
Unit 8: Robust Parameter Design

Source : Chapter 11 (sections 11.1 - 11.6, part of sections 11.7 -11.8 and 11.9).

• Revisiting two previous experiments.

• Strategies for reducing variation.

• Types of noise factors.

• Variation reduction through robust parameter design.

• Cross array, location-dispersion modeling, response modeling.

• Single arrays vs cross arrays.

• Signal-to-noise ratios and limitations.

1



Robust Parameter Design

• Statistical/engineering method for product/process improvement (G.

Taguchi).

• Two types of factors in a system (product/process):

– control factors: once chosen, values remain fixed.

– noise factors: hard-to-control during normal process or usage.

• Robust Parameter design(RPD or PD): choose control factor settings to

make response less sensitive (i.e.more robust) to noise variation; exploiting

control-by-noise interactions.
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A Robust Design Perspective of Layer-growth and

Leaf Spring Experiments

• The original AT & T layer growth experiment had 8 control factors, 2 noise

factors (location and facet). Goal was to achieveuni f ormthickness around

14.5µm over the noise factors. See Tables 1 and 2.

• The original leaf spring experiment had 4 control factors, 1noise factor

(quench oil temperature). The quench oil temperature is notcontrollable;

with efforts it can be set in two ranges of values 130-150, 150-170. Goal is

to achieveuniformfree height around 8 inches over the range of quench oil

temperature. See Tables 3 and 4.

• Must understand the role ofnoise factorsin achieveingrobustness.

3



Layer Growth Experiment: Factors and Levels

Table 1: Factors and Levels, Layer Growth Experiment

Level

Control Factor − +

A. susceptor-rotation method continuous oscillating

B. code of wafers 668G4 678D4

C. deposition temperature(◦C) 1210 1220

D. deposition time short long

E. arsenic flow rate(%) 55 59

F. hydrochloric acid etch temperature(◦C) 1180 1215

G. hydrochloric acid flow rate(%) 10 14

H. nozzle position 2 6

Level

Noise Factor − +

L. location bottom top

M. facet 1 2 3 4
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Layer Growth Experiment: Thickness Data

Table 2: Cross Array and Thickness Data, Layer Growth Experiment

Noise Factor

Control Factor L-Bottom L-Top

A B C D E F G H M-1 M-2 M-3 M-4 M-1 M-2 M-3 M-4

− − − + − − − − 14.2908 14.1924 14.2714 14.1876 15.3182 15.4279 15.2657 15.4056

− − − + + + + + 14.8030 14.7193 14.6960 14.7635 14.9306 14.8954 14.9210 15.1349

− − + − − − + + 13.8793 13.9213 13.8532 14.0849 14.0121 13.9386 14.2118 14.0789

− − + − + + − − 13.4054 13.4788 13.5878 13.5167 14.2444 14.2573 14.3951 14.3724

− + − − − + − + 14.1736 14.0306 14.1398 14.0796 14.1492 14.1654 14.1487 14.2765

− + − − + − + − 13.2539 13.3338 13.1920 13.4430 14.2204 14.3028 14.2689 14.4104

− + + + − + + − 14.0623 14.0888 14.1766 14.0528 15.2969 15.5209 15.4200 15.2077

− + + + + − − + 14.3068 14.4055 14.6780 14.5811 15.0100 15.0618 15.5724 15.4668

+ − − − − + + − 13.7259 13.2934 12.6502 13.2666 14.9039 14.7952 14.1886 14.6254

+ − − − + − − + 13.8953 14.5597 14.4492 13.7064 13.7546 14.3229 14.2224 13.8209

+ − + + − + − + 14.2201 14.3974 15.2757 15.0363 14.1936 14.4295 15.5537 15.2200

+ − + + + − + − 13.5228 13.5828 14.2822 13.8449 14.5640 14.4670 15.2293 15.1099

+ + − + − − + + 14.5335 14.2492 14.6701 15.2799 14.7437 14.1827 14.9695 15.5484

+ + − + + + − − 14.5676 14.0310 13.7099 14.6375 15.8717 15.2239 14.9700 16.0001

+ + + − − − − − 12.9012 12.7071 13.1484 13.8940 14.2537 13.8368 14.1332 15.1681

+ + + − + + + + 13.9532 14.0830 14.1119 13.5963 13.8136 14.0745 14.4313 13.6862
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Leaf Spring Experiment

Table 3: Factors and Levels, Leaf Spring Experiment

Level

Control Factor − +

B. high heat temperature (◦F) 1840 1880

C. heating time (seconds) 23 25

D. transfer time (seconds) 10 12

E. hold down time (seconds) 2 3

Level

Noise Factor − +

Q. quench oil temperature (◦F) 130-150 150-170

Table 4: Cross Array and Height Data, Leaf Spring Experiment

Control Factor Noise Factor

B C D E Q− Q+

− + + − 7.78 7.78 7.81 7.50 7.25 7.12

+ + + + 8.15 8.18 7.88 7.88 7.88 7.44

− − + + 7.50 7.56 7.50 7.50 7.56 7.50

+ − + − 7.59 7.56 7.75 7.63 7.75 7.56

− + − + 7.94 8.00 7.88 7.32 7.44 7.44

+ + − − 7.69 8.09 8.06 7.56 7.69 7.62

− − − − 7.56 7.62 7.44 7.18 7.18 7.25

+ − − + 7.56 7.81 7.69 7.81 7.50 7.59
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Strategies for Variation Reduction

• Sampling inspection: passive, sometimes last resort.

• Control charting and process monitoring: can remove special causes. If

the process is stable, it can befollowedby using adesigned experiment.

• Blocking, covariate adjustment: passive measures but useful in reducing

variability, not for removing root causes.

• Reducing variation in noise factors: effective as it may reduce variation in

the response but can be expensive. Better approach is to change control

factor settings (cheaperandeasierto do) by exploiting control-by-noise

interactions, i.e., use robust parameter design!
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Types of Noise Factors

1. Variation in process parameters.

2. Variation in product parameters.

3. Environmental variation.

4. Load Factors.

5. Upstream variation.

6. Downstream or user conditions.

7. Unit-to-unit and spatial variation.

8. Variation over time.

9. Degradation.

• Traditional design uses 7 and 8.
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Variation Reduction Through RPD

• Supposey = f (x,z), x control factors andz noise factors. Ifx andz interact

in their effects ony, then thevar(y) can be reduced either by reducing

var(z) (i.e. method 4 on p.7) or by changing thex values (i.e., RPD).

• An example:

y = µ+αx1 +βz+ γx2z+ ε,

= µ+αx1 +(β+ γx2)z+ ε.

By choosing an appropriate value ofx to reduce the coefficientβ+ γx2, the

impact ofz ony can be reduced. Sinceβ andγ are unknown, this can be

achieved by using the control-by-noise interaction plots or other methods to

be presented later.
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Exploitation of Nonlinearity

• Nonlinearity betweeny andx can be exploited for robustness ifx0, nominal values

of x, are control factors and deviations ofx aroundx0 are viewed as noise factors

(calledinternal noise). Expandy = f (x) aroundx0,

y≈ f (x0)+∑
i

∂ f
∂xi

∣

∣

∣

∣

xi0

(xi −xi0).

(1)

This leads to

σ2
≈ ∑

i

(

∂ f
∂xi

∣

∣

∣

∣

xi0

)2

σ2
i ,

whereσ2 = var(y), σ2
i = var(xi), each componentxi has meanxi0 and varianceσ2

i .

• From (1), it can be seen thatσ2 can be reduced by choosingxi0 with a smaller slope
∂ f
∂xi

∣

∣

∣

xi0

. This is demonstrated in Figure 1. Moving the nominal valuea to b can

reducevar(y) because the slope atb is more flat. This is aparameter designstep.

On the other hand, reducing the variation ofx arounda can also reducevar(y). This

is atolerance designstep.
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Exploitation of Nonlinearity to Reduce Variation
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Figure 1: Exploiting the Nonlinearity off (x) to Reduce Variation
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Cross Array and Location-Dispersion Modeling

• Cross array = control array× noise array,

control array = array for control factors,

noise array = array for noise factors.

• Location-dispersion modeling

– compute ¯yi ,s2
i based on the noise settings for theith control setting,

– analyze ¯yi (location), and lns2
i (dispersion), identify significant location

and dispersion effects.
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Two-step Procedures for Parameter Design

Optimization

• Two-Step Procedure for Nominal-the-Best Problem

(i) select the levels o f the dispersion f actors to minimize dispersion,

(ii) select the level o f the ad justment f actor to bring the location on target.
(2)

• Two-Step Procedure for Larger-the-Better and Smaller-the-Better Problems

(i) select the levels o f the location f actors to maximize(or minimize)

the location,

(ii) select the levels o f the dispersion f actors that are not location

f actors to minimize dispersion.

(3)

Note that the two steps in (3) are in reverse order from those in (2).

Reason: It is usually harder to increase or decrease the responsey in the latter

problem, so this step should be the first to perform.
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Analysis of Layer Growth Experiment

• From the ¯yi and lns2
i columns of Table 5, compute the factorial effects for

location and dispersion respectively. (These numbers are not given in the

book.) From the half-normal plots of these effects (Figure 2), D is

significant for location andH, A for dispersion.

ŷ = 14.352+0.402xD,

ẑ = −1.822+0.619xA−0.982xH .

• Two-step procedure:

(i) chooseA at the “−” level (continuous rotation) andH at the “+” level

(nozzle position 6).

(ii) By solving

ŷ = 14.352+0.402xD = 14.5,

choosexD= 0.368.
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Layer Growth Experiment: Analysis Results

Table 5: Means, Log Variances and SN Ratios, Layer Growth Experiment

Control Factor

A B C D E F G H ȳi lns2i ln ȳ2
i η̂i

− − − + − − − − 14.79 -1.018 5.389 6.41

− − − + + + + + 14.86 -3.879 5.397 9.28

− − + − − − + + 14.00 -4.205 5.278 9.48

− − + − + + − − 13.91 -1.623 5.265 6.89

− + − − − + − + 14.15 -5.306 5.299 10.60

− + − − + − + − 13.80 -1.236 5.250 6.49

− + + + − + + − 14.73 -0.760 5.380 6.14

− + + + + − − + 14.89 -1.503 5.401 6.90

+ − − − − + + − 13.93 -0.383 5.268 5.65

+ − − − + − − + 14.09 -2.180 5.291 7.47

+ − + + − + − + 14.79 -1.238 5.388 6.63

+ − + + + − + − 14.33 -0.868 5.324 6.19

+ + − + − − + + 14.77 -1.483 5.386 6.87

+ + − + + + − − 14.88 -0.418 5.400 5.82

+ + + − − − − − 13.76 -0.418 5.243 5.66

+ + + − + + + + 13.97 -2.636 5.274 7.91
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Layer Growth Experiment: Plots

• • • • • • • • • • • • •
•

•

half-normal quantiles

ab
so

lut
e e

ffe
cts

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2
0.4

0.6
0.8

  
  G C

H

D

location

• •
• • • • • • • • •

•
•

•

•

half-normal quantiles

ab
so

lut
e e

ffe
cts

0.0 0.5 1.0 1.5 2.0 2.5

0.0
0.5

1.0
1.5

2.0

AE
D

A

H

dispersion

Figure 2:Half-Normal Plots of Location and Dispersion Effects, Layer Growth Experiment
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Analysis of Leaf Spring Experiment

• Based on the half-normal plots in Figure 3,B, C andE are significant for

location,C is significant for dispersion:

ŷ = 7.6360+0.1106xB +0.0881xC +0.0519xE,

ẑ = −3.6886+1.0901xC.

• Two-step procedure:

(i) chooseC at−.

(ii) With xC = −1, ŷ = 7.5479+0.1106xB +0.0519xE.

To achieve ˆy = 8.0, xB andxE must be chosen beyond+1, i.e.,

xB = xE = 2.78. This is too drastic, and not validated by current data. An

alternative is to selectxB = xE = xC = +1 (not to follow the two-step

procedure), then ˆy=7.89 is closer to 8. (Note that ˆy = 7.71 withB+C−E+.)

Reason for the breakdown of the 2-step procedure: its secondstep cannot

achieve the target 8.0.
17



Leaf Spring Experiment: Analysis Results

Table 6: Means and Log Variances, Leaf Spring Experiment

Control Factor

B C D E ȳi lns2
i

− + + − 7.540 -2.4075

+ + + + 7.902 -2.6488

− − + + 7.520 -6.9486

+ − + − 7.640 -4.8384

− + − + 7.670 -2.3987

+ + − − 7.785 -2.9392

− − − − 7.372 -3.2697

+ − − + 7.660 -4.0582
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Leaf Spring Experiment: Plots
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Figure 3:Half-Normal Plots of Location and Dispersion Effects, LeafSpring Experiment
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Response Modeling and Control-by-Noise

Interaction Plots

• Response Model: modelyi j directly in terms of control, noise effects and

control-by-noise interactions.

– half normal plot of various effects.

– regression model fitting, obtaining ˆy.

• Make control-by-noise interaction plots for significant effects inŷ, choose

robust control settings at which y has a flatter relationship with noise.

• ComputeVar(ŷ) with respect to variation in the noise factors. CallVar(ŷ)

thetransmitted variance model. Use it to identify control factor settings

with small transmitted variance.
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Response Modeling, Layer Growth Experiment
• Define

Ml = (M1 +M2)− (M3 +M4),

Mq = (M1 +M4)− (M2 +M3),

Mc = (M1 +M3)− (M2 +M4),

• From Figure 4, selectD, L, HL and the cluster of next four effects (Ml , H,
CMl , AHMq).

• The following model is obtained:

ŷ = 14.352+0.402xD +0.087xH +0.330xL −0.090xMl

−0.239xHxL −0.083xCxMl −0.082xAxHxMq.

• Recommendations:
H: − (position 2) to+ (position 6)
A: + (oscillating) to− (continuous)
C: + (1210) to− (1220)
resulting in 37% reduction of thickness standard variation.
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Half-normal Plot of Factorial Effects
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Figure 4:Half-Normal Plot of Response Model Effects, Layer Growth Experiment
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Second Half-normal Plot of Factorial Effects
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Figure 5:Second Half-Normal Plot of Response Model Effects, Layer Growth Experiment
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Control-by-noise Interaction Plots
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Figure 6:H ×L andC×M Interaction Plots, Layer Growth Experiment
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A×H ×M Plot
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Figure 7:A×H ×M Interaction Plot, Layer Growth Experiment
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Predicted Variance Model
• AssumeL, Ml andMq are random variables, taking−1 and+1 with equal

probabilities. This leads to

x2
L = x2

Ml
= x2

Mq
= x2

A = x2
C = x2

H = 1,

E(xL) = E(xMl ) = E(xMq) = 0,

Cov(xL,xMl ) = Cov(xL,xMq) = Cov(xMl ,xMq) = 0.

(4)

• From (4), we have

Var(ŷ) = (.330− .239xH)2Var(xL)+(−.090− .083xC)2Var(xMl )

+(.082xAxH)2Var(xMq)

= constant+(.330− .239xH)2 +(−.090− .083xC)2

= constant−2(.330)(.239)xH +2(.090)(.083)xC

= constant− .158xH + .015xC.

• ChooseH+ andC−. But factorA is not present here. (Why? See
explanation on p. 532).
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Estimation Capacity for Cross Arrays

• Example 1. Control array is a 23−1
III design withI = ABC and the noise array

is a 23−1
III design withI = abc. The resulting cross array is a 16-run 26−2

III

design withI = ABC = abc= ABCabc. Easy to show that all 9

control-by-noise interactions are clear, (but not the 6 main effects). This is

indeed a general result stated next.

Theorem: Suppose a 2k−p designdC is chosen for the control array, a 2m−q

designdN is chosen for the noise array, and a cross array, denoted by

dC⊗dN, is constructed fromdC anddN.

(i) If α1, . . . ,αA are the estimable factorial effects (among the control

factors) indC andβ1, . . . ,βB are the estimable factorial effects (among the

noise factors) indN, thenαi ,β j ,αiβ j for i = 1, . . . ,A, j = 1, . . . ,B are

estimable indC⊗dN.

(ii) All the kmcontrol-by-noise interactions (i.e., two-factor interactions

between a control factor main effect and a noise factor main effect) are clear

in dC⊗dN.
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Cross Arrays or Single Arrays?

• Three control factorsA, B, C two noise factorsa, b: 23
×22 design, allowing

all main effects and two-factor interactions to be clearly estimated.

• Use a single array with 16 runs for all five factors: a resolution V 25−1

design withI = ABCabor I = −ABCab, all main effects and two-factor

interactions are clear. (See Table 7)

• Single arrays can have smaller runs, but cross arrays are easier to use and

interpret.
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32-run Cross Array and 16-run Single Arrays

Table 7: 32-Run Cross Array

a + + − −

b + − + −

Runs A B C

1–4 + + + • ◦ ◦ •

5–8 + + − ◦ • • ◦

9–12 + − + ◦ • • ◦

13–16 + − − • ◦ ◦ •

17–20 − + + ◦ • • ◦

21–24 − + − • ◦ ◦ •

25–28 − − + • ◦ ◦ •

29–32 − − − ◦ • • ◦

• : I = ABCab, ◦ : I = −ABCab,
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Comparison of Cross Arrays and Single Arrays

• Example 1 (continued) An alternative is to choose a single array 26−2
IV design

with I = ABCa = ABbc = abcC. This is not advisable because no 2fi’s are

clear and only main effects are clear. (Why? We need to have some clear

control-by-noise interactions for robust optimization.) Abetter one is to use

a 26−2
III design withI = ABCa = abc= ABCbc. It has 9 clear effects:

A,B,C,Ab,Ac,Bb,Bc,Cb,Cc (3 control main effects and 6 control-by-noise

interactions).
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Signal-to-Noise Ratio

• Taguchi’s SN ratiôη = ln ȳ2

s2

• Two-step procedure:

1. Select control factor levels to maximize SN ratio,

2. Use an adjustment factor to move mean on target.

• Limitations

– maximizingȳ2 not always desired.

– little justification outside linear circuitry.

– statistically justifiable only whenVar(y) is proportional toE(y)2

• Recommendation: Use SN ratio sparingly. Better to use the

location-dispersion modeling or the response modeling. The latter strategies

can do whatever SN ratio analysis can achieve.
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Half-normal Plot for S/N Ratio Analysis
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Figure 8: Half-Normal Plots of Effects Based on SN Ratio, Layer Growth Exper-

iment
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S/N Ratio Analysis for Layer Growth Experiment

• Based on thêηi column in Table 5, compute the factorial effects using SN

ratio. From Figure 7, the conclusion is similar to location-dispersion

analysis. Why? Using

η̂i = ln ȳi
2
− lns2

i ,

and from Table 5, the variation among lns2
i is much larger than the variation

among ln ¯yi
2; thus maximizing SN ratio is equivalent to minimizing lns2

i in

this case.
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