
Unit 5: Fractional Factorial Experiments at Two

Levels

Source : Chapter 5 (sections 5.1 - 5.3, 5.4.1, 5.5, part of 5.6).

• Effect aliasing, resolution, minimum aberration criteria.

• Analysis.

• Techniques for resolving ambiguities in aliased effects.

• Choice of designs, use of design tables.

• Blocking in 2k−p designs.
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Leaf Spring Experiment

• y = free height of spring, target = 8.0 inches.
Goal : gety as close to 8.0 as possible (nominal-the-best problem).

• Five factors at two levels, use a 16-run design with three replicates for each
run. It is a 25−1 design, 1/2 fraction of the 25 design.

Table 1: Factors and Levels, Leaf Spring Experiment

Level

Factor − +

B. high heat temperature (◦F) 1840 1880

C. heating time (seconds) 23 25

D. transfer time (seconds) 10 12

E. hold down time (seconds) 2 3

Q. quench oil temperature (◦F) 130-150 150-170
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Leaf Spring Experiment: Design Matrix and Data

Table 2: Design Matrix and Free Height Data, Leaf Spring Experiment

Factor

B C D E Q Free Height ȳi s2i lns2i
− + + − − 7.78 7.78 7.81 7.7900 0.0003 -8.1117

+ + + + − 8.15 8.18 7.88 8.0700 0.0273 -3.6009

− − + + − 7.50 7.56 7.50 7.5200 0.0012 -6.7254

+ − + − − 7.59 7.56 7.75 7.6333 0.0104 -4.5627

− + − + − 7.94 8.00 7.88 7.9400 0.0036 -5.6268

+ + − − − 7.69 8.09 8.06 7.9467 0.0496 -3.0031

− − − − − 7.56 7.62 7.44 7.5400 0.0084 -4.7795

+ − − + − 7.56 7.81 7.69 7.6867 0.0156 -4.1583

− + + − + 7.50 7.25 7.12 7.2900 0.0373 -3.2888

+ + + + + 7.88 7.88 7.44 7.7333 0.0645 -2.7406

− − + + + 7.50 7.56 7.50 7.5200 0.0012 -6.7254

+ − + − + 7.63 7.75 7.56 7.6467 0.0092 -4.6849

− + − + + 7.32 7.44 7.44 7.4000 0.0048 -5.3391

+ + − − + 7.56 7.69 7.62 7.6233 0.0042 -5.4648

− − − − + 7.18 7.18 7.25 7.2033 0.0016 -6.4171

+ − − + + 7.81 7.50 7.59 7.6333 0.0254 -3.6717
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Why Using Fractional Factorial Designs?

• If a 25 design is used for the experiment, its 31 degrees of freedom would be

allocated as follows:

Main Interactions

Effects 2-Factor 3-Factor 4-Factor 5-Factor

# 5 10 10 5 1

• Using effect hierarchy principle, one would argue that 4fi’s, 5fi and even

3fi’s are not likely to be important. There are 10+5+1 = 16 sucheffects, half

of the total runs! Using a 25 design can be wasteful (unless 32 runs cost

about the same as 16 runs.)

• Use of a FF design instead of full factorial design is usuallydone for

economic reasons. Since there isno free lunch , whatprice to pay? See

next.

4



Effect Aliasing and Defining Relation
• In the design matrix, colE = col B× col C× col D. That means,

ȳ(E+)− ȳ(E−) = ȳ(BCD+)− ȳ(BCD−).

Therefore the design is not capable of distinguishingE from BCD. The
main effectE is aliasedwith the interactionBCD. Notationally,

E = BCD or I = BCDE,

I = column of+’s is the identity element in the group of multiplications.
(Notice the mathematical similarity between aliasing and confounding.
What is the difference?)

• I = BCDE is thedefining relation for the 25−1 design. It implies all the 15
effect aliasing relations :

B = CDE, C = BDE, D = BCE, E = BCD,

BC= DE, BD = CE, BE = CD,

Q = BCDEQ, BQ= CDEQ, CQ= BDEQ, DQ = BCEQ,

EQ= BCDQ, BCQ= DEQ, BDQ= CEQ, BEQ= CDQ.
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Clear Effects

• A main effect or two-factor interaction (2fi) is calledclear if it is not aliased

with any other m.e.’s or 2fi’s andstrongly clear if it is not aliased with any

other m.e.’s, 2fi’s or 3fi’s. Therefore a clear effect isestimableunder the

assumption of negligible 3-factor and higher interactionsand a strongly

clear effect isestimableunder the weaker assumption of negligible 4-factor

and higher interactions.

• In the 25−1 design withI = BCDE, which effects are clear and strongly

clear?

Ans: B, C, D, E are clear,Q, BQ, CQ, DQ, EQare strongly clear.

• Consider the alternative plan 25−1 design withI = BCDEQ. (It is said to

have resolution V because the length of the defining word is 5 while the

previous plan has resolution IV.) It can be verified that all five main effects

are strongly clear and all 10 2fi’s are clear. (Do the derivations). This is a

very good plan becauseeachof the 15 degrees of freedom is either clear or

strongly clear.
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Defining Contrast Subgroup for 2k−p Designs

• A 2k−p design hask factors, 2k−p runs, and it is a 2−pth fraction of the 2k

design. The fraction is defined byp independentdefining words. The group

formed by thesep words is called thedefining contrast subgroup. It has

2p−1 words plus the identity elementI .

• Resolution= shortest wordlength among the 2p−1 words.

• Example: A 26−2 design with5 = 12and6 = 134. The two independent

defining words areI = 125andI = 1346. ThenI = 125×1346= 23456.
The defining contrast subgroup ={I ,125,1346,23456}. The design has

resolution III.
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Deriving Aliasing Relations for the 26−2 design

• For the same 2k−p design, the defining contrast subgroup is

I = 125= 1346= 23456.

All the 15 degrees of freedom (each is a coset in group theory)are identified.

I = 125 = 1346 = 23456,

1 = 25 = 346 = 123456,

2 = 15 = 12346 = 3456,

3 = 1235 = 146 = 2456,

4 = 1245 = 136 = 2356,

5 = 12 = 13456 = 2346,

6 = 1256 = 134 = 2345,

13 = 235 = 46 = 12456,

14 = 245 = 36 = 12356,

16 = 256 = 34 = 12345,

23 = 135 = 1246 = 456,

24 = 145 = 1236 = 356,

26 = 156 = 1234 = 345,

35 = 123 = 1456 = 246,

45 = 124 = 1356 = 236,

56 = 126 = 1345 = 234.

(1)

• It has the clear effects:3, 4, 6, 23, 24, 26, 35, 45, 56. It has resolution III.
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WordLength Pattern and Resolution
• DefineAi = number of defining words of lengthi. W = (A3,A4,A5, . . .) is

called thewordlength pattern. In this design,W = (1, 1, 1, 0). It is required
thatA2 = 0. (Why? No main effect is allowed to be aliased with another
main effect.)

• Resolution= smallestr such thatAr ≥ 1.

• Maximum resolution criterion : For fixedk andp, choose a 2k−p design
with maximum resolution.

• Rules for Resolution IV and V Designs:

(i) In any resolution IV design, the main effects are clear.

(ii) In any resolution V design, the main effects are strongly

clear and the two-factor interactions are clear.

(iii ) Among the resolution IV designs with given k and p,

those with the largest number of clear two-factor

interactions are the best.

(2)
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A Projective Rationale for Resolution

• For a resolutionR design, its projection onto anyR-1 factors is a full

factorial in theR-1 factors. This would alloweffects of all orders among the

R-1 factors to be estimable. (Caveat: it assumes the assumption that other

factors are inert.) See Figure 5.1 of WH.
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Minimum Aberration Criterion
• Motivating example: consider the two 27−2 designs:

d1 : I = 4567 = 12346 = 12357,

d2 : I = 1236 = 1457 = 234567.

Both have resolution IV, but

W(d1) = (0,1,2,0,0) andW(d2) = (0,2,0,1,0).

Which one is better? Intuitively one would argue thatd1 is better because
A4(d1) = 1 < A4(d2) = 2. (Why? Effect hierarchy principle.)

• For any two 2k−p designsd1 andd2, let r be the smallest integer such that
Ar(d1) 6= Ar(d2). Thend1 is said to haveless aberrationthand2 if
Ar(d1) < Ar(d2). If there is no design with less aberration thand1, thend1

hasminimum aberration.

• Throughout the book, this is themajor criterion used for selecting fractional

factorial designs. Its theory is covered in a forthcoming book by R.
Mukherjee and C. F. J. Wu.
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Analysis for Location Effects

• Samestrategy as in full factorial experimentsexceptfor the interpretation
and handling of aliased effects.

• For the location effects (based on ¯yi values), the factorial effects are given in

Table 3 and the corresponding half-normal plot in Figure 1. Visually one

may judge thatQ,B,C,CQand possiblyE,BQare significant. One can

apply the studentized maximum modulus test (see section 3.15, not covered

in class) to confirm thatQ,B,C are significant at 0.05 level (see pp. 161 and

163).

• TheB×Q andC×Q plots (Figure 5.3 of WH) show that they are

synergystic.

• For illustration, we use the model

ŷ = 7.6360+0.1106xB +0.0519xE +0.0881xC−0.1298xQ

+0.0423xBxQ−0.0827xCxQ

(3)
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Factorial Effects, Leaf Spring Experiment

Table 3: Factorial Effects, Leaf Spring Experiment

Effect ȳ lns2

B 0.221 1.891

C 0.176 0.569

D 0.029 -0.247

E 0.104 0.216

Q -0.260 0.280

BQ 0.085 -0.589

CQ -0.165 0.598

DQ 0.054 1.111

EQ 0.027 0.129

BC 0.017 -0.002

BD 0.020 0.425

CD -0.035 0.670

BCQ 0.010 -1.089

BDQ -0.040 -0.432

BEQ -0.047 0.854
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Half-normal Plot of Location Effects, Leaf Spring

Experiment
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Figure 1:Half-Normal Plot of Location Effects, Leaf Spring Experiment

14



Interaction Plots
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Figure 2:B×Q andC×Q interaction plots, Leaf Spring Experiment
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Analysis for Dispersion Effects

• For the dispersion effects (based onzi = lns2
i values), the half-normal plot is

given in Figure 2. Visually only effectB stands out. This is confirmed by

applying the studentized maximum modulus test. For illustration, we will

includeB,DQ,BCQ in the following model,

ln σ̂2 = −4.9313+0.9455xB +0.5556xDxQ−0.5445xBxCxQ. (4)
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Half-normal Plot of Dispersion Effects, Leaf Spring

Experiment
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Two-Step Procedure for Optimization

• Step 1: To minimizes2 (or lns2) based on eq. (4), chooseB = −. Based on

theD×Q plot (Figure 3), choose the combination with the lowest value,

D = +, Q = −. With B = − andQ = −, chooseC = + to attain the

minimum in theB×C×Q interaction plot (Figure 4). Another

confirmation: they lead toxB = −,xDxQ = − andxBxCxQ = + in the model

(4), which make each of the last three terms negative.

• Step 2: WithBCDQ= (−,+,+,−),

ŷ = 7.6360+0.1106(−1)+0.0519xE +0.0881(+1)−0.1298(−1)

+0.0423(−1)(−1)−0.0827(+1)(−1)

= 7.8683+0.0519xE.

By solving ŷ = 8.0, xE = 2.54.

Warning : This is way outside the experimental range for factorE. Such a

value may not make physical sense and the predicted variancevalue for this

setting may be too optimistic and not substantiated.
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Interaction Plots for Dispersion Effects
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Techniques for Resolving Ambiguities in Aliased

Effects

• Among the three factorial effects that feature in model (4),B is clear and

DQ is strongly clear.

• However, the termxBxCxQ is aliased withxDxExQ (See bottom of page 5).

The following three techniques can be used to resolve the ambiguities.

• Subject matter knowledgemay suggest some effects in the alias set are not

likely to be significant (or does not have a good physical interpretation).

• Or useeffect hierarchy principleto assume awaysome higher order effects.

• Or use afollow-up experiment to de-aliasthese effects. Three methods are

given in section 5.4 of WH. Two are considered here.
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Method of Adding Orthogonal Runs

Because of aliasing, the model in (4) containsB,DQ,BCQandDEQ, where

BCQ= DEQare aliased. Suppose we can have 4 additional runs (run no. 17-20

in Table 4). The criterion is to choose those 4 runs to beorthogonalfor the two

columnsBCQandDEQ (i.e., tode-alias BCQandDEQ). Referring to Table 4,

we follow the steps:

1. Choose(++−−) and(+−+−) for BCQandDEQ (these two vectors are

orthogonal).

2. Choose(+−−+) for B (This vector is orthogonal to the previous two;B

has the largest effect and needs to be determined beforeDQ.)

3. Choice ofDQ is arbitrary (we have used up three orthogonal vectors),

choose(−++−) for DQ.
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Method of Adding Orthogonal Runs (contd.)

4. E = DQ×DEQ= (−++−)× (+−+−) = (−−++).

5. Arbitrarily choose(+−+−) for Q, thenC = BCQ×B×Q = (++++).

6. Introduce a blocking variable “block” to represent the possible effect due to

time difference in conducting the first 16 runs and the follow-up 4 runs; use

block =− for number 1-16, block =+ for number 17-20.

Note: The regression model for Table 4 should includexB,xDxQ,xBxCxQ,xDxExQ

andxbl (blocking variable). See (5.17) of WH.
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Augmented Model Matrix and Design Matrix

Table 4: Augmented Design Matrix and Model Matrix, Leaf Spring Experiment

Run B C D E Q Block BCQ DEQ DQ

1 − + + − − − + + −

2 + + + + − − − − −

3 − − + + − − − − −

4 + − + − − − + + −

5 − + − + − − + + +

6 + + − − − − − − +

7 − − − − − − − − +

8 + − − + − − + + +

9 − + + − + − − − +

10 + + + + + − + + +

11 − − + + + − + + +

12 + − + − + − − − +

13 − + − + + − − − −

14 + + − − + − + + −

15 − − − − + − + + −

16 + − − + + − − − −

17 + + − − + + + + −

18 − + − − − + + − +

19 − + + + + + − + +

20 + + + + − + − − −
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Fold-over Technique

• Suppose the original experiment is based on a 27−4
III design with generators

d1 : 4 = 12, 5 = 13, 6 = 23, 7 = 123.

None of its main effects are clear.

• To de-alias them, we can choose another 8 runs (no. 9-16 in Table 5) with

reversedsigns for each of the 7 factors. This follow-up designd2 has the

generators

d2 : 4 = −12,5 = −13,6 = −23,7 = 123

With the extra degrees of freedom, we can introduce a new factor 8 for run

number 1-8, and-8 for run number 9-16. See Table 5.

• The combined designd1 +d2 is a 28−4
IV design and thus all main effects are

clear. (Its defining contrast subgroup is on p.227 of WH).
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Augmented Design Matrix Using Fold-over

Technique

Table 5: Augmented Design Matrix Using Fold-Over Technique

d1
Run 1 2 3 4=12 5=13 6=23 7=123 8

1 − − − + + + − +

2 − − + + − − + +

3 − + − − + − + +

4 − + + − − + − +

5 + − − − − + + +

6 + − + − + − − +

7 + + − + − − − +

8 + + + + + + + +

d2
Run -1 -2 -3 -4 -5 -6 -7 -8

9 + + + − − − + −

10 + + − − + + − −

11 + − + + − + − −

12 + − − + + − + −

13 − + + + + − − −

14 − + − + − + + −

15 − − + − + + + −

16 − − − − − − − −
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Fold-over Technique: Version Two

• Suppose one factor, say5, is very important. We want to de-alias5 and all

2fi’s involving 5.

• Choose, instead, the following 27−4
III design

d3 : 4 = 12,5 = −13,6 = 23,7 = 123.

Then the combined designd1 +d3 is a 27−3
III design with the generators

d′ : 4 = 12,6 = 23,7 = 123. (5)

Since5 does not appear in (5),5 is strongly clear and all 2fi’s involving5
are clear. However, other main effects are not clear.

• Choice betweend2 andd3 depends on the priority given to the effects.
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Critique of Fold-over Technique

• Fold-over technique is not an efficient technique. It requires doubling of the

run size and can only de-alias aspecificset of effects. In practice, after

analyzing the first experiment, a set of effects will emerge and need to be

de-aliased. It will usually require muchfewerruns to de-alias a few effects.

• A more efficient technique that does not have these deficiencies is the

optimum design approach given in Section 5.4.2.
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Use of Design Tables

• Tables are given in Appendix 5A. Minimum aberration (MA) designs are

given in the tables. If two designs are given for samek andp, the first is an

MA design and the second is better in having a larger number of clear

effects. Two tables are given on next pages.

• In Table 7, the first 29−4 design has MA and 8 clear 2fi’s. The second 29−4

design is the second best according to the MA criterion but has15 clear

2fi’s. Details on p. 234 of WH. Using Rule (iii) on page 9 in (2),the second

design is better because both have resolution IV.

• It is not uncommon to find a design with slightly worse aberration but more

clear effects. Thusthe number of clear effectsshould be used as a

supplementary criterionto the MA criterion.
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Table 6: 16-Run2k−p FFD (k− p = 4)

(k is the number of factors and F&R is the fraction and resolution.)

k F&R Design Generators Clear Effects

5 25−1
V 5 = 1234 all five main effects, all 10 2fi’s

6 26−2
IV 5 = 123, 6= 124 all six main effects

6∗ 26−2
III 5 = 12, 6= 134 3, 4, 6, 23, 24, 26, 35, 45, 56

7 27−3
IV 5 = 123, 6= 124, 7= 134 all seven main effects

8 28−4
IV 5 = 123, 6= 124, 7= 134, 8= 234 all eight main effects

9 29−5
III 5 = 123, 6= 124, 7= 134, 8= 234, 9= 1234 none

10 210−6
III 5 = 123, 6= 124, 7= 134, 8= 234, 9= 1234,t0 = 34 none

11 211−7
III 5 = 123, 6= 124, 7= 134, 8= 234, 9= 1234,t0 = 34, t1 = 24 none

12 212−8
III 5 = 123, 6= 124, 7= 134, 8= 234, 9= 1234, t0 = 34, t1 =

24, t2 = 14
none

13 213−9
III 5 = 123, 6= 124, 7= 134, 8= 234, 9= 1234, t0 = 34, t1 =

24, t2 = 14, t3 = 23
none

14 214−10
III 5 = 123, 6= 124, 7= 134, 8= 234, 9= 1234, t0 = 34, t1 =

24, t2 = 14, t3 = 23, t4 = 13
none

15 215−11
III 5 = 123, 6= 124, 7= 134, 8= 234, 9= 1234, t0 = 34, t1 =

24, t2 = 14, t3 = 23, t4 = 13, t5 = 12
none
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Table 7: 32 Run2k−p FFD (k− p = 5, 6≤ k≤ 11)

(k is the number of factors and F&R is the fraction and resolution.)

k F&R Design Generators Clear Effects

6 26−1
VI 6 = 12345 all six main effects, all 15 2fi’s

7 27−2
IV 6 = 123, 7= 1245 all seven main effects, 14, 15, 17, 24, 25,

27, 34, 35, 37, 45, 46, 47, 56, 57, 67

8 28−3
IV 6 = 123, 7= 124, 8= 1345 all eight main effects, 15, 18, 25, 28, 35,

38, 45, 48, 56, 57, 58, 68, 78

9 29−4
IV 6 = 123, 7= 124, 8= 125, 9= 1345 all nine main effects, 19, 29, 39, 49, 59,

69, 79, 89

9 29−4
IV 6 = 123, 7= 124, 8= 134, 9= 2345 all nine main effects, 15, 19, 25, 29, 35,

39, 45, 49, 56, 57, 58, 59, 69, 79, 89

10 210−5
IV 6 = 123, 7= 124, 8= 125, 9= 1345,t0 = 2345 all 10 main effects

10 210−5
III 6 = 12, 7= 134, 8= 135, 9= 145,t0 = 345 3, 4, 5, 7, 8, 9,t0, 23, 24, 25, 27, 28, 29,

2t0, 36, 46, 56, 67, 68, 69, 6t0

11 211−6
IV 6 = 123, 7= 124, 8= 134, 9= 125,t0 = 135,t1 =

145
all 11 main effects

11 211−6
III 6 = 12, 7= 13, 8= 234, 9= 235, t0 = 245, t1 =

1345
4, 5, 8, 9,t0, t1, 14, 15, 18, 19, 1t0, 1t1
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Choice of Fractions and Avoidance of Specific

Combinations

• A 2k−p design has 2p choices. In general, use randomization to choose one

of them. For example, the 27−3 design has 8 choices

4 = ±12,5 = ±13,6 = ±23. Randomly choose the signs.

• If specific combinations (e.g.,(+++) for high pressure, high temperature,

high concentration) are deemed undesirable or even disastrous, they can be

avoided by choosing a fraction that does not contain them. Example on

p.237 of WH.
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Blocking in FF Designs
Example: Arrange the 26−2 design in four (= 22) blocks with

I = 1235= 1246= 3456.

Suppose we choose

B1 = 134,B2 = 234,B1B2 = 12.

Then

B1 = 134= 245= 236= 156,

B2 = 234= 145= 136= 256,

B1B2 = 12= 35= 46= 123456;

i.e., these effects are confounded with block effects and cannot be used for estimation.
Among the remaining 12 degrees of freedom, six are main effects and the rest are

13 = 25 = 2346 = 1456,

14 = 26 = 2345 = 1356,

15 = 23 = 2456 = 1346,

16 = 24 = 2356 = 1345,

34 = 56 = 1245 = 1236,

36 = 45 = 1256 = 1234.
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Use of Design Tables for Blocking

• FF designs in blocks are given in Appendix 5B. You only need tolearn how

to use the tables and interpret the results. Theory or criterion used in

choosing designs are not required.
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Comments on Board
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