DLL programmer.

FillInDialogControl

Fill a dialog control (combo- or listbox) with available bu�ers of the speci�ed type.

void
FillInDialogControl (

HWND dialog,

int control id,
int control type,
int bu�er type,
int width,
int height,
unsigned
ags

)

Parameters

dialog

Handle of the dialog box that contains the control to be �lled.

control id

The resource identi�er of the control to be �lled.

control type

Speci�es the type of the control. Can be one of the following :

� COMBOBOX
Speci�es that the control is a combobox. It should be created with the
CBS DROPDOWNLIST style.

� LISTBOX
Speci�es that the control is a listbox.

bu�er type

Speci�es the type of bu�ers that will be used to �ll the control.

width,

Functions exported by EIKONA 59

height

Specify the dimensions of the bu�ers that will be used to �ll the control de-
pending on the value of
ags.

ags

Can be a combination of the following :

� MATCH SIZE EXACTLY
Only bu�ers of size exactly width�height will be entered in the control.

� AT LEAST THAT SIZE
Bu�ers whose width and height are larger than width and height respec-
tively will be entered in the control.

� SUGGEST ACTIVE BUFFER
If this
ag is speci�ed the the bu�er displayed by the currently active
window (if any) will be initially selected in the control.

� NO NEW
By default the control will display the <New Bu�er> option. If this
ag
is speci�ed the <New Bu�er> option will not appear in the control.

Remarks

The MATCH SIZE EXACTLY and AT LEAST THAT SIZE
ags cannot be com-
bined. If bu�er type is GRAYSCALE IMAGE a separate entry for each channel
of a COLOR IMAGE bu�er will be created in the control.

GetInfoFromDialogControl

Get the currently selected bu�er and channel from a dialog control previously �lled
with FillInDialogControl.

void
GetInfoFromDialogControl (

HWND dialog,

int control id,
int control type,
int bu�er type,
int width,
int height,
unsigned
ags,

BUFFER * pbu�er,

void ** pchannel

)

Parameters

dialog

Handle of the dialog box that contains the control to read.

60 Writing DLLs for EIKONA

control id

Resource identi�er of the control.

control type

Speci�es the type of the control to be read. Can be either COMBOBOX or
LISTBOX.

bu�er type

Type of bu�ers in the control.

width, height

Dimensions of the bu�ers in the control. See Remarks below.

ags

Flags used to �ll the control.

pbu�er

Points to a BUFFER that on return will receive the bu�er selected in the
control.

pchannel

Address of a generic pointer where the speci�c channel selected will be written.

Remarks

This function should be used in conjunction with the previous one. In particu-
lar, it should be called for a control previously �lled with FillInDialogControl with
the bu�er type, width, height and
ags arguments having the same values in the
two calls. If this is not the case, the results in pbu�er and pchannel are not

correct. If bu�er type=GRAYSCALE IMAGE and the current selection speci�es a
COLOR IMAGE bu�er's channel than the color bu�er is returned in pbu�er and
the particular channel in pchannel . If the NO NEW
ag is not speci�ed, and the
current selection is the <New Bu�er> option then *pbu�er=NULL on return.

The following functions are provided to allow the programmer to get user in-
put without having to delve deep in Windows programming details. They allow
the complete operation of dialog boxes for selecting 1 or 2 bu�ers with 1 or 2 pa-
rameters. The collection is by no means exhaustive and the programmer should
be aware that full control is possible only by designing his own dialog boxes and
providing custom dialog box procedures. Since they are very similar only two of
them (Get1Bu�erDialog and Get1Bu�er1ParDialog) will be described in detail { only
the prototypes will be given for the rest.

Get1Bu�erDialog

Create, display and operate a dialog box for selecting a bu�er.

Functions exported by EIKONA 61

BOOL
Get1Bu�erDialog (

char * title,

unsigned type,

char * caption,

unsigned
ags,

BUFFER * pbu�er,

void ** pchannel

)

Parameters

title

Points to a null-terminated string to be used as the dialog's title.

type

Speci�es the type of the bu�ers that should appear on the bu�er selection
controls of the dialog.

caption

Points to a null-terminated string to be used as a description for the bu�er
selection control.

ags

Can be any combination of the following :

� SUGGEST ACTIVE BUFFER
If this
ag is speci�ed the bu�er displayed by the currently active window
will be initially selected in the bu�er selection control.

� NO NEW
By default the bu�er selection control includes the <New Bu�er> op-
tion. If this
ag is speci�ed this option is not included in the control.

pbu�er

Address of a BUFFER where the selected bu�er will be written on return.

pchannel

Address of a pointer where the speci�c channel of the selected bu�er will be
written on return. See Remarks below.

Return Value

Returns TRUE if user clicked the OK button or FALSE if the user canceled the
operation.

Remarks

If type is GRAYSCALE IMAGE a separate entry is created in the control for each
channel of a COLOR IMAGE bu�er and the user can select one of the channels. In
this case the routine writes the COLOR IMAGE bu�er's address in pbu�er and the
channel selected in pchannel . If the NO NEW
ag is not speci�ed in
ags and the

62 Writing DLLs for EIKONA

user actually selects the <New Bu�er> option then * pbu�er = NULL on return.

Get1Bu�er1ParDialog

Create, display and operate a dialog box for selecting a bu�er and entering a pa-
rameter value.

BOOL
Get1Bu�er1ParDialog (

char * title,

unsigned type,

char * bu�er caption,

unsigned
ags

BUFFER * pbu�er,

void ** pchannel,

char * parameter caption,

char * parameter value

)

Parameters

title

Points to a null-terminated string to be used as the dialog's title.

type

Speci�es the type of bu�ers that will appear in the bu�er selection control.

bu�er caption

Points to a null-terminated string to be used as a description for the bu�er
selection control.

ags

See Get1Bu�erDialog above.

pbu�er

Address of a BUFFER where the selected bu�er will be written on return.

pchannel

Address of a pointer where the speci�c channel of the selected bu�er will be
written on return. See Remarks for Get1Bu�erDialog above.

parameter caption

Points to a null-terminated string that will be used as a description for the
parameter's edit �eld.

parameter value

Points to an array of characters of size at least 5 that will receive the text the
user entered in the parameters edit �eld.

Return Value

Returns TRUE if user clicked the OK button or FALSE if user canceled the opera-
tion.

Functions exported by EIKONA 63

Get1Bu�er2ParDialog

Create display and operate a dialog box for selecting a bu�er and entering two
parameter values.

BOOL
Get1Bu�er2ParDialog (

char * title,

unsigned bu�er type,

char * bu�er caption,

unsigned
ags,

BUFFER * pbu�er,

void ** pchannel,

char * parameter1 caption,

char * parameter1 value

char * parameter2 caption

char * parameter2 value

)

Get2Bu�ers1ParDialog

Create, display and operate a dialog box for selecting two bu�ers and one param-
eter value.

BOOL
Get2Bu�ers1ParDialog (

char * title,

unsigned bu�er1 type,

char * bu�er1 caption,

unsigned bu�er1
ags,

BUFFER * pbu�er1,

void ** pchannel1,

unsigned bu�er2 type,

char * bu�er2 caption,

unsigned bu�er2
ags,

BUFFER * pbu�er2,

void ** pchannel2,

char * parameter caption,

char * parameter value

)

64 Writing DLLs for EIKONA

Get2Bu�ers2ParDialog

Create, display and operate a dialog box for selecting two bu�ers and two param-
eter values.

BOOL
Get2Bu�ers2ParDialog (

char * title,

unsigned bu�er1 type,

char * bu�er1 caption,

unsigned bu�er1
ags,

BUFFER * pbu�er1,

void ** pchannel1,

unsigned bu�er2 type,

char * bu�er2 caption,

unsigned bu�er2
ags,

BUFFER * pbu�er2,

void ** pchannel2,

char * parameter1 caption,

char * parameter1 value,

char * parameter2 caption,

char * parameter2 value

)

3.3.4 Thumbnail functions

Almost every dialog box displayed by EIKONA provides a thumbnail view of the
bu�er currently selected in the active combo-box. To help the DLL writer pre-
serve this look in his custom DLLs EIKONA exports the relevant functions. The
required de�nitions can be found in the THMBNAIL.H �le which should be included
if you use these features.

CreateDialogThumbnail

Prepare a speci�ed static dialog control to be used for bu�er thumbnails.

void
CreateDialogThumbnail (

HWND dialog,

int thumbnail control id

)

Functions exported by EIKONA 65

Parameters

dialog

Handle of the dialog box containing the thumbnail.

thumbnail control id

Speci�es the resource identi�er of the control to be used for the thumbnail.

Remarks

The control speci�ed by a static control created with the SS CENTERIMAGE,
SS BITMAP and SS REALSIZEIMAGE style bits. This function should be used
in the dialog procedure's WM INITDIALOG handler.

DestroyDialogThumbnail

Destroys the thumbnail created by the most recent call to the CreateDialogThumb-
nail function.

void
DestroyDialogThumbnail (void)

Remarks

Obviously, calls to CreateDialogThumbnail and DestroyDialogThumbnail should be
paired. An attempt to create a new thumbnail while there is already one will not
be rejected but will result in a memory leak.

DrawThumbnail

Displays the contents of the speci�ed bu�er in a thumbnail control.

void
DrawThumbnail (

HWND dialog,

int thumbnail control id,

BUFFER bu�er,

void * channel

)

Parameters

dialog

Handle of the dialog box that contains the thumbnail.

thumbnail control id

Resource identi�er of the static control on which the thumbnail will be dis-
played.

66 Writing DLLs for EIKONA

bu�er

The bu�er to view in the thumbnail.

channel

The channel to view.

Remarks

The thumbnail identi�ed by dialog and thumbnail control id should be previously
initialized with the CreateDialogThumbnail function. If bu�er is a COLOR IMAGE
bu�er and channel=NULL the thumbnail will be drawn in color. If channel is one of
the COLOR IMAGE bu�er's channels then the thumbnail created will be a grayscale
one showing the speci�ed channel. If bu�er=NULL the text "New Buffer" will be
printed in the thumbnail.

3.3.5 Magni�er functions

Whenever EIKONA requires mouse input from user (as in the Region Grow menu
option) it displays a modal dialog box that shows a magni�ed view of the image
region around the cursor. The relevant functions are also exported to allow the
programmer to use this user-friendly feature in his DLL. The nessecary de�nitions
can be found in the MAGNIFIER.H �le.

CreateDialogMagni�er

Prepare a speci�ed static dialog control for showing a magni�ed view of an image.

BOOL
CreateDialogMagni�er (

HWND dialog,

int control id
)

Parameters

dialog

Speci�es the dialog box which contains the control identi�ed by control id .

control id

The resource identi�er of the static control to be used for the magni�cation.

Return Value

Returns TRUE if succesfull or FALSE if the magni�er could not be created.

Functions exported by EIKONA 67

DestroyDialogMagni�er

Destroys the magni�er previously created with the CreateDialogMagni�er function
freeing up all associated resources.

void
DestroyDialogMagni�er (void)

MagnifyInDialog

Displays a magni�ed (�3) view of the image under the cursor.

void
MagnifyInDialog (

HWND window,

int xpos,
int ypos,
BOOL
ag

)

Parameters

window

The window handle of the window that displays the image to magnify.

xpos, ypos

The coordinates of the center of the square that will be magni�ed.

ag

If TRUE a green cross will be drawn in the magni�er ; otherwise a large red
� sign will be drawn (denoting an invalid image region).

Remarks

The routine will create a magni�ed view (by a factor of 3) of a 40 � 40 pixels
square centered around the point speci�ed by xpos and ypos on the dialog control
speci�ed with an earlier call to CreateDialogMagni�er.

3.3.6 Window Management functions.

This section describes functions used for displaying a bu�er and getting informa-
tion about a displayed bu�er. Relevant de�nitions can be found in the WINMAN.H

�le.

68 Writing DLLs for EIKONA

RefreshBu�er

Updates the window displaying the speci�ed bu�er or creates a new window for it
if the bu�er is not currently displayed.

HWND
RefreshBu�er (

BUFFER bu�er

)

Parameters

bu�er

The bu�er to be refreshed. It should be either a COLOR IMAGE or a
GRAYSCALE IMAGE bu�er.

Return Value

Returns the handle of the window displaying bu�er or NULL if it could not create
such a window.

Remarks

This function should be called after every operation with bu�er being the destina-
tion bu�er of the operation so that changes it's contents are drawn.

DisplayBu�erEx

Display the speci�ed bu�er. The user can specify the title for the window that will
be created and some features the window should support.

HWND
DisplayBu�erEx (

BUFFER bu�er,

unsigned
ags,

char * title

)

Parameters

bu�er

The bu�er to display. It should be either a GRAYSCALE IMAGE or a
COLOR IMAGE bu�er.

Functions exported by EIKONA 69

ags

Speci�es a number of capabilities for the window to be created. Can be any
combination of :

� HAS ROI
ROI operations will be available for this window. In particular, the ROI
rectangle will be drawn whenever the window is active and the usual
ROI marking procedure will be applicable. If this
ag is not speci�ed
ROI features will not be available for this window.

� HAS ZOOM
The Zoom In / Zoom Out operations will be available for this window.
If this
ag is not speci�ed, the relevant buttons on EIKONA's control
window will be disabled for this window.

� HAS CLOSE BUTTON
The Close button and window menu option will be enabled for this
window. If this
ag is not speci�ed these options will be disabled.

title

A null-terminated string that will be the new window's title.

Return Value

Returns the handle to the new window or NULL if the window could not be created.

Remarks

Windows created by this function without the HAS CLOSE BUTTON
ag are in-
tended for displaying special bu�ers for user input. You should explicitly close
such windows when they are no longer needed since the user will not be able to
close them.

GetROI

Get the ROI coordinates

void
GetROI (

BUFFER bu�er,

int * top,

int * left,

int * bottom,

int * right

)

Parameters

bu�er

The bu�er who's ROI coordinates are required.

70 Writing DLLs for EIKONA

top, left, bottom, right

Pointers to integers where the upper-left and bottom-right ROI corner coor-
dinates will be written on return.

Remarks

If bu�er is not currently displayed or bu�er is a
oat bu�er the ROI is assumed to
cover the entire bu�er.

Apart from these high level functions, there are some low-level macros for
accessing internal structures. EIKONA stores information about every window
displayed in a structure allocated by Windows. This structure contains useful
information about the window such as the current scrollbar positions, the cur-
rent zoomfactor for the window and the bu�er the window displays. A pointer to
this structure can be obtained from the window handle of the window using the call

WINFO window =(WINFO) GetWindowLong (hwnd, 0)

where WINFO is the correct type for such a pointer (de�ned in the �le WINMAN.H)
and hwnd is the window handle. The programmer can then use the following
macros (note that they all take an argument of type WINFO).

WINDOW BUFFER

Get the bu�er displayed by the speci�ed window.

BUFFER
WINDOW HANDLE (

WINFO window

)

WINDOW SCROLLPOS H, WINDOW SCROLLPOS V

Return the current scrollbar positions (horizontal and vertical).

int
WINDOW SCROLLPOS H (

WINFO window

)

int
WINDOW SCROLLPOS V (

WINFO window

)

Example DLL source code 71

WINDOW ZOOMFACTOR

Return the current zoomfactor for the window.

int
WINDOW ZOOMFACTOR (

WINFO window

)

3.4 Example DLL source code

#include <windows.h>

#include "dll de�nitions.h"
#include "bu�ers.h"
#include "eikona.h"

#include "exported library functions.h"
#include "window management de�nitions.h"
#include "magni�er.h"
#include "resource.h"

HINSTANCE ExampleInstance;

// TRUE while user marks RegionGrow seeds.
BOOL InRegionGrow;

// Count left button clicks in source bu�er's ROI.
int ClickCount;

// Threshold to use in RegionGrow.
int threshold;

// Handle of window displaying RegionGrow's source bu�er.
HWND RegionGrowWindow;

// BUFFERs and image channels used for user input.
BUFFER bu�er1, bu�er2, tmp;
image channel1, channel2;

int roitop, roileft,roibottom, roiright;
// Pointer to a structure holding information about EIKONA's windows.
EIKONAINFO EikonaInfo;

72 Writing DLLs for EIKONA

// Pointers to functions we will use.
DLLMSGRETURN PROC DllMsgReturn;
GET2BUFFERSDIALOG PROC Get2Bu�ersDialog;
GET2BUFFERS1PARDIALOG PROC Get2Bu�ers1ParDialog;
CREATEBUFFER PROC CreateBu�er;
DELETEBUFFER PROC DeleteBu�er;
PREPARELIBRARY PROC PrepareLibrary;
GETROI PROC GetROI;
GETEIKONAINFO PROC GetEikonaInfo;
CREATEDIALOGMAGNIFIER PROC CreateDialogMagni�er;
DESTROYDIALOGMAGNIFIER PROC DestroyDialogMagni�er;
MAGNIFYINDIALOG PROC MagnifyInDialog;
ENOUGHBUFFERS PROC EnoughBu�ers;
REFRESHBUFFER PROC RefreshBu�er;
WIN BUILD IMAGE PROC win build image;
WIN FREEUC2 PROC win freeuc2;
ERROR HANDLER PROC error handler;
IMERODE PROC imerode;
IMDILATE PROC imdilate;
REGION GROW PROC region grow;
CLEAR PROC clear;

// Dialog procedure for the 'PixelInput' dialog used for selecting
// RegionGrow seeds.

BOOL CALLBACK
PixelInputProc (HWND hdlg, UINT message, WPARAM wparam, LPARAM lparam)

f
int errcode;

switch (message)
f

case WM COMMAND:
switch (LOWORD(wparam))
f

case IDOK:

// Turn o� the 'InRegionGrow'
ag and close the
// 'Pixel Input' dialog.

InRegionGrow = FALSE;
(*DestroyDialogMagni�er)();
DestroyWindow (hdlg);

// Complete the operation.
SetCursor (LoadCursor(NULL,IDC WAIT));
errcode = (*region grow)(channel1, channel2,

0,0,roibottom,roiright,ClickCount,threshold);
if (errcode)
f

if (! bu�er2)
(*DeleteBu�er)(tmp);

(*error handler)(errcode);

Example DLL source code 73

g
else

(*RefreshBu�er)(tmp);
return (TRUE);

case IDCANCEL:
InRegionGrow = FALSE;
(*DestroyDialogMagni�er)();
DestroyWindow (hdlg);
if (! bu�er2)

(*DeleteBu�er)(tmp);

g
break;

case WM INITDIALOG :
InRegionGrow = TRUE;
(*CreateDialogMagni�er)(hdlg, IDW MAGNIFIER);
return TRUE;

g
return FALSE;

g

// Message handler for the EXAMPLE DLL.
void

ExampleMsgHandler (HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam)
f

WINFO window;
int xpos, ypos;
int zoomfactor;

// We'll only handle messages when selecting RegionGrow seeds.
// If this is NOT the case, let EIKONA handle the message.

if (! InRegionGrow)
f

(*DllMsgReturn)(FALSE,0);
return;

g

// We only handle messages for the window displaying RegionGrow's source
// bu�er. If this message is for another window, let EIKONA handle it.

if (hwnd != RegionGrowWindow)
f

(*DllMsgReturn)(FALSE,0);
return;

g
window = (WINFO) GetWindowLong (hwnd, 0);
zoomfactor = WINDOW ZOOMFACTOR(window);

switch (message)
f

case WM MOUSEMOVE :

74 Writing DLLs for EIKONA

SetCursor (LoadCursor(NULL,IDC CROSS));
xpos = (WINDOW SCROLLPOS H(window)+LOWORD(lparam))*zoomfactor;
ypos = (WINDOW SCROLLPOS V(window)+HIWORD(lparam))*zoomfactor;
(*MagnifyInDialog)(window, LOWORD(lparam), HIWORD(lparam),

xpos<=roiright && xpos>roileft &&
ypos<=roibottom && ypos>roitop);

(*DllMsgReturn)(TRUE,0);
break;

case WM LBUTTONDOWN :
xpos = (WINDOW SCROLLPOS H(window)+LOWORD(lparam))*zoomfactor;
ypos = (WINDOW SCROLLPOS V(window)+HIWORD(lparam))*zoomfactor;
if (xpos <= roiright && xpos > roileft &&

ypos <= roibottom && ypos > roitop)
channel2[ypos][xpos] = ClickCount ++;

(*DllMsgReturn)(TRUE,0);
return;

default:

(*DllMsgReturn)(FALSE,0);
break;

g
return;

g

// Menu table for the EXAMPLE DLL.
char *commands[] = f "Grayscale &Open","-&RegionGrow",NULL,"E&xample"g;

// Command identi�ers for the EXAMPLE DLL.
enum command ids f COMMAND OPEN=0,COMMAND REGION GROWg;

void
ExampleCommandHandler (WPARAM command)

f
int ret;
image intermediate, str el;
int errcode;
char t[5];

switch (command)
f

case COMMAND OPEN :
if (! (*EnoughBu�ers)(GRAYSCALE IMAGE, 1))

break;

ret = (*Get2Bu�ersDialog)("Example DLL : Grayscale Open", GRAYSCALE IMAGE,"Source Image",
NO NEW | SUGGEST ACTIVE BUFFER, &bu�er1, &channel1,
GRAYSCALE IMAGE, "Destination Image",0,&bu�er2, &channel2);

Example DLL source code 75

if (ret)
f

int width = BUFFER WIDTH(bu�er1);
int height = BUFFER HEIGHT(bu�er1);

SetCursor(LoadCursor(NULL, IDC WAIT));
if (! bu�er2)
f

tmp = (*CreateBu�er)(GRAYSCALE IMAGE, width, height);
if (!tmp)

break;
channel2 = UC BUFFER CHANNEL(tmp,0);

g
else

tmp = bu�er2;

if (width > BUFFER WIDTH(tmp) jj
height > BUFFER HEIGHT(tmp))

f
(*error handler)(21);
break;

g
str el = (*win build image)(3,3);
if (! str el)
f

(*error handler)(9);
break;

g
str el[0][1] = str el[1][0] = str el[1][1] = str el [1][2] = str el[2][1] = 1;
intermediate = (*win build image)(height, width);
if (! intermediate)
f

(*error handler)(9);
break;

g
(*GetROI)(bu�er1, &roitop, &roileft, &roibottom,&roiright);
(*PrepareLibrary)(tmp);
errcode = (*imerode)(channel1,intermediate,

str el, 3, 3, roitop, roileft, roibottom+1, roiright+1);
if (errcode)

goto ERROR EXIT;
errcode = (*imdilate)(intermediate, channel2,

str el, 3, 3, roitop, roileft, roibottom+1, roiright+1);
if (errcode)

goto ERROR EXIT;
(*win freeuc2)(intermediate);
(*win freeuc2)(str el);
(*RefreshBu�er)(tmp);
SetCursor(LoadCursor(NULL,IDC ARROW));

g
break;

ERROR EXIT :

76 Writing DLLs for EIKONA

(*error handler)(errcode);
break;

case COMMAND REGION GROW :
if (! (*EnoughBu�ers) (GRAYSCALE IMAGE, 1))

break;

ret = (*Get2Bu�ers1ParDialog) ("Example RegionGrow",
GRAYSCALE IMAGE, "Source Image", NO NEW j SUGGEST ACTIVE BUFFER,
&bu�er1, &channel1,
GRAYSCALE IMAGE, "Destination Image", 0, &bu�er2, &channel2,
"Threshold : ", t);

if (ret)
f

int width = BUFFER WIDTH(bu�er1);
int height = BUFFER HEIGHT(bu�er1);

if (! bu�er2)
f

tmp = (*CreateBu�er)(GRAYSCALE IMAGE,width,height);
if (! tmp)

break;
channel2 = UC BUFFER CHANNEL(tmp, 0);

g
else

tmp = bu�er2;

if (width != BUFFER WIDTH(tmp) jj
height != BUFFER HEIGHT(tmp))

f
(*error handler)(21);
break;

g
(*PrepareLibrary)(bu�er1);
(*GetROI)(bu�er1, &roitop, &roileft, &roibottom, &roiright);
errcode=clear(channel2, 0,roitop,roileft,roibottom,roiright);
if (errcode)
f

(*error handler)(errcode);
if (! bu�er2)

(*DeleteBu�er)(tmp);
break;

g
threshold = atoi (t);
RegionGrowWindow = (*RefreshBu�er)(bu�er1);
ClickCount = 1;
CreateDialog (ExampleInstance, MAKEINTRESOURCE(IDD PIXELINPUT),

EikonaInfo->EikonaFrame, PixelInputProc);
return;

g

Example DLL source code 77

break;
g

g

declspec(dllexport)
char **EikonaDLLReturnMenu(void)

f
return commands;

g

// Function to return the menu command handler of the DLL.
declspec(dllexport)

CMDHANDLERPROC EikonaDLLReturnCmdHandler(void)
f

return ExampleCommandHandler;
g

declspec(dllexport)
MSGHANDLERPROC EikonaDLLReturnMessageHandler(DLLMSGRETURN PROC f)

f
DllMsgReturn = f;
return ExampleMsgHandler;

g

BOOL WINAPI
DllMain (HANDLE hInstance, ULONG reason, LPVOID lpReserved)

f
HMODULE EikonaModule;
switch (reason)
f

case DLL PROCESS ATTACH :

// Get EIKONA's module handle. We need this to get
// pointers to EIKONA exported functions.

EikonaModule = GetModuleHandle ("eikona.exe");
if (! EikonaModule)

return FALSE;

// Store our instance handle to a global variable so that
// we can later acess our resources.

ExampleInstance = hInstance;

// Get pointers to functions we will use.
Get2Bu�ersDialog = (GET2BUFFERSDIALOG PROC)

GetProcAddress (EikonaModule, GET2BUFFERSDIALOG);
Get2Bu�ers1ParDialog = (GET2BUFFERS1PARDIALOG PROC)

GetProcAddress (EikonaModule, GET2BUFFERS1PARDIALOG);
CreateBu�er = (CREATEBUFFER PROC)

78 Writing DLLs for EIKONA

GetProcAddress (EikonaModule, CREATEBUFFER);
DeleteBu�er = (DELETEBUFFER PROC)

GetProcAddress(EikonaModule, DELETEBUFFER);
RefreshBu�er = (REFRESHBUFFER PROC)

GetProcAddress (EikonaModule, REFRESHBUFFER);
PrepareLibrary = (PREPARELIBRARY PROC)

GetProcAddress (EikonaModule, PREPARELIBRARY);
error handler = (ERROR HANDLER PROC)

GetProcAddress (EikonaModule, ERROR HANDLER);
EnoughBu�ers = (ENOUGHBUFFERS PROC)

GetProcAddress (EikonaModule, ENOUGHBUFFERS);
GetROI = (GETROI PROC)

GetProcAddress (EikonaModule, GETROI);
region grow = (REGION GROW PROC)

GetProcAddress (EikonaModule, REGION GROW);
imerode = (IMERODE PROC)

GetProcAddress (EikonaModule, IMERODE);
imdilate = (IMDILATE PROC)

GetProcAddress (EikonaModule, IMDILATE);
clear = (CLEAR PROC)

GetProcAddress (EikonaModule, CLEAR);
win build image = (WIN BUILD IMAGE PROC)

GetProcAddress (EikonaModule, WIN BUILD IMAGE);
win freeuc2 = (WIN FREEUC2 PROC)

GetProcAddress (EikonaModule, WIN FREEUC2);
GetEikonaInfo = (GETEIKONAINFO PROC)

GetProcAddress (EikonaModule, GETEIKONAINFO);
CreateDialogMagni�er = (CREATEDIALOGMAGNIFIER PROC)

GetProcAddress (EikonaModule, CREATEDIALOGMAGNIFIER);
DestroyDialogMagni�er = (DESTROYDIALOGMAGNIFIER PROC)

GetProcAddress (EikonaModule, DESTROYDIALOGMAGNIFIER);
MagnifyInDialog = (MAGNIFYINDIALOG PROC)

GetProcAddress (EikonaModule, MAGNIFYINDIALOG);

// Get information about EIKONA windows.
EikonaInfo = (*GetEikonaInfo)();

default :
return TRUE;

g
g

References

[PIT93] I.Pitas Digital image processing algorithms, Prentice Hall, 1993.

[PIT93] I.Pitas, editor, Parallel algorithms for digital image processing, computer vision and
neural networks, J. Wiley, 1993.

[PIT90] I.Pitas, A.N.Venetsanopoulos, Nonlinear digital �lters: Principles and applications,
Kluwer Academic, 1990.

[AND77] H.C.Andrews, B.R.Hunt, Digital image restoration, Prentice Hall, 1977.

[ANG90] E.Angel, Computer graphics, Addison-Wesley, 1990.

[BAL82] D.H.Ballard, C.M.Brown, Computer vision, Prentice Hall, 1982.

[FOL90] J.D.Foley, A.van Dam, S.K.Feiner, J.F.Hughes, Computers graphics: Principles and
practice, Addison-Wesley, 1990.

[GON87] R.C.Gonzalez, P.Wintz, Digital image processing, Addison-Wesley, 1987.

[HAR87] S.Harrington, Computer graphics: A programming approach, McGraw-Hill, 1987.

[JAI89] A.K.Jain, Fundamentals of digital image processing, Prentice Hall, 1989.

[LEV85] M.D.Levine, Vision in man and machine, McGraw-Hill, 1985.

[LIN91] C.A.Lindley, Practical image processing in C, Wiley, 1991.

[MIC87] Microsoft C: Runtime library reference, Microsoft Press, 1987.

[NIB86] W.Niblack, Digital image processing, Prentice Hall, 1986.

[PRA91] W.K.Pratt, Digital image processing, Wiley, 1991.

[PRE88] W.H.Press, B.P.Flannery, S.A.Teukolsky, W.T.Vetterling, Numerical recipes in C,
Cambridge University Press, 1988.

[RIM90] S.Rimmer, Bit-mapped graphics, Windcrest, 1990.

[ROS82] A.Rosenfeld, A.C.Kak, Digital picture processing, Academic Press, 1982.

[SCH89] R.J.Schalkof, Digital image processing and computer vision, Wiley, 1989.

[SER82] J.Serra, Image analysis and mathematical morphology, Academic Press, 1982.

[WIL87] R.Wilto, Programmer's guide to PC and PS/2 video systems, Microsoft Press, 1987.

[WYZ67] G.W.Wyzecki, W.S.Stiles, Color science, Wiley, 1967.

Index

Acquire, 5

Basic, 6
Basic image processing, 14
bu�er, 2
Bu�ers, 6

Color image processing, 37
Color transforms, 37

Display Control Window, 5
Dump, 6
Dump Matrix, 6
Dump Matrix histogram, 6
Dump signal, 6

Edge detection, 27
EIKONA Overview, 2

Filtering and enhancement, 20

Hide ROI, 5

Image transforms, 16

JPEG, 3

Line Detection, 30
Load, display and save raw images, 9

Masks, 3
Microsoft Windows Installation, 2
Morphological operations, 26

Nonlinear digital image �ltering, 24

Open �le, 5
Open Matrix, 5

PC Hardware Requirements, 2
Print, 5

Region segmentation, 30

Save �le, 5
Shape description, 34

Texture Analysis, 31
TWAIN, 3

Write pixel, 5

80

