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ABSTRACT 
 

Metrics addressing process safety incident performance typically 
focus on frequency and severity statistics.  Often these lagging metrics are 
not overly sensitive to actual performance, making trending and 
forecasting difficult.  This paper presents the results from a statistical 
study of a large incident dataset where changes in the Pareto Shape 
parameter were observed as a function of time.  This approach has been 
found to give far better insight into process safety performance than 
traditional incident metrics and readily relates back to concepts such as 
the “Incident Triangle” and “Layers of Protection”.  Through the 
application of this approach, trends within Process Safety Incident 
performance have been observed earlier, and more accurate forecasting 
has allowed for the identification of anomalies.  In turn, these critical 
observations have allowed for the better structuring and targeting of 
process safety programs.  Although incident data is generally considered 
as a lagging indicator this approach has clearly reduced the lag time 
associated with this type of data and has given valuable insight into the 
current status of process safety performance. 

 
1. INTRODUCTION 
 

Incidents are typically characterized by two key parameters with these parameters 
being severity and frequency, (i.e. the incident was this “bad” and occurs this “often”) 
with aggregate data being used to assess process safety performance.  For example, there 
were X incidents last year associated with a total cost of Y dollars.  Unfortunately these 
traditional metrics carry with them significant statistical noise that can make both 
trending and forecasting of incident performance very difficult to accurately conduct.  If 
one assumes that the number of incidents that occurs in a given time period is a function 
of random chance (with the expected frequency reflecting actual safety performance) a 
common modeling approach is to use the Poisson distribution function for estimating the 
observed number of occurrences. 

 
The Poisson probability distribution function can be written as follows: 
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Where p(y) is the probability of y occurrences in a given time period and μ is the 
expected number of occurrences for that time period.  When looking at aggregate incident 
data y is the measured number of incidents while μ is the expected number of incidents.  
Although the expected value for y is μ the standard deviation associated with y is μ½ and 
as such there can be sufficient statistical noise associated with y so as to blur the estimate 
of μ.  For example, if the safety performance associated with a facility is expected to 
generate 12 incidents each year, observing 9 incidents one year and 15 incidents the next 
year would appear to represent a significant shift in performance, yet these values are 
well within the noise associated with random chance.  As such, attempts to gain 
resolution beyond the square root of the expected sample size are not readily possible.  
Increasing the sample size by a factor of 4 will reduce the associated noise by a factor of 
2, therefore increasing sample size is one strategy that can be used to reduce noise, but 
there are limits to the improvements in resolution that can be made through this approach. 
 
 When viewing incident severity totals such as total incident cost, not only are 
there limitations associated with the underlying number of event occurrences there are 
also issues associated with the magnitude of each individual incident.  For example, some 
incidents might only cost a few dollars while other incidents can be on the order of 
millions of dollars.  As such, when this data is aggregated one or two significant events 
may dominate over the rest of the data pool.  Again this situation can be readily described 
using the Poisson equation in that when one looks at the most extreme incidents where 
only a few incidents of that magnitude are expected in a given time period the noise 
associated with random chance is quite large.  As an example, if 4 incidents over a 
million dollars were expected, observations between 2 and 6 occurrences would not be 
unusual.  If the million dollar plus events dominate the observed total incident cost 
fluctuations between $2,000,000+ one year and $6,000,000+ the next year would not be 
unexpected and as such this statistical noise would blur any true changes in underlying 
incident performance.   
 

Despite these limitations incident data can provide significant insight into process 
safety performance.  Improvements in resolution can be achieved by moving away from 
traditional measures such as frequency and severity.  The focus of this paper is on an 
approach that looks at the observed distribution of incidents and how this distribution 
function relates to process safety performance. 
 
2. THEORY 
 

If one views an incident as a collection of mistakes and/or accidents, incident 
distributions such as those described by the incident triangle can readily be explained 
through an assumption that the severity of the incident is a function of the number of 
mistakes and/or accidents that occurred to produce the incident.  Similarly, if one 



considers the concepts behind the layer of protection analysis (LOPA) model the severity 
of an incident relates to the number of layers of protection that failed.  

 
Based on these models, the severity of an incident can be mathematically 

expressed by the following function: 
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Where L is a constant representing a base level of severity, J represents the jump in 
incident severity associated with each additional failure, and n represents the number of 
failures that have occurred.  For example, if J equals 10 (an order of magnitude) each 
additional mistake or accident associated with an individual incident would increase the 
severity of the resulting incident by an order of magnitude.  Graphically you can view 
this as the bottom layer of an incident triangle representing n = 1, the next layer of the 
incident triangle being n = 2, and so on and so on, with each layer of the incident triangle 
representing incidents which are an order of magnitude greater in severity than the 
previous layer.  Within the LOPA model this equation assumes that the magnitude of the 
incident severity is a function of the number of layers of protection that have failed. 
 
 Building from the LOPA model and working with the following assumptions:  
that each layer of protection is independent; that each layer of protection is responsible 
for the same jump (J) in severity; and that each layer of protection has the same 
likelihood of failure, the following series of equations can be developed. 
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Where P(1) represents the probability that only 1 layer of protection will fail and P(J) 
represents the probability that a typical layer of protection will fail.  If the probability of a 
layer of protection failing was 1 in 10 then there is a 90% chance that only the original 
layer of protection will fail.  Alternatively, there is a 10% chance that one or more 
additional layers of protection will fail.  If we look at the probability of the second layer 
of protection failing and not the third layer of protection failing the following equation 
can be derived: 
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Again if there is a 10% chance of failure for each layer of protection failing the 
probability that only two layers of protection will fail is 9%.  When looking at the 
probability that the nth layer will fail (and not the nth +1 layer) the following equation can 
be derived: 
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Which can be expressed as the following cumulative distribution function: 
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Rearranging the severity and the cumulative distribution functions in terms of n yields the 
following two equations: 
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Equating the two equations to each other gives: 
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Solving for F(N) gives: 
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Which has the same form as the Pareto distribution function with the following 
parameters: 
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As such if one assumes that the likelihood of each layer of protection is approximately 
the same (P(J)) and that the increase in the magnitude of the severity (J) is the same for 
each layer of protection then a curve fit of incident data, using a Pareto distribution 
function, should provide insight into the effectiveness of the related process safety 
performance. 
 
3. DATA TREATMENT 
 
 Eight years of incident data (1999-2006) were utilized in the following study, 
representing just over 1,000 events each with a severity of $30,000 (2007 USD) or 
greater.   (Incident costs were corrected for inflation and currency issues.)  The dataset 
primarily represents two olefin manufacturing regions (Joffre Alberta and Sarnia Ontario) 



the size and operation of which was relatively stable through this time period with some 
expansion occurring in 2000 within the Joffre area.  The selection of $30,000 as a 
minimum incident threshold value represented a balance between maximizing the amount 
of data available for the study while ensuring high data quality and full incident 
reporting.  Lower value incidents are less likely to be fully reported and fully investigated 
relative to larger incidents and as such data quality typically decreases for lower value 
incidents.  Further, the $30,000 threshold placed an emphasis on process safety related 
incidents relative to occupational health related incidents and generally minimized the 
portion of the reported incident costs associated with the related incident investigation. 
 
 The incident data was sorted to form a cumulative distribution plot.  This function 
was then transformed to a linear function allowing for standard curve fitting, which was 
conducted using Excel.   
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Where Cost is the observed incident severity measured in 2007 USD, Location is the 
minimum incident value for the study ($30,000), F(X) is the measured percentile divided 
by 100, and m is the slope of the resulting plot.  Further, m can be related to the Pareto 
Shape parameter through the following equation: 
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 As such curve fitting of the observed incident data should readily give 
information with respect to the quality of the related process safety programs. 
 
 Although the Shape parameter and related layer of protection failure probability 
have been linked to process safety performance the usefulness of these parameters is 
limited in that the data they express is not readily tangible as their meaning is somewhat 
abstract.  As an example, people cannot readily relate to a change in Shape parameter 
from 1.0 to 1.2.  As such, to improve the insight gained through this analysis an expected 
cost function has been utilized and represents the summation of a series of uniformly 
distributed incidents (on a percentile basis) as described by the Shape parameter and an 
estimated event frequency.  The expected cost function is given below:   
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Where I is the expected number of incidents.   

 
The benefit to the use of this metric is that it approximates the median observed 

total incident cost resulting in a value that is not overly influenced by the noise associated 



with extreme incidents within the dataset.  This metric also has a benefit relative to the 
median incident cost for a Pareto distribution function (Location x 2 ^ (1/Shape)) in that 
as the number of expected incidents increases the extreme percentile events become more 
important to the estimated value and act to skew the expected cost function towards 
higher values (i.e. two incidents at the 50th percentile do not add to give the same value as 
one incident at the 25th percentile and one incident at the 75th percentile).  As such, as the 
number of expected incidents rises the average incident cost also rises (to a maximum 
value as defined by the above Pareto distribution function median value).  Although this 
metric gives a good approximation of the expected cost of a basket of incidents this 
parameter does suffer from those limitations previously discussed with respect to the 
noise associated with the expected number of incidents used in the calculations. 
 
4. OBSERVATIONS 
 
Figure 1 illustrates the linear Pareto distribution fit obtained for the entire dataset. 
 

Figure 1. 

 
Figure 1 shows the entire incident dataset and the generally good agreement obtained 
with respect to the alignment between the Pareto distribution function and the observed 
incident data.  Working from the measured slope the Shape parameter can be determined 
(Shape = 1.1334) which then allows for the determination of the probability of a layer of 
protection failing.  (P(J) = 1 in 13.6 +/- 0.1, assumes J = 10 for each layer of protection).   
 

In addition to being able to fit the entire dataset, each month was then analyzed 
based on the data recorded for the preceding year.  In this way it was possible to observe 
changes in the Shape parameter as a function of time, independent of seasonal factors, so 
as to assess changes in process safety performance.   

 
Based on observations that the linear fit was at times significantly influenced by 

the one or two largest incidents within a given dataset, particularly when looking at one-
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year blocks of data, the linear fits were developed using the 0-98th percentiles of the 
reviewed datasets.  In this way the largest incidents influenced the assignment of the 
percentiles but did not directly influence the linear fit.  The difficulty in fitting these 
extreme data points is consistent with the limitations already discussed in the introduction 
with respect to the noise associated with low probability events.  As an example, some 
one-year blocks of data may include a 1 in 10 year event while other may not even 
include a 1 in 6 month event. 
  
Figure 2 shows the measured Shape parameter as a function of time as measured for the 
one-year blocks of data by month. 
 

Figure 2. 

 
Figure 2 shows the observed trend in the Shape parameter as a function of time.  
Although associated with some variability the Shape parameter is clearly trending 
towards higher values.  During the study period the likelihood of a layer of protection 
failing (1/P(J)) has gone from approximately 1 in 10 to 1 in 25 (assumes J = 10). 
 

As a comparison Figure 3 shows the traditional metrics associated with process 
safety performance (Frequency and Total Cost). 
 

Figure 3. 
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Figure 3 shows the number of incidents observed for the previous year by month (closed 
boxes) and the total costs associated with those incidents (open triangles).   
 

Clearly the ability to spot trends with these traditional metrics (incident count and 
total incident cost) is significantly limited relative to the resolution given by the plot of 
the Shape parameter.  Figure 4 illustrates a comparison between the observed total 
incident costs for one-year periods by month and the expected cost function for these 
same periods. 
 

Figure 4. 

 
Figure 4 shows the expected cost function calculated for one-year periods by month 
(closed boxes) and the observed total costs for these same periods (open triangles).  In 
addition a linear trend line has been plotted for the expected cost function. 
 

Clearly much of the noise associated with the observed data has been removed 
using the expected cost function.  The linear fit of the expected cost function indicates 
that aggregate incident costs have been reduced by over 50% during the course of the 
study period, representing a significant improvement in process safety performance.  
More detailed comparison of the incident datasets for 2000 and 2006 shows that 
approximately 15% of the estimated cost savings is related to the occurrence of fewer 
incidents (frequency reductions) and the remaining 35% reduction is related to a 40% 
reduction in the average cost per incident (severity reductions). 

 
 A further benefit of the ability to model incident data is that incident forecasting is 
now possible and the likelihood of incidents of a given magnitude can now be calculated.  
Figure 5 shows a comparison between the number of expected significant incidents and 
the observed number of significant incidents as calculated based on the obtained Shape 
parameters and measured incident frequencies (significant incidents have been defined 
based on the cost per incident exceeding a set threshold). 
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Figure 5. 

 
Figure 5 shows the modeled number of significant events for one-year periods by month 
(heavy line) along with confidence limits representing approximately two standard 
deviations (light lines).  The closed boxes represent the observed number of significant 
incidents for each period. 
 
 As with the expected cost function plot the modeled number of significant events 
clearly indicates a downward trend.  Very notably the number of significant incidents has 
been reduced from approximately 3 per year to 1 per year over the study period.  As 
significant incidents require multiple layers of protection to fail the frequency reductions 
observed at this level are greater than those observed for smaller incidents.  This is 
consistent with the originally proposed severity equation where there was an exponent 
relationship with the number of layers of protection that must fail to produce an incident 
of a given magnitude.   
 
5. UNEXPECTED BENEFIT  
 
 The model approach and assessment of metrics such as the Shape parameter, 
typical layer of protection failure probabilities, and the expected cost function have given 
additional insight into the underlying process safety performance.  Trends that are 
detectible with these functions clearly exist over the entire study period and are very clear 
with respect to the last five years.  By comparison, traditional metrics failed to give this 
type of insight as the associated noise with these metrics overwhelmed the underlying 
signals they were intended to convey.   
 

When modeling the expected number of significant events (including severities 
greater than that illustrated in Figure 5) there was a bias towards observing more 
incidents than what the modeling was predicting.  This bias became even greater when 
larger severities were considered.  A review of the incidents potentially making up these 
anomalies revealed that a few of these incidents were not consistent with the original 
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assumptions.  These “freak” incidents typically represented catastrophic events that were 
initiated outside of the control of the corporation.  Examples include extreme weather 
events and major power outages.  In these situations the assumption that a sufficient 
number of layers of protection existed to prevent the escalation of these incidents does 
not hold to be true.  Figure 6 illustrates a comparison between the expected cost function 
and the observed total costs after the removal of these freak events from the dataset. 
 

Figure 6. 

 
Figure 6 shows the expected cost function calculated for one-year periods by month 
(closed boxes) and the corrected observed total costs for those same periods (open 
triangles).   

 
The alignment between the corrected observed total costs and the expected cost 

function readily shows the strength of this modeling approach.  Clearly these freak 
incidents have always represented a portion of the overall incident costs.  However, as the 
incident costs associated with “normal” incidents involving multiple layers of protection 
has been significantly reduced the percentage of the total incident costs represented by 
these freak incidents has increased.  Without the use of metrics affording this level of 
resolution these types of observations are not readily possible and as such the allocation 
of process safety resources cannot be fully optimized. 
 
6. CONCLUSIONS  
 

The derived relationships and the agreement between theory and the observed 
data indicates that incidents as a group can be readily modeled (just over a thousand 
incidents were described by a two parameter curve fit with a R2 value 0.9833).  Further, 
the derived relationships readily generated far better resolution with respect to the ability 
to trend process safety performance than that which could be achieved using traditional 
metrics such as incident counts and related total incident costs.  As an example trends 
showing improvements in performance were not observed based on total incident cost 
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data whereas the derived expected cost functions showed very clear trends.  In addition to 
identifying trends within the data it was possible to identify incidents (less than 1% of all 
incidents) that were inconsistent with the underlying assumptions through gaining 
significant insight into the observed distribution of incidents this then allows for the 
appropriate targeting of process safety related programs.  

 
Secondary to the modeling successes the study also readily demonstrated and 

quantified the significant improvements that have been made with respect to process 
safety performance during the study period with the greatest improvements being made 
with respect to the reduction in the frequency and severity of major incidents. 
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