Unit 2. Experiments with a Single Factor:
One-Way ANOVA

Sources : Sections 2.1t0 2.3, 2.5, 2.6.

One-way layout with fixed effects (Section 2.1).

Multiple comparisons (Section 2.2).

Quantitative factors and orthogonal polynomials (Sec8d).
Residual analysis (Section 2.6).

One-way layout with random effects (Section 2.5).



One-way layout and ANOVA: An Example

Reflectance data in pulp experiment: each of four operataderfive pulp
sheets; reflectance was read for each sheet using a brig s

Randomization : assignment of 20 containers of pulp to operators and order of

reading.

Table 1: Reflectance Data, Pulp Experiment

Operator
A B C D
59.8 59.8 60.7 61.C
60.0 60.2 60.7 60.§
60.8 60.4 60.5 60.6
60.8 59.9 60.9 60.5
59.8 60.0 60.3 60.5
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Objective : determine if there are differences among operators in ngadneets

and reading brightness.



Model and ANOVA

Model: vyij =n+T1i+¢&j,i=1...k]=1,...,n
whereyi; = jth observation with treatment

T; = ith treatment effect,

&ij = error, independert(0,0?).

Model fit:
Yij = N+Ti+rg
= Yo+ Vi —Y)+ Vi — Vi),
where “ . ” means average over the particular subscript.

ANOVA Decomposition :

kK nj k n

> 3 0 :.i”' G943 5 -



F-Test

ANOVA Table
Degrees of Sum of Mean
Source Freedonmd(f) Squares Squares
treatment k—1 SSTr=YK  ni(¥i. —V.)? MSTr=SSTydf
residual N-—k SSE= 3K 121 "1 (Yij — Vi ) MSE= SSHdf
total N—-1 Z, 121 1 (Vij — Y)z

TheF statistic for the null hypothesis that there is no diffebetween the
treatments, i.e.,

Ho:T1 =" =Tk,
IS

- YN -y)?/(k=1) _ MSTr
ZI 121 1 (Vij — )/(N—k) MSE’

which has arF distribution with parametenis— 1 andN — k.
4




ANOVA for Pulp Experiment

Degrees of Sum of Mean

Source Freedond(f) Squares Squares F

operator 3 1.34 0.447 4.20
residual 16 1.70 0.106
total 19 3.04

e Prob(Fs16 > 4.20) = 0.02 = p value,
thus declaring a significant operator-to-operator diffieseat level 0.02.

e Further question: among the 6(5) pairs of operators, what pairs show

significant difference?
Answer: Need to use multiple comparisons.



Multiple Comparisons

e For one pair of treatments, it is common to usetthest and the statistic

wheren; = number of observations for treatménd§2 — RSS/df in ANOVA;
declare “treatmentsand | different at levelx” if

tij | >tk o /2-

e Supposd tests are performedtotady: 11 = - = Tx.
Experimentwise error rat€EER) = Probability of declaring at least one pair
of treatments significantly different undelp. Need to use multiple
comparisons to control EER.

Avs.B Avs.C Avs.D Bvs.C Bvs.D Cuvs.D
-0.87 1.85 2.14 2.72 3.01 0.29




Bonferroni Method

o Declare ; different fromt; at levela” if |tjj| > TNk, 2, wherek’ = no. of
tests.

k
e For one-way layout with k treatmenté,= = sk(k—1), as k
2

increasesk’ increases, and the critical valq\e_k,% gets bigger
(i.e., method less powerful in detecting differences).

e Advantage: It works without requiring independence asgionp

o [or pU'p experiment, take 2005,k =4, K —0, t16,0.05/12 —3.008. Among
the 6tj; values (see p.6), only thevalue for B-vs-D, 3.01, is larger. Declare
“B and D different at level 0.05".



Tukey Method

e Declare T; different fromt; at levela” if

tij| > %QK,N—k,aa
whereqg N—k o IS the uppen point of theStudentized rangedistribution

with parametek andN — k degrees of freedom. (See distribution table on

p.9.) Tony Hayter proved that its EER is at mast(Proof in (2.21) not
required.)

e For pulp experiment,

L on xoos= Lassoos= “C =26
NG k,N—k,0.05 = NG 4,16,0.05 NG .c0.
Again only B-vs-D has largdyj value than 2.86 (See p.6). Tukey method is

more powerful than Bonferroni method because 2.86 is snthider 3.01
(why?)



Selected values ofy \, o for a = 0.05

k

Y 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 17.97 26.98 32.82 37.08 40.41 43.12 45.40 47.36 49.07 50.59 51.96 53.20 54.33 b5.36
2 6.08 8.33 9.80 10.88 11.74 12.44 13.03 13.54 13.99 14.39 14.75 15.08 15.38 15.65
3 4.50 591 6.82 7.50 8.04 8.48 8.85 9.18 9.46 9.72 9.95 10.15 10.35 10.52
4 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 8.03 8.21 8.37 8.52 8.66
5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32 7.47 7.60 1.72
6 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65 6.79 6.92 7.03 1.14
7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43 6.55 6.66 q.76
8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18 6.29 6.39 §.48
9 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87 5.98 6.09 6.19 q.28
10 3.15 3.88 4.33 4.65 491 5.12 5.30 5.46 5.60 5.72 5.83 5.93 6.03 q.11
11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71 5.81 5.90 5.98
12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.51 5.61 571 5.80 5.88
13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53 5.63 5.71 8.79
14 3.03 3.70 4.11 441 4.64 4.83 4.99 5.13 5.25 5.36 5.46 5.55 5.64 871
15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5.40 5.49 5.57 5.65
16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35 5.44 5.52 5.59

oa=upper tail probabilityy=degrees of freedonk=number of treatments

For complete tables corresponding to various values igffer to Appendix E.



One-Way ANOVA with a Quantitative Factor

e Data:

= Dbonding strength of composite material,

= laser power at 40, 50, 60 watt.

Table 2: Strength Data, Composite Experiment

Laser Power (watts)
40 50 60
25.66 29.15 35.73
28.00 35.09 39.56
20.65 29.79 35.66
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One-Way ANOVA (Contd)

Table 3: ANOVA Table, Composite Experiment

Degrees of Sum of Mean

Source Freedom  Squares SquaresF

laser 2 224184 112.092 11.3
residual 6 59.422 9.904
total 8 283.606

e Conclusion from ANOVA : Laser power has a significant effectstrength.

e To further understand the effect, use of multiple compasss not useful

here. (Why?)

e The effects of a quantitative factor like laser power cand&sothposed into

linear, quadratic, etc.
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Linear and Quadratic Effects

e Suppose there are three levelxdfow, medium, high) and the
correspondingy values arg/q, Yo, Ys.

Y1

Linear contrast yz —y1 = (-1,0,1) | vy,

Y3
Y1
Quadratic contrasty; —2y>+ys = (1,-2,1) | v,
Y3

(-1,0,1) and (1,-2,1) are the linear and quadratic contrasbks&ct
they areorthogonal to each other.
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Linear and Quadratic Effects (Contd.)

e Using (-1,0,1) and (1,-2,1), we can write a more detailed regressodel
y = XPB + ¢, where the model matriX is given as in (2.26).

e Normalization : Length of(—1,0,1) = /2, length of(1, —2,1) = /6,
divide each vector by its length in the regression model. WX/t provides
aconsistentomparison of the regression coefficients. ButtHséatistics in
the next table are independent of such (and any) scaling.)

e Normalized contrast vectors:
linear: (-1,0,1)/v2=(-1/v2,0,1/1/2),
quadratic:(1,-2,1)/v/6 = (1/v6,-2//6,1//6).
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Estimation of Linear and Quadratic Effects

Let Bo, B, Bq denote respectively the intercept, the linear effect apdjthadratic
effect and le = (Bo. B, Bq)’- An estimatof3 of B based on normalized constrasts
for the mean, linear, and quadratic effects is given by

~ BAO 1/\/§ l/\/:_’: 1/\/§ V1
B=| B |=| -vv2 0o 2 Yo
|§q 1/vV6  -2/vV6 1/V6 Y3

We can write = X'y, where
1/v/3 -1/vV2  1/V/6
X=1 1/V3 0 —2/\/6
1/V/3  1/V/2 1/v/6
Since the columns of constitute a set of orthonormal vectors, XéX = |, we have
B =Xy = (X'X)"Xy.
This shows thaf3 IS identical to the least squares estimate3of

Running a multiple linear regression with respogsad predictors; andxg, we get
Bo =31.0322 ) = 8.636 g = —0.381.
14



Tests for Linear and Quadratic Effects

Table 4: Tests for Polynomial Effects, Composite Experimen

Standard
Effect Estimate Error t p-value
linear 8.636 1.817 4.75 0.003
guadratic -0.381 1.817 -0.21 0.841

e Further conclusion : Laser power has a significant linearfbtiquadratic)

effect on strength.

e Another question : How to predigtvalue (strength) at a setting not in the
experiment (i.e., other than 40, 50, 60) ? Need to extend theepbiof
linear and quadratic contrast vectors to coveutwle intervalfor x. This
requires building a model using polynomials.
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Orthogonal Polynomials

e For three evenly spaced levats— A, m, andm-+ A, define the first and
second degree polynomials :

—m
Pi(x) = XA , (=-1,0and 1, fox=m—-Amm-+A),

3

N
~—~
X
N
I

2
= 2
(xAm) 3] (=1,-2and 1, fox=m—A mm+A),.

Therefore Py (x) andP»(x) are extensions of the linear and quadratic
contrast vectors. (Why ?)

e Polynomial regression model :
y = Bo+PB1PL(X)/V2+ BoPo(X) / V6 + &,

obtain regression (i.e., least squares) estlrrﬁﬁes 31.03, [31 = 8.636,
[32 = —0.381. ( Note [31 ande values are same as in Table 4).
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Prediction based on Polynomial Regression Model

e Fitted model:

y = 31.0322+ 8.636P;(X)/v/2 — 0.381P»(X) / /6,

e To predicty’at anyx, plug in thex on the right side of the regression
equation. Fox = 55= 50+ 310,m= 50,A = 10,

55-50 1

B 2
(25945

y = 310322+ 8.636(0.3536 —0.381(—0.5103
= 34.2803
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Residual Analysis: Theory

e Theory: define theesidual for theith observation as

ri:yi_y’\iy y’\i: |TB7
y; contains information given by the model;is the “difference” betweep

(observed) ang (fitted) and contains information on possin@del
Inadequacy

Vector of residuals = {ri}; =y — XB.
e Under the model assumptid(y) = X[, it can be shown that
(@)E(r) =0,
(b) r andy are independent,
(c) variances of; are nearly constant for “nearly balanced” designs.

18



Residual Plots

Plotr; vs. Vi (see Figure 1): It should appear as a parallel band around 0.
Otherwise, it would suggest model violation. If spreadjohcreases ag ~
Increases, error variance pfncreases with mean gf Need a
transformation ofy. (Will be explained in Unit 3.)

Plotr; vs. x; (see Figure 2): If not a parallel band around 0, relationship
betweeny; andx; not fully captured, revise th¥[3 part of the model.

Plotr; vs. time sequence: to see if there is a time trend or autdatioe
over time.

Plotr; from replicates per treatment: to see if error variance deépen
treatment.
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0.6

Plot of rj vs.y

I I I I I I I
60.1 60.2 60.3 60.4 60.5 60.6 60.7

Figure 1:r; vs.y;, Pulp Experiment
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Plot of rj vs. X

operator
Figure 2:r; vs. X, Pulp Experiment
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Box-Whisker Plot

e A powerful graphical display (due to Tukey) to capture theakon,
dispersion, skewness and extremity of a distribution. Sgeré 3.

e Qi = lower quartile (28" percentile)Qs; = upper quartile (78 percentile),
Q> = median (ocation) is the white line in the boxQ; andQs are
boundaries of thélack box

|QR = interquartile range (length of box)®3 - Q; is a measure of
dispersion
Minimum and maximum obbservedvalues within

[Q1 — 1L.5IQR, Q3+ 1.51QR] are denoted by twahiskers Any values
outside the whiskers autliersand are displayed.

e If Q1 andQ3 are not symmetric around the median, it indicatkswness
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-20

Box-Whisker Plot

Figure 3: Box-Whisker Plot
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Normal Probability Plot

e Original purpose : To test if a distribution is normal, e.gth# residuals
follow a normal distribution (see Figure 5). More powerfuéus factorial
experiments (will be discussed in Units 4 and 5).

e Letri) <...<r() be the ordered residuals. The cumulative probability for
riy is pi = (i—0.5)/N. Thus the plot ofg; vs. r(;) should be S-shaped as in
Figure 4(a) if the errors are normal. By transforming thdesc@the
horizontal axis, the S-shaped curve is straightened to ine 4dee
Figure 4(b)).

e Normal probability plot of residuals :
(e Hpi),r@), i=1...,N, @ =normal cdf

If the errors are normal, it should plot roughly as a stralgi®. See
Figure 5.
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Regular and Normal Probability Plots of Normal

CDF
(@) (b)
1o 1o
o] o]
0] 0]

Figure 4. Normal Plot of;, Pulp Experiment
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Normal Probabillity Plot : Pulp Experiment

I I I I I
-2 -1 0 1 2

normal quantiles

Figure 5: Normal Plot of;, Pulp Experiment
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Pulp Experiment Revisited

¢ In the pulp experiment the effectsare calledixedeffects because the
Interest was in comparing the fospecificoperators in the study. If these
four operators were chosen randomly from the populatiorpefators in
the plant, the interest would usually be in the variation agall operators
In the population. Because the observed data are from apsra@andomly
selected from the population, the variation among opesatothe
populationis referred to asandomeffects.

e One-way random effects model :
Yij =N +Ti+&j,

gi;’s are independent error terms wit{0, 2), T; are independerit (0, 6%),
andt; ande;; are independent (Why? Give an example)anda? are the
two variance components the model. The variance among operators in
the population is measured bby.
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One-way Random Effects Model: ANOVA and
Variance Components

The null hypothesis for the fixed effects model:= - - - = 1¢ should be
replaced by
Ho: 0% =0.

UnderHp, theF test and the ANOVA table in Section 2.1 still holds.

Reason: undetly, SSTr~ 0%xZ_, andSSE~ a%XZ_,. Therefore thd=-test
has the distributiofy_1 n—k underHg.

We can apply theameANOVA and F test in the fixed effects case for
analyzing data. For example, using the results in SectiortlZeF test has
value 4.2 and thuBlg is rejected at level 0.05. However, we need to
compute the expected mean squares under the alternatifeo0,

() for sample size determination, and

(il) to estimate the variance components.
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Expected Mean Squares for Treatments

e Equation (1) holds independent of,

SSE
E(MSE)=E( —— | =0° 1
mse—€ (o) ) =0 @)
e Under the alternatives? > 0, and forn; = n,
E(MSTH=E (%r) — 0% +no?. (2)

For unequah;’s, nin (2) is replaced by

/I 1 X . Zikzlni2
" Tk-1 [izlnI - Zikl”i] |
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Proof of (2)

= oY @-0)’+Y (@ -8)+2Y @ - )(u-1)}.

The cross product term has mean 0 (becawmsde are independent). It can be
shown that

k k—1)0°

E(_Z(Ti—f)Z) = (k—1)o? and E(ii(g'_g-)z) _ -

Therefore
E(SSTD — n(k_1)0-$+(k_l)0-27
EMsT) = E( 21N — 624 ne2
k—1
30



ANOVA Tables (n; = n)

Source d.f. SS MS E(MS)
treatment k—1 SSTr MSTe 221" 02+ no?
residual N-k SSE MSE= 32F 0?2
total N—1

Pulp Experiment

Source df. SS MS E(MS)
treatment 3  1.34 0.447 0% +502
residual 16 1.70 0.106 @7
total 19 3.04
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Estimation of 62 and o2

e From equations (1) and (2), we obtain the following unbiassitmates of
the variance components:

R R MSTr—MSE
6°=MSE and 6% = - .

Note thatG? > 0 if and only ifMSTr> MSE, which is equivalent té > 1.
Therefore anegativevariance estimaté? occurs only if the value of thE
statistic is less than 1. Obviously the null hypothé4iss not rejected when
F < 1. Since variance cannot be negative, a negative variatossés is
replaced by 0. This does not mean tbats zero. It simply means that there
is not enough information in the data to get a good estimate of

e For the pulp experimenh = 5, 6% = 0.106,62 = (0.447—0.106) /5 = 0.068,
l.e., sheet-to-sheet variance (within same operator) is Qvlogh is about
50% higher than operator-to-operator variance 0.068.

Implications on process improvemeédiscuss in class) : try to reduce the

two sources of variation, also considering costs.
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Estimation of Overall Mean n

e In random effects modely, the population mean, is often of interest.
FromE(yij) =n, we use the estimate

n=y.
e Var() =Var(t. +€_) = G—k% + GWZ whereN = 5K n;.
. 2
Forni =n,Var(fj) = £ + & = & (02 + no?).
Using (2),YS is an unbiased estimate \g&r(f}). Confidence interval for
n:

Nt 19

e In the pulp experiment) = 60.40, MSTr= 0.447, and the 95% confidence

interval forn is
/0.447
60.40+ 3.182 = [59.92,60.88.
ox4
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Comments on Board
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