
FIGURE 4.10

(a)

(b)

(c) FIGURE 4.12a-c

(d)

FIGURE 4.12d

Option Explicit line 1

Public Sub Gauss_Jordan_Macro() line 2
Dim C() As Double line 3
Dim Nrows, Ncolumns As Long line 4

 Nrows = 3 line 5
 Ncolumns = 4 line 6

ReDim C(Nrows, Ncolumns) line 7

'Read augmented matrix from Excel sheet line 8
Dim i As Integer line 9
Dim j As Integer line 10
For i = 0 To Nrows – 1 line 11

For j = 0 To Ncolumns – 1 line 12
If Sheet1.Cells(i + 8, j + 2) = " " Then line 13

 C(i, j) = 0 line 14
Else line 15

 C(i, j) = Sheet1.Cells(i + 8, j + 2) line 16
End If line 17

Next j line 18
Next i line 19

' Call Gauss-Jordan matrix elimination method line 20
 GJ_Elimination(C, Nrows) line 21

' Place solution from Gauss-Jordan matrix elimination method on Excel Sheet line 22
For i = 0 To Nrows – 1 line 23

For j = 0 To Ncolumns – 1 line 24
 Sheet1.Cells(i + 12, j + 2) = C(i, j) line 25

Next j line 26
Next i line 27

End Sub line 28

Public Sub GJ_Elimination(A, row) line 29

Dim col As Long line 30
 col = row + 1 line 31

Dim nonZerIdx As Integer line 32
 nonZerIdx = 0 line 33

' We first to check if the diagnol element is zero line 34
Dim i As Integer line 35
For i = 0 To row – 1 line 36

If A(i, i) = 0 Then line 37
' If the diagnol element = 0 we need to look at following rows
' to find a nonzero element in the i column line 38

Dim i2 As Integer line 39
For i2 = i + 1 To row – 1 line 40

If A(i2, i) <> 0 Then line 41
 nonZerIdx = i2 line 42

Exit For line 43
Else line 44
End If line 45

Next i2 line 46

' Here we exchange the row with the diagnol element = 0 with the
' first following row in which the i column has a nonzero value line 47

Dim j1 As Integer line 48
For j1 = 0 To col – 1 line 49

Dim tmp As Double line 50
 tmp = A(i, j1) line 51
 A(i, j1) = A(nonZerIdx, j1) line 52
 A(nonZerIdx, j1) = tmp line 53

Next j1 line 54

Else line 55
End If line 56

FIGURE 4.1a

' Here we divide every element of the pivot row
 ' by the the diagnol element (the pivot element) line 57

Dim tmpAii As Double line 58
 tmpAii = A(i, i) line 59

Dim j As Integer line 60
For j = 0 To (col - 1) line 61

 A(i, j) = A(i, j) / tmpAii line 62
Next j line 63

' Here we eliminate (make zero) all elements in the pivot column. This is
 ' not done for the pivot row. See equation (4.2) aij = aij – aik akj line 64

Dim i1 As Integer line 65
For i1 = 0 To (row - 1) line 66

If i1 <> i Then line 67
Dim tmpAi1 As Double line 68

 tmpAi1 = A(i1, i) line 69
For j = 0 To (col - 1) line 70

 A(i1, j) = A(i1, j) - tmpAi1 * A(i, j) line 71
Next j line 72

Else line 73

End If line 74
Next i1 line 75

Next i line 76
End Sub line 77

FIGURE 4.1b

Assemble equations
on the Excel sheet

Using VBA:
1. Read the coefficients

into a matrix
2. G-J method to solve

matrix

Assemble equations
on the Excel sheet

Using VBA:
1. Read the coefficients

into a matrix

Using C:
1. G-J method to solve

matrix

Write results on the sheet

Write results on the sheet

Pass matrix

Pass results

FIGURE 4.3

(a)

(b)

FIGURE 4.5

(a)

(b)

FIGURE 4.6

–2

–1

0

1

2

3

4

5

6

0 1 2 3 4 5 6

x1

x
2

5)()(21 =+ xx

{ }1,40 =x

1x

13)()(2
2

2
1 =+ xx

Final Solutionx

30)2()8(21 =+ xx

FIGURE 4.7

Option Explicit
'path to the Gauss-Jordan matrix elimination method
Public Declare Sub GJ_Elimination_Main Lib "C:\POEA\Bridging Excel and C
Codes\Examples\Simple_C_Matrix_dll\Debug\Simple_C_Matrix_dll.dll" (ByRef Matrix As
Double, ByVal Nrows As Long, ByVal Ncolumns As Long)

Dim Nrows, Ncolumns, cntNLeq, RowStartFirstMatrix, RowStartSecondMatrix,
RowStartThirdMatrix, RowStartNLEqsThirdMatrix As Long

Public Sub Gauss_Jordan_Macro()
Dim C() As Double

'The user must specify the number of rows (Nrows);
'the number of nonlinear equations (cntNLeq);
'and the row where the first matrix begins on the Excel sheet (RowStartFirstMatrix)
'we assume all matrices will begin in column 2 - use column one for comments

 Nrows = 3
 Ncolumns = Nrows + 1
 cntNLeq = 2
 RowStartFirstMatrix = 8

'Here we are keeping a gap of 4 rows between matrices on the Excel sheet
 RowStartSecondMatrix = RowStartFirstMatrix + Nrows + 4
 RowStartThirdMatrix = RowStartSecondMatrix + Nrows + 4

'Here we identify the starting row in the thrid matrix for the nonlinear equations
 RowStartNLEqsThirdMatrix = RowStartThirdMatrix + Nrows - cntNLeq

'Here we read the first matrix on the Excel sheet into the VBA matrix C
' if the entry on the Excel sheet is blank " " we set the entry to zero
ReDim C(Nrows, Ncolumns)
Dim i As Integer
Dim j As Integer
For i = 0 To Nrows - 1

For j = 0 To Ncolumns - 1
If Sheet1.Cells(i + RowStartFirstMatrix, j + 2) = " " Then

 C(i, j) = 0
Else

 C(i, j) = Sheet1.Cells(i + RowStartFirstMatrix, j + 2)
End If

Next j
Next i

' We call the Gauss-Jordan matrix elimination method which is a C program
' and we palce the results in the second matrix on the Excel sheet

 GJ_Elimination_Main C(0, 0), Nrows, Ncolumns

For i = 0 To Nrows - 1
For j = 0 To Ncolumns - 1

 Sheet1.Cells(i + RowStartSecondMatrix, j + 2) = C(i, j)
Next j

Next i
End Sub
Public Sub NR_Gauss_Jordan_Macro()
'Here we will use the Newton Raphson method to linearize the NL equations.

Dim x() As Double
Dim F() As Double
Dim D() As Double

Dim i, j As Integer

Dim DELTA As Double
 DELTA = 0.0001

'First we copy all the current coeficients from the first matrix (the all linear matrix)
'to the third matrix
'Eventually we will then need to substitute in the linearized NL equations

For i = 0 To Nrows - 1
For j = 0 To Ncolumns - 1

 Sheet1.Cells(i + RowStartThirdMatrix, j + 2) = Sheet1.Cells(i +
RowStartFirstMatrix, j + 2)

Next j
Next i

'Get the current solution x = x* from the second matrix
ReDim x(Nrows)

 Get_X_Values(Nrows, x)

'The Newton Raphson Method for the NL equations
ReDim F(cntNLeq)
ReDim D(cntNLeq, Nrows)

FIGURE 4.9a

' Evaluate each NL equation at x*
For i = 0 To cntNLeq - 1

 F(i) = NLFunc(i, x)
Next i

' Determine partial derivative for each NL equation wrt each variable at x*
For i = 0 To cntNLeq - 1

For j = 0 To Nrows - 1
 x(j) = x(j) + DELTA
 D(i, j) = (NLFunc(i, x) - F(i)) / DELTA
 x(j) = x(j) - DELTA

Next j
Next i

' Place the partial derivatives at x* for each NL equation on the Excel sheet - third
' matrix

For i = 0 To cntNLeq - 1
For j = 0 To Nrows - 1

 Sheet1.Cells(i + RowStartNLEqsThirdMatrix, j + 2) = D(i, j)
Next j

Next i

' Calculate Beta for each NL equation and place on Excel sheet - third matrix
Dim TempSum As Double
For i = 0 To cntNLeq - 1

 TempSum = 0
For j = 0 To Nrows - 1

 TempSum = TempSum + x(j) * D(i, j)
Next j

 Sheet1.Cells(i + RowStartNLEqsThirdMatrix, Ncolumns + 1) = TempSum - F(i)
Next i

' Read coefficients from the third matrix into the VBA matrix C
Dim C() As Double

ReDim C(Nrows, Ncolumns)

For i = 0 To Nrows - 1
For j = 0 To Ncolumns - 1

If Sheet1.Cells(i + RowStartThirdMatrix, j + 2) = " " Then
 C(i, j) = 0

Else
 C(i, j) = Sheet1.Cells(i + RowStartThirdMatrix, j + 2)

End If
Next j

Next i

'Call the Gauss-Jordan matrix elimination mathod
'and place the results on the Excel sheet in the second matrix

 GJ_Elimination_Main C(0, 0), Nrows, Ncolumns

For i = 0 To Nrows - 1
For j = 0 To Ncolumns - 1

 Sheet1.Cells(i + RowStartSecondMatrix, j + 2) = C(i, j)
Next j

Next i

End Sub

Private Sub Get_X_Values(ByVal N As Integer, ByRef x() As Double)
' Get the current solution x = x*
Dim i As Integer

For i = 0 To N - 1
 x(i) = Sheet1.Cells(i + RowStartSecondMatrix, Ncolumns + 1)

Next i
End Sub

Private Function NLFunc(ByVal Idx As Long, ByRef x() As Double) As Double
' The NL equations
' --- Remember Index on Functions AND x(i) BOTH start at Zero
If Idx = 0 Then

 NLFunc = x(0) ^ (1 / 2) + (x(1)) ^ 2 + x(1) * x(2) - 11
End If
If Idx = 1 Then

 NLFunc = x(0) * x(0) + x(1) * x(1) + x(2) * x(2) - 14
End If

End Function FIGURE 4.9b

Product 4

Vapor out 5

Separator 1

Purge 6

Reactor in 2 Reactor out 3

Reactor

Recycle 7

4CH

3NH

%.5242N

322 23 NHHN =+

2N

%742H

Feed 1

A

2H

2H

Mixer

%2.14CH A
%30.A

2N

4CH

3NH

2H

A

2N

4CH

3NH

2H

A

2N

4CH

3NH

3NH

4CH

3NH
A

2H
2NSplitter

FIGURE p4.10

