
1

Chapter 4 Summary–
Connection between rate equations and

mechanisms.

Chapt 3 - measurement of rate laws

Chapt 4:  How else can we get a rate law?

Technique:
♦ Find the mechanism of the reaction

- Computationally
- experimentally

♦ Use the quasi-steady state approximation to
derive a rate equation

Generally more accurate - but we need a
mechanism
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Historically the idea that reactions follow
mechanisms arose because of the observation
that reaction rates did not correlate with
stoichiometry
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Table 2.5  Some of the rate equations which were
discovered before 1886.

Reaction Rate equation

243 6HP4PH +⇒

(2.T.1)
[ ]333PH PHkr −=

 (2.T.2)

223 3HAs2AsH +⇒

 (2.T.3)
[ ]AsH k- = r 34AsH3

(2.T.4)

O3H+OP4O2PH 25223 ⇒+

(2.T.5)
[ ][ ]O PHk- = r 2

2/1
35PH3

(2.T.6)

OCHOHCOHCOHOHC 25956126
+H

2112212 +⇒+ H
(2.T.7)

]H[ [sucrose] k-r +
6S=

    (2.T.8)
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CH COOR H O CH COOH ROH3 2 3+ ⇒ +
H+     (2.T.9)

[ ][ ]r k CH COOR HAc 7 3= + +    (2.T.10)

   OHCOORCHROHCOOHCH 23
+H

3 +⇒+

  (2 .T.11)

[ ][ ][ ]+−= H ROHCOOHCHkr 38Ac

(2.T.12)

ClCH COOH H O HOCH COOH HCl2 2 2+ ⇒ +

(2.T.13)
   [ ]23292ClO3H2C ClOHCkr =−

(2.T.14)

where r , r , r , r , r ,PH AH S Ac C H ClO3 3 2 3 2
  and rFe3+  are the rates of

formation of phosphine, arsine,
sucrose, acetic acid, chloroacetic acid, and Fe3+

respectively; [PH3], [AsH3], [O2], [sucrose], [H+],
[CH3COOR], [CH3COOH], [ROH], [Sn2+], [ClO3

− ],
and [C2H3ClO2] are the concentrations of
phosphine, arsine, oxygen, sucrose, hydrogen ion,
acetate, acetic acid, alcohol, Sn2+, ClO3

− ,
and chloroacetic acid respectively; and k3, k4, k5,
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k6, k7, k8, k9, k10 and k11 are constants.

Van't hoff and Sabatier did considerable work to
understand how it was possible for a reaction
stoichiometry to be different than the kinetics;

Answer:
All reactions actually occur by a series of

chemical transformations called Elementary
reactions

Elementary reaction - a reaction which goes
from reactants to products without going
through any stable intermediates

Mechanism -The sequence of elementary steps
which occur when the reactants come together
to form products
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CH CH HC = CH H CH CH HC
H

CH a)

CH CH HC
H

CH CH HC = CHCH H (b)

CH CH HC
H

CH CH CH HC = CH H (c)

CH CH HC
H

CH H C = CHCH CH H (d)
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Other key terms:
• Reactive intermediate
• Molecularity
• Unimolecular
• Bimolecular
• Termolecular
• Overall reaction
• Stoichiometric reaction
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All elementary reactions have at least two
reactants and two products

H HBr H Br2+ → +
(4.11)

X H 2H X2+ → +
(4.12)

Kinetics of elementary reactions

A B P Q+ → +
(4.19)

r k [A][B]2 2=
(4.20)

r k [A][B]A 2= −
(4.21)
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2A P Q
4

→ +
(4.22)

r k [A]4
2

4 =
(4.23)

r 2k [A]A 4= −
(4.24)

The factor of -2 is very important!!

r rA i A,i
i=1

= ∑ β
5

(4.25)

memorize this equation
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Next: rates of overall reactions in terms of
elementary rates;

CH CH HC = CH H CH CH HC
H

CH a)

CH CH HC
H

CH CH HC = CHCH H (b)

CH CH HC
H

CH CH CH HC = CH H (c)

CH CH HC
H

CH H C = CHCH CH H (d)

3 2 2
+

3 2 2

3 2 2 3 3
+

3 2 2 3 2 2
+

3 2 2 2 2 3
+
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(4.13)

 1     3
A + H+ º I → P + H+

 2

(4.44)

Differential equation for each species

r rA i A,i
i=1

= ∑ β
5

(4.25)
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d[ I ]
dt

r r r1 2 3= − −

(4.45)

d[A]
dt

r - r2 1=

(4.46)
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Next substitute rate laws

 1     3
A + H+ º I → P + H+

 2

(4.44)

where k1 is the rate constant for reaction 1; [A]
is the concentration of A; and, [H+] is the
concentration of protons.  Similarly, r2 and r3
are given by:

r k [I]2 2=
(4.48)

r k [I]3 3=
(4.49)

Substituting equations (4.47) and (4.48) into
equation (4.46) yields:
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d[A]
dt

k [ I ] - k [A][H2 1
+= ]

(4.50)

Similarly, substituting equations (4.47), (4.48)
and (4.49) into equation (4.45) yields:

d[ I ]
dt

k [A][H ] - (k + k )[ I 1
+

2 3= ]

(4.51)

Equations (4.50) and (4.51) are the fundamental
differential equations for the behavior of the
system.  They are the key results in this section.
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Integration of the rate equation

Next we want to integrate the equations to
calculate the overall rate of reaction.  There are
three approaches

• Analytical integration of the differential
equations

• Numerical integration of the differential
equations

• Approximate integration of the rate
equation

Lets start with the analytical solution:

d[A]
dt

k [ I ] - k [A][H2 1
+= ]

(4.50)

d[ I ]
dt

k [A][H ] - (k + k )[ I 1
+

2 3= ]

(4.51)
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Analytical solution









−
−

)k(k
t))exp(-kk-(k-t)exp(-k)k(k[A]=[A]

54

4655640

(4.53)

{ }t)exp(-k-t)exp(-k
)kk(k

)k-(k)k(k[A]=[I] 45
542

56640









−
−

(4.54)
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Figure 4.1  [A], [I] and
[P] as a function of
time calculated from
equations (4.53),
(4.54), and (4.55) with
k1[H+]= 0.2/min, k2=5.7
× 106/min and k3=3.8 ×
107/min.
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Approximate solution of rate equation
(quasi steady state approximation).  Need to
solve the differential equation

d[ I ]
dt

k [A][H ] - (k + k )[ I 1
+

2 3= ]

(4.51)
Consider the size of the various terms in the
equation (from analytical solution)

Derivative much smaller than other terms in the
equation
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Figure 4.3  The size of various terms in
equation (4.51).
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Quasi-steady state approximation.  Assume the
derivative is zero.

)[I]k(k][A][Hk0 321 +−= +

Therefore:










+
=

32
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1X

kk
][Hk[A]] I [

(4.60)
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The pseudo-steady state approximation

According to the pseudo steady state
approximation, one can compute accurate
values of the concentrations of all of the
intermediates in a reaction by assuming that the
net rate of formation of the intermediates is
negligible (i.e., the derivatives with respect to
time of the concentrations of all intermediates
are negligible compared to other terms in the
equation.)

A I P1 2 →  →
(4.64)

[I]k[A]kr O 21I −==
(4.65)

Therefore

[ I ] = k
k

[A]1

2
(4.66)
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We can extend this procedure to any reaction.
The general steps are:

1) Set up the differential equation for the species
of interest in terms of rate of all of the
elementary reactions using equation (4.25) to
keep track of the coefficients.

2) Substitute the expression for the rate of each
of the elementary reactions using equations
from section 4.3.

3) Set the derivatives of the intermediate
concentrations to zero.

4) Eliminate terms in the expression in (1) which
contain the concentrations of unstable
intermediates other than the species of
interest.
(Usually done by adding equations together)

5) Solve the reactant expression for the
concentration of the species of interest.
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Next:  Numerical solution at rate equation

Consider A H
1

2
I P+ →+

�

3

The differential equations are
d[A]

dt
k [A] k [I]6 2= − + (4.B.1)

d[I]
dt

k [A] (k k )[I]6 2 3= + − + (4.B.2)

d[P]
dt

k [I]3= (4.B.3)

with [ ]k k H6 1=
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4.B.1  Numerical Methods

Let’s define two new vectors 
�

C and 
�

R by:

C(1) = [A], C(2) = [ I ], C(3) = [P]

R(1) dC(1)
dt

=

R(2) dC(2)
dt

= (4.B.

R(3) dC(3)
dt

=

Physically, 
�

C is a vector containing the
concentrations of all of the species while 

�

R is a
vector containing all of the rates of reaction.
For our example

R(1) = -k6[A] + k2[ I ]
R(2) = +k6[A]-(k2 + k3)[ I ] (4.B.5)
R(3) = k3[ I ]
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Equations 4.B.1, 4.B.2, and 4.B.3 become:

dC
dt

R
�

�

= (C,t)
�

(4.B.6)

Numerical methods start by looking at some
small time increment ∆t and approximating
dC / dt
�

 by ∆ ∆
�

C t/ .  According to the mean
value theorem:

∆
∆

�

�C
t

R= ( , )ζ ξ (4.B.7)

where 
�

R ( , )ζ ξ  is an average value of 
�

R time
between t and t + ∆t.
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Rearranging equation 4.B.6 yields:
� � �

C(t t) C(t) tR( )+ = +∆ ∆ ζ ξ, (4.B.8)

where 
�

C(t) is the value of the concentrations at
time = t, 

�

C(t t) + ∆  is the value at t + ∆t.

Eulers method
� � � �

C(t t) C(t) t R(C(t), t)+ = +∆ ∆ (4.B.9)

Where )t),t(C(R
��

 is the value of R
�

 calculated at
a concentration equal to the concentration at
time t.

Equation 4.B.9 says that if you know the
concentration of any time t, and the rate
equation you can calculate the concentration at
some time t + ∆t, by plugging into equation
4.B.9
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In practice, you use equation 4.B.9
iteratively.
Consider t = 0, 1, 2, 3…

t = 0  Know CA(0) calculate CA(1)
t = 1  Know CA(1) calculate CA(2)
t = 2  Know CA(2) can calculate CA(3)

Can calculate CA at all times

Example 4.B.A

Consider solving the differential equation:

dC
dt

k )C rA
1 A A= − =( (4.B.10)

with an initial concentration of 1 mole/liter, and
k1 = -2/sec.



26

Solution

In equation 4.B.10:
( )�

R r C t)A A= ( (4.B.11)

Combining equations 4.B.9 and 4.B.11 yields:

( )
t)C(t)(k-C(t)

)t(Crt )(tC)t(tC

1

AAAA
∆=

∆+=∆+           (4.B.12)

Equation 4.B.12 gives us a way to solve for
C (t tA + ∆ )  given CA(t).

Next, we will use a spreadsheet to solve this
problem.  Table 4.B.1 shows my spreadsheet.  I
set up the spreadsheet so column T is time,
column CA is the concentration of A and

column DA is 
dC

dt
A .  I named cell CA1 dt, and

CA2 k_1. I then hid all of the rest of the
columns so the spreadsheet was easy to see.
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 Table 4.B.1 The formulas used to integrate equation
4.B.10

T CA DA
01 dt= 0.1
02 k_1= 2
03 0 1 =-k_1*CA3
04 =T3+dt =CA3+dt*DA3 =-k_1*CA4
05 =T4+dt =CA4+dt*DA4 =-k_1*CA5
06 =T5+dt =CA5+dt*DA5 =-k_1*CA6
07 =T6+dt =CA6+dt*DA6 =-k_1*CA7
08 =T7+dt =CA7+dt*DA7 =-k_1*CA8
09 =T8+dt =CA8+dt*DA8 =-k_1*CA9
10 =T9+dt =CA9+dt*DA9 =-k_1*CA10
11 =T10+dt =CA10+dt*DA10 =-k_1*CA11
12 =T11+dt =CA11+dt*DA11 =-k_1*CA12
13 =T12+dt =CA12+dt*DA12 =-k_1*CA13
14 =T13+dt =CA13+dt*DA13 =-k_1*CA14
15 =T14+dt =CA14+dt*DA14 =-k_1*CA15
16 =T15+dt =CA15+dt*DA15 =-k_1*CA16
17 =T16+dt =CA16+dt*DA16 =-k_1*CA17
18 =T17+dt =CA17+dt*DA17 =-k_1*CA18
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 Table 4.B.2 The numerical values in the
spreadsheet in 4.B.1

T CA DA
01 dt= 0.1 Exact
02 k_1= 2 concentration
03 0 1 -2 1
04 0.1 0.8 -1.6 0.818731
05 0.2 0.64 -1.28 0.67032
06 0.3 0.512 -1.024 0.548812
07 0.4 0.4096 -0.8192 0.449329
08 0.5 0.32768 -0.65536 0.367879
09 0.6 0.262144 -0.52429 0.301194
10 0.7 0.209715 -0.41943 0.246597
11 0.8 0.167772 -0.33554 0.201897
12 0.9 0.134218 -0.26844 0.165299
13 1 0.107374 -0.21475 0.135335
14 1.1 0.085899 -0.1718 0.110803
15 1.2 0.068719 -0.13744 0.090718
16 1.3 0.054976 -0.10995 0.074274
17 1.4 0.04398 -0.08796 0.06081
18 1.5 0.035184 -0.07037 0.049787

Notice that Euler’s method gives a fair
approximation to the concentration, but the
results are by no means exact.

The reason Euler's method has failed is that it
assumes that the rate is constant over the entire
time increment.  For example during the first
time increment, the concentration of A drops
from 1.0, to 0.8.  The rate of reaction changes
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from -2.0 to -1.6.   However, Euler's method
ignores the change in rate.  Instead it assumes
that the rate stays at -2.0 for the entire time
increment.   This leads to errors.

4.B.3 Implicit Methods

( )� � � �

C (t t) C (t) t R t) + R (t + t) / 2A A A A+ = +∆ ∆ ( ∆
(4.B.17)

Equation 4.B.17 replaces the exact value of the
rate, with an average of the initial and final
values of the rate so it gives much more
accurate values than Euler's method.
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 Table 4.B.3 The formulas used to integrate equation 4.B.10
according to equation (4.B.17)

T CA DA
01 dt= 0.1
02 k_1= 2
03 0 1 =-k_1*CA3
04 =T3+dt =CA3+dt*(DA3+DA4)/2 =-k_1*CA4
05 =T4+dt =CA4+dt*(DA4+DA5)/2 =-k_1*CA5
06 =T5+dt =CA5+dt*(DA5+DA6)/2 =-k_1*CA6
07 =T6+dt =CA6+dt*(DA6+DA7)/2 =-k_1*CA7
08 =T7+dt =CA7+dt*(DA7+DA8)/2 =-k_1*CA8
09 =T8+dt =CA8+dt*(DA8+DA9)/2 =-k_1*CA9
10 =T9+dt =CA9+dt*(DA9+DA10)/2 =-k_1*CA10
11 =T10+dt =CA10+dt*(DA10+DA11)/2=-k_1*CA11
12 =T11+dt =CA11+dt*(DA11+DA12)/2=-k_1*CA12
13 =T12+dt =CA12+dt*(DA12+DA13)/2=-k_1*CA13
14 =T13+dt =CA13+dt*(DA13+DA14)/2=-k_1*CA14
15 =T14+dt =CA14+dt*(DA14+DA15)/2=-k_1*CA15
16 =T15+dt =CA15+dt*(DA15+DA16)/2=-k_1*CA16
17 =T16+dt =CA16+dt*(DA16+DA17)/2=-k_1*CA17
18 =T17+dt =CA17+dt*(DA17+DA18)/2=-k_1*CA18
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 Table 4.B.4 The numerical values in the spreadsheet in
Table 4.B.3.  I also added  column for the exact
concentration

T CA DA
01 dt= 0.1 Exact
02 k_1= 2 concentration
03 0 1 -2 1
04 0.1 0.818182 -1.63636 0.818731
05 0.2 0.669421 -1.33884 0.67032
06 0.3 0.547708 -1.09542 0.548812
07 0.4 0.448125 -0.89625 0.449329
08 0.5 0.366648 -0.7333 0.367879
09 0.6 0.299985 -0.59997 0.301194
10 0.7 0.245442 -0.49088 0.246597
11 0.8 0.200816 -0.40163 0.201897
12 0.9 0.164304 -0.32861 0.165299
13 1 0.134431 -0.26886 0.135335
14 1.1 0.109989 -0.21998 0.110803
15 1.2 0.089991 -0.17998 0.090718
16 1.3 0.073629 -0.14726 0.074274
17 1.4 0.060242 -0.12048 0.06081
18 1.5 0.049289 -0.09858 0.049787
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4.B.6  Stiff Equations

In kinetics the equations are hard to solve
numerically.

d[I]
dt

k [A] (k k )[I]6 2 3= + − + (4.B.2)

Recall that equation (4.B.2) computes
 d[ I ]/dt as a difference between two big
numbers.  If you make an error in the
calculations, that error is amplified.  This
makes the calculations difficult.

Implicit methods work much better.
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Summary: Chapter 4 discusses

Can derive rate equations from a mechanism
by

• Write down the differential equations
in terms of the rates and then substitute
in the rate equations.

• Keep track of what terms you want to
eliminate and eliminate them.

• Adding equations together helps.
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