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PREFACE

Optimization is everywhere, from engineering design to computer sciences
and from scheduling to economics. However, to realize that everything is op-
timization does not make the problem-solving easier. In fact, many seemingly
simple problems are very difficult to solve. A well-known example is the so-
called Traveling Salesman Problem in which the salesman intends to visit, say,
50 cities, exactly once so as to minimize the overall distance traveled or the
overall traveling cost. No efficient algorithms exist for such hard problems.
The latest developments over the last two decades tend to use metaheuris-
tic algorithms. In fact, a vast majority of modern optimization techniques
are usually heuristic and/or metaheuristic. Metaheuristic algorithms such as
Simulated Annealing, Particle Swarm Optimization, Harmony Search, and
Genetic Algorithms are becoming very powerful in solving hard optimization
problems, and they have been applied in almost all major areas of science and
engineering as well as industrial applications.

This book introduces all the major metaheuristic algorithms and their
applications in optimization. This textbook consists of three parts: Part
I: Introduction and fundamentals of optimization and algorithms; Part II:
Metaheuristic algorithms; and Part III: applications of metaheuristics in en-
gineering optimization. Part I provides a brief introduction to the nature of
optimization and the common approaches to optimization problems, random

xix



xx PREFACE

number generation and Monte Carlo simulations. In Part II, we introduce all
major/widely used metaheuristic algorithms in great detail, including Genetic
Algorithms, Simulated Annealing, Ant Algorithms, Bee Algorithms, Particle
Swarm Optimization, Firefly Algorithms, Harmony Search and others. In
Part III, we briefly introduce multi-objective optimization. We also discuss a
wide range of applications using metaheuristic algorithms in solving real-world
optimization problems. In the appendices, we provide the implementation of
some of the important/popular algorithms in Matlab R© and/or Octave so that
readers can use them for learning or solving other optimization problems. The
files of the computer programs in the book are available at Wiley’s FTP site

ftp://ftp.wiley.com/public/sci_tech_med/engineering_optimization

This unique book is self-contained with many step-by-step worked examples
including various exercises. It can serve as an ideal textbook for both students
and researchers to learn modern metaheuristic algorithms and engineering
optimization.

Xin-She Yang

Cambridge, UK

April, 2010
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INTRODUCTION

Optimization can mean many different things. However, mathematically
speaking, it is possible to write an optimization problem in the generic form

minimize
x∈<n fi(x), (i = 1, 2, ...,M), (I.1)

subject to φj(x) = 0, (j = 1, 2, ..., J), (I.2)

ψk(x) ≤ 0, (k = 1, 2, ...,K), (I.3)

where fi(x), φj(x) and ψk(x) are functions of the design vector

x = (x1, x2, ..., xn)T , (I.4)

where the components xi of x are called design or decision variables, and
they can be real continuous, discrete or a mixture of these two. The functions
fi(x) where i = 1, 2, ...,M are called the objective functions, and in the case
of M = 1, there is only a single objective. The objective function is sometimes
called the cost function or energy function in literature. The space spanned
by the decision variables is called the search space <n, while the space formed
by the objective function values is called the solution space.

The objective functions can be either linear or nonlinear. The equalities
for φj and inequalities for ψk are called constraints. It is worth pointing out

xxiii
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that we can also write the inequalities in the other way ≥ 0, and we can
also formulate the objectives as a maximization problem. This is because
the maximization of f(x) is equivalent to the minimization of −f(x), and
any inequality g(x) ≤ 0 is equivalent to −g(x) ≥ 0. For the constraints, the
simplest case for a decision variable xi is xi,min ≤ xi ≤ xi,max, which is called
bounds.

If the constraints φj and ψk are all linear, then it becomes a linearly con-
strained problem. If both the constraints and the objective functions are all
linear, it becomes a linear programming problem. For linear programming
problems, a significant progress was the development of the simplex method
in 1947 by George B. Dantzig. However, generally speaking, since all fi, φj

and ψk are nonlinear, we have to deal with a nonlinear optimization problem.
It is worth pointing out that all the functions (objective and constraints) are
collectively called problem functions.

A special class of optimization is when there is no constraint at all (or
J = K = 0), and the only task is to find the minimum or maximum of a single
objective function f(x). This usually makes things much easier, though not
always. In this case, the optimization problem becomes an unconstrained one.

For example, we can find the minimum of the Rosenbrock banana function

f(x, y) = (1 − x)2 + 100(y − x2)2. (I.5)

In order to find its minimum, we can set its partial derivatives to zero, and
we have

∂f

∂x
= 2(1 − x) − 400(y − x2)x = 0, (I.6)

∂f

∂y
= 200(y − x2) = 0. (I.7)

The second equation implies that y = x2 can be substituted into the first one.
We have

1 − x− 200(x2 − x2) = 1 − x = 0, (I.8)

or x = 1. The minimum fmin = 0 occurs at x = y = 1. This method
uses important information from the objective function; that is, the gradient
or first derivatives. Consequently, we can use gradient-based optimization
methods such as Newton’s method and conjugate gradient methods to find
the minimum of this function.

A potential problem arises when we do not know the the gradient, or the
first derivatives do not exist or are not defined. For example, we can design
the following function

f(x, y) = (|x| + |y|) exp[− sin(x2) − sin(y2)]. (I.9)

The global minimum occurs at (x, y) = (0, 0), but the derivatives at (0, 0) are
not well defined due to the factor |x| + |y| and there is some discontinuity
in the first derivatives. In this case, it is not possible to use gradient-based
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optimization methods. Obviously, we can use gradient-free method such as
the Nelder-Mead downhill simplex method. But as the objective function
is multimodal (because of the sine function), such optimization methods are
very sensitive to the starting point. If the starting point is far from the the
sought minimum, the algorithm will usually get stuck in a local minimum
and/or simply fail.

Optimization can take other forms as well. Many mathematical and sta-
tistical methods are essentially a different form of optimization. For example,
in data processing, the methods of least squares try to minimize the sum of
the residuals or differences between the predicated values (by mathematical
models) and the observed values. All major numerical methods such as finite
difference methods intend to find some approximations that minimize the dif-
ference of the true solutions and the estimated solutions. In aircraft design,
we try to design the shape in such a way so as to minimize the drag and max-
imize the lifting force. All these formulations could be converted or related to
the generic form of the nonlinear optimization formulation discussed above.
In some extreme cases, the objective functions do not have explicit form, or
at least it cannot be easily linked with the design variables. For example,
nowadays in product design and city planning, we have to optimize the en-
ergy efficiency and minimize the environmental impact. The study of such
impact itself is a challenging topic and it is not always easy to characterize
them; however, we still try to find some suboptimal or even optimal solutions
in this context.

Nonlinearity and multimodality are the main problem, which renders most
conventional methods such as the hill-climbing method inefficient and stuck
in the wrong solutions. Another even more challenging problem arises when
the number of decision variables increases or n is very large, say, n = 50, 000.
In addition, the nonlinearity coupled with the large scale complexity makes
things even worse. For example, the well-known traveling salesman problem is
to try to find the shortest route for a salesman to travel n cities once and only
once. The number of possible combinations, without knowing the distribution
of the cities, is n!. If n = 100, this number of combinations n! ≈ 9.3 × 10157

is astronomical. The top supercomputers in the world such as IBM’s Blue
Gene can now do about 3 petraflops; there are about 3 × 1015 floating-point
operations per second. In fact, with all the available computers in the world
fully dedicated to the brutal force search of all the combinations of 100!, it
would take much longer than the lifetime of the known universe. This clearly
means that it is not practical to search all possible combinations. We have to
use some alternative, yet efficient enough, methods.

Heuristic and metaheuristic algorithms are designed to deal with this type
of problem. Most these algorithms are nature-inspired or bio-inspired as they
have been developed based on the successful evolutionary behavior of natural
systems – by learning from nature. Nature has been solving various tough
problems over millions or even billions of years. Only the best and robust
solutions remain – survival of the fittest. Similarly, heuristic algorithms use
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the trial-and-error, learning and adaptation to solve problems. We cannot
expect them to find the best solution all the time, but expect them to find
the good enough solutions or even the optimal solution most of the time,
and more importantly, in a reasonably and practically short time. Modern
metaheuristic algorithms are almost guaranteed to work well for a wide range
of tough optimization problems. However, it is a well-known fact that there is
‘no free lunch’ in optimization. It has been proved by Wolpert and Macready
in 1997 that if algorithm A is better than algorithm B for some problems,
then B will outperform A for other problems. That is to say, a universally
efficient algorithm does not exist. The main aim of research in optimization
and algorithm development is to design and/or choose the most suitable and
efficient algorithms for a given optimization task.

Loosely speaking, modern metaheuristic algorithms for engineering opti-
mization include genetic algorithms (GA), simulated annealing (SA), particle
swarm optimization (PSO), ant colony algorithm, bee algorithm, harmony
search (HS), firefly algorithm (FA), and many others.

We will introduce all the major and widely used metaheuristics in Part II
of this book, after a detailed introduction to the fundamentals of engineering
optimization. In Part III, we will briefly outline other important algorithms
and multiobjective optimization. We then focus on the applications of the
algorithms introduced in the book to solve real-world optimization problems.

Each chapter will be self-contained or with minimal cross references to
other chapters. We will include some exercises at the end of each chapter with
detailed answers in the appendices. A further reading list is also provided at
the end of each chapter. These make it ideal for the book to be used either
as a textbook for relevant courses, or an additional reference as well as for
self study. The self-contained nature of each chapter means that lecturers and
students can use each individual chapter to suit their own purpose.

The main requirement for this book is the basic understanding of the cal-
culus, particularly differentiation, and a good undestanding of algebraic ma-
nipulations. We will try to review these briefly in Part I.

In addition, the implementation of algorithms will inevitably use a pro-
gramming language. However, we believe that the efficiency and performance
of each algorithm, if properly implemented, should be independent of any
programming. For this reason, we will explain each algorithm as detail as
possible, but leave an actual implementation in the appendices where we will
include some simple Matlab/Octave programs for demonstrating how the im-
plemented algorithms work.
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