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Preface

These notes introduce the reader to vectors and tensors using direct notation and indicial
notation. We deal aimost exclusively with Cartesian terisars. The concepts introduced can
be extended to general coordinate systems and spaces of higher dimension, We attempt to
maintain mathematical rigor in the notes without the mathematical formalism of theorem and
proof, , _ _ - :
The notes are a revision of a set of notes by Professor Emeritus Russell Dunholter {de-
ceased), Engineering Science and Mechanics Department, University of Cincinnati [2]. This
original source funished the framework for the current effort. The original notes were sup-
plemented with material from lectures given by Prof. Morton Gurtin in 2 graduate fevel

. continuum mechanics course at Camegie Mellon University. We have also consulted Prof.

Gurtin’s excellent text [3] in the preparation of these notes. Other sources have also been
consulted, and several of these sources are acknowledged in the bibliography. Any of these
sources may be consulted for further study.

Acknfowledgm_ents. |

" [ would like to acknowledge the work of Chris Reeder in typing the text of the original

material of Professor Dunholter that was used. Ms. Margy Fotopoulos also helped with some

.of the initial typing and was invaluable in proofreading the completed typescript. Without

their help this task would not have been completed as well or as casily as it was,
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Section 1.2~ Orthonormal Basis and Indicial Notation 5

L Y, x2

Figure 1.5.Orthonormal basis for 2 Euclidean vector space V = E3.

chmcc of a sense is govemed by the right hand sense of the definition of the vector product )
Any basis consisting of three mutually perpéndicular unit vectors is called an orthonormal
basis. We choose an orthonorma! basis i, j, and k directed along the positive X, Y, and Z
axes respectively. Since X, Y, and Zisa right hand order, we have i X j = k. Then any
vector u-can be uniquely expressed as the vector sum

u = u it jruk ' (1.12)

The components uz = u - i, %, = u- j, and u, = u - k can be calculated according to (1.5).
We list the nine possible scalar products of the orthonormal basis as follows

i-i=1 ij={) : i-k=06 ‘
j-i=90 j- j=1 j-k=0 _ (1.13)
k =0 k-j=0 - k-k=1

These nine scalar product equations can be represented by the single index equation
¢-e; =8y 4,j=1,23 N (R )
We identify ) = i, e2 = j, and e3 = k and define the Kronecker deita syinbol by

-y —— - — 1 if i j
8ij __6,4_.{ 0 if i#7 o (1.15)
In the same spirit, we write (112} in the form

‘ 3
u = te; + uses + uzes =Z:u,-e; - (1.16)

=1
or, more simply,

u=we;, i=123 _ (1.17)
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uxv

_ Figﬁré 1.7.Geometrical representation of the tripie scalar product (u x v) - w.

The index expression on the right of (1.22), summed on £, j, and k, represents the sum
of 33 terms, only six of which are non-zero. In fact, (1.22) defines the expansion of the

:determinant
' u up us w oY oy
e uxv-wsln v v {=|u va w (1.24)
! ) w wy w3 uz vz U3
\q':w‘:—‘

. Note that the components of the vectors u, v, and w can appear either in rows or columns.
The value of the determinant, calculated by the usual rules, is the same. The scalar triple
product of u, v, w is frequently denoted by fuvw] =uxv.-w=u-vxw.

The expression (u x v) x worux (v x w) is called a vector triple product. The vector
triple-product is not associative. For example, ' .

ix(ixj)=ixk=—j

(ixi))xj=0xk=0
We use O to distinguish the zero vector from the zero number 0. The vector triple product can
be expressed as the difference of two vectors. .

ux(vxwi=(u-wiv=(u-v)w_

The validity of this expression can be easily demonstrated using indicia! notation. Letu =
u;e; and v X W = €5, v;w;ex. Then, changing the index letter in u to avoid ambiguity, we
" have .

UX(VXW) = upfiaUiinjep X € = EijREpkqUiWitip€y
= EijkEpekVijUpeq

Now using (1.21)y, we obtain

ux(vxw) = (8ig8ip — bipbjx) viwjupe,
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mxn

nxm

Figure 2.2.Schemetic of the transpose of an n X ™ matrix.”

. Examplel LetAbea?2x3marrix

A= A Az A
L An Az Ax

Then, the transpose of A, AT is a 3 x 2 matrix with elements
Ain An
AT=| Ap Ag
A1z Ags
A matrix A is said to be symmetric if AT = A or A;; = Aj. A matrix A is said to be
skew-symmetric if AT = —A or A;; = —A;;. Consider the case where { = j = 1, then
Aly = —Aq and hence Ay = 0. Similarly, Al = A; = 0. The concepts of symmetry and
skew symmetry apply only to square matrices. Two matrices are equal if their elements are
equal. :
A=BimplisA; =By -

The zero matrix is the matrix all of whose elements are zero.

Example2 A symmetric mairix A has components
: Au Az Ay
A= Az Ax Ag
Az Az Am
. A skew symmetric matrix A has components
0 Ap Apg
A= “"'A12 0 A23
—Aiz -Axs 0

The addition and multiplication of matrices are defined as follows. Addition of matrices
is-only valid for matrices with the same number of rows and columns. ‘

v
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38 Chapter3 Tensor Algebra

we seethat det A is the completely contracted product of the components of five tensors.
This is a scalar, a tensor of order zere. This implies that det A is a number that is the same
for all representations of A.

We can also consider this in another way, We have

Al = QriQuihrs = QridraQus
In matrix notation, this has the form _
. A=QTAQ
and

det A* = det (QTAQ) = det (QT) det(A) det(Q) =det A

 since det (Q) =det (QT) =1

We considered the scalar invariants of the tensor A and adopted the notation

In=trA=Anp+ Az +A4s: ,
fa =} [(tr &)t — tr (a2)] G.67)
s =detA |

3.5 The Algebraic Eigenvalue Problem

Let A be a second order tensor. We consider solutions of the equation

Ar=Jr _ . - (3.68)
 where X is 2 scalar, If we write r = z;e;, then the index form of (3.68) is

(Aij = Aéy5)z; =0 3.69) .

There exist non-zero solutions of (3.69) {x1,xz2, 23} if and only if
det (Ai; — Adi5) =0
EXpansi_on of this equation leads to the chargcter'istic equation for‘ tl:xe teﬁsor A,
A3 =2 +TAA =T, =0 ' (3.70)

Since the coefficients of (3.70) are scalar invariants of A, equation (3.70) holds for alf -

reference frames. Solutions of (3.68) will exist only for the three roots Ay, Az, As of (3.70).
Since (3.70) is a cubic, there is at least one real root. The other two roots may or may not be
complex. The roots are called eigenvalues (proper values, characteristic values, or principal

" values) and the comresponding vectors r are called eigenvectors. -

If A is symmetric, then the characteristic equation will always have three real roots A,
and there will exist three mutually perpendicutar eigenvectors r. This is demonstrated in the

following way. Let A = o+ iff and r = n + év. Here i = /=1 is the complex constant. -
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order tensor A. Thetensor A is
A =B ® u = (Bjje;0e;) Qurer = Biju (e:0¢;Qez)

The components of A are ' '

_ ' Aijx = Bijux
Similarly, if A and B are second order tensors, the outer product is a fourth order tensor E.

E=A®B #(Aijes'@ej) ® (Buer®ex) = Ai; By (ei®e; @ e, Qey)
This gives the component form as ‘
Eijri = Aij B

‘We note that a fourth order tensor is a linear transformation that maps second order fensors

‘into second order tensors. Notationally, we write this as

T=C[E -

Here T and E are second order tensors and C is a fourth order tensor. To see how these
mappings operate, we define the following tensor product operator. Leta, b, s, t, u, v be
vectors. Then [s® t ® u® v] forms a fourth order tensor and [a ® b} is a second order

* tensor. The operation of the fourth order tensor on the second order tensor is defined by

fotousvaebl=(u-a)(v-b)Eet

This has particular significance %en the vectors are all base orthonormal base vectors. Then
we have - .

[ei®e;Re;ellen®e] = (er-em)ler-ep)[ei®ey] |
= Srmliple: @ ey

The operation of the fourth order tensor C on E can be written as .

Ty(ei®e;) = T=C[E]=Cijulei®e;®er@e]Emplem el
c C;juEmpakmﬁtp {ei ® e5] = Cijrt Brt [0 @ &3]

I

And the components form of the operation is

Ty = Cijr Bt

These types of mappings are important in the theories of behavior of fluids and elastic solids.

3.2.2 Contraction |

Contraction is the operation of equating any two indices in the components of a tensor of

N
Pt

b




30 Chapter2 Tensors

and |
detQ=1
This demonstrates that Q is proper orthogonal.

A change of basis is equivalent to a change of reference frame and induces a change in
the components of a position vector or, what is the same thing, a change in the coordinates
of a point. The transformation formuta is ubtamed as follows. We wnte r = zje] = z,e.
Using (2.62) in this expressmn, we ﬁnd S

ze} = z;Q%el = z;:Qi€¢] or af = Qi (2.63)

Similarly, we find that the components u; of a vector or T;; of a second order tensor transform
according to the rules ' :

ui=Quu; _ -
T;; = inQszf-a (264)

In general, if A iy are the components of a tensor of order r, then the identity
A=A 6,06 @8] = A5, 0, @ B0y, (269
leads to the transformation formula
44:1;, e & QamQ:zt: Qi Adiaie (2. 55)
Conversely, if the ordered set of numbers transforms according to the pattern (2.66) fol-

~ lowing a change of basis (2.60), then the identity (2. 65) holds, and we can say that 4, ;....;,

represents a tensor of order r. Thus (2.66) is not only a formuta for h-ansformmg tensor com-
ponents, it is also a test of whether the set 4; ;,...;, is the representation of a tensor. It is

- customary to speak of the set of components u; as a vector, or the components T;; as a ten-

sor of order two, etc. This means that these sets of components represent the vector or- tensor
relatwe to a reference frame with a given orthonormal set of base vectors. .
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26 Chapter2 Tensors

We write the identity

'A=%(A+AT)+%(A—AT) | " @57

The first tensor on the right is symmetric and the second is skew-syﬁmetric.

2.45 Tensor Product Properties

The tensor product has the following properties.

TP (2®b)T =b ®:
TP2. {:gbg(t:@d) :(b-c)a®d /

e man] O i#j
TP3. (e,.®e.)(e:®e:)—'{ e®e; i=j
TP4. T, ei®e; =1

piby § de

- 2.4.6 Matrix of a Tensor

The matrix of a tensor is

Su Sz Ss :
B]=| 8a Sz Sum
Siz Sz Su | -
The rules of matrix operations apply, and we may write -
7 = F
(8T = (8|7l

The matrix of the identity tensor is

1 0 0
m=[o 1 o
1o o 1}

The operations of 3 x 3 matrices and tensors are equivalent. Vectors can be represented

by column matrices. We record some equivalent opetations for matrices, tensors and tensor

components.
Au=v Au=v Ajjus =9
AB=C AB=C A;ijBjr = Ciax
ATB=C  ATB=C AjiBjr = Ci
A=uv’ A=u®v A = wyy

A tensor T has an inverse denoted by T~ such that
TT1=T"1T=1

The :nverse is unique and exists if det T 7 0. Compare this with the jnverse of a matrix, The

7

e
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2;3 The Tensor Product

“The tensor product? of two vectors u, v in V is denoted by u® v. The tensor product

defines a linear transformation by the requirement that
udvViw=(v-w)u o _ (2:49)

for any vector w in V. The tensor product is also called a tensm: of order two. Equation (2.49)
defines a finear transformation because '

ev)(w+x) = [v(w+x)u=(v-w+v-xju
' v-w)ut(v-x)u
@ev)wt{u®v)x

and

(]

(vaw)u=a(v-w)u.

(u@v){aw)
= a(lu®@v)w

‘The tensor product of two vectors u ® v has the following properties:

)] uwWwR(v4+w)=ulviud®w : .
(if) (u+v)@w=u@@w+vew . (2.50)
i) u®(ov)=(c)@v=c(u Qv) : :

These properties follow from the definition of the tensor product (2.49). To prove (i), for

example, consider

fu@(v+wlx = [(v+w)-xju=(v-x)ut(w-x}u
= (uev)x+{u@w)x:
for any x in V. It follows that (i) is true. ' : :

Every tensor product u@® v is by definition a linear transformation or tensor of order
two, but not every linear transformation or tensor of order two can be expressed as the tensor
product of two vectors. If u, v, w is a basis for V, it is 2 non-coplanar set with [a v w] #0.
Then, a linear transformation T :V — V is uniquely defined by the assignments T (u) = a,
T(v) = b, T (w) = ¢ where &, b, c are any three vectors in V. If we define the sum and
scalar multiplication of linear transformations by

[T+8)(w) = T(u)+S(u)
LTw = oT(w

then the general tensor product form of a linear trarisformation is given by

T=a®u" +b@v ' +codw" . (2.51)

- T The tensor product of two vectors is sometimes called the dyadic product. Some authors use the notation uv

for the tensor product.
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Since Ar = Ar, we have A (u +1v) = (a + i) (u +iv). We separate this equation into
real and imaginary patts.

Au = ou-pfv

Av = fu—-av
Since A is symmetric, v- (Au) = u: (Av). This gives 8 (u® ++v?) = 0. Since u+v2 # 0,

£ must be zero, Thus the roots A are real and hence so are the corresponding vectors r.
Let Ay, A2 be two distinct roots with elgenvectors r; and ro. Then

A!‘] = )\1!‘1
A.l'z = 4\21’2
From this pair we obtain '
ATy rrz=Agrzery = O

rierg(M—A) = O

Since A; and Az are distinct, it follows that ry is perpendicular to ry. Thus, three distinct
1o0ts Aj, Az, Az lead to three distinct mutually perpendicular eigenvectors ry, rq, ra.

We note that if r is 2 solution of (3.68), then ar, where o is any real number, is also
a solution. Thus, the eigenvectors are determined only. to. within a multiplicative constant.
By adjusting this constant, we can make the three eigenvectors ry, ry, s form a right hand
orthonormal set e, e3, e3. This calculation leads to e = Q,,e,, where Q is a proper
orthogonal transformation matrix. If we express A in terms of the eigenvectors e} as a basis,
then A will have the form

A= )e] ®e] + Are} @ €] + \yel ® el G.71)

‘This gives Ae] = )¢, etc, and uniquely defines A according to the fundamental theorem
- on linear transformations.

Example 4 Let the matrix of the components of a tensor be
- 5 -10 87
fAl=1 -0 2 2
8 2 1u
We calculate 15, = 18, Il5 = —81, and Illa, = —1458. The characteristic equation
A —18)2 - 810~ 1458 =0

Chastheroots \y = -9, da =9, andX3=18. To ﬁnd the eigenvector Ty, corresponding to

the eigenvalue Ay, we substitute into the equation

tA,‘,‘ - ;\6;'5) ;= 0

4
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3.7 The Polaf Decomposition Theorem

Let F be any second order tensor such that Illp =.detF > 0. The tensor FTF is symmetric.
Let the eigenvectors of ETF be e;, a right hand orthonormal set. We write '

U?=FIF =)e;®e; + Mey @ ey + Mes@es G72)

To justify this notation we must show that FTF is positive definite, We have det (FTF) =
* (det F)? = A}A2)3 > 0. Hence, none of the eigenvalues can be zero, We show next that

they are all positive. Consider the set of vectors Fe,, Fep, Fes. Then '
Fe; -Fe; = o;- (FTFe;) =0
for i # j. This shows that the set is orthogonal. For { = j, we have
Fe; - Fe; = i (FTFe;) = A > 0
fori =1,2,3 (z‘. riot summed). Thus, U2 is positive definite. Ndw we write -C? . BJ‘ T "'T"'"'

7; _Fe;-"— Xe (inotsummed} - (3.73)
</ EP

where e} is an orthonormal set, and A; is the positive square root of the eigenvalues A2,

T}

<
e

“Finally, we show that the set e].is the right hand set if e; is right hand. From (3.73) it follows B

F=Me[®e; +Xze; ® e+ Mej @ eg (3.74)
If we define a proper orthogonal transformation by i :
 R=e[®e;feiQer+el@e; (3.75)
and use o (¢ @%) (w@e)
‘ U=he1@e+Mer@er+ Moz Bey ¢ 3.76)
A from (3.72), then : G e”j eifi B
F=RU L G

where U is a positive definite symmetric tensor. From (3.74), we have

Fl=)e; @] + Aze; @ €} + Age3 @ €]

V2 =FF" = Me{ @ ef + Me; ® e + Mlej ®e3
V =2A1e] ®e] + Mgej @ e} + Aze] ® €3

Now we can represent F in the form

(3.78)

F=VR : (3.79)

e
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Section4.2  Scalar, Vector, and Tensor Fields 47

Figure 4.1.The trajectory of a particle and the postion vectors r (t) and r (¢ + R) in a rect-
angular basis e;.

4.1.2 - Product Rule for Funcﬁons

Oﬁen, we need to compute the time derivative of the product of two functions. Examples
of these products include products of a scalar and a vector, inner products, vector products -
and tensor products. We define a general product of two functions f (), g(t) by h(t) =
7 {(f (t),g (£)).- The functions f (¢} and g (t) must have & common domain of definition.
Then, the derivative of the product h (£} with respect to time is

B(O) == (£).860) +~(£().60)

This is analogous to the product rle for scalar functions of a smgle variable, The product
rule allows us to write the fol!owmg relations.

@) = (dv)+(ev) -
(u-vy = (@-v)}+(u-v)
(Tv) = (Tv) +(T%)
g '(fI‘S)‘ (TS) + (T&’i)

i

4.2 Scalar, Vector, and Tensor Fields

We now consider scalars that are functions of the coordinates {x;}. In rectangular coordinate
systems, the coordinates of a point are also the components of a position vector. Hence, we

- denote a point (3, 27, 23) by r or x. Thus, if ¢ is a scalar-valued function of {x:} , we write

¢ (r) or ¢ (x). The most genéral linear function has the form ¢ (x) = oyz;. Inthis case there
is no restriction on the domain of x. All values of x are admissible. However, if ¢ is not a
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-C‘omparirig these expfessiom shows that

Df (v)[b] = grad f (") [b} =2v - b

We now express the derivative Df {x){u] in termis of the components u; of u and the
coordinates z; of x in a Cartesian basis. From the linearity of Df (x) fu] in-u, we have

D () ful = D (x) fuies] = wDf (x) e
By definition, this last term is

Fix+he;) = f(x
h .

We recall that f(x) means f(z;, T2, z3). Consider the case fori = 1, _

Df (x)fei} = Jim

J(x+ hey) = f(z1 + k, 72, 73)

and |

Him f(x+hel) —f(x) = . lim f(ml +h1327=3) -f(II:zZ)IS)
k=0 h h—0 h

ik

8z1 - .

This is the definition of the partial derivative in the z; direction. We repeat this for the
remaining directions and find that

 DiWled=gL =5

L]

" This is the usual set of partial derivatives.

We have introduced a new notation. We have employed a comma to denote pasﬁai dif-
ferentiation with respect to a coordinate direction. This notation aflows us to write indicial

* expressions involving differentiation compactly.

Now we have
DY) o] = DS () e = we gl = fus
This result with oﬁr definition of the gradient gives
Df(x)[u] = grad f(x) -u =V f(x} -u

and we have in indicial form

= wdl =t
Df(x)[u]—u‘-ga__ﬁ‘u,

This suggests that grad f(x) is the vector é’,{-e, in an orthonormal basis.

We note that the components of the gradient are grad f (x)-e; = Vf(x)-e; = D f(x)} [ei}.
These are just the directional derivatives of f (x) in the directions of the coordinate bases.

FE
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Equatlon (4.84) is an example of the functional notation and the equivalent scalar product
and matrix operations that we have been using.

4.4.1 D'iverg'ence of a Vector Field

In many applications, parts of the derivative of a vector field are szgmﬁcant. We will define
the divergence of a vector field, a scalar field, and curl of the vector field, a vector field,
using the gradient. Many texts define these derivatives through the operations that are used
to calculate them. Here, we have presented a single derivative of a vector field. Our hope is
to make it clear that a vector field has only one derivative. The definition of this derivative is
consistent with our idea of a derivative for scalar valued functions. '

Since Df {x) or V£ is a tensor of order two, it will have the three scalar invariants that
we have already discussed, Section (3 4). In the present case, these guantities are functions
of x. One invariant of particular interest is the first invariant, the trace. This is called the
divergence of the vector field and is written as.

divf =tz (Vf)

~ The divergence is a scalar field. The component representation of the divérgence is

dwf—tr( e,@e,) = fii

This is a contraction of the tensor field Vf. 'We will give an alternate way to obtain this

"expression using operator notation in a later section.

The divergence is of significance in fiuid mechanics. When the vector field is the velocity,
& physical interpretation is possible. The divergence of the velocity field for a steady incom-
pressible flow is a measure of the source intensity of the flow at a point. There are no sources
ata point ifdivv =0, :

4.4.2 Curl of a Vector Field

The curt of a vector f is a unique vector field. It is denoted by curl f. The curl is defined by
curif xa = (Vf— VfT) a

for every vector a. The curl is the axial vector of the skew-symmetric tensor VF — V£7.
The curl is often denoted by ¥ x f. This notation atises from the operator notation that
will be discussed later. It is sometimes referred to as vector invariant of the vector field £.
Like the divergence, the curl also has a physical interpretation. Again, when the vector
field is the velocity in a fluid, the curl of the velocity field represents the circulation of the -
fluid. The curl is a measure of the rate of angular rotation in the neighborhood of the point x.
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Section4.8 ChainRule 59

Figure 4.2.The composition of functions h = f o g showing that the range of g lies in the

. domain Dy of f.

- 4.8 Chain Rule

Anotherresult that is frequently used in the calculus of tensors is the chain rule for derivatives.
The chain rule involves the composition of functions. Let f and g be two functions where the
range of g is contained in the domain of £. The composition of the functions is written

h=fog -
This is graphically represented in Figure (4.2). We have encountered this notion in calculus.

* Suppose that f (z) = yZ and g (z) =% + 1, then (f 0 g) (=) = f (¢(x)) = VZT+ L

Let g be differentiable at x and let f be differentiable at y = g (x) . The composition
‘h=fog"
is differentiable at x and the derivative is

Dh(x)fu] = Df(y)oDg{x)[u]
= Df(g(x)) [Dg () [ul]

We are more familiar with this when g and, hence, h is a function of a real variable ¢. Then
Dh(t)[o] =ch() and Dg(d)le]=ex(®
and we have A

Shiiy = S6(g(t) = Dr (e )2 ()

Example 18 Let f (z) =sinz andlet g (t) = 8 (). T?xé coﬁzposire Sunction h(t) is |
R =(Fog) () = £ (g(t) =sin(g (1)) =sin(8(2))
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-~ differentiation is commutative and we have

ey v‘,:,a‘;\
e .(3.;:9() - f-‘a‘h

L e - Qitg\t

Section 4.10  Examples of Derivatives 63

This is interpreted as

Vuxv)=Vuxv-Vvxu
we have

= e;-—-a—(tixv)= e,-auxv + t-ix.eiiv-
325_ ] azi 8:!:,'
Vuxv+uxVv=VYuxv-Vvxu
We also use the definition of the derivative and the ﬁroduct rules to obtain the derivative,
D{uxv}h = Dufb] x v+ uxDv[h}

Vulh] Xv+ux Vvlh]
=V X Vulh] + ux Vv[h]

- Using the gradient operator,

V{uxv)

Ekample 17 Let v(x) be a continuously differentiable vector Jield In this case, p-art_id
: ek

?

\oz; 7

curlgrad v

-

a

and

. . : 8 ]
| divcurlv V- Vxvs= (a—zle,) . (-a-z—je,-) X Upep
P

ik = €Uk - O .
Bz;0x; Uk = kR

Example 18 Ler ¢ (x)

and v (x).be d scalar and vector field both of sufficient smoothness
so that oll the derivati

es exist. The Laplacian of the scalar field is a scalar field defined by
Ad= Vi =div(gradg) = V-(Vg) = ¢,
For the vector field, the Laplacian is a v;zcror field given by )
) ' ' Av=Viv= div {grad V) =V(Vv) =v;y
The fields are said to be harmonic when

Ag
Av

= 0

Example 19  The derivative of the deferrﬁinant is often required in contimuum mechanics,
We can obtain this by the following calculation. The determinant has the representation

det (S — AI) = =A% 4+ \2g — AILg + I1]s

7 X4

—Y Eiike 0 ' S
iTkCk = . . T
3::,-3:1:_.,- 3 :

BRI}

ﬂ': VY

EaOipx 6 2&

Eh‘h uﬂj{ G\,@ej
éjih Vir; €)Be,
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Chapter S |
Tensors in Physical Theories

Introduction

Ideally, one would like to construct mathematical theories of physical phénomena such as
rigid body motion, elasticity, fluid dynamics, thermodynamics and electrodynamics in terms
of fundamental equations that have the same form for ail possible coordinate systems and

all observers. There is a distinction here between “all allowable coordinate systems” and
“all observers”. We will consider this distinction in the subsequent sections and show that

the equations of Newtonian mechanics and, hence, the fundamental balance equations of
continuum mechanics aremot valid for all observers. : :

5.1 Tensor Equations

If we are able to express a physical law as a tensor equation in some given coordinate system,

. then it follows from the rules for the transformation of a tensor that this same tensor form

will hold for all allowable coordinate systems. Suppose, for example, that we have the tensor
equation Ty 5 + w; = v; for a coordinate system {z;}. If we multiply each term in the
above equation by |§I -g%, we obtain the equation T7; ; + uf = v] for the new coordinate
system y;. We say that these two equations have the same form. What we have done is
to show explicitly what is implied by the coordinate free or symbotic form of the equation,
divT? + u=v. This coordinate free form is useful, but it does not show the detail of N
representation that is often necessary in computation, 7 T
An important question is how-do we know whether some indexed set representing a physical
quantity is a tensor? The answer to the latter question is that it is an essential part of any well
developed physical theory to postulate that certain fundamental quantities are tensors. We -
wiil illustrate this later. Any physical theory that does not have such postulates can be said
to be in an unsatisfactory state of development. Knowing that certain quantities are tensors, ‘
we are then able to prove that other derived quantities are tensors by using the techniques
previously developed. There are other quantities, independent of any physical theories, that
are natural tensors associated with the geometry of the space and the coordinate systems
used. There are also quantities that are simply tensors according to the abstract mathematical
definition or coordinate transformation test. : .
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Section 52 Observer Transformations 71

Similarly, the vélocity of p measured by 0* is

vy =i* = dle] = vler
Now, differentiating (5.98) with respect to time t, we obtain
' % = QE)x+QH)%+&()
Vi = Q) vp+Q(t)x+&()
orsince x = QT (t){x* —¢ ®] _ ' ' _
Vi = Qv +QAM QTR —c)]+e() (5.100)
= Qv+ -] +2(®)

This is the velocity transformation formula relating the velocity v,, observed by O and the
velocity vi observed by O*. The quantity Q (£) vp is the velocity of p as seen by the observer
O*. The remaining terms are the resuit of the relative motion of the frames,

The accelerations of point p observed by O and O* are

respectively. Differentiating the first expression for X* once mbre, we obtain
X = QBx+2Q@) %+ Q) x+&()
ap = Q(t)ap+2Q() vy + Q(t)x+E()

From (5.97); we obtain (Here, we suppress the arguments for brevity.)

Q=9Q
Then
Q@ = 2Q+0'q
= "Q+ 0" Q=0"Q+0°2Q .
Also, from . -
| S x=QT(x"-¢)
we conclude that

Qx =" (x" — ) + Q2 (x" )
Using these results in the expression for aj, we have _
8 = Qa, +2Qv, + O (x" - ) + 0% (x* — c) + &
or. . ‘
a = Qa, +20°Qvy + " (X" -} + NI (x" —c) + &
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(23
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