Unit 6: Fractional Factorial Experiments at Three
Levels

Source : Chapter 6 (Sections 6.1 - 6.6)

e Larger-the-better and smaller-the-better problems.

e Basic concepts for3ull factorial designs.

e Analysis of ¥ designs using orthogonal components system.
e Design of 3-level fractional factorials.

e Effect aliasing, resolution and minimum aberration fn®Bfractional
factorial designs.

e Analysis of 3-level designs : ANOVA using orthogonal compots system.



Seat Belt Experiment

An experiment to study the effect of four factors on the ptrkisgth of
truck seat belts.

Four factors, each at three levels (Table 1).

Two responses : crimp tensile strength that must be at |€Q€t kb and flash
that cannot exceed 14 mm.

27 runs were conducted; each run was replicated three tismgsoavn in
Table 2.

Table 1: Factors and Levels, Seat-Belt Experiment

Level
Factor 0 1 2
pressure (psi) 1100 1400 1700
die flat (mm) 10.0 10.2 10.4

crimp length (mm)| 18 23 27
anchor lot (#) P74 P75 P76
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Design Matrix and Response Data, Seat-Belt
Experiment

Table 2: Design Matrix and Response Data, Seat-Belt Expetinfiest 14 runs

Factor
Run A B C D Strength Flash
1 0 0 0 0 5164 6615 5959 | 12.89 12.70 12.74
2 0 0 1 1 5356 6117 5224 | 12.83 12.73 13.07
3 0 0 2 2 3070 3773 4257 | 12.37 12.47 12.44
4 0 1 0 1 5547 6566 6320 | 13.29 12.86 12.70
5 0 1 1 2 4754 4401 5436 | 12.64 12.50 12.61
6 0 1 2 0 5524 4050 4526 | 12.76 12.72 12.94
7 0 2 0 2 5684 6251 6214 | 13.17 13.33 13.98
8 0 2 1 0 5735 6271 5843 | 13.02 13.11 12.67
9 0 2 2 1 5744 4797 5416 | 12.37 12.67 12.54
10 1 0 0 1 6843 6895 6957 | 13.28 13.65 13.58
11 1 0 1 2 6538 6328 4784 | 12.62 14.07 13.38
12 1 0 2 0 6152 5819 5063 | 13.19 12.94 13.15
13 1 1 0 2 6854 6804 6907 | 14.65 14.98 14.40
14 1 1 1 0 6799 6703 6792 | 13.00 13.35 12.87




Design Matrix and Response Data, Seat-Belt
Experiment (contd.)

Table 3: Design Matrix and Response Data, Seat-Belt Expeatintaest 13 runs

Factor
Run A B C D Strength Flash
15 1 1 2 1 6513 6503 6568 | 13.13 13.40 13.80
16 1 2 0 0 6473 6974 6712 13.55 14.10 14.41
17 1 2 1 1 6832 7034 5057 14.86 13.27 13.64
18 1 2 2 2 4968 5684 5761 | 13.00 13.58 13.45
19 2 0 0 2 7148 6920 6220 16.70 15.85 14.90
20 2 0 1 0 6905 7068 7156 14.70 13.97 13.66
21 2 0 2 1 6933 7194 6667 13.51 13.64 13.92
22 2 1 0 0 7227 7170 7015 15.54 16.16 16.14
23 2 1 1 1 7014 7040 7200 13.97 14.09 14.52
24 2 1 2 2 6215 6260 6488 14.35 13.56 13.00
25 2 2 0 1 7145 6868 6964 15.70 16.45 15.85
26 2 2 1 2 7161 7263 6937 15.21 13.77 14.34
27 2 2 2 0 7060 7050 6950 13.51 13.42 13.07




Larger-The-Better and Smaller-The-Better
problems

In the seat-belt experiment, the strength should be as lsiglossible and the flash as
low as possible.

There is no fixed nominal value for either strength or flastchSype of problems
are referred to alsrger-the-better andsmaller-the-better problems, respectively.

For such problems increasing or decreasing the mean is nfbealtithan reducing
the variation and should be done in the first step. (why?)

Two-step procedure for larger-the-better problems:

1. Find factor settings that maximize E(y).

2. Find other factor settings that minimize Var(y).

Two-step procedure for smaller-the-better problems:
1. Find factor settings that minimize E(y).

2. Find other factor settings that minimize Var(y).
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Situations where three-level experiments are useful

e When there is a curvilinear relation between the respond@auantitative
factor like temperature. It is not possible to detect suchraature effect
with two levels.

e A qualitative factor may have three levels (e.g., three typesaxhines or
three suppliers).

e |tis common to study the effect of a factor on the responses @uirrent
settingxp and two settings aroundg.



Analysis of 3X designs using ANOVA

We consider a simplified version of the seat-belt experirasra 3 full
factorial experiment with factorg, B, C.

Since a 8 design is a special case of a multi-way layout, the analyfsis o
variance method introduced in Section 3.5 can be applieds@¥periment.

We consider only the strength data for demonstration of tiadyais.

Using analysis of variance, we can compute the sum of sqf@resain
effectsA, B, C, interactionsA x B, Ax C, Bx C andA x B x C and the
residual sum of squares. Details are given in Table 4.

The break-up of the degrees of freedom will be as follows:
— Each main effect has two degrees of freedom because eaohliastthree levels.
— Each two-factor interaction hg8 — 1) x (3— 1) = 4 degrees of freedom.
— TheAx B x Cinteraction hag3—1) x (3—1) x (3—1) = 8 degrees of freedom.

— The residual degrees of freedom ig 527 x (3— 1)), since there are three replicates.
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Analysis of Simplified Seat-Belt Experiment

Table 4. ANOVA Table, Simplified Seat-Belt Experiment

Degrees of Sum of Mean

Source Freedom Squares Squares F p-value
A 2 34621746 17310873 85.58 0.000
B 2 938539 469270 2.32 0.108
C 2 9549481 4774741 23.61 0.000
Ax B 4 3298246 824561 4.08 0.006
AxC 4 3872179 968045 4.79 0.002
BxC 4 448348 112087 0.55 0.697
AxBxC 8 5206919 650865 3.22 0.005

residual 54 10922599 202270

total 80 68858056




Orthogonal Components System: Decomposition of
A x B Interaction

e Ax B has 4 degrees of freedom.
e A x B has two components denoted AR andAB?, each having 2 df.
e Let the levels ofA andB be denoted by, andx, respectively.

e ABrepresents the contrasts among the response values whaseéx,
satisfy

X1+X%=0,1, 2(mod 3),

e AB? represents the contrasts among the response values whasex,
satisfy

X1+ 2% = 0,1,2(mod 3).



Orthogonal Components System: Decomposition of
A x B x C Interaction

e Ax B xC has 8 degrees of freedom.

e It can be further split up into four components denotedBC, ABC?,
AB’C andAB?C?, each having 2 df.

e Let the levels ofA, B andC be denoted by;, X andxs respectively.

e ABC, ABC?, AB°C andAB’C? represent the contrasts among the three
groups of(x1, X2, X3) satisfying each of the four systems of equations,

X1+Xo+x3 = 0,1,2(mod3),
X1+Xo+2%3 = 0,1, 2(mocB),
X1+2%+Xx3 = 0,1, 2(mod3),

(mods)

X1+ 2%+2x3 = 0,1,2(mod3).

10



Uniqueness of Representation
e To avoid ambiguitythe convention that the coefficient for the first nonzero
factor is 1 will be used
e ABC?is used instead 0&°B?C, even though the two are equivalent.

e For A’B°C, there are three groups satisfying

2X1+2%+X%x3 = 0,1, 2(mod3),
equivalently,  2x(2x1+2x2+X3) = 2x(0,1,2)(mod3),
equivalently, X1+X+2x3 = 0,2,1(mod3),

which corresponds t8BC? by relabeling of the groups. Hen&C? and
A°B?C areequivalent
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Analysis using the Orthogonal components system

Table 5:FactorA andB CombinationsX; denotes the levels of factor A amd denotes the levels
of factor B)

X2
X1 0] 1 2

O | ai(yoo) | Bk(yo1) | Vi (Yo2)
Bj (yio) | ¥i(yi1) | ok(yi2)
2 | YK(y20) | o (y2n) | Bi(y22)

The nine level combinations @& andB can be represented by the cells in the3square in Table 5.

Ya = = (Yoo+ Y12+ VY21),

Wk Wk

Vg = 3 (Yo1+ Y10+ Y22),

ooooooooo

_ 1
Yk = 3 (Yo1+ Y12+ Y20),

where eaclyj; represents the averagerofeplicates in thei, j) cell.
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Analysis using the Orthogonal components system
(contd)

SSe =3n[(Ya —¥)"+ (% — ¥+ (y— )7,
wherey. = (Yo +Yp +Yy)/3 andnis the number of replicates.

o For the simplified seat-belt experimewt, = 6024407,y = 6177.815 and
yy = 64670, so thaty. = 6223074 and

SSe = (3)(9)[(6024407—6223074)? + (6177.815— 6223074)?
+(6467.0—6223074)%] = 2727451

e Similarly, theAB? interaction component represents the contrasts among the
three groups represented by the letiejsandk. The corresponding, y;j
andyy values represent the averages of observations with
X1+ 2x2 = 0,1,2(mod3), respectively, and the formula f&S g can be

defined in a similar manner.
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ANOVA : Simplified Seat-Belt Experiment

Degrees of Sum of Mean

Source Freedom Squares Squares F p-value

A 2 34621746 17310873 85.58 0.000
B 2 938539 469270 2.32 0.108

C 2 9549481 4774741 23.61 0.000
AxB 4 3298246 824561 4.08 0.006
AB 2 2727451 1363725 6.74 0.002
AB2 2 570795 285397 1.41 0.253
AxC 4 3872179 968045 4.79 0.002
AC 2 2985591 1492796 7.38 0.001
AC? 2 886587 443294 2.19 0.122
BxC 4 448348 112087 0.55 0.697
BC 2 427214 213607 1.06 0.355
BC? 2 21134 10567 0.05 0.949
AxBxC 8 5206919 650865 3.22 0.005
ABC 2 4492927 2246464 11.11 0.000
ABC? 2 263016 131508 0.65 0.526
ABZC 2 205537 102768 0.51 0.605
AB2C2 2 245439 122720 0.61 0.549

residual 54 10922599 202270
total 80 68858056
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Analysis of Simplified Seat-Belt Experiment (contd)

e The significant main effects afeandC.
e Among the interactiond\ x B, A x C andA x B x C are significant.

e \We have difficulty in interpretations when only one compdradrihe
Interaction terms become significant. What is meantbdyx B is
significant”?

— HereABis significant butAB? is not.
— Is A x B significant because of the significanceA® alone ?
— For the original Seat-Belt Experiment, we haM8 = CD?.

e Similarly, AC s significant, but noAC?. How to interpret the significance of
AxC?

e This difficulty in interpreting the significant interacti&ffects can be
avoided by using Linear-Quadratic Systems.

15



Why three-level fractional factorial ?
e Run size economy : it is not economical to use* @8sign with 81 runs
unless the experiment is not costly.

e If a 3* design is used for the experiment, its 81 degrees of freedoutdibe
allocated as follows:

Main Interactions
Effects 2-Factor 3-Factor 4-Factor
# 8 24 32 16

e Using effect hierarchy principle, one would argue that il 4fi’s are not
likely to be important. Out of a total of 80 df, 48 correspondtich effects !

16



Defining a 3*~! Experiment

Returning to the original seat-belt experiment, it emplayme-third
fraction of the 3 design. This is denoted as 43 design.

The design is constructed by choosing the column for fadtfot #) to be

equal to ColummA + ColumnB + ColumnC(mod3).

This relationship can be represented by the notation

D = ABC.

If Xq,...,X4 are used to represent these four columns, then

X4 = X1 + X2 + X3(mMod3), or equivalently
X1+ X2 + X3+ 2X4 = 0(mod 3),

which can be represented by

| = ABCD?.

17
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Aliasing Patterns of the Seat-Belt Experiment

e The aliasing patterns can be deduced from the defining salafor
example, by addingX to both sides of (1), we have

2X1 = 3X1 + X2 + X3+ 2X4 = X2 + X3 + 2X4(mod 3),

e This means that andBCD¥ arealiased (Why?)

e By following the same derivation, it is easy to show that thiéofving
effects are aliased:

A -  BCD? —  AB2C?D,
B -  ACD? —  AB2CD?,
C -  ABD? —  ABC?D?,
D -  ABC —  ABCD,

AB - cD? —  ABC?D,
ABZ2 =  AC?D —  BC?D,

AC - BD? —  AB2CD, )
AC? =  AB?D —  BC?D?,
AD - AB2C2 -  BCD,

AD? = BC —  AB2C?D?,
BC2 = AB?D? =  AC?D?
BD = ABC =  ACD,

CD =  ABC? —  ABD.

18



Clear and Strongly Clear Effects

If three-factor interactions are assumed negligible, ftbenaliasing relations in (2),
A, B,C, D, AB?, AC?, AD, BC?, BD andCD can be estimated.

These main effects or components of two-factor interastame callectlear because
they are not aliased with any other main effects or two-faicti@raction
components.

A two-factor interaction, say\ x B, is calledclear if both of its componentsiB and
AB?, are clear.

Note that each of the six two-factor interactions has only component that is
clear; the other component is aliased with one componemathar two-factor
interaction. For example, fok x B, AB? is clear butAB s aliased withCD?.

A main effect or two-factor interaction component is saithéstrongly clear if it is
not aliased with any other main effects, two-factor or tHiassor interaction
components. A two-factor interaction is said todteongly clearf both of its
components are strongly clear.
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A 3°~2 Design

5 factors, 27 runs.

The one-ninth fraction is defined by= ABD? = AB’CE?, from which two
additional relations can be obtained:

| = (ABD?)(AB’CE?) = A’CD’E? = AC’°DE
and
| = (ABD?)(AB°CE?)? = B’C*°D°E = BCDFE”.

Therefore the defining contrast subgroup for this desigsistaof the
following defining relation:

| = ABD? = AB°CE? = AC°DE = BCDFE?. (3)

20



Resolution and Minimum Aberration
e Let A be to denote the number of words of length the subgroup and
W = (A3, A4, ...) to denote the wordlength pattern.

e Based oW, the definitions ofesolution andminimum aberration are the
same as given before in Section 5.2.

e The subgroup defined in (3) has four words, whose lengths,a&e43 and 4.
and henc&V = (1, 3,0). Another 32 design given byd = AB,E = AB?
has the defining contrast subgroup,

| = ABD* = AB’E? = ADE = BDE?,

with the wordlength patterw = (4,0,0). According to the aberration
criterion, the first design has less aberration than thenskdesign.

e Moreover, it can be shown that the first design has minimumratein.
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General 3“ P Design

e A 3K P design is a fractional factorial design wittfactors in P runs.
e Itis a 3 Pth fraction of the 8 design.
e The fractional plan is defined hyindependent generators.

e How many factors can &3P design study?
(3"—-1)/2, wheren=k— p.

This design has™runs with the independent generatgysxo, ..., X,. We
can obtain altogethéB" — 1) /2 orthogonal columns as different
combinations ofy{! ; a;x with a; = 0, 1 or 2, where at least org should
not be zero and the first nonzempshould be written as “1” to avoid
duplication.

e Forn=3, the(3"—1)/2 =13 columns were given in Table 6.5 of WH book.

e A general algebraic treatment of ® designs can be found in Kempthorne
(1952).
22



Simple Analysis Methods: Plots and ANOVA

e Start with making a main effects plot and interaction plotsee what
effects might be important.

e This step can be followed by a formal analysis like analy§igoance and
half-normal plots.

The strength data will be considered first. The location neffiect and
Interaction plots are given in Figures 1 and 2. The main &ffplot suggests that
factorAis the most important followed by facto@andD. The interaction plots

In Figure 2 suggest that there may be interactions becaadm#és are not
parallel.
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Main Effects Plot of Strength Location
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Figure 1: Main Effects Plot of Strength Location, Seat-Bedp&iment
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Interaction Plots of Strength Location
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Figure 2: Interaction Plots of Strength Location, SeattB&periment
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ANOVA Table for Strength Location

Degrees of Sum of Mean
Source Freedom Squares Squares F p-value

A 2 34621746 17310873  85.58 0.000
B 2 938539 469270 2.32 0.108

AB=CD? 2 2727451 1363725 6.74 0.002
AB? 2 570795 285397 1.41 0.2538

C 2 9549481 4774741  23.61 0.00p
AC = BD? 2 2985591 1492796 7.38 0.00L
AC? 2 886587 443294 2.19 0.122

BC = AD? 2 427214 213607 1.06 0.355
BC? 2 21134 10567 0.05 0.949

D 2 4492927 2246464 11.11 0.00PD
AD 2 263016 131508 0.65 0.526
BD 2 205537 102768 0.51 0.605
CD 2 245439 122720 0.61 0.549
residual 54 10922599 202270
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Analysis of Strength Location, Seat-Belt Experiment

e In equation (2) on slide 18, the 26 degrees of freedom in tphem@xent
were grouped into 13 sets of effects. The corresponding AN@Yle gives
the sum of squares for these 13 effects.

e Based on the p-values in the ANOVA Table, clearly the faé&tdC andD
main effects are significant.

e There are also two aliased sets of effects that are signifia®= CD? and
AC = BD?.

e These findings are consistent with those based on the maictefilot and
interaction plots. In particular, the significanceA® andCD? is supported
by theA x B andC x D interaction plots and the significanceA&E andBD?
IS supported by tha x C andB x D interaction plots.
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Analysis of Strength Dispersion (i.e.Jns?) Data

The corresponding strength main effects plot and intesagdlots are displayed
In Figures 3 and 4.
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Figure 3: Main Effects Plot of Strength Dispersion, SeattB&periment
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Interaction Plots of Strength Dispersion
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Figure 4: Interaction Plots of Strength Dispersion, Seat-Bxperiment
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Half-Normal Plots

Since there is no replication for the dispersion analysialyeis of variance
cannot be used to test effect significance.

Instead, a half-normal plot can be drawn as follows. The 2Behs of
freedom in the experiment can be divided into 13 groups, Baehng two
degrees of freedom. These 13 groups correspond to the 13mdines
ANOVA table of page 26, which consist of four main effects aumake
Interaction components.

The two degrees of freedom in each group can be decompoghdrfurto a
linear effect and a quadratic effect. These effects are ety the contrast
vectors%(—l, 0,1) and%(l, —2,1), respectively, where the values in the
vectors are associated with thesfrvalues at the levels (0, 1, 2) for the
group.

Because the linear and quadratic effects are standardmedrthogonal to
each other, these 26 effect estimates can be plotted on lfhednaal

probability scale as in Figure 5.
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Half-Normal Plot
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Figure 5: Half-Normal Plot of Strength Dispersion Effe@gat-Belt Experiment

Informal analysis of the plot suggests that the fagtdinear effect may be
significant. This can be confirmed by using Lenth’s methode tpbe value for
the A linear effect is 3.99, which has a p-value of 0.050 (EER). Thail$eare

left as an exercise.
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Analysis with Flash Data : Combining the results

A similar analysis can be performed to identify the flash tmraand dispersion
effects. See Section 6.5 of WH book.

e \We can determine the optimal factor settings that maxintezestrength
location by examining the main effects plot and interacpéots in
Figures 1 and 2 that correspond to the significant effectsiined in the
ANOVA table.

e The same method can be used to determine the optimal fattiogsehat
minimize the strength dispersion, the flash location andh fthspersion,
respectively. (The details are left as an exercise.)

e The most obvious findings are that level 2 of factashould be chosen to

maximize strength while level 0 of factérshould be chosen to minimize
flash.

e There is an obvious conflict in meeting the two objectivesad&-off
strategies for handling multiple characteristics and dctirig objectives

need to be considered.
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An Alternative Analysis Method : Linear-Quadratic
System

In the seat-belt experiment, the factéy® andC are quantitative. The two
degrees of freedom in a quantitative factor, sagan be decomposed into the
linear and quadratic components.

Letting Yo, y1 andy» represent the observations at level 0, 1 and 2, thehrtbar
effectis defined as

Y2—Yo
and theguadratic effectas

(Y2+Yo) — 2y1,

which can be re-expressed as the difference between twecaing linear
effects(y2 —y1) — (Y1 —Yo)-
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Linear and Quadratic Effects

Mathematically, the linear and quadratic effects are represl by two mutually
orthogonal vectors:

A = 2(_17071)7
Aq = (1,-21)

e For the sake of brevity, they are also referred to ad toadq effects.

S

(4)

e The scaling constantg2 and+/6 yield vectors with unit length.

e The linear (or quadratic) effect is obtained by taking theemproduct
betweenA (or Ag) and the vectoy = (Yo, Yy1,Y2). For factorB, B andBy are
similarly defined.
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Linear and Quadratic Effects (contd)

e Then the four degrees of freedom in the B interaction can be
decomposed into four mutually orthogonal terms:
(AB)1, (AB)iq, (AB)q1, (AB)qq, Which are defined as follows: forj =0,1,2,

(ABu(i,j) = A()BI(]),
(AB)ig(i,J) = A(i)Bq(]), (5)
(AB)qi(i,]) = Aq(i)Bi()),
(AB)gq(i, J) = Aq(i)Bq(]).

They are called thenear-by-linear, linear-by-quadratic,
guadratic-by-linear andquadratic-by-quadratic interaction effects. They
are also referred to as the |, | x g, g x| andq x g effects.

e |tis easy to show that they are orthogonal to each other.
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Linear and Quadratic Effects (contd)

Using the nine level combinations of factgkandB, Yoo, . .., Y22 given in
Table 5, the contrast®\B);, (AB)|q, (AB)qI, (AB)qq can be expressed as follows:

(AB)1: 3{(Y22—Y20) — (Yo2 — Yoo) }

(AB)jq: % {(Y22+ Y20 — 2y21) — (Yo2 + Yoo — 2Yo1) }
(AB)qi: 2—% {(Y22+ Yoz — 2y12) — (Y20+ Yoo — 2Y10) } ,

(AB)aq 2{(Y22+ Y20 — 2¥21) — 2(Y12+ Y10 — 2Y11) + (Yo2 + Yoo — 2Yo1) }-

e An (AB)| interaction effect measures the difference between thditonal
linear B effects at levels 0 and 2 of factét

e A significant(AB)q interaction effect means that there is curvature in the
conditional lineaB effect over the three levels of factér

e The other interaction effect?\B),q and(AB)qq can be similarly interpreted.
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Analysis of designs with resolution at leasV

e For designs of at least resolution V, all the main effectstaradfactor
Interactions are clear. Then, further decomposition cdéheffects
according to the linear-quadratic system allows all theatff (each with one
degree of freedom) to be compared in a half-normal plot.

e Note that for effects to be compared in a half-normal platytshould be
uncorrelated and have the same variance.
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Analysis of designs with resolution smaller tharVv

e For designs with resolutiorl or IV, a more elaborate analysis method is
required to extract the maximum amount of information fréma dlata.

e Consider the 31 design withC = ABwhose design matrix is given in
Table 6.

Table 6: Design Matrix for the®3! Design

Run

>
oy}
@]

© 0o N o U AN W N P
N NN R PP P O O O
N P O NP ON P O
P O N ON PF N P O

¢ lts main effects and two-factor interactions have the mlgaselations:

A= BC? B=AC?.C=ABAB’>=BC=AC. (6)
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Analysis of designs with resolutionlll (contd)

¢ |n addition to estimating the six degrees of freedom in thenrafiectsA, B
andC, there are two degrees of freedom left for estimating theelaliased
effectsAB?, BC andAC, which, as discussed before, are difficult to interpret.

e Instead, consider using the remaining two degrees of freeédaestimate
any pair of thd x I,1 x q,gx | or g x g effects betweew, B andC.

e Suppose that the two interaction effects taken(a®); and(AB)q. Then
the eight degrees of freedom can be represented by the madi®k igaven
In Table 7.

Table 7: A System of Contrasts for th&-3 Design

| Cq  (AB) (AB)|q

Run

>
£
W
&

O

© 0 N O U A W N e
B P P O O O Rk B
1 1 1
B R RPN NN R R

1 1 1
B O kP P O R KB O K
1 1 1
B N P PN P RPN P
1 1 1
O R R RBP RB O Rk O B
] 1 ]
N B R R RPN RPN R
1 1
kP O kP O O O kB O B
B N P O O O P N B
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Analysis of designs with resolutionlll (contd)

e Because any componentAfx B is orthogonal toA and toB, there are only
four non-orthogonal pairs of columns whose correlatiomes ar

((
Corr((AB);,Cq) = _is’ (7)
Corr((AB)¢,C) = %3’
Corr((AB)ig,Cq) = —1/3

e Obviously,(AB); and(AB)q can be estimated in addition to the three main
effects.

e Because the last four columns are not mutually orthogohay, tannot be
estimated with full efficiency.

e The estimability of(AB); and(AB)q demonstrates an advantage of the
linear-quadratic system over the orthogonal componerstesy For the
same design, th&B interaction component cannot be estimated because it is

aliased with the main effe@.
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Analysis Strategy for Qualitative Factors

e For a qualitative factor like factdd (lot number) in the seat-belt
experiment, the linear contrast 1,0, +1) may make sense because it
represents the comparison between levels 0 and 2.

e On the other hand, the “quadratic” contréstl, —2, +1), which compares
level 1 with the average of levels 0 and 2, makes sense onlglf a
comparison is of practical interest. For example, if leeénd 2 represent
two internal suppliers, then the “quadratic” contrast nuees the difference
between internal and external suppliers.
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Analysis Strategy for Qualitative Factors (contd)

¢ When the quadratic contrast makes no sense, two out of toevinf three
contrasts can be chosen to represent the two degrees abfindedthe main
effect of a qualitative factor:

(1 0

Do1 = 1 forlevel 1 offactoD,
e 2
(1 0

Doo=<¢ 0 forlevel 1 offactoD,
|1 2
(0 0

Dio=<¢ —1 forlevel 1 offactoD,
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Analysis Strategy for Qualitative Factors (contd)

Mathematically, they are represented by the standardizetonge

1 1 1
Doi= —(~1,1,0),Dgp = —(—1,0,1),D1p = — (0, —1,1).
01 ﬁ< ), Doz \@( ), D12 \ﬁ( )

These contrasts are not orthogonal to each other and havagmi
correlations of Y2 or—1/2.

On the other hand, each of them is readily interpretable asmgparison
between two of the three levels.

The two contrasts should be chosen to be of interest to tlestigator. For
example, if level 0 is the main supplier and levels 1 and 2 aremm
suppliers, thelg; andDg, should be used.
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Qualitative and Quantitative Factors

e The interaction between a quantitative factor and a qu&ktéactor, say
A x D, can be decomposed into four effects.

e Asin (5), we define the four interaction effects as follows:

(AD)1,0a(i, J) = Ai(i)Doa(])
(AD)102(1, j) = Ai(i)Doz(]); 8)
(AD)q,01(1; J) = Aq(i)Dox(]),
(AD)q,02(1, ]) = Aq(i)Do2(])-
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Variable Selection Strateqgy

Since many of these contrasts are not mutually orthogomgnaral purpose
analysis strategy cannot be based on the orthogonalityrgdean. Therefore,
the following variable selection strategy is recommended.

() For a quantitative factor, say, useA; andA for the A main effect.

(i) For a qualitative factor, say, useD; andDgq if Dq is interpretable; otherwise, select two
contrasts fronDg1, Dg2, andD1> for theD main effect.

(i) For a pair of factors, sa} andY, use the products of the two contrasts<ofnd the two
contrasts off (chosen in (i) or (ii)) as defined in (5) or (8) to representfihe degrees of
freedom in the interactiok x Y.

(iv) Using the contrasts defined in (i)-(iii) for all the factorsdetheir two-factor interactions as
candidate variables, perform a stepwise regression oesabkction procedure to identify a
suitable model. To avoid incompatible models, use the efferedity principle to rule out
interactions whose parent factors are both not significant.

(v) Ifall the factors are quantitative, use the original sca#gixa, to represent the linear effect &f
Xz the quadratic effect andyx} the interaction betweex, andxs. This works particularly well
If some factors have unevenly spaced levels.
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Analysis of Seat-Belt Experiment

Returning to the seat-belt experiment, although the caiglesign has
resolution 1V, its capacity for estimating two-factor irdetions is much
better than what the definition of resolution IV would sugges

After estimating the four main effects, there are still 1§mes of freedom
available for estimating some components of the two-facteractions.

From (2),A, B, C andD are estimable and only one of the two components
In each of the six interactioSx B, AxC,Ax D,BxC,Bx D andC x D
IS estimable.

Because of the difficulty of providing a physical interpteia of an
Interaction component, a simple and efficient modelingatnathat does
not throw away the information in the interactions is to adasthe
contrastg A, Aq), (B, Bg), (Ci,Cq) and(Do1, Do2, D12) for the main effects
and the 30 products between these four groups of contradtsgfo
Interactions.
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Analysis of Seat-Belt Experiment (contd)

e Using these 39 contrasts as the candidate variables, tiadMaselection
procedure was applied to the data.

e Performing a stepwise regression on the strength dataomesy, ), the
following model with anR? of 0.811 was identified:

y1 = 62230741+11162859 — 190243 7/Aq+ 1786883,
—589543C, + 294.288:1AB)q| + 627.9444 AC) (9)
1912850, — 468419(D1, — 4864444CD); 1

e Note that this model obeys effect heredity. Thaé3, C andD main effects
andA x B, A x C andC x D interactions are significant. In contrast, the
simple analysis from the previous section identifiedAh€ andD main
effects and thé&\C(= BD?) andAB(= CD?) interaction components as
significant.
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Analysis of Seat-Belt Experiment (contd)

e Performing a stepwise regression on the flash data (resgensbe
following model with anR? of 0.857 was identified:

J» = 136657+ 1.2408) +0.18578,
—0.8551C; 4 0.2043%, — 0.9406 AC); (10)
—0.3775AC)qi — 0.3765BC)gq — 0.2978CD), 12

e Again, the identified model obeys effect heredity. B3, andC main
effects andA x C, B x C andC x D interactions are significant. In contrast,
the simple analysis from the previous section identifiedAlaadC main
effects and thé\C(= BD?), AC?> andBC? interaction components as
significant.
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Comments on Board
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