
Unit 6: Fractional Factorial Experiments at Three

Levels

Source : Chapter 6 (Sections 6.1 - 6.6)

• Larger-the-better and smaller-the-better problems.

• Basic concepts for 3k full factorial designs.

• Analysis of 3k designs using orthogonal components system.

• Design of 3-level fractional factorials.

• Effect aliasing, resolution and minimum aberration in 3k−p fractional

factorial designs.

• Analysis of 3-level designs : ANOVA using orthogonal components system.
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Seat Belt Experiment
• An experiment to study the effect of four factors on the pull strength of

truck seat belts.

• Four factors, each at three levels (Table 1).

• Two responses : crimp tensile strength that must be at least 4000 lb and flash
that cannot exceed 14 mm.

• 27 runs were conducted; each run was replicated three times as shown in
Table 2.

Table 1: Factors and Levels, Seat-Belt Experiment

Level

Factor 0 1 2

A. pressure (psi) 1100 1400 1700

B. die flat (mm) 10.0 10.2 10.4

C. crimp length (mm) 18 23 27

D. anchor lot (#) P74 P75 P76
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Design Matrix and Response Data, Seat-Belt

Experiment

Table 2: Design Matrix and Response Data, Seat-Belt Experiment: first 14 runs

Factor

Run A B C D Strength Flash

1 0 0 0 0 5164 6615 5959 12.89 12.70 12.74

2 0 0 1 1 5356 6117 5224 12.83 12.73 13.07

3 0 0 2 2 3070 3773 4257 12.37 12.47 12.44

4 0 1 0 1 5547 6566 6320 13.29 12.86 12.70

5 0 1 1 2 4754 4401 5436 12.64 12.50 12.61

6 0 1 2 0 5524 4050 4526 12.76 12.72 12.94

7 0 2 0 2 5684 6251 6214 13.17 13.33 13.98

8 0 2 1 0 5735 6271 5843 13.02 13.11 12.67

9 0 2 2 1 5744 4797 5416 12.37 12.67 12.54

10 1 0 0 1 6843 6895 6957 13.28 13.65 13.58

11 1 0 1 2 6538 6328 4784 12.62 14.07 13.38

12 1 0 2 0 6152 5819 5963 13.19 12.94 13.15

13 1 1 0 2 6854 6804 6907 14.65 14.98 14.40

14 1 1 1 0 6799 6703 6792 13.00 13.35 12.87
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Design Matrix and Response Data, Seat-Belt

Experiment (contd.)

Table 3: Design Matrix and Response Data, Seat-Belt Experiment: last 13 runs

Factor

Run A B C D Strength Flash

15 1 1 2 1 6513 6503 6568 13.13 13.40 13.80

16 1 2 0 0 6473 6974 6712 13.55 14.10 14.41

17 1 2 1 1 6832 7034 5057 14.86 13.27 13.64

18 1 2 2 2 4968 5684 5761 13.00 13.58 13.45

19 2 0 0 2 7148 6920 6220 16.70 15.85 14.90

20 2 0 1 0 6905 7068 7156 14.70 13.97 13.66

21 2 0 2 1 6933 7194 6667 13.51 13.64 13.92

22 2 1 0 0 7227 7170 7015 15.54 16.16 16.14

23 2 1 1 1 7014 7040 7200 13.97 14.09 14.52

24 2 1 2 2 6215 6260 6488 14.35 13.56 13.00

25 2 2 0 1 7145 6868 6964 15.70 16.45 15.85

26 2 2 1 2 7161 7263 6937 15.21 13.77 14.34

27 2 2 2 0 7060 7050 6950 13.51 13.42 13.07
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Larger-The-Better and Smaller-The-Better

problems

• In the seat-belt experiment, the strength should be as high as possible and the flash as

low as possible.

• There is no fixed nominal value for either strength or flash. Such type of problems

are referred to aslarger-the-better andsmaller-the-betterproblems, respectively.

• For such problems increasing or decreasing the mean is more difficult than reducing

the variation and should be done in the first step. (why?)

• Two-step procedure for larger-the-better problems:

1. Find factor settings that maximize E(y).

2. Find other factor settings that minimize Var(y).

• Two-step procedure for smaller-the-better problems:

1. Find factor settings that minimize E(y).

2. Find other factor settings that minimize Var(y).
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Situations where three-level experiments are useful

• When there is a curvilinear relation between the response and a quantitative

factor like temperature. It is not possible to detect such a curvature effect

with two levels.

• A qualitative factor may have three levels (e.g., three types of machines or

three suppliers).

• It is common to study the effect of a factor on the response at its current

settingx0 and two settings aroundx0.
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Analysis of3k designs using ANOVA

• We consider a simplified version of the seat-belt experimentas a 33 full

factorial experiment with factorsA,B,C.

• Since a 33 design is a special case of a multi-way layout, the analysis of

variance method introduced in Section 3.5 can be applied to this experiment.

• We consider only the strength data for demonstration of the analysis.

• Using analysis of variance, we can compute the sum of squaresfor main

effectsA, B, C, interactionsA×B, A×C, B×C andA×B×C and the

residual sum of squares. Details are given in Table 4.

• The break-up of the degrees of freedom will be as follows:

– Each main effect has two degrees of freedom because each factor has three levels.

– Each two-factor interaction has(3−1)× (3−1) = 4 degrees of freedom.

– TheA×B×C interaction has(3−1)× (3−1)× (3−1) = 8 degrees of freedom.

– The residual degrees of freedom is 54(= 27× (3−1)), since there are three replicates.
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Analysis of Simplified Seat-Belt Experiment

Table 4: ANOVA Table, Simplified Seat-Belt Experiment

Degrees of Sum of Mean

Source Freedom Squares Squares F p-value

A 2 34621746 17310873 85.58 0.000

B 2 938539 469270 2.32 0.108

C 2 9549481 4774741 23.61 0.000

A×B 4 3298246 824561 4.08 0.006

A×C 4 3872179 968045 4.79 0.002

B×C 4 448348 112087 0.55 0.697

A×B×C 8 5206919 650865 3.22 0.005

residual 54 10922599 202270

total 80 68858056
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Orthogonal Components System: Decomposition of

A×B Interaction

• A×B has 4 degrees of freedom.

• A×B has two components denoted byABandAB2, each having 2 df.

• Let the levels ofA andB be denoted byx1 andx2 respectively.

• AB represents the contrasts among the response values whosex1 andx2

satisfy

x1 +x2 = 0,1,2(mod3),

• AB2 represents the contrasts among the response values whosex1 andx2

satisfy

x1 +2x2 = 0,1,2(mod3).
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Orthogonal Components System: Decomposition of

A×B×C Interaction

• A×B×C has 8 degrees of freedom.

• It can be further split up into four components denoted byABC, ABC2,

AB2C andAB2C2, each having 2 df.

• Let the levels ofA, B andC be denoted byx1, x2 andx3 respectively.

• ABC, ABC2, AB2C andAB2C2 represent the contrasts among the three

groups of(x1,x2,x3) satisfying each of the four systems of equations,

x1 +x2 +x3 = 0,1,2(mod3),

x1 +x2 +2x3 = 0,1,2(mod3),

x1 +2x2 +x3 = 0,1,2(mod3),

x1 +2x2 +2x3 = 0,1,2(mod3).
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Uniqueness of Representation

• To avoid ambiguity,the convention that the coefficient for the first nonzero

factor is 1 will be used.

• ABC2 is used instead ofA2B2C, even though the two are equivalent.

• ForA2B2C, there are three groups satisfying

2x1 +2x2 +x3 = 0,1,2(mod3),

equivalently, 2× (2x1 +2x2 +x3) = 2× (0,1,2)(mod3),

equivalently, x1 +x2 +2x3 = 0,2,1(mod3),

which corresponds toABC2 by relabeling of the groups. HenceABC2 and

A2B2C areequivalent.
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Analysis using the Orthogonal components system

Table 5:FactorA andB Combinations (x1 denotes the levels of factor A andx2 denotes the levels

of factor B)

x2
x1 0 1 2

0 αi (y00) βk (y01) γ j (y02)

1 β j (y10) γi (y11) αk (y12)

2 γk (y20) α j (y21) βi (y22)

The nine level combinations ofA andB can be represented by the cells in the 3×3 square in Table 5.

ȳα =
1
3
(y00+y12+y21),

ȳβ =
1
3
(y01+y10+y22),

· · · · · · · · · ,

ȳk =
1
3
(y01+y12+y20),

where eachyi j represents the average ofn replicates in the(i, j) cell.
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Analysis using the Orthogonal components system

(contd)

SSAB = 3n[(ȳα − ȳ·)
2 +(ȳβ − ȳ·)

2 +(ȳγ − ȳ·)
2],

whereȳ· = (ȳα + ȳβ + ȳγ)/3 andn is the number of replicates.

• For the simplified seat-belt experiment, ¯yα = 6024.407,ȳβ = 6177.815 and
ȳγ = 6467.0, so that ¯y· = 6223.074 and

SSAB = (3)(9)[(6024.407−6223.074)2 +(6177.815−6223.074)2

+(6467.0−6223.074)2] = 2727451.

• Similarly, theAB2 interaction component represents the contrasts among the
three groups represented by the lettersi, j andk. The corresponding ¯yi , ȳ j

andȳk values represent the averages of observations with
x1 +2x2 = 0,1,2(mod3), respectively, and the formula forSSAB2 can be
defined in a similar manner.
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ANOVA : Simplified Seat-Belt Experiment

Degrees of Sum of Mean

Source Freedom Squares Squares F p-value

A 2 34621746 17310873 85.58 0.000

B 2 938539 469270 2.32 0.108

C 2 9549481 4774741 23.61 0.000

A×B 4 3298246 824561 4.08 0.006

AB 2 2727451 1363725 6.74 0.002

AB2 2 570795 285397 1.41 0.253

A×C 4 3872179 968045 4.79 0.002

AC 2 2985591 1492796 7.38 0.001

AC2 2 886587 443294 2.19 0.122

B×C 4 448348 112087 0.55 0.697

BC 2 427214 213607 1.06 0.355

BC2 2 21134 10567 0.05 0.949

A×B×C 8 5206919 650865 3.22 0.005

ABC 2 4492927 2246464 11.11 0.000

ABC2 2 263016 131508 0.65 0.526

AB2C 2 205537 102768 0.51 0.605

AB2C2 2 245439 122720 0.61 0.549

residual 54 10922599 202270

total 80 68858056
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Analysis of Simplified Seat-Belt Experiment (contd)

• The significant main effects areA andC.

• Among the interactions,A×B, A×C andA×B×C are significant.

• We have difficulty in interpretations when only one component of the

interaction terms become significant. What is meant by “A×B is

significant”?

– HereAB is significant butAB2 is not.

– Is A×B significant because of the significance ofABalone ?

– For the original Seat-Belt Experiment, we haveAB= CD2.

• Similarly, AC is significant, but notAC2. How to interpret the significance of

A×C ?

• This difficulty in interpreting the significant interactioneffects can be

avoided by using Linear-Quadratic Systems.
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Why three-level fractional factorial ?

• Run size economy : it is not economical to use a 34 design with 81 runs

unless the experiment is not costly.

• If a 34 design is used for the experiment, its 81 degrees of freedom would be

allocated as follows:

Main Interactions

Effects 2-Factor 3-Factor 4-Factor

# 8 24 32 16

• Using effect hierarchy principle, one would argue that 3fi’sand 4fi’s are not

likely to be important. Out of a total of 80 df, 48 correspond to such effects !
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Defining a34−1 Experiment

• Returning to the original seat-belt experiment, it employsa one-third

fraction of the 34 design. This is denoted as a 34−1 design.

• The design is constructed by choosing the column for factorD (lot #) to be

equal to ColumnA + ColumnB + ColumnC(mod3).

• This relationship can be represented by the notation

D = ABC.

• If x1, . . . ,x4 are used to represent these four columns, then

x4 = x1 +x2 +x3(mod3),or equivalently

x1 +x2 +x3 +2x4 = 0(mod3), (1)

which can be represented by

I = ABCD2.
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Aliasing Patterns of the Seat-Belt Experiment

• The aliasing patterns can be deduced from the defining relation. For

example, by adding 2x1 to both sides of (1), we have

2x1 = 3x1 +x2 +x3 +2x4 = x2 +x3 +2x4(mod3),

• This means thatA andBCD2 arealiased. (Why?)

• By following the same derivation, it is easy to show that the following

effects are aliased:

A = BCD2 = AB2C2D,

B = ACD2 = AB2CD2,

C = ABD2 = ABC2D2,

D = ABC = ABCD,

AB = CD2 = ABC2D,

AB2 = AC2D = BC2D,

AC = BD2 = AB2CD,

AC2 = AB2D = BC2D2,

AD = AB2C2 = BCD,

AD2 = BC = AB2C2D2,

BC2 = AB2D2 = AC2D2,

BD = AB2C = ACD,

CD = ABC2 = ABD.

(2)
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Clear and Strongly Clear Effects

• If three-factor interactions are assumed negligible, fromthe aliasing relations in (2),

A, B, C, D, AB2, AC2, AD, BC2, BD andCD can be estimated.

• These main effects or components of two-factor interactions are calledclear because

they are not aliased with any other main effects or two-factor interaction

components.

• A two-factor interaction, sayA×B, is calledclear if both of its components,ABand

AB2, are clear.

• Note that each of the six two-factor interactions has only one component that is

clear; the other component is aliased with one component of another two-factor

interaction. For example, forA×B, AB2 is clear butAB is aliased withCD2.

• A main effect or two-factor interaction component is said tobestrongly clear if it is

not aliased with any other main effects, two-factor or three-factor interaction

components. A two-factor interaction is said to bestrongly clearif both of its

components are strongly clear.
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A 35−2 Design

• 5 factors, 27 runs.

• The one-ninth fraction is defined byI = ABD2 = AB2CE2, from which two

additional relations can be obtained:

I = (ABD2)(AB2CE2) = A2CD2E2 = AC2DE

and

I = (ABD2)(AB2CE2)2 = B2C2D2E = BCDE2.

Therefore the defining contrast subgroup for this design consists of the

following defining relation:

I = ABD2 = AB2CE2 = AC2DE = BCDE2. (3)
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Resolution and Minimum Aberration

• Let Ai be to denote the number of words of lengthi in the subgroup and

W = (A3,A4, . . .) to denote the wordlength pattern.

• Based onW, the definitions ofresolution andminimum aberration are the

same as given before in Section 5.2.

• The subgroup defined in (3) has four words, whose lengths are 3, 4, 4, and 4.

and henceW = (1,3,0). Another 35−2 design given byD = AB,E = AB2

has the defining contrast subgroup,

I = ABD2 = AB2E2 = ADE = BDE2,

with the wordlength patternW = (4,0,0). According to the aberration

criterion, the first design has less aberration than the second design.

• Moreover, it can be shown that the first design has minimum aberration.
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General3k−p Design

• A 3k−p design is a fractional factorial design withk factors in 3k−p runs.

• It is a 3−pth fraction of the 3k design.

• The fractional plan is defined byp independent generators.

• How many factors can a 3k−p design study?

(3n−1)/2, wheren = k− p.

This design has 3n runs with the independent generatorsx1, x2, . . ., xn. We

can obtain altogether(3n−1)/2 orthogonal columns as different

combinations of∑n
i=1 αixi with αi = 0, 1 or 2, where at least oneαi should

not be zero and the first nonzeroαi should be written as “1” to avoid

duplication.

• Forn=3, the(3n−1)/2 = 13 columns were given in Table 6.5 of WH book.

• A general algebraic treatment of 3k−p designs can be found in Kempthorne

(1952).
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Simple Analysis Methods: Plots and ANOVA

• Start with making a main effects plot and interaction plots to see what

effects might be important.

• This step can be followed by a formal analysis like analysis of variance and

half-normal plots.

The strength data will be considered first. The location maineffect and

interaction plots are given in Figures 1 and 2. The main effects plot suggests that

factorA is the most important followed by factorsC andD. The interaction plots

in Figure 2 suggest that there may be interactions because the lines are not

parallel.
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Main Effects Plot of Strength Location
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Figure 1: Main Effects Plot of Strength Location, Seat-Belt Experiment
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Interaction Plots of Strength Location
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Figure 2: Interaction Plots of Strength Location, Seat-Belt Experiment
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ANOVA Table for Strength Location

Degrees of Sum of Mean

Source Freedom Squares Squares F p-value

A 2 34621746 17310873 85.58 0.000

B 2 938539 469270 2.32 0.108

AB= CD2 2 2727451 1363725 6.74 0.002

AB2 2 570795 285397 1.41 0.253

C 2 9549481 4774741 23.61 0.000

AC= BD2 2 2985591 1492796 7.38 0.001

AC2 2 886587 443294 2.19 0.122

BC= AD2 2 427214 213607 1.06 0.355

BC2 2 21134 10567 0.05 0.949

D 2 4492927 2246464 11.11 0.000

AD 2 263016 131508 0.65 0.526

BD 2 205537 102768 0.51 0.605

CD 2 245439 122720 0.61 0.549

residual 54 10922599 202270
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Analysis of Strength Location, Seat-Belt Experiment

• In equation (2) on slide 18, the 26 degrees of freedom in the experiment

were grouped into 13 sets of effects. The corresponding ANOVA table gives

the sum of squares for these 13 effects.

• Based on the p-values in the ANOVA Table, clearly the factorA, C andD

main effects are significant.

• There are also two aliased sets of effects that are significant, AB= CD2 and

AC= BD2.

• These findings are consistent with those based on the main effects plot and

interaction plots. In particular, the significance ofABandCD2 is supported

by theA×B andC×D interaction plots and the significance ofAC andBD2

is supported by theA×C andB×D interaction plots.
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Analysis of Strength Dispersion (i.e.,lns2) Data

The corresponding strength main effects plot and interaction plots are displayed

in Figures 3 and 4.
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Figure 3: Main Effects Plot of Strength Dispersion, Seat-Belt Experiment
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Interaction Plots of Strength Dispersion
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Figure 4: Interaction Plots of Strength Dispersion, Seat-Belt Experiment

29



Half-Normal Plots

• Since there is no replication for the dispersion analysis, analysis of variance
cannot be used to test effect significance.

• Instead, a half-normal plot can be drawn as follows. The 26 degrees of
freedom in the experiment can be divided into 13 groups, eachhaving two
degrees of freedom. These 13 groups correspond to the 13 rowsin the
ANOVA table of page 26, which consist of four main effects andnine
interaction components.

• The two degrees of freedom in each group can be decomposed further into a
linear effect and a quadratic effect. These effects are defined by the contrast
vectors 1√

2
(−1,0,1) and 1√

6
(1,−2,1), respectively, where the values in the

vectors are associated with the lns2 values at the levels (0, 1, 2) for the
group.

• Because the linear and quadratic effects are standardized and orthogonal to
each other, these 26 effect estimates can be plotted on the half-normal
probability scale as in Figure 5.
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Half-Normal Plot
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Figure 5: Half-Normal Plot of Strength Dispersion Effects,Seat-Belt Experiment

Informal analysis of the plot suggests that the factorA linear effect may be
significant. This can be confirmed by using Lenth’s method. The tPSE value for
theA linear effect is 3.99, which has a p-value of 0.050 (EER). The details are
left as an exercise.

31



Analysis with Flash Data : Combining the results

A similar analysis can be performed to identify the flash location and dispersion
effects. See Section 6.5 of WH book.

• We can determine the optimal factor settings that maximize the strength
location by examining the main effects plot and interactionplots in
Figures 1 and 2 that correspond to the significant effects identified in the
ANOVA table.

• The same method can be used to determine the optimal factor settings that
minimize the strength dispersion, the flash location and flash dispersion,
respectively. (The details are left as an exercise.)

• The most obvious findings are that level 2 of factorA should be chosen to
maximize strength while level 0 of factorA should be chosen to minimize
flash.

• There is an obvious conflict in meeting the two objectives. Trade-off
strategies for handling multiple characteristics and conflicting objectives
need to be considered.
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An Alternative Analysis Method : Linear-Quadratic

System

In the seat-belt experiment, the factorsA,B andC are quantitative. The two

degrees of freedom in a quantitative factor, sayA, can be decomposed into the

linear and quadratic components.

Lettingy0, y1 andy2 represent the observations at level 0, 1 and 2, then thelinear

effectis defined as

y2−y0

and thequadratic effectas

(y2 +y0)−2y1,

which can be re-expressed as the difference between two consecutive linear

effects(y2−y1)− (y1−y0).
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Linear and Quadratic Effects

Mathematically, the linear and quadratic effects are represented by two mutually

orthogonal vectors:

Al = 1√
2
(−1,0,1),

Aq = 1√
6
(1,−2,1).

(4)

• For the sake of brevity, they are also referred to as thel andq effects.

• The scaling constants
√

2 and
√

6 yield vectors with unit length.

• The linear (or quadratic) effect is obtained by taking the inner product

betweenAl (or Aq) and the vectory = (y0,y1,y2). For factorB,Bl andBq are

similarly defined.
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Linear and Quadratic Effects (contd)

• Then the four degrees of freedom in theA×B interaction can be

decomposed into four mutually orthogonal terms:

(AB)ll ,(AB)lq,(AB)ql ,(AB)qq, which are defined as follows: fori, j = 0,1,2,

(AB)ll (i, j) = Al (i)Bl ( j),

(AB)lq(i, j) = Al (i)Bq( j),

(AB)ql(i, j) = Aq(i)Bl ( j),

(AB)qq(i, j) = Aq(i)Bq( j).

(5)

They are called thelinear-by-linear , linear-by-quadratic ,

quadratic-by-linear andquadratic-by-quadratic interaction effects. They

are also referred to as thel × l , l ×q, q× l andq×q effects.

• It is easy to show that they are orthogonal to each other.
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Linear and Quadratic Effects (contd)

Using the nine level combinations of factorsA andB, y00, . . . ,y22 given in

Table 5, the contrasts(AB)ll , (AB)lq, (AB)ql , (AB)qq can be expressed as follows:

(AB)ll : 1
2{(y22−y20)− (y02−y00)},

(AB)lq: 1
2
√

3
{(y22+y20−2y21)− (y02+y00−2y01)},

(AB)ql : 1
2
√

3
{(y22+y02−2y12)− (y20+y00−2y10)},

(AB)qq: 1
6{(y22+y20−2y21)−2(y12+y10−2y11)+(y02+y00−2y01)}.

• An (AB)ll interaction effect measures the difference between the conditional

linearB effects at levels 0 and 2 of factorA.

• A significant(AB)ql interaction effect means that there is curvature in the

conditional linearB effect over the three levels of factorA.

• The other interaction effects(AB)lq and(AB)qq can be similarly interpreted.
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Analysis of designs with resolution at leastV

• For designs of at least resolution V, all the main effects andtwo-factor

interactions are clear. Then, further decomposition of these effects

according to the linear-quadratic system allows all the effects (each with one

degree of freedom) to be compared in a half-normal plot.

• Note that for effects to be compared in a half-normal plot, they should be

uncorrelated and have the same variance.
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Analysis of designs with resolution smaller thanV

• For designs with resolutionIII or IV , a more elaborate analysis method is

required to extract the maximum amount of information from the data.

• Consider the 33−1 design withC = ABwhose design matrix is given in
Table 6.

Table 6: Design Matrix for the 33−1 Design
Run A B C

1 0 0 0

2 0 1 1

3 0 2 2

4 1 0 1

5 1 1 2

6 1 2 0

7 2 0 2

8 2 1 0

9 2 2 1

• Its main effects and two-factor interactions have the aliasing relations:

A = BC2,B = AC2,C = AB,AB2 = BC= AC. (6)
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Analysis of designs with resolutionIII (contd)
• In addition to estimating the six degrees of freedom in the main effectsA, B

andC, there are two degrees of freedom left for estimating the three aliased
effectsAB2, BC andAC, which, as discussed before, are difficult to interpret.

• Instead, consider using the remaining two degrees of freedom to estimate
any pair of thel × l , l ×q,q× l or q×q effects betweenA,B andC.

• Suppose that the two interaction effects taken are(AB)ll and(AB)lq. Then
the eight degrees of freedom can be represented by the model matrix given
in Table 7.

Table 7: A System of Contrasts for the 33−1 Design
Run Al Aq Bl Bq Cl Cq (AB)ll (AB)lq

1 -1 1 -1 1 -1 1 1 -1

2 -1 1 0 -2 0 -2 0 2

3 -1 1 1 1 1 1 -1 -1

4 0 -2 -1 1 0 -2 0 0

5 0 -2 0 -2 1 1 0 0

6 0 -2 1 1 -1 1 0 0

7 1 1 -1 1 1 1 -1 1

8 1 1 0 -2 -1 1 0 -2

9 1 1 1 1 0 -2 1 1

39



Analysis of designs with resolutionIII (contd)
• Because any component ofA×B is orthogonal toA and toB, there are only

four non-orthogonal pairs of columns whose correlations are:

Corr((AB)ll ,Cl ) = −
√

3
8,

Corr((AB)ll ,Cq) = − 1√
8
,

Corr((AB)lq,Cl ) = 1√
8
,

Corr((AB)lq,Cq) = −
√

3
8.

(7)

• Obviously,(AB)ll and(AB)lq can be estimated in addition to the three main
effects.

• Because the last four columns are not mutually orthogonal, they cannot be
estimated with full efficiency.

• The estimability of(AB)ll and(AB)lq demonstrates an advantage of the
linear-quadratic system over the orthogonal components system. For the
same design, theAB interaction component cannot be estimated because it is
aliased with the main effectC.
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Analysis Strategy for Qualitative Factors

• For a qualitative factor like factorD (lot number) in the seat-belt

experiment, the linear contrast(−1,0,+1) may make sense because it

represents the comparison between levels 0 and 2.

• On the other hand, the “quadratic” contrast(+1,−2,+1), which compares

level 1 with the average of levels 0 and 2, makes sense only if such a

comparison is of practical interest. For example, if levels0 and 2 represent

two internal suppliers, then the “quadratic” contrast measures the difference

between internal and external suppliers.
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Analysis Strategy for Qualitative Factors (contd)

• When the quadratic contrast makes no sense, two out of the following three

contrasts can be chosen to represent the two degrees of freedom for the main

effect of a qualitative factor:

D01 =















−1 0

1 for level 1 of factorD,

0 2

D02 =















−1 0

0 for level 1 of factorD,

1 2

D12 =















0 0

−1 for level 1 of factorD,

1 2
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Analysis Strategy for Qualitative Factors (contd)

• Mathematically, they are represented by the standardized vectors:

D01 =
1√
2
(−1,1,0),D02 =

1√
2
(−1,0,1),D12 =

1√
2
(0,−1,1).

• These contrasts are not orthogonal to each other and have pairwise

correlations of 1/2 or−1/2.

• On the other hand, each of them is readily interpretable as a comparison

between two of the three levels.

• The two contrasts should be chosen to be of interest to the investigator. For

example, if level 0 is the main supplier and levels 1 and 2 are minor

suppliers, thenD01 andD02 should be used.
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Qualitative and Quantitative Factors

• The interaction between a quantitative factor and a qualitative factor, say

A×D, can be decomposed into four effects.

• As in (5), we define the four interaction effects as follows:

(AD)l ,01(i, j) = Al (i)D01( j),

(AD)l ,02(i, j) = Al (i)D02( j),

(AD)q,01(i, j) = Aq(i)D01( j),

(AD)q,02(i, j) = Aq(i)D02( j).

(8)
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Variable Selection Strategy

Since many of these contrasts are not mutually orthogonal, ageneral purpose

analysis strategy cannot be based on the orthogonality assumption. Therefore,

the following variable selection strategy is recommended.

(i) For a quantitative factor, sayA, useAl andAq for theA main effect.

(ii) For a qualitative factor, sayD, useDl andDq if Dq is interpretable; otherwise, select two

contrasts fromD01,D02, andD12 for theD main effect.

(iii) For a pair of factors, sayX andY, use the products of the two contrasts ofX and the two

contrasts ofY (chosen in (i) or (ii)) as defined in (5) or (8) to represent thefour degrees of

freedom in the interactionX×Y.

(iv) Using the contrasts defined in (i)-(iii) for all the factors and their two-factor interactions as

candidate variables, perform a stepwise regression or subset selection procedure to identify a

suitable model. To avoid incompatible models, use the effect heredity principle to rule out

interactions whose parent factors are both not significant.

(v) If all the factors are quantitative, use the original scale,sayxA, to represent the linear effect ofA,

x2
A the quadratic effect andxi

Ax j
B the interaction betweenxi

A andx j
B. This works particularly well

if some factors have unevenly spaced levels.
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Analysis of Seat-Belt Experiment

• Returning to the seat-belt experiment, although the original design has

resolution IV, its capacity for estimating two-factor interactions is much

better than what the definition of resolution IV would suggest.

• After estimating the four main effects, there are still 18 degrees of freedom

available for estimating some components of the two-factorinteractions.

• From (2),A, B, C andD are estimable and only one of the two components

in each of the six interactionsA×B, A×C, A×D, B×C, B×D andC×D

is estimable.

• Because of the difficulty of providing a physical interpretation of an

interaction component, a simple and efficient modeling strategy that does

not throw away the information in the interactions is to consider the

contrasts(Al ,Aq), (Bl ,Bq), (Cl ,Cq) and(D01,D02,D12) for the main effects

and the 30 products between these four groups of contrasts for the

interactions.
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Analysis of Seat-Belt Experiment (contd)

• Using these 39 contrasts as the candidate variables, the variable selection

procedure was applied to the data.

• Performing a stepwise regression on the strength data (responsey1), the

following model with anR2 of 0.811 was identified:

ŷ1 = 6223.0741+1116.2859Al −190.2437Aq +178.6885Bl

−589.5437Cl +294.2883(AB)ql +627.9444(AC)ll

−191.2855D01−468.4190D12−486.4444(CD)l ,12

(9)

• Note that this model obeys effect heredity. TheA, B, C andD main effects

andA×B, A×C andC×D interactions are significant. In contrast, the

simple analysis from the previous section identified theA, C andD main

effects and theAC(= BD2) andAB(= CD2) interaction components as

significant.
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Analysis of Seat-Belt Experiment (contd)

• Performing a stepwise regression on the flash data (responsey2), the

following model with anR2 of 0.857 was identified:

ŷ2 = 13.6657+1.2408Al +0.1857Bl

−0.8551Cl +0.2043Cq−0.9406(AC)ll

−0.3775(AC)ql −0.3765(BC)qq−0.2978(CD)l ,12

(10)

• Again, the identified model obeys effect heredity. TheA, B, andC main

effects andA×C, B×C andC×D interactions are significant. In contrast,

the simple analysis from the previous section identified theA andC main

effects and theAC(= BD2), AC2 andBC2 interaction components as

significant.

48



Comments on Board
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