
Unit 3: Experiments with More Than One Factor

Sources : Chapter 3.

• Paired comparison design (Section 3.1).

• Randomized block design (Section 3.2).

• Two-way and multi-way layout with fixed effects (Sections 3.3and 3.5).

• Latin and Graeco-Latin square design (Sections 3.6 and 3.7).

• Balanced incomplete block design (Section 3.8).

• Split-plot design (Section 3.9).

• Analysis of covariance (ANCOVA) (Section 3.10).

• Transformation of response (Section 3.11).
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Sewage Experiment

• Objective : To compare two methods MSI and SIB for determining chlorine

content in sewage effluents;y = residual chlorine reading.

Table 1: Residual Chlorine Readings, Sewage Experiment
Method

Sample MSI SIB di

1 0.39 0.36 −0.03

2 0.84 1.35 0.51

3 1.76 2.56 0.80

4 3.35 3.92 0.57

5 4.69 5.35 0.66

6 7.70 8.33 0.63

7 10.52 10.70 0.18

8 10.92 10.91 −0.01

• Experimental Design :Eight samples were collected at different doses and

contact times. Two methods were applied to each of the eight samples. It is

apaired comparisondesign because the pair of treatments are applied to the

same samples (or units).
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Paired Comparison Design vs. Unpaired Design

• Paired Comparison Design: Two treatments are randomly assigned to each

block of two units. Can eliminate block-to-block variation and is effective if

such variation is large.

Examples : pairs of twins, eyes, kidneys, left and right feet.

(Subject-to-subject variation much larger than within-subject variation).

• Unpaired Design: Each treatment is applied to aseparate set of units, or

called thetwo-sampleproblem. Useful if pairing is unnecessary; also it has

more degrees of freedom for error estimation (see page 5).
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Paired t tests

• Paired t test : Let yi1, yi2 be the responses of treatments 1 and 2 for unit

i, i = 1, . . . N . Let di = yi2 − yi1, d̄ ands2
d the sample mean and variance

of di.

tpaired =
√

Nd̄/sd

The two treatments are declared significantly different at levelα if

|tpaired| > tN−1,α/2. (1)
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Unpaired t tests

• Unpaired t test : The unpairedt test is appropriate if we randomly choose

N of the2N units to receive one treatment and assign the remainingN

units to the second treatment. Letȳi ands2
i be the sample mean and sample

variance for theith treatment,i = 1 and 2. Define

tunpaired = (ȳ2 − ȳ1)/
√

(s2
2/N) + (s2

1/N).

The two treatments are declared significantly different at levelα if

|tunpaired| > t2N−2,α/2. (2)

Note that the degrees of freedom in (1) and (2) areN − 1 and2N − 2

respectively. The unpairedt test has more df’s but make sure that the

unit-to-unit variation is under control (if this method is to be used).
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Analysis Results :t tests

tpaired =
0.4138

0.321/
√

8
=

0.4138

0.1135
= 3.645,

tunpaired =
5.435 − 5.0212

√

(17.811 + 17.012)/8
=

0.4138

2.0863
= 0.198.

Thep values are

Prob(|t7| > 3.645) = 0.008,

P rob(|t14| > 0.198) = 0.848.

• Unpairedt test fails to declare significant difference because its

denominator 2.0863 is too large. Why ? Because the denominator contains

the sample-to-sample variation component.
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Analysis Results : ANOVA andF tests

• Wrong to analyze by ignoring pairing. A better explanation is given by

ANOVA.

• F statistic in ANOVA for paired design equalst2paired; similarly, F statistic

in ANOVA for unpaired design equalst2unpaired. Data can be analyzed in

two equivalent ways.

• In the correct analysis (Table 2), the total variation is decomposed into three

components; the largest one is the sample-to-sample variation (its

MS = 34.77). In the unpaired analysis (Table 3), this component is

mistakenly included in the residualSS, thus making theF test powerless.
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ANOVA Tables

Table 2: ANOVA Table, Sewage Experiment

Degrees of Sum of Mean

Source Freedom Squares Squares F

sample 7 243.4042 34.77203 674.82

method 1 0.6848 0.68476 13.29

residual 7 0.3607 0.05153

Table 3: ANOVA Table Ignoring Pairing, Sewage Experiment

Degrees of Sum of Mean

Source Freedom Squares SquaresF

method 1 0.6848 0.68476 0.04

residual 14 243.7649 17.41178
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Randomized Block Design : Girder Experiment
• Recall the principles of blocking and randomization in Unit1. In a

randomized block design (RBD),k treatments are randomly assigned to
each block (ofk units); there are in totalb blocks. Total sample size
N = bk.

• Paired comparison design is a special case withk = 2. (Why ?)

• Objective : To compare four methods for predicting the shear strength for
steel plate girders (k = 4, b = 9).

Table 4: Strength Data, Girder Experiment
(Block) Method

Girder Aarau Karlsruhe Lehigh Cardiff

S1/1 0.772 1.186 1.061 1.025

S2/1 0.744 1.151 0.992 0.905

S3/1 0.767 1.322 1.063 0.930

S4/1 0.745 1.339 1.062 0.899

S5/1 0.725 1.200 1.065 0.871

S1/2 0.844 1.402 1.178 1.004

S2/2 0.831 1.365 1.037 0.853

S3/2 0.867 1.537 1.086 0.858

S4/2 0.859 1.559 1.052 0.805
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Model and Estimation

Model for RBD :

yij = η + αi + τj + ǫij , i = 1, . . . , b; j = 1, . . . , k,

whereyij = observation of thejth treatment in theith block,αi = ith block

effect,τj = jth treatment effect,ǫij = errors, independentN(0, σ2).

yij = η̂ + α̂i + τ̂j + rij

= ȳ·· + (ȳi· − ȳ··) + (ȳ·j − ȳ··) + (yij − ȳi· − ȳ·j + ȳ··),

where

η̂ = ȳ··, α̂i = ȳi· − ȳ··, τ̂j = ȳ·j − ȳ··, rij = yij − ȳi· − ȳ·j + ȳ··,

ȳi· = k−1
∑k

j=1 yij , ȳ·j = b−1
∑b

i=1 yij , ȳ·· = (bk)−1
∑b

i=1

∑k
j=1 yij .

10



ANOVA

Subtractinḡy··, squaring both sides and summing overi andj yields

b
∑

i=1

k
∑

j=1

(yij − ȳ··)
2

=

b
∑

i=1

k(ȳi· − ȳ··)
2

+

k
∑

j=1

b(ȳ·j − ȳ··)
2

+

b
∑

i=1

k
∑

j=1

(yij − ȳi· − ȳ·j + ȳ··)
2

= SSb + SSt + SSr.

Table 5: ANOVA Table for Randomized Block Design

Degrees of Sum of

Source Freedom Squares

block b − 1
Pb

i=1 k(ȳi· − ȳ
··

)2

treatment k − 1
Pk

j=1 b(ȳ
·j − ȳ

··
)2

residual (b − 1)(k − 1)
Pb

i=1
Pk

j=1 (yij − ȳi· − ȳ
·j + ȳ

··
)2

total bk − 1
Pb

i=1
Pk

j=1 (yij − ȳ
··

)2
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Testing and Multiple Comparisons

• H0 : τ1 = · · · = τk, can be tested by using theF statistic

F =
SSt/(k − 1)

SSr/(b − 1)(k − 1)
, (3)

TheF test rejectsH0 at levelα if F > Fk−1,(b−1)(k−1),α.

• If H0 is rejected, multiple comparisons of theτj should be performed.

t statistics for making multiple comparisons :

tij =
ȳ·j − ȳ·i

σ̂
√

1/b + 1/b
, (4)

whereσ̂2 is the mean square error in the ANOVA table.

• At level α, the Tukey multiple comparison method identifies “treatments i

andj as different” if

|tij | >
1√
2
qk,(b−1)(k−1),α.
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Simultaneous Confidence Intervals

By solving
|(ȳ·j − ȳ·i) − (τj − τi)|

σ̂
√

2/b
≤ 1√

2
qk,(b−1)(k−1),α

for τj − τi, the simultaneous confidence intervals forτj − τi are

ȳ·j − ȳ·i ± qk,(b−1)(k−1),α
σ̂√
b

for all i andj pairs.
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Analysis of Girder Experiment : F test

Table 6: ANOVA Table, Girder Experiment

Degrees of Sum of Mean

Source Freedom Squares Squares F

girder 8 0.089 0.011 1.62

method 3 1.514 0.505 73.03

residual 24 0.166 0.007

• TheF statistic in (3) has the value

1.514/3

0.166/24
= 73.03.

Therefore, the p value for testing the difference between methods is

Prob(F3,24 > 73.03)=0.00. The small p value suggests that the methods are

different.
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Analysis of Girder Experiment : Multiple

Comparisons

Table 7: Multiple Comparisont Statistics, Girder Experiment

A vs.K A vs.L A vs.C K vs.L K vs.C L vs.C

13.91 6.92 2.82 -6.99 -11.09 -4.10

• The means for the four methods,A for Aarau,K for Karlsruhe,L for

Lehigh andC for Cardiff are 0.7949, 1.3401, 1.0662 and 0.9056.

• The multiple comparisont statistics based on (4) are displayed in Table 7.

For example, theA vs.K t statistic ist12 = 1.3401−0.7949√
0.007

√
2/9

= 13.91. With

α = 0.05, t24,0.05/(6×2) = 2.875 for the Bonferroni method. Sincek = 4

and
(

k
2

)

= 6, 1√
2
q4,24,0.05 = 3.90

1.414 = 2.758 for the Tukey method. Again,

Tukey method is more powerful. ( Why ? )
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Two-way layout
• This is similar to RBD. The only difference is that here we have two

treatment factors instead of one treatment factor and one block factor.
Interested in assessing interaction effect between the twotreatments. In
blocking, block×treatment interaction is assumed negligible.

• Bolt experiment : The goals was to test if there is any difference between
two test media (bolt, mandrel) and among three plating methods (C&W, HT,
P&O). Responsey is the torque of the locknut.

Table 8: Torque Data, Bolt Experiment

C&W HT P&O

Bolt 20, 16, 17, 18, 15, 26, 40, 28, 38, 38, 25, 40, 30, 17, 16,

16, 19, 14, 15, 24 30, 26, 38, 45, 38 45, 49, 33, 30, 20

Mandrel 24, 18, 17, 17, 15, 32, 22, 30, 35, 32, 10, 13, 17, 16, 15,

23, 14, 18, 12, 11 28, 27, 28, 30, 30 14, 11, 14, 15, 16
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Model and Estimation
• Model :

yijl = η + αi + βj + ωij + ǫijl, i = 1, . . . , I; j = 1, . . . , J ; l = 1, . . . , n (5)

whereyijl = observation for thelth replicate of theith level of factorA and
thejth level of factorB, αi = ith main effect forA, βj = jth main effect for
B, ωij = (i, j)th interaction effect betweenA andB andǫijl = errors,
independentN(0, σ2).

• Estimation :

yijl = η̂ + α̂i + β̂j + ω̂ij + rijl

= ȳ··· + (ȳi·· − ȳ···) + (ȳ·j· − ȳ···) + (ȳij· − ȳi·· − ȳ·j· + ȳ···)

+(yijl − ȳij·),

where

η̂ = ȳ···, α̂i = ȳi·· − ȳ···, β̂j = ȳ·j· − ȳ···,

ω̂ij = ȳij· − ȳi·· − ȳ·j· + ȳ···, rijl = yijl − ȳij·,
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ANOVA

Table 9: ANOVA Table for Two-Way Layout

Degrees of Sum of

Source Freedom Squares

A I − 1 nJ
PI

i=1 (ȳi·· − ȳ···)
2

B J − 1 nI
PJ

j=1 (ȳ·j· − ȳ···)
2

A × B (I − 1)(J − 1) n
PI

i=1

PJ

j=1 (ȳij· − ȳi·· − ȳ·j· + ȳ···)
2

residual IJ(n − 1)
PI

i=1

PJ

j=1

Pn

l=1 (yijl − ȳij·)
2

total IJn − 1
PI

i=1

PJ

j=1

Pn

l=1 (yijl − ȳ···)
2
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Analysis of Bolt Experiment

Table 10: ANOVA Table, Bolt Experiment

Degrees of Sum of Mean

Source Freedom Squares Squares F

test 1 821.400 821.400 22.46

plating 2 2290.633 1145.317 31.31

test× plating 2 665.100 332.550 9.09

residual 54 1975.200 36.578

• Conclusions :Both factors and their interactions are significant. Multiple

comparisons of C&W, HT and P&O can be performed by using Tukey

method withk = 3 and 54 error df’s.

• Another method is considered in the following pages.
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Two Qualitative Factors: a Regression Modeling

Approach

• Motivation: need to find a model that allows the comparison andestimation

between levels of the qualitative factors. The parametersαi andβj in model

(5) are not estimable without putting constraints. For qualitative factors, use

thebaseline constraintα1 = β1 = 0 and

w1j = wi1 = 0, i = 1, 2, j = 1, 2, 3 for the bolt experiment.

• It can be shown that

E(y11) = η, E(y12) = η + β2, E(y13) = η + β3,

E(y21) = η + α2, E(y22) = η + α2 + β2 + ω22,

E(y23) = η + α2 + β3 + ω23.
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Regression Model (continued)

In the regression modely = Xβ + ǫ,

X =



























1 0 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 1 0 0 0 0

1 1 1 0 1 0

1 1 0 1 0 1



























.
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Regression Model (continued)

Interpretation of parameters

η = E(y11),

α2 = E(y21) − E(y11),

β2 = E(y12) − E(y11),

β3 = E(y13) − E(y11),

ω22 = (E(y22) − E(y21)) − (E(y12) − E(y11)),

ω23 = (E(y23) − E(y21)) − (E(y13) − E(y11)).
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Regression Analysis Results

Table 11: Tests, Bolt Experiment

Standard

Effect Estimate Error t p value

η 17.4000 1.9125 9.10 0.000

α2 -0.5000 2.7047 -0.18 0.854

β2 17.3000 2.7047 6.40 0.000

β3 13.1000 2.7047 4.84 0.000

ω22 -4.8000 3.8251 -1.25 0.215

ω23 -15.9000 3.8251 -4.16 0.000

• Significant effects:̂β2 (C & W and H & T are different),̂β3 (C & W and P
& O are different),̂ω23 (difference between C&W and P&O varies from bolt
to mandrel);̂α2 not significant suggests no difference between bolt and
mandrel.
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Adjusted p Values

The p values in Table 11 are for each individual effect. Sincefive effects

(excludingη) are consideredsimultaneously, we should, strictly speaking,

adjust the p values when making ajoint statement about the five effects. In the

spirit of the Bonferroni method (again justified by the Bonferroni’s inequality in

(2.15) of the book), we multiply the individual p value by the number of tests to

obtainadjusted p value. For ω̂23, the adjusted p value is5 × 0.0001 = 0.0005,

still very significant. The adjusted p values, forβ̂2 andβ̂3 are smaller.
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Box-Whisker Plot : Bolt Experiment

-1
0

0
10

B-C&W B-HT B-P&O M-C&W M-HT M-P&O

Figure 1: Box-Whisker Plots of Residuals, Bolt Experiment

The plot suggests that the constant variance assumption in (5) does not hold and

that the variance ofy for bolt is larger than that for mandrel. These are aspects

that cannot be discovered by regression analysis alone.
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Multiple-Way Layout

Table 12: ANOVA Table for Three-Way Layout

Source df Sum of Squares

A I − 1
PI

i=1 nJK(α̂i)
2

B J − 1
PJ

j=1 nIK(β̂j)
2

C K − 1
PK

k=1 nIJ(δ̂k)2

A × B (I − 1)(J − 1)
PI

i=1

PJ

j=1 nK( d(αβ)ij)
2

A × C (I − 1)(K − 1)
PI

i=1

PK

k=1 nJ d(αδ)ik)2

B × C (J − 1)(K − 1)
PJ

j=1

PK

k=1 nI d(βδ)jk)2

A × B × C (I − 1)(J − 1)(K − 1)
PI

i=1

PJ

j=1

PK

k=1 n(γ̂ijk)2

residual IJK(n − 1)
PI

i=1

PJ

j=1

PK

k=1

Pn

l=1 (yijkl − ȳijk·)
2

total IJKn − 1
PI

i=1

PJ

j=1

PK

k=1

Pn

l=1 (yijkl − ȳ···)
2

• α̂i, β̂j , α̂βij , etc given in (3.35) of the book.

• Estimation, F test, residual analysis are similar to those for two-way layout.
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Latin Square Design : Wear Experiment

Wear Experiment : Testing the abrasion resistance of rubber-covered fabric,

y = loss in weight over a period of time.

One treatment factor : Material type A, B, C, D.

Two blocking factors : (1) four positions on the tester,

(2) four applications (four different times for setting up the tester)

Latin square design of orderk : Each of thek Latin letters (i.e., treatments)

appears once in each row and once in each column.

It is an extension of RBD to accommodatetwo blocking factors. Randomization

applied to assignments to rows, columns, treatments. (Collection of Latin Square

Tables given in Appendix 3A of WH).
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Wear Experiment : Design and Data

Table 13: Latin Square Design (columns correspond to positions, rowscorrespond to

applications and Latin letters correspond to materials), Wear Experiment

Position

Application 1 2 3 4

1 C D B A

2 A B D C

3 D C A B

4 B A C D

Table 14:Weight Loss Data, Wear Experiment

Position

Application 1 2 3 4

1 235 236 218 268

2 251 241 227 229

3 234 273 274 226

4 195 270 230 225
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Model for Latin Square Design
Model:

yijl = η + αi + βj + τl + ǫijl,

l = Latin letter in the(i, j) cell of the Latin Square,
αi = ith row effect,
βj = jth column effect,
τl = lth treatment (i.e., Latin letter) effect,
ǫijl are independentN(0, σ2).

There are onlyk2 values in the triplet (i, j, l) dictated by the particular LS; this
set is denoted byS.

yijl = η̂ + α̂i + β̂j + τ̂l + rijl

= ȳ··· + (ȳi·· − ȳ···) + (ȳ·j· − ȳ···) + (ȳ··l − ȳ···)

+(yijl − ȳi·· − ȳ·j· − ȳ··l + 2ȳ···),

ANOVA decomposition: similar formula (see (3.40) of WH)
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ANOVA for Latin Square Design

Table 15: ANOVA Table for Latin Square Design

Degrees of Sum of

Source Freedom Squares

row k − 1 k
Pk

i=1 (ȳi·· − ȳ···)
2

column k − 1 k
Pk

j=1 (ȳ·j· − ȳ···)
2

treatment k − 1 k
Pk

l=1 (ȳ··l − ȳ···)
2

residual (k − 1)(k − 2)
P

(i,j,l)∈S (yijl − ȳi·· − ȳ·j· − ȳ··l + 2ȳ···)
2

total k2
− 1

P
(i,j,l)∈S (yijl − ȳ···)

2

Table 16: ANOVA Table, Wear Experiment

Degrees of Sum of Mean

Source Freedom Squares Squares F

application 3 986.5 328.833 5.37

position 3 1468.5 489.500 7.99

material 3 4621.5 1540.500 25.15

residual 6 367.5 61.250

30



F Test and Multiple Comparisons

• H0 : τ1 = · · · = τk, can be tested by using theF statistic

F =
SSt/(k − 1)

SSr/(k − 1)(k − 2)
,

TheF test rejectsH0 at levelα if F > Fk−1,(k−1)(k−2),α.

• If H0 is rejected, multiple comparisons of theτj should be performed.

t statistics for making multiple comparisons :

tij =
ȳ··j − ȳ··i

σ̂
√

1/k + 1/k
,

whereσ̂2 is the mean square error in the ANOVA table.

• At level α, the Tukey multiple comparison method identifies “treatments i

andj as different” if

|tij | >
1√
2
qk,(k−1)(k−2),α.
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Analysis Results

• The p values for application and position are 0.039(=Prob(F3,6 > 5.37))

and 0.016(=Prob(F3,6 > 7.99)), respectively. This indicates that blocking

is important.

• The treatment factor (material) has the most significance asindicated by a p

value of 0.0008 (=Prob(F3,6 > 25.15)).

• With k=4 and(k − 1)(k − 2)=6, the critical value for the Tukey multiple

comparison method is

1√
2
q4,6,0.05 =

4.90√
2

= 3.46

at the 0.05 level.

• By comparing the multiple comparisonst statistics given in Table 17 with

3.46, materialA andB, A andC, A andD andB andC are identified as

different at 0.05 level.
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Multiple Comparisons Tables

Table 17: Multiple Comparisont Statistics, Wear Experiment

A vs.B A vs.C A vs.D B vs.C B vs.D C vs.D

-8.27 -4.34 -6.37 3.93 1.90 -2.03

Table 18: ANOVA Table (Ignoring Blocking), Wear Experiment

Degrees of Sum of Mean

Source Freedom Squares Squares F

material 3 4621.5 1540.500 6.55

residual 12 2822.5 235.21

Effectiveness of blocking:

With blocking,Pr(F3,6 > 25.15) = 0.0008,

Without blocking,Pr(F3,12 > 6.55) = 0.007.

Therefore blocking can make a difference in decision makingif treatment effects are smaller.
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Graeco-Latin Square Design

• Two Latin squares areorthogonal if each pair of letters appears once in the

two squares, when superimposed. The super-imposed square is called a

Graeco-Latin square.

Aα Bβ Cγ

Bγ Cα Aβ

Cβ Aγ Bα

• Useful for studying four factors (1 treatment, 3 blocking factors; or 2

treatment, 2 blocking factors etc.) allowing one more factorto be studied

than in LS.
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Model and ANOVA in Graeco-Latin Square Design
Model:

yijlm = η + αi + βj + τl + ζm + ǫijlm,

(Similar interpretation as in LS, andζm is themth effect of Greek letters).F test
and Tukey’s multiple comparisons similar formulae.

Table 19: ANOVA Table for Graeco-Latin Square Design

Degrees of Sum of

Source Freedom Squares

row k − 1 k
Pk

i=1 (ȳi··· − ȳ····)
2

column k − 1 k
Pk

j=1 (ȳ·j·· − ȳ···)
2

Latin letter k − 1 k
Pk

l=1 (ȳ··l· − ȳ····)
2

Greek letter k − 1 k
Pk

m=1 (ȳ···m − ȳ····)
2

residual (k − 3)(k − 1) by subtraction

total k2
− 1

P
(i,j,l,m)∈S (yijlm − ȳ····)

2
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Incomplete Blocking

• Blocking isincomplete if the number of treatmentst is greater than the block size

k. This happens if the nature of blocking makes it difficult to form blocks of large

size.

• Example : wine or ice cream tasting, block size limited by taste buds.

• On the other hand, RBD hascomplete blocking.

• Example: Tire wear experiment. Compare four components A,B,C,D in terms of

wear. Because of manufacturing limitations, each tire can be divided into only three

sections with each section being made of one compound.
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Table 20: Wear Data, Tire Experiment

Compound

Tire A B C D

1 238 238 279

2 196 213 308

3 254 334 367

4 312 421 412
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Balanced Incomplete Block Design (BIBD)

• A BIBD hast treatments, andb blocks of sizek, t > k, each treatment

replicatedr times, such that each pair of treatments appear in thesame

number (denoted byλ) of blocks.

In the wear experiment,t = 4, k = 3, b = 4, r = 3 andλ = 2.

Two basic relations:

bk = rt,

r(k − 1) = λ(t − 1).

(Proof of (i) and (ii).)

• For givenk, t andb, a BIBD may or may not exist. When it does not, either

adjust the values ofk, t, b to get a BIBD, or if not possible, find a partially

balanced incomplete block design (PBIBD) (which is not covered in the

book). Tables of BIBD or PBIBD in books like Cochran and Cox (1957).
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Example of Split-plot Design: Wood Experiment

• Experiment objective : to study the water resistant property of wood.

• Two factors: A—wood pretreatment, 2-level; B—type of stain, 4-level.

• Completely randomized design: randomly apply the 8 combinations of A

and B to 8 wood panels, such as in Table 21.

• Problem: inconvenient to apply the pretreatment to a small wood panel.

Table 21: Completely Randomized Version of the Wood Experiment

Run 1 2 3 4 5 6 7 8

Pretreatment (A) A1 A2 A2 A1 A2 A1 A1 A2

Stain (B) B2 B4 B1 B1 B3 B4 B3 B2
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Split-plot Design

• Alternative Design: split-plot design in Table 22.

Table 22: Split-Plot Version of the Wood Experiment

First panel Second panel

Pretreated withA1 Pretreated withA2

B3 B2 B4 B1 B2 B1 B4 B3

Justification: Easier to apply pretreatment tolargewood panels.
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Split-plot Design (Cont’d)

• Split-plot design (and the name) has its origin in agriculture.

• Some factors need to be applied to large plots, calledwhole plots. In the

example, the two big wood panels to which pretreatement A1 and A2 are

applied are whole plots.

• Split each whole plot into smaller plots, calledsubplots. In the example, the

four small wood panels within the large panels are subplots.

• Wood Experiment: 3 replications, 6 whole plots (two large panels for A1

and A2 per replication).
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Data from the Wood Experiment

Whole Plot Pretreatment type (A) Stain type (B) Replication (Rep) Resistance (Y )

4 2 2 1 53.5

4 2 4 1 32.5

4 2 1 1 46.6

4 2 3 1 35.4

5 2 4 2 44.6

5 2 1 2 52.2

5 2 3 2 45.9

5 2 2 2 48.3

1 1 3 1 40.8

1 1 1 1 43.0

1 1 2 1 51.8

1 1 4 1 45.5

2 1 2 2 60.9

2 1 4 2 55.3

2 1 3 2 51.1

2 1 1 2 57.4

6 2 1 3 32.1

6 2 4 3 30.1

6 2 2 3 34.4

6 2 3 3 32.2

3 1 1 3 52.8

3 1 3 3 51.7

3 1 4 3 55.3

3 1 2 3 59.2
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Incorrect Model and Analysis

• Two-way layout model (factorsA andB with n replicates):

yijk = η + αi + βj + (αβ)ij + ǫijk,

i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , n,

whereI = 2, J = 4, n = 3.

• ANOVA (table on next page) shows that only factorA is significant; neither

B norA × B is significant.

• The model is wrong:A andB usedifferentrandomization schemes. The

error component should be separated into two parts–the whole plot error and

the subplot error. To test the significance of various effects, we need to

compare their respective mean squares with two different error components.
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Incorrect ANOVA Table

Table 23: Incorrect ANOVA Table, Wood Experiment

Source Degrees of Freedom Sum of Squares Mean SquaresF

A 1 782.04 782.04 13.49

B 3 266.00 88.67 1.53

A × B 3 62.79 20.93 0.36

Residual 16 927.88 57.99

Total 23 2038.72

• Only A is significant.
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Correct Model

yijk = η + τk + αi + (τα)ki + βj + (αβ)ij + (τβ)kj + (ταβ)kij + ǫ′ijk,

i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , n, (6)

• yijk: observation for thekth replicate of theithe level of factorA and the

jth level of factorB, ǫ′ijk are independent error terms.

• Treatτk as arandom effect (because there are potentially many other

possible replications).

Terms representing the whole plot Terms representing the subplot

τk effect ofkth replicate βj jth main effect ofB

αi ith main effect forA (αβ)ij (i, j)th interactionA × B

(τα)ki (k, i)th interaction replicate×A (τβ)kj (k, j)th interaction replicate×B

(ταβ)kij (k, i, j)th interaction replicate×A × B

45



Model for Split-plot Design

• Model (6) can be viewed as a three-way layout withαi andβj asfixed

effects,τk asrandomeffects,τk ∼ N(0, σ2
τ ).

• whole plot error:(τα)ki ∼ N(0, σ2
τα), for testingα effects.

• subplot error:ǫkij = (τβ)kj + (ταβ)kij + ǫ′ijk ∼ N(0, σ2
ǫ ), for testingβ

andαβ effects.

• Model (6) can be rewritten as

yijk = η + τk + αi + (τα)ki + βj + (αβ)ij + ǫkij . (7)

• Subplot error is usuallysmallerthan whole plot error because subplots are

more homogeneous than whole plots.
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ANOVA Decomposition

• Use the zero-sum constraints:
PI

i=1 αi =
PJ

j=1 βj =
PI

i=1

PJ
j=1(αβ)ij = 0,

break up the total sum of squares as a three-way layout with factorsA, B,
and Rep:

SST = SSRep+ SSA + SSB + SSRep×A + SSA×B + SSRep×B + SSRep×A×B .

• Define the sum of squares for the whole plot errorSSwholeand the sum of

squares for the subplot errorSSsubas:

SSwhole = SSRep×A,

SSsub= SSRep×B + SSRep×A×B .

ANOVA decomposition for the split-plot model:

SST = SSRep+ SSA + SSwhole+ SSB + SSA×B + SSsub.
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ANOVA Decomposition (Cont’d)

Table 24: Wood Experiment : Summarized data for whole plot analysis

Rep 1 Rep 2 Rep 3 Total

A1 181.1 224.7 219.0 624.8

A2 168.0 191.0 128.8 487.8

Total 349.1 415.7 347.8 1112.6

SSA = (624.82 + 487.82)/12 − 1112.62/24 = 782.04,

SSRep= (349.12 + 415.72 + 347.82)/8 − 1112.62/24 = 376.99,

SSwhole = SSRep×A = 398.37,

SSsub= 927.88 − SSwhole− SSRep= 152.52.
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Expected Mean Squares in ANOVA

Source Effect df E(Mean Squares)

Replicate τk n − 1 σ2
ǫ + Jσ2

τα + IJσ2
τ

A αi I − 1 σ2
ǫ + Jσ2

τα +
nJ

PI
i=1 α2

i
I−1

Whole plot error (τα)ki (I − 1)(n − 1) σ2
ǫ + Jσ2

τα

B βj J − 1 σ2
ǫ +

nI
PJ

j=1 β2
j

IJ−1

A × B (αβ)ij (I − 1)(J − 1) σ2
ǫ +

n
PI

i=1

PJ
j=1(αβ)2ij

(I−1)(J−1)

Subplot error ǫkij I(J − 1)(n − 1) σ2
ǫ

Proofs are similar to but more tedious than in one-way randomeffects model.
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Hypothesis Testing

FA =
MSA

MSwhole
⇒ H01 : α1 = . . . = αI ,

FB =
MSB

MSsub
⇒ H02 : β1 = . . . = βJ ,

FAB =
MSA×B

MSsub
⇒ H03 : (αβ)ij = constant, i = 1, . . . , I, j = 1, . . . , J.

FRep =
MSRep

MSwhole
⇒ H04 : στ = 0.
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Correct ANOVA Analysis

Table 25: Correct ANOVA Table, Wood Experiment

Source Degrees of Freedom Sum of Squares Mean SquaresF

Replicate 2 376.99 188.50 0.95

A 1 782.04 782.04 3.93

Whole plot error 2 398.37 199.19

B 3 266.00 88.67 6.98

A × B 3 62.79 20.93 1.65

Subplot error 12 152.52 12.71

Total 23 2038.72
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Analysis Results

• Only B is significant.

• Explanation:

MSwhole = 199.19 ≫ MSResidual= 57.99 ≫ MSsub= 12.71.

• To testH04 : στ = 0, use

MSRep
MSwhole

=
188.5

199.19
= 0.95.

⇒ no significant difference between three replications.

• When does testingH04 make sense?
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Analysis of Covariance: Starch Experiment
• Data in Table 3.34 of WH. Goal: To compare the three treatments(canna,

corn, potato) for making starch film,y = break strength of film, covariatex
= film thickness. Known thatx affectsy (thicker films are stronger);
thickness cannot be controlled but are measured after films are made.
Question: How to perform treatment comparisons by incorporating the
effect of the covariatex?

• Model:

yij = η + τi + γxij + ǫij , i = 1, . . . , k, j = 1, . . . , ni,

τi = ith treatment effect
xij = covariate value,
γ = regression coefficient for thexij

ǫij independentN(0, σ2).

Special cases:

1. Whenγxij=0 (i.e.,xij not available or nox effect), one-way layout.

2. Whenτi=0 (no treatment effect), simple linear regression.
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Regression Model Approach

Model :

y1j = η + γx1j + ǫ1j , j = 1, · · · , 13, i = 1 (canna)

y2j = η + τ2 + γx2j + ǫ2j , j = 1, · · · , 19, i = 2 (corn)

y3j = η + τ3 + γx3j + ǫ3j , j = 1, · · · , 17, i = 3 (potato)

(8)

where

τ1 is set to zero (baseline constraint),

η = intercept,

γ = regression coefficient for thickness,

τ2 = canna vs. corn, and

τ3 = canna vs. potato.

(Write the model matrix for (8)).

Run regression analysis in the usual way.
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Regression Analysis of Starch Experiment

Table 26: Tests, Starch Experiment

Standard

Effect Estimate Error t p value

intercept 158.261 179.775 0.88 0.38

thickness 62.501 17.060 3.66 0.00

canna vs. corn -83.666 86.095 -0.97 0.34

canna vs. potato 70.360 67.781 1.04 0.30
−−−−−−−−−−−−−−−−−−−−−−−−−−

corn vs. potato 154.026 107.762 1.43 0.16

In the table, corn vs. potato= τ̂3 − τ̂2 = 70.360 − (−83.666) = 154.026.

No pair of film types has any significant difference after adjusting for thickness

effect. (So, how should the choice be made between the three film types ?) Most

of the variation is explained by the covariate thickness.
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Multiple Comparisons

V ar(τ̂3) andV ar(τ̂2) can be obtained from regression output. From (1.33) of

WH,

V ar(β̂) = σ2(XT X)−1.

Using this,t(τ̂3−τ̂2) can be found as

V ar(τ̂3 − τ̂2) = V ar(τ̂3) + V ar(τ̂2) − 2Cov(τ̂3, τ̂2). The degrees of freedom

for thet statistic is same as that of the residuals. The p values for the three tests

are given in Table 26. For simultaneous testing, use adjusted p values.
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ANCOVA Table

Table 27: ANCOVA Table, Starch Experiment

Degrees of Sum of Mean

Source Freedom Squares Squares F

thickness 1 2553357 2553357 94.19

starch 2 56725 28362 1.05

residual 45 1219940 27110
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Transformation of Response

• Transform y before fitting a regression model.

Theory: Suppose in the modely = µ + ǫ, σy = [V ar(y)]1/2, σy ∝ µα. This

can be detected by plotting residualsrij = yij - ȳi· against̄yi· (for replicated

experiment) orri = yi − ŷi against̂yi (for unreplicated experiment). (What

pattern to look for ?)

• Error transmission formula:

z = f(y) ≈ f(µ) + f ′(µ)(y − µ).

σ2
z = V ar(z) ≈ (f ′(µ))2V ar(y) = (f ′(µ))2σ2

y.
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Power (Box-Cox) Transformation

z = f(y) =







yλ − 1

λ
, λ 6= 0,

ln y, λ = 0,
(9)

f ′(µ) = µλ−1,

σz ≈ |f ′(µ)|σy = µλ−1σy ∝ µλ−1µα = µλ+α−1.

• Choosingλ = 1 − α would makeσz nearly constant.

• Sinceα is unknown,λ can be chosen by some statistical criterion (e.g.,
maximum likelihood). A simpler method is to try a few selected values ofλ
(see Table 28). In each transform, analyze the z data and choose the
transformation (i.e.,λ value) such that
(a) it gives a parsimonious model,
(b) no unusual pattern in the residual plots,
(c) good interpretation of the transformation.
Example of (c):y = survival time,y−1 = rate of dying in the example of Box-Cox(1964).
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Variance Stabilizing Transformations

Table 28: Variance Stabilizing Transformations

σy ∝ µα α λ = 1 − α Transformation

σy ∝ µ3 3 −2 reciprocal squared

σy ∝ µ2 2 −1 reciprocal

σy ∝ µ3/2 3/2 −1/2 reciprocal square root

σy ∝ µ 1 0 log

σy ∝ µ1/2 1/2 1/2 square root

σy ∝ constant 0 1 original scale

σy ∝ µ−1/2 −1/2 3/2 3/2 power

σy ∝ µ−1 −1 2 square
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Analysis of Drill Experiment

• Data in Table 3.40 of WH. Four factors A,B,C and D, each at two levels,

using a24 design. Fit a model with 4 main effects and 6 two-factor

interactions (2fi’s). Thêr-vs-ŷ plot shows an increasing pattern.
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Figure 2:ri vs. ŷi, Drill Experiment
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Scaled lambda plot

• For each of the eight transformationsλ values in Table 28, a model of main

effects and 2fi’s is fitted to the transformedz = f(y). Thet statistic values

for the 10 effects are displayed.

• Comments on plot : For the log transformation (λ = 0), the largestt

statistics (C, B, andD) stand out. The next best isλ = −1/2, but not as

good (Why ? It has an interactionBC). The log transform removes the

interaction termBC.

On the original scale (λ = 1), the four main effects do not separate apart.

• Conclusion : Use log transformation.
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Scaled lambda plot : Drill Experiment
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Figure 3: Scaledλ Plot (lambda denotes the powerλ in the transformation (9))
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Comments on Board
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