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IntroductionIntroductionIntroduction

u Direct implementation of two-dimensional FIR digital
filters

u Fast Fourier transform implementation of FIR digital
filters

u Block methods in the linear convolution calculation

u Inverse filter implementations

u Wiener filters

u Median filter algorithms
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IntroductionIntroductionIntroduction

u Digital filters based on order statistics

u Adaptive order statistic filters

u Histogram and histogram equalization techniques

u Pseudocolouring algorithms

u Digital image halftoning

u Image interpolation algorithms
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Direct Implementation of 2D FIR digital filtersDirect Implementation of 2D FIR digital filtersDirect Implementation of 2D FIR digital filters

The output of a twotwo--dimensional FIR filterdimensional FIR filter is given by the 
linear convolution:

If the region of supportregion of support of the FIR filter is [-v1,v1]×[-v2,v2] 
where Mi=2vi+1 , i=1,2 , then:
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• Moving Average filter:

Characteristics of the moving average filter:
– It is very effective in removing white additive Gaussian

noise.
– It tends to blur edges and image details (e.g. lines) and  

degrade image quality.

∑ ∑
−= −=

−−







=

1

11

2

22

),(
1

),( 2211
21

21

v

vk

v

vk

knknx
MM

nny

where Mi=2vi+1, i=1,2.
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Moving Average FilterMoving Average FilterMoving Average Filter

(a) Baboon image, 
(b) Filtered Baboon image by a 3 × 3 moving average filter.

(a) (b)



THESSALONIKI 1998
I. Pitas Digital Image Processing Fundamentals

Digital Image Filtering
3.7

Direct implementation of 2D FIR digital filtersDirect implementation of 2D FIR digital filtersDirect implementation of 2D FIR digital filters

• Zero-phase FIR filters can satisfy H(ù1,ù2)=H*(ù1,ù2)  
having the spatial symmetry:

h(n1,n2)=h(-n1,-n2)

This reduces the number of multiplications almost to half:
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FFT implementation of FIR digital filtersFFT implementation of FIR digital filtersFFT implementation of FIR digital filters

Discrete Fourier Transform(DFT):

Circular Convolution:
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FFT implementation of FIR digital filtersFFT implementation of FIR digital filtersFFT implementation of FIR digital filters

Important Property of DFT for Circular Convolution:

→←⊗⊗= ),(),(),( 212121 nnxnnhnny

),(),(),( 212121 kkXkkHkkY =

Circular Convolution CalculationCircular Convolution Calculation using DFT:

)]],([)],([[),( 212121 nnhDFTnnxDFTIDFTnny =

Linear ConvolutionLinear Convolution can be calculated in the same way if
both sequences x (N1 × N2) and h (M1 × M2) are augmented
to dimensions Li≥ Ni+ Mi-1, i=1,2.
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FIR digital filter implementationFIRFIR digital filter implementationdigital filter implementation

Remarks

• For small filter window dimensions, direct implementation
is faster than FFT implementation of FIR filters, provided
that:

M1M2 < 6log2(N1N2) + 4

• Memory requirements of the FFT implementation approach
are relatively higher than the ones of the direct one.
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Block methods in the linear convolution calculationBlock methods in the linear convolution calculationBlock methods in the linear convolution calculation

Overlap-add method

The overlap-add method is based on the distributive property 
of linear convolution and is given as follows:
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Overlap-add method for linear convolution.
(a) Non-overlapping blocks
(b) convolution output block when h is defined over [0,M1) × [0,M2)
(c) convolution output block when h is defined over [-í1, í1] × [-í2, í2].

Overlap - Add Block MethodOverlap Overlap -- Add Block MethodAdd Block Method

(a)

(b)

(c)
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Block methods in the linear convolution calculationBlock methods in the linear convolution calculationBlock methods in the linear convolution calculation

Overlap-save method

It is based on a simple property of convolution: 

the linear convolution output  ythe linear convolution output  y’(’(nn11,,nn22)) is equal to theis equal to the
circular convolution output of extent Ncircular convolution output of extent N1 1 ×× NN22 only withinonly within
the rectangle: the rectangle: [[MM11--1,1,NN11] ] ×× [[MM22--1,1,NN22]] :

w(n1,n2) is a sequence defined over [0,N1) × [0,N2).
h(n1,n2) is an impulse response defined over [0,M1) × [0,M2).
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Overlap-save method for linear convolution.
(a) Result of the circular convolution of two sequensces without zero padding
(b) partition of the input sequence in overlapping blocks
(c) output blocks of the overlap-save method

(a)

(b)

(c)

Overlap - Save Block MethodOverlap Overlap -- Save Block MethodSave Block Method
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Block methods in the linear convolution calculationBlock methods in the linear convolution calculationBlock methods in the linear convolution calculation

Characteristics of the overlap-add and overlap-save methods

• Both methods have approximately the same computa-
tional load, if the block sizes used are approximately   
equal in both methods.

• If the block size is carefully chosen, they give very good 
computational savings in comparison to the direct method.

• Although both methods are similar, sometimes the 
overlap-add method is preferred due to its conceptual 
simplicity.
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Inverse filter implementationsInverse filter implementationsInverse filter implementations

Inverse filtering (for digital image restoration)

Characteristics : 
• It cannot be defined in regions (ù1,ù2) of the transform 
domain, where H(ù 1,ù2) is zero.

• It is very sensitive to the presence of the formation noise.
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where H(ù1,ù2) is the a priori known degradation function and 
G(ù1,ù2) is the observed (degraded) image. 
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(a) Original image, 
(b) Image corrupted by horizontal blur of length Í1 = 5 and white 

additive Gaussian noise having variance equal to 20.

Inverse filter implementationsInverse filter implementationsInverse filter implementations

(a) (b)
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Inverse filter implementationsInverse filter implementationsInverse filter implementations

The last problem can be solved by using a pseudoinverse
filter:

Implementation of the inverse filter using the DFT
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Inverse filter implementationsInverse filter implementationsInverse filter implementations

Iterative implementation of the inverse filter

Characteristics of the iterative implementation

• The advantage of the iterative method is that it can be 
stopped after a certain number of iterations if the 
filtering output is acceptable.

• The convergence parameter ì can be changed in order 
to alter the convergence speed.
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Wiener filtersWiener filtersWiener filters

Non-casual Wiener filter

• If the signal s(n1,n2) is uncorrelated with noise n(n1,n2):

• This implementation can be efficiently used for additive 
noise removal.
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Psg and Pgg are the cross-power spectrum of s (original), g (observed
image) and the power spectrum of g respectively. 
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Wiener filtersWiener filtersWiener filters

An important problemimportant problem in the design and implementation of 
Wiener filters is the estimation of the blur transfer function 
H(ù1,ù2) and of the power spectra Pff(ù1,ù 2), Pnn(ù1,ù2).

Modification of the Wiener filter used in digital image
restoration
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Median filter algorithmsMedian filter algorithmsMedian filter algorithms

A two-dimensional median filter is defined as follows:
y(i,j)=med{ x(i+r,j+s), (r,s) ∈ A   (i,j) ∈ Z2 }

Median filter properties
• They have low-pass characteristics and they remove 
additive white noise.

• They are very efficient in the removal of noise that has 
a long-tailed distribution (e.g. Laplacian distribution).

The median value is the middle observation x(v+1) of the
statistically ordered observations xi, i=1,..,n: 

x(1) < x(2) <Ö< x(n)
x(1): minimum, x(2): maximum
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Median filter algorithmsMedian filter algorithmsMedian filter algorithms

Median filter properties continued

• The median becomes unreliable only when more than 
50% of the data are outliers.

• The robustness properties of the median make it very  
suitable for impulse noise filtering.

• The median filter tends to preserve edge sharpness.

• The median filter not only smooths noise in homoge-
neous image regions but tends to produce regions of 
constant or nearly constant intensity.
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Median filter algorithmsMedian filter algorithmsMedian filter algorithms

Baboon image 
corrupted by

mixed impulsive
noise

The output image
of a 7 x 7

median filter

The output image
of a 7 x 7

moving average
filter
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Median filter algorithmsMedian filter algorithmsMedian filter algorithms

Separable 2D median filter

yij=med(zi,j-v , … , zij , … , zi,j+v)

zij=med(xi-v,j , … , xij , … , xi+v,j)

n=2í+1.
Advantage: Low computational complexity in comparison to 
that of the non-separable median filter because it sorts n
numbers two times instead of n2.

It results from two successive applications of 1D median
filters of length n along rows and then columns (or vice-
versa):
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Median filter algorithmsMedian filter algorithmsMedian filter algorithms

Recursive median filter

yij=med(yi-v , … , yi-1 , xi , … , xi+v)

• Its output tends to be much more correlated than that of 
the standard median filter.

• Recursive median filters have higher immunity to 
impulsive noise than the non-recursive median filters.

Separable recursive median filter
yij=med(yi,j-v , … , yi,j-1 , zij , … , zi,j+v)

zij=med(zi-v,j , … , zi-1,j , xij , … , xi+v,j)
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Median filter algorithmsMedian filter algorithmsMedian filter algorithms

Weighted median filter

The weighted medianweighted median is the estimator T that minimizes the
weighted L1 norm of the form:

The weighted median filter is described by:

yi=med{w-v úxi-v , … , wv ú xi+v}

where wúx denotes duplication of x (x,…,x, w times)
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Median filter algorithmsMedian filter algorithmsMedian filter algorithms

Multistage median filter

yij=med(med(z1,z2,xij) , med(z3,z4,xij) , xij)

z1=med(xi,j-v , … , xij , … , xi,j+v)

z2=med(xi-v,j , … , xij , … , xi+v,j)

z3=med(xi+v,j-v , … , xij , … , xi-v,j+v)

z4=med(xi-v,j-v , … , xij , … , xi+v,j+v)

It can preserve edges in horizontal, vertical and diagonal
directions.
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Digital filters based on order statisticsDigital filters based on order statisticsDigital filters based on order statistics

Ranked order filters

An r-th ranked filter of the signal xi is the r-th order 
statistic:

yi=r-th order statistic of {xi-v , … , xi , … , xi+v}

• It introduces a strong bias in the estimation of the 
mean,when the rank is small or large.

• The bias is even stronger when the input data have a 
long-tailed distribution.
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Digital filters based on order statisticsDigital filters based on order statisticsDigital filters based on order statistics

Max/min filters

The maximum x(n) and the minimum x(1) are the two 
extremes of the ranked-order filters.

• The maximum filter effectively removes negative impulses
in an image. The minimum filter removes positive impulses.

• Both filters fail in the removal of mixed impulse noise.

• Both filters have good edge preservation properties.

• Both filters tend to enhance the bright and the dark regions
of the image respectively (max/min).
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Digital filters based on statisticsDigital filters based on statisticsDigital filters based on statistics

Baboon image
corrupted by

mixed impulsive noise

The output of a 
cascade of a

min and a max 
filter

Max/min filters



THESSALONIKI 1998
I. Pitas Digital Image Processing Fundamentals

Digital Image Filtering
3.32









=<
<<

≥
=

−−−+−

−−−−

−

111

111

1

 and  if),...,max(

 and  if

 if

iniiinii

iniiii

iii

i

yxyxxx

yxyxy

yxx

y

Digital filters based on statisticsDigital filters based on statisticsDigital filters based on statistics

Max filter (running implementation)

In average, only 3 comparisons are needed. A similar algorithm
exists for min filtering.
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Digital filters based on order statisticsDigital filters based on order statisticsDigital filters based on order statistics

á-trimmed mean filters

• The á-trimmed mean filter rejects á% of the smaller and á% of the
larger observation data.

• It can be used as a compromise between the median filter and the
moving average filter for varying á.

• Its performance is poor for short-tailed distributions.
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Digital filters based on order statisticsDigital filters based on order statisticsDigital filters based on order statistics

Modified trimmed mean filter (MTM)

Its coefficients
are chosen by:
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Modified nearest neighbour filter (MNN)

Its coefficients
are chosen by:

This filter trims out pixels deviating strongly from the   central pixel. 
Therefore it has good edge preservation  properties.
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Digital filters based on order statisticsDigital filters based on order statisticsDigital filters based on order statistics

L-filters
The L-filter (or order statistic) filter is defined as follows:

Location Invariance constraint:

Choice of coefficient vector after MSE minimization:
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Digital filters based on order statisticsDigital filters based on order statisticsDigital filters based on order statistics

L-filters
• The optimal L-filter for the Gaussian noise is the 

moving average.

• The optimal L-filter for the Laplacian distribution is 
close to the median.

• The optimal L-filter for the uniform distribution is the 
midpoint.

• The L-filter has no streaking effects, provided that its 
coefficients are not similar to those of the median.

• It has greater computational complexity than the median 
or the moving average.
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Adaptive order statistic filtersAdaptive order statistic filtersAdaptive order statistic filters

Minimal Mean Square Error filter (MMSE)

An adaptive filter for additive white noise:
xij=sij+nij

Linear Minimal Mean Square Error filter output:

• The MMSE filter preserves edges, although it does not 
filter the noise in edge regions.

• The performance of the adaptive MMSE filter depends 
on the choice of the local measures of signal mean and 
standard deviation and of the noise standard deviation.
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Adaptive order statistic filtersAdaptive order statistic filtersAdaptive order statistic filters

Decision-directed filters

• They can take into account both edge and impulsive 
noise information.

• Impulses, when detected, can be removed from the 
estimation of the local mean, median and standard  
deviation.

• When an edge is detected, the windows of the filter can 
become smaller so that edge blurring is minimized.

• Such an impulsive-sensitive filter is the adaptive 
window edge detection (AWED) filter.
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Adaptive order statistic filtersAdaptive order statistic filtersAdaptive order statistic filters

Two-component model filters

An adaptive filter based on the two-component model is the 
signal-adaptive median (SAM) filter:

The SAM filter has excellent performance in noise filtering, 
edge and image detail preservation.
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Adaptive order statistic filtersAdaptive order statistic filtersAdaptive order statistic filters

Original 
Lenna image

The output of a 
SAM filter

Two component model filters

Lenna image
corrupted by Gaussian

noise (variance=100) and
mixed impulsive noise
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Histogram and histogram equalization techniquesHistogram and histogram equalization techniquesHistogram and histogram equalization techniques

^

The histogram pf (empirical pdf) is given by the relation:

• The image quality can be enhanced by modifying its   
histogram.

• This can be performed by a technique called histogram
equalization.
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Histogram and histogram equalization techniquesHistogram and histogram equalization techniquesHistogram and histogram equalization techniques

(a) Histogram of a dark image,
(b) Histogram of a bright image,
(c) Histogram of an image with two intensity concentrating regions
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Histogram and histogram equalization techniquesHistogram and histogram equalization techniquesHistogram and histogram equalization techniques

Histogram equalization

• Transformation function:

∫=
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Histogram and histogram equalization techniquesHistogram and histogram equalization techniquesHistogram and histogram equalization techniques

Histogram modification

• Transformation function:

)]([1 fTGg −=

(a)       (b)

(a) Original image, (b) image after histogram equalization



THESSALONIKI 1998
I. Pitas Digital Image Processing Fundamentals

Digital Image Filtering
3.45

Pseudocolouring algorithmsPseudocolouring algorithmsPseudocolouring algorithms

PseudocolouringPseudocolouring encoding of the intensity of black and white 
(BW) images by using colour information:

Pseudocolouring is a digital image transformation of the form:

where f(x,y) is a BW image and c(x,y) is a colour image.

• The choice of the transformation function is heuristic based
on subjective image quality evaluation

)),((),( yxfTyxc =
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Pseudocolouring algorithmsPseudocolouring algorithmsPseudocolouring algorithms

Original Image Pseudocoloured Image
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Pseudocolouring algorithmsPseudocolouring algorithmsPseudocolouring algorithms

Intensity Quantization (slicing) method

It is equivalent to the following non-uniform transformation
function, that occurs after histogram equalization  g=G(f) :
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Pseudocolouring algorithmsPseudocolouring algorithmsPseudocolouring algorithms

Filtering Approach

hL(k,l), hB(k,l), hH(k,l): impulse responses of a low-pass, a
bandpass and a high-pass linear FIR filter. 
They are used to produce the colour image components of the 
pseudocoloured image:
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Binary Thresholding

Digital image halftoning Digital image halftoning Digital image halftoning 

f(k,l): greyscale image (input)
g(k,l): thresholded image (output)


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ï Threshold selection T can be based on the image histogram.

ï A locally adaptive threshold is better than a global one.

ï Binary thresholding does not produce halftone images.
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Binary Thresholding

Digital image halftoning Digital image halftoning Digital image halftoning 

Original Image Thresholded Image
with Ô=100

Thresholded Image
with Ô=200
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Greyscale Binary Fonts

Digital image halftoning Digital image halftoning Digital image halftoning 

ï The greyscale image f(k,l) has L grey levels.
ï The halftone image g(k,l) must have N perceived grey levels  
(N<<L, N=nxn+1). 

ï N matrices Fi of size nxn containing 1s can be  used for 
halftoning:
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ï The method is conceptually simple and easy to implement
ï It creates false lines and contours in homogeneous regions
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Original Image Original Image
subsampled by

a factor of 2

Halftoned Image by
using greyscale binary

fonts

Greyscale Binary Fonts

Digital image halftoning Digital image halftoning Digital image halftoning 
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Pseudorandom Thresholding

Digital image halftoning Digital image halftoning Digital image halftoning 

ï It adds random noise to the image and then thresholds.

ï This is equivalent to thresholding with a random threshold.

ï Dither matrices Dither matrices containing pseudorandom thresholds are
used, denoted by Dn if their size is n × n. A 2×2 dither matrix
is defined by:

ï Halftoning is performed by:
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Image interpolation algorithmsImage interpolation algorithmsImage interpolation algorithms

ï Zero-order hold interpolation: a (x,y) point is assigned the 
value of the geometrically closest pixel in the image array. It 
produces regions with constant intensity and leads to zooming
by a factor of 2n × 2n:

ï First-order (linear) interpolation: it produces smoother 
interpolated images
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Image interpolation algorithmsImage interpolation algorithmsImage interpolation algorithms

ï p-order interpolation: it is performed by convolving the
appropriately formed image with the convolution matrix H 
p times (e.g. cubic spline interpolation, p=3).

First we interlace the image to be interpolated with zeros.

An example of a convolution matrix H is:
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Image interpolation algorithmsImage interpolation algorithmsImage interpolation algorithms

Output image
after

zero-order
interpolation

BABOON
image

Output image
after
linear

interpolation

Output image
after

cubic spline
interpolation


