Unit 8: Robust Parameter Design

Source : Chapter 11 (sections 11.1 - 11.6, part of sections 11.B-and 11.9).

e Revisiting two previous experiments.

e Strategies for reducing variation.

e Types of noise factors.

e Variation reduction through robust parameter design.

e Cross array, location-dispersion modeling, response hmude
e Single arrays vs cross arrays.

e Signal-to-noise ratios and limitations.



Robust Parameter Design

e Statistical/engineering method for product/process owgment (G.
Taguchi).

e Two types of factors in a system (product/process):
— control factors: once chosen, values remain fixed.
— noise factors: hard-to-control during normal process agas

e Robust Parameter design(RPD or PD): choose control factor settings to

make response less sensitive (i.e.more robust) to noisdigariaxploiting
control-by-noise interactions.



A Robust Design Perspective of Layer-growth and
Leaf Spring Experiments

e The original AT & T layer growth experiment had 8 control fa, 2 noise
factors (location and facet). Goal was to achiamef ormthickness around
14.5um over the noise factors. See Tables 1 and 2.

e The original leaf spring experiment had 4 control factorsplse factor
(quench olil temperature). The gquench oil temperature isoatrollable;
with efforts it can be set in two ranges of values 130-150;150. Goal is
to achieveuniformfree height around 8 inches over the range of quench oil
temperature. See Tables 3 and 4.

e Must understand the role abise factorsn achieveingobustness



Layer Growth Experiment: Factors and Levels

Table 1: Factors and Levels, Layer Growth Experiment

Level
Control Factor — +
A susceptor-rotation method continuous  oscillating
B. code of wafers 668G4 678D4
C. deposition temperaturél) 1210 1220
D. deposition time short long
E. arsenic flow rate(%) 55 59
F. hydrochloric acid etch temperatur€) | 1180 1215
G. hydrochloric acid flow rate(%) 10 14
H. nozzle position 2 6
Level
Noise Factor — +
L. location bottom top
M. facet 1 2 3 4




Layer Growth Experiment: Thickness Data

Table 2: Cross Array and Thickness Data, Layer Growth Expent

Noise Factor

Control Factor L-Bottom L-Top

A B C D E F G H M-1 M-2 M-3 M-4 M-1 M-2 M-3 M-4

- - - + - - - - 14.2908 14.1924 14.2714 14.187¢ 15.3182 15.4279 15.2657 15.405¢
- - - + + + + + 14.8030 14.7193 14.6960 14.763% 14.9306 14.8954 14.9210 15.134¢
- - + - - - + + 13.8793 13.9213 13.8532 14.0849 14.0121 13.9386 14.2118 14.078¢
- - + - + + - - 13.4054 13.4788 13.5878 13.5167 14.2444 14.2573 14.3951 14.3724
- + - - - + — + 14.1736 14.0306 14.1398 14.079¢ 14.1492 14.1654 14.1487 14.276*"
- + - - + - + - 13.2539 13.3338 13.1920 13.4430 14.2204 14.3028 14.2689 14.4104
- + + + - + + - 14.0623 14.0888 14.1766 14.0528 15.2969 15.5209 15.4200 15.207]
- + + + + - - + 14.3068 14.4055 14.6780 14.5811 15.0100 15.0618 15.5724 15.466¢
+ - - - - + + - 13.7259 13.2934 12.6502 13.2666 14.9039 14.7952 14.1886 14.625/
+ - - - + - - + 13.8953 14.5597 14.4492 13.7064 13.7546 14.3229 14.2224 13.820¢
+ - + + - + - + 14.2201 14.3974 15.2757 15.0363 14.1936 14.4295 15.5537 15.220(
+ - + + + - + - 13.5228 13.5828 14.2822 13.8449 14.5640 14.4670 15.2293 15.109¢
+ + - + - - + + 14.5335 14.2492 14.6701 15.2799 14.7437 14.1827 14.9695 15.548/
+ + - + + + - - 14.5676 14.0310 13.7099 14.637% 15.8717 15.2239 14.9700 16.000!
+ + + - - - - - 12.9012 12.7071 13.1484 13.894(0 14.2537 13.8368 14.1332 15.168!
+ + + - + + + + 13.9532 14.0830 14.1119 13.5963 13.8136 14.0745 14.4313 13.686




Leaf Spring Experiment

Table 3: Factors and Levels, Leaf Spring Experiment

Level
Control Factor - +
B. high heat temperaturé ) 1840 1880
C. heating time (seconds) 23 25
D. transfer time (seconds) 10 12
E. hold down time (seconds) 2 3
Level
Noise Factor - +
Q. quench oil temperaturé F) 130-150 150-170

Table 4: Cross Array and Height Data, Leaf Spring Experiment

Control Factor Noise Factor
B C D E Q- Qt
— + — 7.78 7.78 7.81 7.50 7.25 7.12

+
+ + 8.15 8.18 7.88 7.88 7.88 7.44

- — + + 7.50 7.56 7.50 | 7.50 7.56 7.50
+ - 7.59 7.56 7.75 7.63 7.75 7.56

- + — + 7.94 8.00 7.88 7.32 7.44 7.44
+ — — 7.69 8.09 8.06 7.56 7.69 7.62

— — - — 7.56 7.62 7.44 | 7.18 7.18 7.25
+ — — + 7.56 7.81 7.69 7.81 7.50 7.59




Strategies for Variation Reduction

Sampling inspection: passive, sometimes last resort.

Control charting and process monitoring: can remove special causes. If
the process is stable, it can fmdlowedby using adesigned experiment

Blocking, covariate adjustment: passive measures but useful in reducing
variability, not for removing root causes.

Reducing variation in noise factors. effective as it may reduce variation in
the response but can be expensive. Better approach is tgelsantrol
factor settings¢heaperandeasierto do) by exploiting control-by-noise
Interactions, i.e., use robust parameter design!



Types of Noise Factors

Variation in process parameters.
Variation in product parameters.
Environmental variation.

Load Factors.

Upstream variation.
Downstream or user conditions.
Unit-to-unit and spatial variation.

Variation over time.
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Degradation.

e Traditional design uses 7 and 8



Variation Reduction Through RPD

e Suppose = f(x,z), x control factors ana noise factors. Ik andzinteract
in their effects ory, then thevar(y) can be reduced either by reducing
var(z) (i.e. method 4 on p.7) or by changing tkealues (i.e., RPD).

e An example:

y = H+0oxy+Pz+yxoz+e,
= M40xy+ (B+YyX2)z+E€.

By choosing an appropriate valuefo reduce the coefficiefd+ yx, the
Impact ofzony can be reduced. Sin@andy are unknown, this can be
achieved by using the control-by-noise interaction plotstber methods to
be presented later.



Exploitation of Nonlinearity

e Nonlinearity betweely andx can be exploited for robustness«, nominal values
of X, are control factors and deviations»roundxg are viewed as noise factors
(calledinternal nois@. Expandy = f(x) aroundxg,

of
~f(Xo)+ ) 5| (Xi—Xo).
y~ f(Xo) Izaxi XiO( | —Xi0)
(1)
This leads to
of |\’
2 2
0° ~ — of,
|Z <0Xi Xi0> |
whereg? = var(y), 07 = var(x;), each componen has mearxp and variance?.

e From (1), it can be seen thaf can be reduced by choosing with a smaller slope

af
0x, Xio

reducevar(y) because the slope lais more flat. This is garameter designstep.
On the other hand, reducing the variatiorx@rounda can also reducear(y). This
IS atolerance designstep.

. This is demonstrated in Figure 1. Moving the nominal valde b can
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Exploitation of Nonlinearity to Reduce Variation

f(x)

y (response)

b X (design parameter)

Figure 1: Exploiting the Nonlinearity of (x) to Reduce Variation
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Cross Array and Location-Dispersion Modeling

e Cross array = control array noise array,
control array = array for control factors,
noise array = array for noise factors.

e Location-dispersion modeling
— computey;, s’ based on the noise settings for iHecontrol setting,

— analyzey; (location), and Ii&” (dispersion), identify significant location
and dispersion effects.
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Two-step Procedures for Parameter Design
Optimization
e Two-Step Procedure for Nominal-the-Best Problem

(i) select the levels of the dispersion factors to minimizeetsipn

(i) select the level of the ad justment factor to bring the lamabn target

(2)
e Two-Step Procedure for Larger-the-Better and Smaller-theBetter Problems
(1) select the levels of the location factors to maxinja@eminimize
the location
(3)

(i) select the levels of the dispersion factors that are nottlioca

factors to minimize dispersion

Note that the two steps in (3) are in reverse order from tho$2)i
Reason: It is usually harder to increase or decrease thensapin the latter
problem, so this step should be the first to perform.
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Analysis of Layer Growth Experiment

From they; and Ins? columns of Table 5, compute the factorial effects for
location and dispersion respectively. (These numbersargiven in the
book.) From the half-normal plots of these effects (Figurd2s
significant for location anéH, A for dispersion.

= 14.352+ 0.402p,
= —1.822+0.61%a —0.982x.

N <

Two-step procedure:

(i) chooseA at the “—" level (continuous rotation) and at the “+” level
(nozzle position 6).

(i) By solving

§J = 14.352+ 0.40%p = 14.5,

choosexp= 0.368.
14



Layer Growth Experiment:. Analysis Results

Table 5: Means, Log Variances and SN Ratios, Layer Growth Exeat

Control Factor

A B C D E F G H yi Ins? Iny? fi

_ —_ — + - - - - 14.79 -1.018 5.389 6.41
_ _ - + + + + + 14.86 -3.879 5.397 9.28
- - 4+ - - - 4 4+ | 1400 -4205 5278 9.48
_ — + — + + — - 13.91 -1.623 5.265 6.89
_ 4 _ _ . + - T 14.15 -5.306 5.299 10.60
_ 4 — — + — + — 13.80 -1.236 5.250 6.49
_ + + + — + + — 14.73 -0.760 5.380 6.14
_ + 4 + + - - + 14.89 -1.503 5.401 6.90
+ — — — — + + — 13.93 -0.383 5.268 5.65
+ — — — + - — + 14.09 -2.180 5.291 7.47
+ - + + - + - + 14.79 -1.238 5.388 6.63
+ — + + + — + — 14.33 -0.868 5.324 6.19
+ + - + — — + =+ 14.77 -1.483 5.386 6.87
+ + — + + + - — 14.88 -0.418 5.400 5.82
+ + + — — — — — 13.76 -0.418 5.243 5.66
+ + + —~ + + + + 13.97 -2.636 5.274 7.91
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Layer Growth Experiment: Plots
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Figure 2 :Half-Normal Plots of Location and Dispersion Effects, La@rowth Experiment
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Analysis of Leaf Spring Experiment

e Based on the half-normal plots in FigureB3,C andE are significant for
location,C is significant for dispersion:

= 7.6360+0.1106¢g + 0.0881xc + 0.051KE,
= —3.6886+ 1.0901xc.

N <

e Two-step procedure:
(i) chooseC at —.
(i) With xc = -1, y=7.5479+0.1106¢g + 0.051Ke.

To achievey’= 8.0, xg andxg must be chosen beyongi, i.e.,

Xg = Xg = 2.78. This is too drastic, and not validated by current data. An
alternative is to selecs = xg = xc = +1 (not to follow the two-step
procedure), theg=7.89 is closer to 8. (Note thgt=7.71 withB.C_E. .)
Reason for the breakdown of the 2-step procedure: its sestepccannot

achieve the target 8.0.
17



Leaf Spring Experiment: Analysis Results

Table 6: Means and Log Variances, Leaf Spring Experiment

Control Factor

B C D E| ¥y Ins’

-~ + + — | 7540 -2.4075
+ 4+ 4+ +[7.902 -2.6488
~ — 4+ +[7520 -6.9486
+ — 4+ — |7.640 -4.8384

- + - + | 7.670 -2.3987

+ - — | 7./785 -2.9392
- - - — | 7372 -3.2697
+ — — + | 7.660 -4.0582
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Leaf Spring Experiment: Plots
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Response Modeling and Control-by-Noise
Interaction Plots

e Response Model: modgi; directly in terms of control, noise effects and
control-by-noise interactions.

— half normal plot of various effects.

— regression model fitting, obtaining ~

e Make control-by-noise interaction plots for significantegffs iny, choose
robust control settings at which y has a flatter relationship witlsao

e Computevar(y) with respect to variation in the noise factors. G&dlr(y)
thetransmitted variance model Use it to identify control factor settings
with small transmitted variance.

20



Response Modeling, Layer Growth Experiment

e Define

M| = (M1 +M2) — (M3 +My),
Mg = (M1 4+ Mg) — (M2 + M3),
Mc = (M1 + M3) — (M2 +Ma),

e From Figure 4, seledd, L, HL and the cluster of next four effects!(, H,
CM;, AHMy).
e The following model is obtained:

y = 143524 0.402xp + 0.08H + 0.330x. — 0.090xy,
—0.23Ky x| — 0.083((;X|\/|| — 0.082XaXH X|\/|q.

e Recommendations:
H: — (position 2) to+ (position 6)
A: + (oscillating) to— (continuous)
C: + (1210) to— (1220)
resulting in 37% reduction of thigliness standard variation



Half-normal Plot of Factorial Effects
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Figure 4:Half-Normal Plot of Response Model Effects, Layer GrowttpEsiment
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Second Half-normal Plot of Factorial Effects
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Figure 5:Second Half-Normal Plot of Response Model Effects, Layew@n Experiment
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Control-by-noise Interaction Plots
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Figure 6:H x L andC x M Interaction Plots, Layer Growth Experiment
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Ax H x M Plot
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Figure 7:AxH x M Interaction Plot, Layer Growth Experiment
25



Predicted Variance Model

e Assumel, M| andMq are random variables, takingl and-+1 with equal
probabilities. This leads to

22 2 222
X=X = Xvg = Xa =X = q=1

E(x.) = E(Xw,) = E(Xwq) =0, (4)
Cov(x,, X, ) = Covx, qu) = Cov(xy, ,qu) = 0.

e From (4), we have

Var(y) = (.330—.23%y)?Var(x_ )+ (—.090—.083:)*Var(xy, )
+(.082%axH ) “Var (X,
— constant (.330— .23% )% + (—.090— .083«c)?
= constant- 2(.330)(.239)xy + 2(.090)(.083)xc
— constant- .158xy + .015¢¢.

e ChooseH+ andC—. But factorA is not present here. (Why? See

explanation on p. 532).
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Estimation Capacity for Cross Arrays

e Example 1. Control array is 2" design withl = ABC and the noise array
is a 23,1 design withl = abc. The resulting cross array is a 16-rujy 2
design withl = ABC = abc= ABCabc. Easy to show that all 9
control-by-noise interactions are clear, (but not the 6medfiects). This is
iIndeed a general result stated next.

Theorem: Suppose a2 P designdc is chosen for the control array, &2
designdy Is chosen for the noise array, and a cross array, denoted by
dc ® dy, Is constructed fronglc anddy.

() If aq,...,0 are the estimable factorial effects (among the control
factors) indc andf,...,[Bs are the estimable factorial effects (among the
noise factors) iy, thena;, Bj,aiBj fori=1,... /A j=1,...,Bare
estimable idc ® dy.

(i) All the kmcontrol-by-noise interactions (i.e., two-factor interaos
between a control factor main effect and a noise factor mié@ct} are clear
IN dc ® dy.

27



Cross Arrays or Single Arrays?

e Three control factord, B, C two noise factors, b: 23 x 22 design, allowing
all main effects and two-factor interactions to be cleadiimated.

e Use a single array with 16 runs for all five factors: a resoluty 2>—1
design withl = ABCabor | = —ABCah all main effects and two-factor
Interactions are clear. (See Table 7)

e Single arrays can have smaller runs, but cross arrays aer &asse and
Interpret.

28



32-run Cross Array and 16-run Single Arrays

Table 7: 32-Run Cross Array

a + + — —
b + — + —

Runs A B C
1-4 + + + ° 0 0 °
5-8 + + — ¢ ° ° o
9-12 + — + o) ° ° o
13-16 + — — ° o o o
17-20 — + + 0 ° ° o
21-24 — + — o o o o
25-28 — — + ° o o o
29-32 — — — o o o o

e . | =ABCah ;9: | = —ABCalh




Comparison of Cross Arrays and Single Arrays

e Example 1 (continued) An alternative is to choose a sing@yazﬁ,‘2 design
with | = ABCa = ABbc = abcC. This is not advisable because no 2fi’'s are
clear and only main effects are clear. (Why? We need to hane sbtear
control-by-noise interactions for robust optimization.pétter one is to use
a ¢ design withl = ABCa = abc= ABChbc. It has 9 clear effects:
A,B,C,ADb,Ac,Bb,Bc,Ch,Cc (3 control main effects and 6 control-by-noise
Interactions).
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Signal-to-Noise Ratio

Taguchi’'s SN ratia] = InZ—z

Two-step procedure:
1. Select control factor levels to maximize SN ratio,

2. Use an adjustment factor to move mean on target.

Limitations

— maximizingy? not always desired.

— little justification outside linear circuitry.

— statistically justifiable only wheWar(y) is proportional ta= (y)?
Recommendation Use SN ratio sparingly. Better to use the

location-dispersion modeling or the response modeling [atier strategies
can do whatever SN ratio analysis can achieve.
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Half-normal Plot for S/N Ratio Analysis
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Figure 8: Half-Normal Plots of Effects Based on SN Ratio, ¢éagrowth Exper-
Iment
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S/N Ratio Analysis for Layer Growth Experiment

e Based on th@; column in Table 5, compute the factorial effects using SN
ratio. From Figure 7, the conclusion is similar to locatadispersion
analysis. Why? Using

ni =Iny; —lnsiz

and from Table 5, the variation amongsfris much larger than the variation
among Iny;?; thus maximizing SN ratio is equivalent to minimizingshin
this case.
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Comments on Board
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