Unit 3: Experiments with More Than One Factor

Sources : Chapter 3.

e Paired comparison design (Section 3.1).

e Randomized block design (Section 3.2).

e Two-way and multi-way layout with fixed effects (Sections arl 3.5).
e Latin and Graeco-Latin square design (Sections 3.6 and 3.7).

e Balanced incomplete block design (Section 3.8).

e Split-plot design (Section 3.9).

e Analysis of covariance (ANCOVA) (Section 3.10).

e Transformation of response (Section 3.11).



Sewage Experiment

e Objective : To compare two methods MSI and SIB for determining chlorine
content in sewage effluentg= residual chlorine reading.

Table 1: Residual Chlorine Readings, Sewage Experiment

Method
Sample MSI SIB d;
1 0.39 0.36 —0.03
2 0.84 1.35 0.51
3 1.76 2.56 0.80
4 3.35 3.92 0.57
5 4.69 5.35 0.66
6 7.70 8.33 0.63
7 10.52 10.70 0.18
8 10.92 10.91 —0.01

e EXxperimental Design : Eight samples were collected at different doses and
contact times. Two methods were applied to each of the eaghpkes. It is
a paired comparisomesign because the pair of treatments are applied to the
same samples (or units).



Paired Comparison Design vs. Unpaired Design

e Paired Comparison DesignTwo treatments are randomly assigned to each
block of two units. Can eliminate block-to-block variation and is effee if
such variation is large.

Examples : pairs of twins, eyes, kidneys, left and right.feet
(Subject-to-subject variation much larger than withifjsat variation).

e Unpaired Design Each treatment is applied tasaparate set of units, or
called thetwo-samplgroblem. Useful if pairing is unnecessary; also it has
more degrees of freedom for error estimation (see page 5).



Paired ¢ tests

e Pairedttest: Lety;,y;2 be the responses of treatments 1 and 2 for unit
1,1=1,...N. Letd; = y;o — vi1, Jandsfl the sample mean and variance

of d;.
tpaired — \/NJ/SCZ
The two treatments are declared significantly differeneaglo if

|tpai7“ed| > tN—l,oz/Z' (1)



Unpaired ¢ tests

e Unpaired t test : The unpaired test is appropriate if we randomly choose
N of the2N units to receive one treatment and assign the remaiNing
units to the second treatment. Ligtands? be the sample mean and sample
variance for theth treatment; = 1 and 2. Define

tunpaired = (52 — 91)/1/ (3/N) + (s3/N).

The two treatments are declared significantly differeneagllo if

|tunpa,ired| > t2N—2,a/2- (2)

Note that the degrees of freedom in (1) and (2)&re 1 and2N — 2
respectively. The unpairedest has more df's but make sure that the
unit-to-unit variation is under control (if this method slbe used).



Analysis Results :t tests

0.4138  0.4138
0.321/+/8  0.1135
5.435—5.0212  0.4138

V(17.811 +17.012)/8  2.0863

— 3.645,

tpaired

= 0.198.

tunpaired

Thep values are

Prob(|t;] > 3.645) = 0.008,
Prob(|tis] > 0.198) = 0.848.

e Unpairedt test fails to declare significant difference because its
denominator 2.0863 is too large. Why ? Because the denomicandains
the sample-to-sample variation component.
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Analysis Results : ANOVA and F' tests

e \Wrong to analyze by ignoring pairing. A better explanatisgiven by
ANOVA.

e F statistic in ANOVA for paired design equal$,;,..,; similarly, F statistic

in ANOVA for unpaired design equat§,, ;... Data can be analyzed in
two equivalent ways.

e In the correct analysis (Table 2), the total variation isaieposed into three
components; the largest one is the sample-to-sample ioarigts
MS = 34.77). In the unpaired analysis (Table 3), this component is
mistakenly included in the residuélS, thus making th&' test powerless.



ANOVA Tables

Table 2: ANOVA Table, Sewage Experiment

Degrees of  Sum of Mean

Source Freedom Squares Squares F

sample 7 243.4042 34.77203 674.82
method 1 0.6848  0.68476 13.29
residual 7 0.3607 0.05153

Table 3: ANOVA Table Ignoring Pairing, Sewage Experiment

Degrees of  Sum of Mean
Source Freedom Squares Squares F’
method 1 0.6848 0.68476 0.04
residual 14 243.7649 17.41178
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Randomized Block Design : Girder Experiment

e Recall the principles of blocking and randomization in Uhitn a
randomized block design (RBD},treatments are randomly assigned to
each block (of units); there are in totdl blocks. Total sample size
N = bk.

e Paired comparison design is a special case with2. (Why ?)
e Objective : To compare four methods for predicting the shear strength fo

steel plate girdersk(= 4,b = 9).

Table 4. Strength Data, Girder Experiment

(Block) Method

Girder Aarau Karlsruhe Lehigh Cardiff
S1/1 0.772 1.186 1.061 1.025
S2/1 0.744 1.151 0.992 0.905
S3/1 0.767 1.322 1.063 0.930
S4/1 0.745 1.339 1.062 0.899
S5/1 0.725 1.200 1.065 0.871
S1/2 0.844 1.402 1.178 1.004
S2/2 0.831 1.365 1.037 0.853
S3/2 0.867 1.537 1.086 0.858
S4/2 0.859 1.559 1.052 0.805
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Model and Estimation

Model for RBD :
yij:77+04i_|—7-j+€ija izl,...,b; jZl,...,]{,

wherey;; = observation of thgth treatment in théth block, o;; = ith block
effect,7; = jth treatment effeck;; = errors, independen¥ (0, o2).

where

ﬁ = .., ;= Yio — Y., 7A'j = g.j — .., Tij = Yij — Yi. — g.j + ..,
_ _ k _ _ b _ _ b k
gi. = k=1 Zj:l Yij, Yj = ! Z’i:]_ Yij, Y. = (bk) ! Zi:l Zj:l Yij-
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ANOVA

Subtractingy.., squaring both sides and summing ovandj yields

b k

1

1 9=1

(yz’j —

7.)° =

> k(@i -7+ ) b(@ms—5.)°
1=1 =1
b k :
N Wiy — G — 5+ 5
i=1 j=1

SSy + 55 + 55,

Table 5: ANOVA Table for Randomized Block Design

total

Degrees of Sum of
Source Freedom Squares
block b— 1 S k(T — 5.2
treatment  k — 1 Z?:1 b(g.; — g..)?
residual (b—1)(k—1) 22:1 Z?:l (Yij — ¥s. —U.5 + @--)2

bk — 1

S 2h (v — 5.2
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Testing and Multiple Comparisons

e Hy: ™ =--- =713, Can be tested by using tlféstatistic
S5¢/(k —1)
F = 3
SS,./(b—1)(k—1) ()

The I test rejectd] at levela if F' > F,_ 1 (s—1)(k—1),a-

o If Hy Is rejected, multiple comparisons of theshould be performed.
t statistics for making multiple comparisons :

- Yj — Y
Y a1+ 1)

wheres? is the mean square error in the ANOVA table.

(4)

e Atlevel «, the Tukey multiple comparison method identifies “treattaen
andj as different” if

1
ti| > ﬁqk,(b—n(k—n,a-
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Simultaneous Confidence Intervals

By solving
(G —¥.4) — (1 — 71)] <qu o
5_\/7/[) —\/5)(_)(_)504

for 7; — 7;, the simultaneous confidence intervalsfor- 7; are

Yj — Yi T Ak, (b—1)(k—1),a

S

for all  andj pairs.
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Analysis of Girder Experiment : F test

Table 6: ANOVA Table, Girder Experiment

Degrees of Sum of Mean
Source Freedom Squares Squares F
girder 8 0.089 0.011 1.62
method 3 1.514 0.505 73.03
residual 24 0.166 0.007
e The F’ statistic in (3) has the value
1.514/3
/ = 73.03.
0.166/24

Therefore, the p value for testing the difference betweethous is

Prob(Fs 24 > 73.03)=0.00. The small p value suggests that the methods are
different.
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Analysis of Girder Experiment : Multiple
Comparisons

Table 7. Multiple Comparison Statistics, Girder Experiment

Avs. K Avs.. Avs.(C Kvs.L Kvs.C Lvs.C
13.91 6.92 2.82 -6.99 -11.09 -4.10

e The means for the four method4 for Aarau, K for Karlsruhe,L for
Lehigh andC' for C'ardiff are 0.7949, 1.3401, 1.0662 and 0.9056.

e The multiple comparisonstatistics based on (4) are displayed in Table 7.

ctin i _1.3401—-0.7949 __ :
For example, thel vs. K ¢ statistic ist1, = Vo007 /29 13.91. With

a = 0.05, t24,0.05/(6x2) = 2.875 for the Bonferroni method. Sinde= 4

and (%) = 6, %%34,0_05 = 390 = 2.758 for the Tukey method. Again,

Tukey method is more powerful. (Why ?)
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Two-way layout

e This is similar to RBD. The only difference is that here wedawo
treatment factors instead of one treatment factor and aak b&ctor.
Interested in assessing interaction effect between théreatments. In
blocking, block<treatment interaction is assumed negligible.

e Bolt experiment : The goals was to test if there is any difference between
two test media (bolt, mandrel) and among three plating nustiG&W, HT,
P&O). Responsg is the torque of the locknut.

Table 8: Torque Data, Bolt Experiment

C&W HT P&O
Bolt 20, 16, 17, 18, 15| 26, 40, 28, 38, 38, 25, 40, 30, 17, 16,
16, 19, 14, 15, 24| 30, 26, 38, 45, 38| 45, 49, 33, 30, 20
Mandrel | 24,18, 17, 17, 15| 32, 22, 30, 35, 32| 10, 13, 17, 16, 15|
23,14,18,12, 11| 28, 27, 28, 30, 30| 14, 11, 14, 15, 16
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Model and Estimation
e Model:
yijl:n+ai+ﬂj+wij+€i]’la iZl,...,I; jZl,...,J; lZl,...,n (5)

wherey;;; = observation for théth replicate of theth level of factorA and
the jth level of factorB, «; = ith main effect for4, 3; = jth main effect for
B, w;; = (i, 7)th interaction effect betweesA and B ande;;; = errors,
independentV (0, o2).

e Estimation:
Yiji = 1+ Q;+ Bj + wij + Tl
= G+ G —9.)+ @ —G.)+ Gij. — Gi. — Y. + 5.
+(Yij1 — Yij-),
where

ﬁ — g, OAéZ — gz — g, Bj — g] — ...,
Wij = Yij. — Yir — Yoj- T Yooty Tijl = Yijl — Yij-»
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ANOVA

Table 9: ANOVA Table for Two-Way Layout

Degrees of Sum of
Source Freedom Squares
A I-1 nd S0 (Gi —G.)°
B J—1 nl Y (G — )

AxB  (I-1D)(J=1) a3 X5 i — G — g +7)
residual IJ(n—1) > i Zj=1 >y (Wiji — Tig.)?

total IJn —1 Zf:l Z}]:1 D1 (Yijt — g)”
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Analysis of Bolt Experiment

Table 10: ANOVA Table, Bolt Experiment

Degrees of  Sum of Mean
Source Freedom Squares Squares F
test 1 821.400 821.400 22.46
plating 2 2290.633 1145.317 31.31
testx plating 2 665.100 332.550 9.09
residual 54 1975.200 36.578

e Conclusions :Both factors and their interactions are significant. Mudipl
comparisons of C&W, HT and P&O can be performed by using Tukey
method withk = 3 and 54 error df’s.

e Another method is considered in the following pages.
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Two Qualitative Factors: a Regression Modeling
Approach

e Motivation: need to find a model that allows the comparisonestonmation
between levels of the qualitative factors. The parameteend3; in model
(5) are not estimable without putting constraints. For daie factors, use

thebaseline constrainto; = 5; = 0 and
wi; =win = 0,1=1,2,7 = 1,2, 3 for the bolt experiment.

e |t can be shown that

E(yn) =1, E(ym) =N+ 52, E(?Jls) =1+ 53,
E(y21) = n+ az, E(y22) =1+ az + B2 + wao,
E(ya23) =0+ a2 + B3 + was.
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Regression Model (continued)

In the regression model= X3 + ¢,

(10000 0)

1 0100 0

1 0010 0
X =

1 1000 0

1 1101 0

\110101)
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Regression Model (continued)

Interpretation of parameters

E(y11),

E(y21) — E(y11),

E(yi12) — E(y11),

52

E(y13) — E(y11),

03

Wa2

(E(y22) — E(y21)) — (E(y12) — E(y11)),

(E(y23) = E(y21)) = (E(y13) — E(y11))-

wa3
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Regression Analysis Results

Table 11: Tests, Bolt Experiment

Standard

Effect Estimate Error t p value

n 17.4000 1.9125 9.10  0.000
a9 -0.5000 2.7047 -0.18 0.854
B 17.3000 2.7047 6.40 0.000
B3 13.1000 2.7047 484  0.000
W9 -4.8000 3.8251 -1.25 0.21p
Wa3 -15.9000 3.8251 -4.16  0.000

e Significant effects;3, (C & W and H & T are different) 35 (C & W and P
& O are different)wo3 (difference between C&W and P&O varies from bolt
to mandrel);as not significant suggests no difference between bolt and

mandrel.
23



Adjusted p Values

The p values in Table 11 are for each individual effect. Sinaeeffects
(excludingn) are consideredimultaneously, we should, strictly speaking,
adjust the p values when making@ant statement about the five effects. In the
spirit of the Bonferroni method (again justified by the Bandai’s inequality in
(2.15) of the book), we multiply the individual p value by thember of tests to
obtainadjusted p value Forwss, the adjusted p value isx 0.0001 = 0.0005,
still very significant. The adjusted p values, féy and3; are smaller.
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Box-Whisker Plot : Bolt Experiment

10
|

-10

B-C&W B-HT B-P&O M-C&W M-HT M-P&O

Figure 1: Box-Whisker Plots of Residuals, Bolt Experiment

The plot suggests that the constant variance assumptié) dogs not hold and
that the variance af for bolt is larger than that for mandrel. These are aspects

that cannot be discovered by regression analysis alone.
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Multiple-Way Layout

Table 12: ANOVA Table for Three-Way Layout

Source df Sum of Squares
A I-1 i1 1 K (é:)”
B J—1 > nlK(B;)
C K -1 Zk: 1 nIJ(5 )
AXx B (I —=1)(J —1) > 2 1”K((045) )?
AxC (I —-1)(K—-1) 27:1 Ek:l nJ(O‘(S)ik)
B x C (J—1)(K —1) PP Drl nl@jk)Q
AxBxC (I-1)J=1)(K=1) > > > n(Fuk)’
residual [JK(n—1) S Y oy Wigkt — Fige.)?
total [JKn —1 S S Y Wik — §)°

o &;, 3, aB;;, etc given in (3.35) of the book.

e Estimation, F test, residual analysis are similar to thosé¥o-way layout.
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Latin Square Design : Wear Experiment

Wear Experiment : Testing the abrasion resistance of rubber-covered fabric,
y = loss in weight over a period of time.

One treatment factor : Material type A, B, C, D.

Two blocking factors : (1) four positions on the tester,
(2) four applications (four different times for setting upettester)

Latin square design of orderk : Each of thek Latin letters (i.e., treatments)
appears once in each row and once in each column.

It is an extension of RBD to accommodadteo blocking factors. Randomization
applied to assignments to rows, columns, treatments. ¢Ctah of Latin Square
Tables given in Appendix 3A of WH).
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Wear Experiment : Design and Data

Table 13: Latin Square Design (columns correspond to positions, rooveespond to
applications and Latin letters correspond to material®aMExperiment

Position
Application 1 2 3 4
1 C D B A
2 A B D C
3 D C A B
4 B A C D

Table 14:Weight Loss Data, Wear Experiment

Position
Application 1 2 3 4
1 235 236 218 268
2 251 241 227 229
3 234 273 274 226
4 195 270 230 225
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Model for Latin Square Design
Model:

Yijl =1+ a; + B + T + €1,

| = Latin letter in the(i, 7) cell of the Latin Square,
o; = ith row effect,

B; = jth column effect,

7, = (th treatment (i.e., Latin letter) effect,

€;;1 are independeny (0, o).

There are onlyk? values in the tripleti( j, [) dictated by the particular LS; this
set is denoted by.

Yijl = ??—|-(347;—|—Bj-|—7A'l-|-7°ijl
= Y.+ W -9 )+ @, —v.)+@1—y..)
+(Yiji — Yirr — Yoo — Yot + 29...),

ANOVA decomposition: similar formula (see (3.40) of WH)
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ANOVA for Latin Square Design

Table 15: ANOVA Table for Latin Square Design

Degrees of Sum of
Source Freedom Squares
row k—1 S (G —§0)°
column k-1 kY (G — )
treatment k — 1 S (Ga—T.)°
residual (k= 1)(k—2) Y nes Wist — Ui — Uj — o1 +25..)°
total K2 —1 > iines Wit — 7.7

Table 16: ANOVA Table, Wear Experiment

Degrees of Sum of Mean
Source Freedom Squares Squares F
application 3 986.5 328.833 5.37]
position 3 1468.5 489.500 7.99
material 3 4621.5 1540.500 25.15
residual 6 367.5 61.250
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F' Test and Multiple Comparisons

e Hy: ™ =--- =713, Can be tested by using tlféstatistic

SS5;/(k —1)

PSS -k 2y

The I test rejectd] at levela if F' > Fi,_ 1 (1-1)(k—2),a-

o If Hy isrejected, multiple comparisons of theshould be performed.
t statistics for making multiple comparisons :

R et
Y a1k + 1]k

wheres? is the mean square error in the ANOVA table.

e Atlevel «, the Tukey multiple comparison method identifies “treattaen
andj as different” if

1
ti| > EQk,(k—l)(k—m,a-
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Analysis Results

The p values for application and position are 0.039(ab(F5 ¢ > 5.37))
and 0.016(Frob(F3,6 > 7.99)), respectively. This indicates that blocking
IS Important.

The treatment factor (material) has the most significancedasated by a p
value of 0.0008 (F’rob(F3,6 > 25.15)).

With k=4 and(k — 1)(k — 2)=6, the critical value for the Tukey multiple
comparison method is

1 4.90
— = —— = 3.46
\/§Q4,6,0.05 \@

at the 0.05 level.

By comparing the multiple comparisonstatistics given in Table 17 with
3.46, materiald andB, A andC, A andD andB and(C' are identified as
different at 0.05 level.
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Multiple Comparisons Tables

Table 17: Multiple ComparisonStatistics, Wear Experiment

Avs.B Avs.C Avs.D Bvs.C Bvs.D (Cvs.D
-8.27 -4.34 -6.37 3.93 1.90 -2.08

Table 18: ANOVA Table (Ignoring Blocking), Wear Experiment

Degrees of  Sum of Mean
Source Freedom Squares Squares F'
material 3 4621.5 1540.500 6.5p
residual 12 2822.5 235.21

Effectiveness of blocking:
With blocking, Pr(F3.6 > 25.15) = 0.0008,
Without blocking,Pr(F3 12 > 6.55) = 0.007.

Therefore blocking can make a difference in decision maKitrgatment effects are smaller.
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Graeco-Latin Square Design

e Two Latin squares arerthogonal if each pair of letters appears once in the
two squares, when superimposed. The super-imposed sguaEked a
Graeco-Latin square

Aa BB Cuv
By Ca Ap
Cp Ay Ba

e Useful for studying four factors (1 treatment, 3 blockingttas; or 2
treatment, 2 blocking factors etc.) allowing one more fatddre studied
than in LS.
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Model and ANOVA in Graeco-Latin Square Design
Model:

Yijim = N+ oy + B + 71 + G + €ijim,

(Similar interpretation as in LS, ang, is themth effect of Greek letters)t' test
and Tukey’s multiple comparisons similar formulae.

Table 19: ANOVA Table for Graeco-Latin Square Design

Degrees of Sum of

Source Freedom Squares
row k—1 KX (i — o)
column k—1 kY (g — )
Latin letter k& — 1 kS (G — o)’
Greek letter %k — 1 A (TR S
residual (k—3)(k—1) by subtraction
total k-1 > itmyes Wigim —7..)°
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Incomplete Blocking

Blocking isincomplete if the number of treatmentsis greater than the block size
k. This happens if the nature of blocking makes it difficultaeonh blocks of large
size.

Example : wine or ice cream tasting, block size limited byedmids.
On the other hand, RBD hasmplete blocking.

Example: Tire wear experiment. Compare four components@[Bin terms of
wear. Because of manufacturing limitations, each tire eadided into only three
sections with each section being made of one compound.
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Table 20: Wear Data, Tire Experiment

Compound
Tire A B C D

1 238 238 279

2 196 213 308
3 254 334 367
4 312 421 412
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Balanced Incomplete Block Design (BIBD)

e A BIBD hast treatments, andl blocks of sizek, ¢t > k, each treatment
replicatedr times, such that each pair of treatments appear indhe:
number (denoted by) of blocks.

In the wear experiment,= 4,k =3,b=4,r = 3 and\ = 2.
Two basic relations:

bk = rt,
r(k—1) = At—1).
(Proof of (i) and (ii).)

e For givenk, t andb, a BIBD may or may not exist. When it does not, either
adjust the values df, t, b to get a BIBD, or if not possible, find a partially
balanced incomplete block design (PBIBD) (which is not cedan the
book). Tables of BIBD or PBIBD in books like Cochran and Co%%7T).
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Example of Split-plot Design: Wood Experiment

e EXxperiment objective : to study the water resistant prgpafrtvood.
e Two factors: A—wood pretreatment, 2-level, B—type of stalevel.

e Completely randomized design: randomly apply the 8 contlaina of A
and B to 8 wood panels, such as in Table 21.

e Problem: inconvenient to apply the pretreatment to a smatid\panel.

Table 21: Completely Randomized Version of the Wood Expenimn

Run 1 2 3 4 5 6 7 8
Pretreatmentd) A1 A2 A2 A1 A2 Al Al A2
Stain (B) B2 B4 Bl Bl B3 B4 B3 B2
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Split-plot Design

e Alternative Design: split-plot design in Table 22.

Table 22: Split-Plot Version of the Wood Experiment

First panel Second panel
Pretreated withd 1 Pretreated withd2
B3 | B2 | B4 | Bl | B2 | Bl | B4 | B3

Justification: Easier to apply pretreatmentamye wood panels.
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Split-plot Design (Cont'd)

Split-plot design (and the name) has its origin in agriaatu

Some factors need to be applied to large plots, calledle plots In the
example, the two big wood panels to which pretreatement AllAghare
applied are whole plots.

Split each whole plot into smaller plots, callsdbplots In the example, the
four small wood panels within the large panels are subplots.

Wood Experiment: 3 replications, 6 whole plots (two largaqda for Al
and A2 per replication).
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Data from the Wood Experiment

Whole Plot Pretreatment typed() Stain type B) Replication (Rep) ResistanceY’)

N

2 1 53.5
325
46.6
35.4
44.6
52.2
45.9
48.3
40.8
43.0
51.8
45.5
60.9
55.3
51.1
57.4
32.1
30.1
34.4
32.2
52.8
51.7
55.3
59.2
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Incorrect Model and Analysis

e Two-way layout model (factord and B with n replicates):
Yijk =1+ a; + B + (af)ij + €iji,
v=1,...,1;, 9=1,...,J; k=1,...,n,
wherel =2, J =4,n = 3.

e ANOVA (table on next page) shows that only factbis significant; neither
B nor A x B is significant.

e The model is wrongA and B usedifferentrandomization schemes. The
error component should be separated into two parts—theawdtol error and
the subplot error. To test the significance of various effaet need to
compare their respective mean squares with two different eomponents.

43



Incorrect ANOVA Table

Table 23: Incorrect ANOVA Table, Wood Experiment

Source Degrees of Freedom Sum of Squares Mean Squarest”

A 1 782.04 782.04 13.49
B 3 266.00 88.67 1.53
Ax B 3 62.79 2093 0.36
Residual 16 927.88 57.99

Total 23 2038.72

e Only A is significant.
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Correct Model

Yijk =0+ Tk + i + (T + 55 + (af)ij + (70)kj + (TaB)kij + €5

v=1,...,1; 53=1,...,J;

k=1,...,n, (6)

e y;ir: Observation for théth replicate of thethe level of factord and the
jth level of factorB, €, are independent error terms.

e Treatr, as arandom effect (because there are potentially many other
possible replications).

Terms representing the whole plot

Terms representing the subplot

Tk effect of kth replicate B; jth main effect ofB

o ith main effect forA (aB)ij (i, j)th interactionA x B

(Ta)ri | (k,i)thinteraction replicate A || (73)g; (k, j)th interaction replicate B
(taB)kij | (k,t,J)thinteraction replicatx A x B




Model for Split-plot Design
Model (6) can be viewed as a three-way layout withand3; asfixed
effects,r, asrandomeffects,r,, ~ N (0, o2).
whole plot error:(ta)x; ~ N(0,02,), for testinga effects.

)Y T

subplot erroriey;; = (73)k; + (TaB)kij + €5, ~ N(0,02), for testings
anda effects.

Model (6) can be rewritten as
Yiik =N+ T + & + (7o) ki + 85 + (aB)ij + €kij- (7)

Subplot error is usuallgmallerthan whole plot error because subplots are
more homogeneous than whole plots.
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ANOVA Decomposition

e Use the zero-sum constraints;;_, o; = >>7_, 8; = >i_; >/ (aB)i; =0,
break up the total sum of squares as a three-way layout watbraA, B,
and Rep:

SST = SSrep+ SSa + SSp + SSRepca + SSaxB + SSRepx 5 + SSRepx Ax B-

e Define the sum of squares for the whole plot e$6k,,oje @and the sum of
squares for the subplot errsiSgpas:

SSwhole = SSRepra
SSsub= 95Rep«s T PORepcax B
ANOVA decomposition for the split-plot model:
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ANOVA Decomposition (Cont’d)

Table 24: Wood Experiment : Summarized data for whole platyais

Repl Rep2 Rep3 Total
Al 181.1 2247 219.0 624.8
A2 168.0 191.0 128.8 487.8
Total 349.1 415.7 347.8 1112.6

SS 4 = (624.8% + 487.8%) /12 — 1112.6% /24 = 782.04,

SSRep= (349.17 + 415.7% + 347.8) /8 — 1112.6% /24 = 376.99,
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Expected Mean Squares in ANOVA

Source Effect df E(Mean Squares)
Replicate Tk n—1 o2+ Jo2, + [Jo?

A a; I—1 02 4 Jo2, + M zizio
Whole ploterror  (ra)r; (I —1)(n —1) o2+ Jo2,,

B B, J—1 o2 4 ™ zzi_:i 53
Ax B (@B)i; (-1 -1 o+ nz%l_%%iﬁﬁ)%
Subplot error €kij I(J—-1)(n—1) o2

Proofs are similar to but more tedious than in one-way randffects model.
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Py — MS 4
MSwhole
MS
5= Mssib
MS
S
Fre, MSRep

; MSWhoIe

Hypothesis Testing

-1 — ... = Oy,

151:...:ﬁj,

: (afB);; =constanti =1,...,1, j

o = 0.
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Correct ANOVA Analysis

Table 25: Correct ANOVA Table, Wood Experiment

Source Degrees of Freedom Sum of Squares Mean Squares
Replicate 2 376.99 188.50 0.95
A 1 782.04 782.04 3.93
Whole plot error 2 398.37 199.19

B 3 266.00 88.67 6.98
Ax B 3 62.79 20.93 1.65
Subplot error 12 152.52 12.71

Total 23 2038.72
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Analysis Results

Only B is significant.

Explanation:

To testHy, : 0 = 0, use

MSRep 1885

— = 0.95.
MSWhO|e 199.19

=- no significant difference between three replications.

When does testingl,, make sense?
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Analysis of Covariance: Starch Experiment

e Data in Table 3.34 of WH. Goal: To compare the three treatmeatna,
corn, potato) for making starch filng,= break strength of film, covariate
= film thickness. Known that affectsy (thicker films are stronger);
thickness cannot be controlled but are measured after fienshade.
Question How to perform treatment comparisons by incorporating the
effect of the covariate?

e Model:
Yij =N+ T +yx +e€5, 1 =1,...,k, 7=1,...,n,,

7; = ith treatment effect

x;; = covariate value,

v = regression coefficient for the ;

e;; independentV (0, o2).

Special cases:

1. Whenvyz;;=0 (i.e.,z;; not available or na: effect), one-way layout.

2. Whenr;=0 (no treatment effect), simple linear regression.
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Regression Model Approach

Model :
y1; = n+yT1+ ey, j=1,---,13,2=1 (canna)
Yoj = N+ Te+ywe; +eg;, j=1,---,19,9=2 (corn) (8)
ysj = n+713+ywsites;, j=1,---,17, 1=3 (potato)
where
71 IS set to zero (baseline constraint),
1 = intercept,

~ = regression coefficient for thickness,
T, = cahnavs. corn, and

T3 = cannavs. potato.

(Write the model matrix for (8)).

Run regression analysis in the usual way.
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Regression Analysis of Starch Experiment

Table 26: Tests, Starch Experiment

Standard
Effect Estimate Error t p value
intercept 158.261 179.775 0.88 0.38
thickness 62.501 17.060 3.66 0.90
canna vs. corn -83.666 86.095 -0.97 0.34
canna vs. potato 70.360 67.781 1.04 0.30
corn vs. potato 154.026 107.762 1.43 0.16

In the table, corn vs. potate 73 — 75 = 70.360 — (—83.666) = 154.026.

No pair of film types has any significant difference after atipng for thickness
effect. (So, how should the choice be made between the thmeg/pes ?) Most
of the variation is explained by the covariate thickness.

55



Multiple Comparisons

Var(7s) andVar(7y) can be obtained from regression output. From (1.33) of
WH,

Var(3) = o?(XTX)™ 1.
Using this,t;,_+,) can be found as
Var(ts — 7o) = Var(ts) + Var(rz) — 2Cov(73, 72). The degrees of freedom
for thet statistic is same as that of the residuals. The p values éathtiee tests
are given in Table 26. For simultaneous testing, use adjystalues.
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ANCOVA Table

Table 27: ANCOVA Table, Starch Experiment

Degrees of  Sum of Mean
Source Freedom Squares  Squares F
thickness 1 2553357 2553357 94.19
starch 2 56725 28362  1.0b
residual 45 1219940 27110
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Transformation of Response

e Transform y before fitting a regression model.
Theory: Suppose in the modgk= . + ¢, o, = [Var(y)]*/?, o, o p®. This
can be detected by plotting residuals = y;; - ¥;. againsty;. (for replicated
experiment) or; = y; — y; againsty; (for unreplicated experiment). (What
pattern to look for ?)

e Error transmission formula;

2= f(y)~= f(p)+ f(1)(y — p).

oF = Var(z) = (f' (1) Var(y) = (f'(n)’o,.
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Power (Box-Cox) Transformation

A
y™r —1
, A#O,
z=fly) = A (9)
In vy, A=0,
fllp) = w7,
o = |f(Wloy = oy ocpt T = prteTh

e Choosing\ = 1 — o would makes, nearly constant

e Sincea is unknown,\ can be chosen by some statistical criterion (e.g.,
maximum likelihood). A simpler method is to try a few selettalues of\
(see Table 28). In each transform, analyze the z data andetlibe
transformation (i.e.)\ value) such that
(a) it gives a parsimonious model,

(b) no unusual pattern in the residual plots,
(c) good interpretation of the transformation.

Example of (c):y = survival time,y—! = rate of dying in the example of Box-Cox(1964).
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Variance Stabilizing Transformations

Table 28: Variance Stabilizing Transformations

oy o o A=1—-« Transformation
oy o< p? 3 —2 reciprocal squared
oy X 1 2 —1 reciprocal
oy o< /2 3/2 —1/2 reciprocal square roo
0y OC [ 1 0 log
o, o< pt/? 1/2 1/2  square root
o, o< constant 0 1 original scale
o, o /2 —1/2 3/2 3/2 power
oy o —1 2 square

[
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Analysis of Drill Experiment

e Data in Table 3.40 of WH. Four factors A,B,C and D, each at twol&gve
using a2* design. Fit a model with 4 main effects and 6 two-factor
Interactions (2fi's). Theé-vs-y plot shows an increasing pattern.

1.0

0.5

0.0

-0.5

-1.0

2 4 6 8 10 12 14

fitted

Figure 2:r; vs. g;, Drill Experiment
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Scaled lambda plot

e For each of the eight transformatiohwyalues in Table 28, a model of main
effects and 2fi’s is fitted to the transformed= f(y). Thet statistic values
for the 10 effects are displayed.

e Comments on plot : For the log transformation\(= 0), the largest
statistics (', B, andD) stand out. The next bestls= —1/2, but not as
good (Why ? It has an interactidsC'). The log transform removes the
Interaction termBC.

On the original scaleX = 1), the four main effects do not separate apart.

e Conclusion : Use log transformation.
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Scaled lambda plot : Drill Experiment

t statistics

lambda

Figure 3. Scaled Plot (lambda denotes the powein the transformation (9))
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Comments on Board
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