
ENGINEERING
OPTIMIZATION

ENGINEERING
OPTIMIZATION
An Introduction With Metaheuristic
Applications

Xin-She Yang
University of Cambridge, United Kingdom

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright c©2010 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except
as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the
prior
written permission of the Publisher, or authorization through payment of the appropriate per-
copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission
should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ
07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created ore extended by
sales
representatives or written sales materials. The advice and strategies contained herin may not be
suitable for your situation. You should consult with a professional where appropriate. Neither
the
publisher nor author shall be liable for any loss of profit or any other commercial damages,
including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Engineering Optimization: An Introduction with Metaheuristic Applications / Xin-She Yang
“Wiley-Interscience.”
Includes bibliographical references and index.
ISBN 978-0-470-58246-6
1. ??. 2. ??

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

CONTENTS

List of Figures xiii

Preface xix

Acknowledgments xxi

Introduction xxiii

PART I FOUNDATIONS OF OPTIMIZATION AND ALGORITHMS

1 A Brief History of Optimization 3

1.1 Before 1900 4

1.2 Twentieth Century 6

1.3 Heuristics and Metaheuristics 7

Exercises 10

2 Engineering Optimization 15

2.1 Optimization 15

2.2 Type of Optimization 17

2.3 Optimization Algorithms 19

2.4 Metaheuristics 22

2.5 Order Notation 22

v

vi CONTENTS

2.6 Algorithm Complexity 24

2.7 No Free Lunch Theorems 25

Exercises 27

3 Mathematical Foundations 29

3.1 Upper and Lower Bounds 29

3.2 Basic Calculus 31

3.3 Optimality 35

3.3.1 Continuity and Smoothness 35

3.3.2 Stationary Points 36

3.3.3 Optimality Criteria 38

3.4 Vector and Matrix Norms 40

3.5 Eigenvalues and Definiteness 43

3.5.1 Eigenvalues 43

3.5.2 Definiteness 46

3.6 Linear and Affine Functions 48

3.6.1 Linear Functions 48

3.6.2 Affine Functions 49

3.6.3 Quadratic Form 49

3.7 Gradient and Hessian Matrices 51

3.7.1 Gradient 51

3.7.2 Hessian 51

3.7.3 Function approximations 52

3.7.4 Optimality of multivariate functions 52

3.8 Convexity 53

3.8.1 Convex Set 53

3.8.2 Convex Functions 55

Exercises 58

4 Classic Optimization Methods I 61

4.1 Unconstrained Optimization 61

4.2 Gradient-Based Methods 62

4.2.1 Newton’s Method 62

4.2.2 Steepest Descent Method 63

4.2.3 Line Search 65

4.2.4 Conjugate Gradient Method 66

4.3 Constrained Optimization 68

4.4 Linear Programming 68

CONTENTS vii

4.5 Simplex Method 70

4.5.1 Basic Procedure 70

4.5.2 Augmented Form 72

4.6 Nonlinear Optimization 76

4.7 Penalty Method 76

4.8 Lagrange Multipliers 76

4.9 Karush-Kuhn-Tucker Conditions 80

Exercises 83

5 Classic Optimization Methods II 85

5.1 BFGS Method 85

5.2 Nelder-Mead Method 86

5.2.1 A Simplex 86

5.2.2 Nelder-Mead Downhill Simplex 86

5.3 Trust-Region Method 88

5.4 Sequential Quadratic Programming 91

5.4.1 Quadratic Programming 91

5.4.2 Sequential Quadratic Programming 91

Exercises 93

6 Convex Optimization 95

6.1 KKT Conditions 95

6.2 Convex Optimization Examples 97

6.3 Equality Constrained Optimization 99

6.4 Barrier Functions 101

6.5 Interior-Point Methods 104

6.6 Stochastic and Robust Optimization 105

Exercises 107

7 Calculus of Variations 111

7.1 Euler-Lagrange Equation 111

7.1.1 Curvature 111

7.1.2 Euler-Lagrange Equation 114

7.2 Variations with Constraints 120

7.3 Variations for Multiple Variables 124

7.4 Optimal Control 125

7.4.1 Control Problem 126

7.4.2 Pontryagin’s Principle 127

viii CONTENTS

7.4.3 Multiple Controls 129

7.4.4 Stochastic Optimal Control 130

Exercises 131

8 Random Number Generators 133

8.1 Linear Congruential Algorithms 133

8.2 Uniform Distribution 134

8.3 Other Distributions 136

8.4 Metropolis Algorithms 140

Exercises 141

9 Monte Carlo Methods 143

9.1 Estimating π 143

9.2 Monte Carlo Integration 146

9.3 Importance of Sampling 149

Exercises 151

10 Random Walk and Markov Chain 153

10.1 Random Process 153

10.2 Random Walk 155

10.2.1 1D Random Walk 156

10.2.2 Random Walk in Higher Dimensions 158

10.3 Lévy Flights 159

10.4 Markov Chain 161

10.5 Markov Chain Monte Carlo 161

10.5.1 Metropolis-Hastings Algorithms 164

10.5.2 Random Walk 166

10.6 Markov Chain and Optimisation 167

Exercises 169

PART II METAHEURISTIC ALGORITHMS

11 Genetic Algorithms 173

11.1 Introduction 173

11.2 Genetic Algorithms 174

11.2.1 Basic Procedure 174

11.2.2 Choice of Parameters 176

11.3 Implementation 177

CONTENTS ix

Exercises 179

12 Simulated Annealing 181

12.1 Annealing and Probability 181

12.2 Choice of Parameters 182

12.3 SA Algorithm 184

12.4 Implementation 184

Exercises 186

13 Ant Algorithms 189

13.1 Behaviour of Ants 189

13.2 Ant Colony Optimization 190

13.3 Double Bridge Problem 192

13.4 Virtual Ant Algorithm 193

Exercises 195

14 Bee Algorithms 197

14.1 Behavior of Honey Bees 197

14.2 Bee Algorithms 198

14.2.1 Honey Bee Algorithm 198

14.2.2 Virtual Bee Algorithm 200

14.2.3 Artificial Bee Colony Optimization 201

14.3 Applications 201

Exercises 202

15 Particle Swarm Optimization 203

15.1 Swarm Intelligence 203

15.2 PSO algorithms 204

15.3 Accelerated PSO 205

15.4 Implementation 207

15.4.1 Multimodal Functions 207

15.4.2 Validation 208

15.5 Constraints 209

Exercises 210

16 Harmony Search 213

16.1 Music-Based Algorithms 213

x CONTENTS

16.2 Harmony Search 215

16.3 Implementation 217

Exercises 218

17 Firefly Algorithm 221

17.1 Behaviour of Fireflies 221

17.2 Firefly-Inspired Algorithm 222

17.2.1 Firefly Algorithm 222

17.2.2 Light Intensity and Attractiveness 222

17.2.3 Scaling and Global Optima 225

17.2.4 Two Special Cases 225

17.3 Implementation 226

17.3.1 Multiple Global Optima 226

17.3.2 Multimodal Functions 227

17.3.3 FA Variants 228

Exercises 229

PART III APPLICATIONS

18 Multiobjective Optimization 233

18.1 Pareto Optimality 233

18.2 Weighted Sum Method 237

18.3 Utility Method 239

18.4 Metaheuristic Search 241

18.5 Other Algorithms 242

Exercises 244

19 Engineering Applications 247

19.1 Spring Design 247

19.2 Pressure Vessel 248

19.3 Shape Optimization 249

19.4 Optimization of Eigenvalues and Frequencies 252

19.5 Inverse Finite Element Analysis 256

Exercises 258

Appendices 261

Appendix A: Test Problems in Optimization 261

CONTENTS xi

Appendix B: Matlab R© Programs 267

B.1 Genetic Algorithms 267

B.2 Simulated Annealing 270

B.3 Particle Swarm Optimization 272

B.4 Harmony Search 273

B.5 Firefly Algorithm 275

B.6 Large Sparse Linear Systems 278

B.7 Nonlinear Optimization 279

B.7.1 Spring Design 279

B.7.2 Pressure Vessel 281

Appendix C: Glossary 283

Appendix D: Problem Solutions 305

References 333

Index 343

LIST OF FIGURES

1.1 Reflection of light at a mirror. 11

2.1 Classification of optimization problems. 18

2.2 Classification of algorithms. 21

3.1 (a) A jump discontinuity at x0, but piecewise continuous where

the solid point means the point is included, while a circle is

excluded. (b) | sin(x)| is piecewise smooth (but not differentiable

at x = 0,±π,±2π, ...). 35

3.2 (a) |x| is not differentiable at x = 0, (b) 1/x has a singular point

at x = 0. 36

3.3 The sign of the second derivative at a stationary point. (a)

f ′′(x) > 0, (b) f ′′(x) = 0, and (c) f ′′(x) < 0. 37

3.4 Sine function sin(x) and its stationary points (marked with −

and points of inflection (marked with ◦). 38

xiii

xiv LIST OF FIGURES

3.5 Strong and weak maxima and minima. A is a weak local

maximum; point B is a local maximum with discontinuity; C

and D are the minimum and maximum, respectively. E is a

weak local minimum. Point F corresponds to a strong maximum

and also the global maximum, while point G is the strong global

minimum. 39

3.6 Convexity: (a) non-convex, and (b) convex. 54

3.7 Convexity: (a) affine set x = θx1 + (1 − θ)x2 where θ ∈ <, (b)

convex hull x =
∑k

i=1
θixi with

∑k

i=1
θi = 1 and θi ≥ 0, and (c)

convex cone x = θ1x1 + θ2x2 with θ1 ≥ 0 and θ2 ≥ 0. 54

3.8 Convexity of a function f(x). Chord AB lies above the curve

segment joining A and B. For any point P , we have Lα = αL,

Lβ = βL and L = |xB − xA|. 55

4.1 The basic steps of a line search method. 66

4.2 Schematic representation of linear programming. If α = 2,

β = 3, n1 = 16, n2 = 10 and n = 20, then the optimal solution

is at B(10, 10). 69

4.3 Minimization of a function with the two equality constraints. 79

4.4 The feasible region, infeasible solutions (marked with ◦) and the

optimal point (marked with •). 81

5.1 The pseudocode of the BFGS method. 86

5.2 The concept of a simplex: (a) 1-simplex, (b) 2-simplex, and (c)

3-simplex. 87

5.3 Simplex manipulations: (a) reflection with fixed volume (area),

(b) expansion or contraction along the line of reflection, (c)

reduction. 87

5.4 Pseudocode of Nelder-Mead’s downhill simplex method. 89

5.5 Pseudocode of a trust region method. 90

5.6 Procedure of sequential quadratic programming. 93

6.1 Newton’s method for the equality constrained optimization. 100

6.2 The barrier method: (a) log barrier near a boundary, and (b)

central path for n = 2 and N = 4. 102

6.3 The procedure of the barrier method for convex
optimization. 104

LIST OF FIGURES xv

6.4 Robustness of the optimal solution. 106

7.1 Concept of curvature. 112

7.2 The curvature of a circle at any point is 1/r. 113

7.3 Variations in the path y(x). 114

7.4 Geodesic path on the surface of a sphere. 116

7.5 A simple pendulum. 119

8.1 Histogram of 5000 random numbers generated from a uniform

distribution in the range (0, 1). 135

8.2 Histogram of the normally-distributed numbers generated by

the simple inverse transform method. 139

9.1 Estimating π by repeatedly dropping needles or tossing coins. 144

9.2 Representation of Monte Carlo integration. 147

9.3 Pseudo code for Monte Carlo integration. 148

10.1 Random walk in a one-dimensional line. At any point, the

probability moving to the left or right equals to 1/2. 156

10.2 Random walk and the path of 100 consecutive steps staring at

position 0. 157

10.3 Brownian motion in 2D: random walk with a Gaussian step-size

distribution and the path of 100 steps starting at the origin

(0, 0) (marked with •). 158

10.4 Lévy flights in 2D setting starting at the origin (0, 0) (marked

with •). 160

10.5 Metropolis-Hastings algorithm. 165

10.6 The Ghate-Smith Markov chain algorithm for optimization. 168

11.1 Pseudo code of genetic algorithms. 175

11.2 Diagram of crossover at a random crossover point (location) in

genetic algorithms. 175

11.3 Schematic representation of mutation at a single site by flipping

a randomly selected bit (1 → 0). 176

11.4 Encode all design variables into a single long string. 178

11.5 Easom’s function: f(x) = − cos(x)e−(x−π)2 for x ∈ [−10, 10] has

a unique global maximum fmax = 1 at x∗ = π. 178

xvi LIST OF FIGURES

11.6 Typical outputs from a typical run. The best estimate will

approach π while the fitness will approach fmax = 1. 179

12.1 Simulated annealing algorithm. 183

12.2 Rosenbrock’s function with the global minimum f∗ = 0 at (1, 1). 185

12.3 500 evaluations during the simulated annealing. The final
global best is marked with •. 185

12.4 The egg crate function with a global minimum f∗ = 0 at
(0, 0). 186

12.5 The paths of moves of simulated annealing during iterations. 187

13.1 Pseudo code of ant colony optimization. 191

13.2 The double bridge problem for routing performance: route (2) is

shorter than route (1). 192

13.3 Route selection via ACO: (a) initially, ants choose each route

with a 50-50 probability, and (b) almost all ants move along the

shorter route after 5 iterations. 193

13.4 Landscape and pheromone distribution of the multi-peak
function. 194

14.1 Pseudo code of bee algorithms 199

15.1 Schematic representation of the motion of a particle in PSO,

moving towards the global best g
∗ and the current best x

∗

i for

each particle i. 204

15.2 Pseudo code of particle swarm optimization. 205

15.3 A multimodal function with the global minimum f∗ = 0 at
(0, 0), however, it has a singularity at (0, 0) (right). 207

15.4 Michaelewicz function with a global minimum at about
(2.20319, 1.57049). 208

15.5 Initial locations and final locations of 20 particles after 10
iterations. 209

16.1 Harmony of two notes with a frequency ratio of 2:3 and their

waveform. 214

16.2 Random music notes. 215

16.3 Pseudo code of Harmony Search. 216

16.4 The variations of harmonies in harmony search. 217

LIST OF FIGURES xvii

16.5 Yang’s standing wave function with the global minimum at
(0, 0). 218

17.1 Pseudo code of the firefly algorithm (FA). 223

17.2 Landscape of a function with two equal global maxima. 226

17.3 The initial locations of 25 fireflies (left) and their final
locations after 20 iterations (right). 227

17.4 Landscape of Ackley’s 2D function with the global minimum
0 at (0, 0). 228

17.5 The initial locations of the 25 fireflies (left) and their final
locations after 20 iterations (right). 229

18.1 Non-dominated set, Pareto front and ideal vectors in a

minimization problem with two objectives f1 and f2. 236

18.2 Three functions reach the global minimum at x∗ = β, y∗ =
α− γ. 238

18.3 Final locations of 40 particles after 5 iterations. The
optimal point is at (1/3, 0) marked with ◦. 239

18.4 Finding the Pareto solution with maximum utility in a

maximization problem with two objectives. 241

18.5 Pareto front is the line connecting A(5, 0) and B(0, 5/α). The

Pareto solution with maximum utility is U∗ = 25 at point A. 242

19.1 The design optimization of a simple spring. 248

19.2 Pressure vessel design and optimization. 249

19.3 The rectangular design domain is divided into N elements.

As optimization and material distribution evolve, the shape

becomes a truss-style structure (bottom). 250

19.4 Harmonic vibrations. 254

19.5 A rectangular beam with inhomogeneous materials properties

(in 10 different cells). 257

D.1 Heron’s proof of the shortest path. 307

D.2 The feasible region of design variables of a simple linear

programming problem. 308

D.3 The plot of sinc(x) = sin(x)/x. 309

D.4 The plot of f(x) = x2 + 25 cos2(x). 309

D.5 Quadratic penalty function Π(x,µ) = 100(x−1)2 +π+ µ

2
(x−a)2

and µ = 2000. 311

D.6 A simple route to tour 4 cities. 312

PREFACE

Optimization is everywhere, from engineering design to computer sciences
and from scheduling to economics. However, to realize that everything is op-
timization does not make the problem-solving easier. In fact, many seemingly
simple problems are very difficult to solve. A well-known example is the so-
called Traveling Salesman Problem in which the salesman intends to visit, say,
50 cities, exactly once so as to minimize the overall distance traveled or the
overall traveling cost. No efficient algorithms exist for such hard problems.
The latest developments over the last two decades tend to use metaheuris-
tic algorithms. In fact, a vast majority of modern optimization techniques
are usually heuristic and/or metaheuristic. Metaheuristic algorithms such as
Simulated Annealing, Particle Swarm Optimization, Harmony Search, and
Genetic Algorithms are becoming very powerful in solving hard optimization
problems, and they have been applied in almost all major areas of science and
engineering as well as industrial applications.

This book introduces all the major metaheuristic algorithms and their
applications in optimization. This textbook consists of three parts: Part
I: Introduction and fundamentals of optimization and algorithms; Part II:
Metaheuristic algorithms; and Part III: applications of metaheuristics in en-
gineering optimization. Part I provides a brief introduction to the nature of
optimization and the common approaches to optimization problems, random

xix

xx PREFACE

number generation and Monte Carlo simulations. In Part II, we introduce all
major/widely used metaheuristic algorithms in great detail, including Genetic
Algorithms, Simulated Annealing, Ant Algorithms, Bee Algorithms, Particle
Swarm Optimization, Firefly Algorithms, Harmony Search and others. In
Part III, we briefly introduce multi-objective optimization. We also discuss a
wide range of applications using metaheuristic algorithms in solving real-world
optimization problems. In the appendices, we provide the implementation of
some of the important/popular algorithms in Matlab R© and/or Octave so that
readers can use them for learning or solving other optimization problems. The
files of the computer programs in the book are available at Wiley’s FTP site

ftp://ftp.wiley.com/public/sci_tech_med/engineering_optimization

This unique book is self-contained with many step-by-step worked examples
including various exercises. It can serve as an ideal textbook for both students
and researchers to learn modern metaheuristic algorithms and engineering
optimization.

Xin-She Yang

Cambridge, UK

April, 2010

ACKNOWLEDGMENTS

I would like to thank many of my mentors, friends, and colleagues for their
help: J. Brindley, A. C. Fowler, A. B. Forbes, C. J. McDiarmid, A. C. McIn-
tosh, G. T. Parks, S. Tsou, and L. Wright. Special thanks to my students
at Cambridge University: E. Flower, M. Jordan, C. Pearson, J. Perry, P. De
Souza, M. Stewart, and H. Scott Whittle.

I also would like to thank my Editor, Susanne Steitz-Filler, Editorial Pro-
gram Coordinator, Jacqueline Palmieri, Production Editor, Melissa Yanuzzi,
Copyeditor, Sharon Short, and staff at Wiley for their help and professional-
ism.

Last but not least, I thank my wife and son for their support and help.

X. S. Y.

xxi

INTRODUCTION

Optimization can mean many different things. However, mathematically
speaking, it is possible to write an optimization problem in the generic form

minimize
x∈<n fi(x), (i = 1, 2, ...,M), (I.1)

subject to φj(x) = 0, (j = 1, 2, ..., J), (I.2)

ψk(x) ≤ 0, (k = 1, 2, ...,K), (I.3)

where fi(x), φj(x) and ψk(x) are functions of the design vector

x = (x1, x2, ..., xn)T , (I.4)

where the components xi of x are called design or decision variables, and
they can be real continuous, discrete or a mixture of these two. The functions
fi(x) where i = 1, 2, ...,M are called the objective functions, and in the case
of M = 1, there is only a single objective. The objective function is sometimes
called the cost function or energy function in literature. The space spanned
by the decision variables is called the search space <n, while the space formed
by the objective function values is called the solution space.

The objective functions can be either linear or nonlinear. The equalities
for φj and inequalities for ψk are called constraints. It is worth pointing out

xxiii

xxiv INTRODUCTION

that we can also write the inequalities in the other way ≥ 0, and we can
also formulate the objectives as a maximization problem. This is because
the maximization of f(x) is equivalent to the minimization of −f(x), and
any inequality g(x) ≤ 0 is equivalent to −g(x) ≥ 0. For the constraints, the
simplest case for a decision variable xi is xi,min ≤ xi ≤ xi,max, which is called
bounds.

If the constraints φj and ψk are all linear, then it becomes a linearly con-
strained problem. If both the constraints and the objective functions are all
linear, it becomes a linear programming problem. For linear programming
problems, a significant progress was the development of the simplex method
in 1947 by George B. Dantzig. However, generally speaking, since all fi, φj

and ψk are nonlinear, we have to deal with a nonlinear optimization problem.
It is worth pointing out that all the functions (objective and constraints) are
collectively called problem functions.

A special class of optimization is when there is no constraint at all (or
J = K = 0), and the only task is to find the minimum or maximum of a single
objective function f(x). This usually makes things much easier, though not
always. In this case, the optimization problem becomes an unconstrained one.

For example, we can find the minimum of the Rosenbrock banana function

f(x, y) = (1 − x)2 + 100(y − x2)2. (I.5)

In order to find its minimum, we can set its partial derivatives to zero, and
we have

∂f

∂x
= 2(1 − x) − 400(y − x2)x = 0, (I.6)

∂f

∂y
= 200(y − x2) = 0. (I.7)

The second equation implies that y = x2 can be substituted into the first one.
We have

1 − x− 200(x2 − x2) = 1 − x = 0, (I.8)

or x = 1. The minimum fmin = 0 occurs at x = y = 1. This method
uses important information from the objective function; that is, the gradient
or first derivatives. Consequently, we can use gradient-based optimization
methods such as Newton’s method and conjugate gradient methods to find
the minimum of this function.

A potential problem arises when we do not know the the gradient, or the
first derivatives do not exist or are not defined. For example, we can design
the following function

f(x, y) = (|x| + |y|) exp[− sin(x2) − sin(y2)]. (I.9)

The global minimum occurs at (x, y) = (0, 0), but the derivatives at (0, 0) are
not well defined due to the factor |x| + |y| and there is some discontinuity
in the first derivatives. In this case, it is not possible to use gradient-based

INTRODUCTION xxv

optimization methods. Obviously, we can use gradient-free method such as
the Nelder-Mead downhill simplex method. But as the objective function
is multimodal (because of the sine function), such optimization methods are
very sensitive to the starting point. If the starting point is far from the the
sought minimum, the algorithm will usually get stuck in a local minimum
and/or simply fail.

Optimization can take other forms as well. Many mathematical and sta-
tistical methods are essentially a different form of optimization. For example,
in data processing, the methods of least squares try to minimize the sum of
the residuals or differences between the predicated values (by mathematical
models) and the observed values. All major numerical methods such as finite
difference methods intend to find some approximations that minimize the dif-
ference of the true solutions and the estimated solutions. In aircraft design,
we try to design the shape in such a way so as to minimize the drag and max-
imize the lifting force. All these formulations could be converted or related to
the generic form of the nonlinear optimization formulation discussed above.
In some extreme cases, the objective functions do not have explicit form, or
at least it cannot be easily linked with the design variables. For example,
nowadays in product design and city planning, we have to optimize the en-
ergy efficiency and minimize the environmental impact. The study of such
impact itself is a challenging topic and it is not always easy to characterize
them; however, we still try to find some suboptimal or even optimal solutions
in this context.

Nonlinearity and multimodality are the main problem, which renders most
conventional methods such as the hill-climbing method inefficient and stuck
in the wrong solutions. Another even more challenging problem arises when
the number of decision variables increases or n is very large, say, n = 50, 000.
In addition, the nonlinearity coupled with the large scale complexity makes
things even worse. For example, the well-known traveling salesman problem is
to try to find the shortest route for a salesman to travel n cities once and only
once. The number of possible combinations, without knowing the distribution
of the cities, is n!. If n = 100, this number of combinations n! ≈ 9.3 × 10157

is astronomical. The top supercomputers in the world such as IBM’s Blue
Gene can now do about 3 petraflops; there are about 3 × 1015 floating-point
operations per second. In fact, with all the available computers in the world
fully dedicated to the brutal force search of all the combinations of 100!, it
would take much longer than the lifetime of the known universe. This clearly
means that it is not practical to search all possible combinations. We have to
use some alternative, yet efficient enough, methods.

Heuristic and metaheuristic algorithms are designed to deal with this type
of problem. Most these algorithms are nature-inspired or bio-inspired as they
have been developed based on the successful evolutionary behavior of natural
systems – by learning from nature. Nature has been solving various tough
problems over millions or even billions of years. Only the best and robust
solutions remain – survival of the fittest. Similarly, heuristic algorithms use

xxvi INTRODUCTION

the trial-and-error, learning and adaptation to solve problems. We cannot
expect them to find the best solution all the time, but expect them to find
the good enough solutions or even the optimal solution most of the time,
and more importantly, in a reasonably and practically short time. Modern
metaheuristic algorithms are almost guaranteed to work well for a wide range
of tough optimization problems. However, it is a well-known fact that there is
‘no free lunch’ in optimization. It has been proved by Wolpert and Macready
in 1997 that if algorithm A is better than algorithm B for some problems,
then B will outperform A for other problems. That is to say, a universally
efficient algorithm does not exist. The main aim of research in optimization
and algorithm development is to design and/or choose the most suitable and
efficient algorithms for a given optimization task.

Loosely speaking, modern metaheuristic algorithms for engineering opti-
mization include genetic algorithms (GA), simulated annealing (SA), particle
swarm optimization (PSO), ant colony algorithm, bee algorithm, harmony
search (HS), firefly algorithm (FA), and many others.

We will introduce all the major and widely used metaheuristics in Part II
of this book, after a detailed introduction to the fundamentals of engineering
optimization. In Part III, we will briefly outline other important algorithms
and multiobjective optimization. We then focus on the applications of the
algorithms introduced in the book to solve real-world optimization problems.

Each chapter will be self-contained or with minimal cross references to
other chapters. We will include some exercises at the end of each chapter with
detailed answers in the appendices. A further reading list is also provided at
the end of each chapter. These make it ideal for the book to be used either
as a textbook for relevant courses, or an additional reference as well as for
self study. The self-contained nature of each chapter means that lecturers and
students can use each individual chapter to suit their own purpose.

The main requirement for this book is the basic understanding of the cal-
culus, particularly differentiation, and a good undestanding of algebraic ma-
nipulations. We will try to review these briefly in Part I.

In addition, the implementation of algorithms will inevitably use a pro-
gramming language. However, we believe that the efficiency and performance
of each algorithm, if properly implemented, should be independent of any
programming. For this reason, we will explain each algorithm as detail as
possible, but leave an actual implementation in the appendices where we will
include some simple Matlab/Octave programs for demonstrating how the im-
plemented algorithms work.

REFERENCES

1. G. B. Dantzig, Linear Programming and Extensions, Princeton University Press,
1963.

INTRODUCTION xxvii

2. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic
Press Inc., 1981.

3. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing”, Science, 220 (4598), 671-680 (1983).

4. D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimizaiton”,
IEEE Transaction on Evolutionary Computation, 1, 67-82 (1997).

5. X. S. Yang, “Harmony search as a metaheuristic algorithm”, in: Music-Inspired

Harmony Search Algorithm: Theory and Applications (eds. Z. W. Geem),
Springer, p. 1-14 (2009).

