Chapter 3 Summary
 Analysis of rate data

Rate measurements and old topic
General approach
Initiate reaction
measure concentration vs time fit data to calculate rates

Figure 3.2 Wilhelmy's [1850] measurements of the changes in sucrose concentration in grape juice after acid is added.

Figure 3.3 Concentration vs time for a simple reaction.

These types of measurements started in 1820. Still done today. (now do them faster).

Method	Description	Time Scale
Batch Methods		
Conventional	1) Mix reactants together in a batch reactor 2) Measure concentration versus time	10 sec or more
Stopped flow	1) Set of continuous flow systems where reactants are fed into the reactor, and flow out again so quickly that there is negligible reaction 2) Stop the flow so the reactants can react 3) Measure conversion versus time	$10^{-1} \mathrm{sec}$ or more
Temperature jump	1) Mix reactants at such a low temperature that the reaction rate is negligible 2) Use CO_{2} laser to suddenly heat reaction 3) Measure concentration vs time	$10^{-6} \mathrm{sec}$ or more
Shock tube	1) Put $10^{-1} \mathrm{~atm}$ of one reactant and 10 atm at helium on one side of a diaphragm 2) Put $10^{-3} \mathrm{~atm}$ of the other reactant on the other side of the diaphragm 3) Suddenly break the diaphragm so the gas flows from the high pressure side to the low pressure side Measure the reactant concentration vs time	10^{-3} to $10^{-5} \mathrm{sec}$
Flash photolysis	1) Put the reactants into a vessel under conditions where reaction is negligible 2) Pulse a laser or flash lamp to start reaction 3) Measure the reactant concentration vs time	10^{-9} to $10^{-1} \mathrm{sec}$
NMR	1) Initiate a change with a magnetic pulse 2) Measure the decay of spins with the NMR	10^{-2} to $10^{-9} \mathrm{sec}$
Flow Methods		
Conventional flow system	1) Continuously feed reactants into a reactor - CSTR or plug flow 1) Measure the steady state reaction rate	$10^{-3} \mathrm{sec}$ or more
Molecular beam	1) Direct beams of reactants toward each together in a vacuum system 2) Measure the steady state reaction rate	10^{-13} to $10^{-9} \mathrm{sec}$

If you have to do an experiment which do you choose?

- Direct vs indirect methods
- Choose method with appropriate time scale

Direct vs indirect methods
recall - rate equation is the rate as a function of the concentrations

- Direct method - any method where you actually measure the rate as a function of concentration
- Indirect method - a method where you measure some other property (i.e. concentration vs time) and infer a rate equation.

Example of a direct method:

Figure 3.7 A typical arsine decomposition reactor. $2 \mathrm{AsH}_{3} \Rightarrow 2 \mathrm{As}+3 \mathrm{H}_{2}$

Figure 3.8 A possible apparatus to examine the decomposition of arsine $\left(\mathrm{AsH}_{3}\right)$ on silicon.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{AsH}_{3}}=\mathrm{P}_{\mathrm{AsH}_{3}}^{0} \times \mathrm{e}^{-\mathrm{k}_{1} \mathrm{t}} \tag{3.8}
\end{equation*}
$$

Indirect measurement to do the same thing

Figure 3.9 Typical batch data for
reaction(3.7). Data of Tamaru[1955].

səuO MO［S К． 	SUO！ףつ®ə』 MO［S K．Iəム suna Kuru pəon SəOBŋURAPESIC
uo！̣enbə әұе．［еиц̆ ио әэиәрциоэ моТ • еұер әұел әZК［еие оч р．ен • sәo̊equespes！	uo！̣enbə
роЧ10W 10əJ！рUI	P0Ч12W 102J！G

Other notation
direct method - differential method
-differential reactor
indirect method - integral method

Next: start analysis of data from indirect reactors:

Which is easier to analyze?

- Direct method (rate vs concentration)
- Indirect method (concentration vs time)

Direct is easier to analyze.

Analysis of data from a differential reactor

Figure 3.11 The rate of copper etching as a function of the oxygen concentration. Data of Steger and Masel [1998].

General method - least squares with rate vs time data.

Pitfalls

- It is not uncommon for more than one rate equation may fit the measured kinetics within the experimental uncertainties, just because data fits, does not mean rate equation is correct.
- The quality of kinetic data vary with the equipment used and the method of temperature measurement and control. Data taken on one apparatus is often not directly comparable to data taken on different apparatus.
- It is not uncommon to observe $10-30 \%$ variations in rate taken in the same apparatus on different days. Usually, these variations can be traced to variations in the temperature, pressure, or flow rate in the reactor.
- The procedure used to fit the data can have a major effect on the values of the parameters obtained in the data analysis.
- The quality of the regression coefficient $\left(r^{2}\right)$ does not tell you how well a model fits your data.

Example 3.A Fitting data to Monod's Law

Table 3.A. 1 shows some data for the growth rate of paramecium as a function of the paramecium concentration. Fit the data to Monod's Law:

$$
\mathrm{r}_{\mathrm{p}}=\frac{\mathrm{k}_{1} \mathrm{~K}_{2}[\mathrm{par}]}{1+\mathrm{K}_{2}[\mathrm{par}]}
$$

(3.A.1)

where [par] is the paramecium
 concentration, and k_{1} and K_{2} are constants.

Table 3.A. 1 The rate of paramecium reproduction as a function of the paramecium concentration. Data of Meyers, J. Experimental Zoology, 49 (1927) 1

Paramecium concentration \#/CC	rate, \#/CC-hr	Paramecium concentration \#/CC	rate, \#/CC-hr	Paramecium concentration \#/CC	rate, \#/CC-hr
2	10.4	16	36	46	96
3.6	12.8	16.6	46.4	46.2	124.8
4	23.2	19	59.2	47.4	117.6
5.2	17.6	20	62.4	55	112
7.8	46.4	23.8	62.4	57	127.2
8	23.2	26	57.6	61	116
8	46.4	30.4	108.8	61.6	111.2
11	32	31	80	71	124
14.4	34.4	31.2	61.6	74	116
15.6	44.8	31.6	109.6	76.4	116
15.6	63.2	39.2	103.2		

There are two methods that people use to solve problems like this:

- Rearranging the equations to get a linear fit and using least squares
- Doing non-linear least squares

I prefer the latter, but I wanted to give a picture of the former.

There are two versions of the linear plots:

- Lineweaver-Burk Plots
- Eadie-Hofstee Plots

In the Lineweaver-Burk method, one plots $1 /$ rate vs. 1/concentration. Rearranging equation (3.A.1) shows:

$$
\frac{1}{\mathrm{r}_{\mathrm{p}}}=\frac{1}{\mathrm{k}_{1} \mathrm{~K}_{2}[\mathrm{par}]}+\frac{1}{\mathrm{k}_{1}}
$$

(3.A.2)

Figure 3.A. 1 A LineweaverBurk plot of the data in Table
3.A. 1

Figure 3.A. 2 The LineweaverBurk fit of the data in Table

Table 3.A. 2 The formulas in the spreadsheet for the Lineweaver Burke plot

	A	B	C	D	E	F
01		k_1	$=1 / \mathrm{D} 2$	$\begin{aligned} & =\text { SLOPE(D6:D3 } \\ & 5, \mathrm{C} 6: \mathrm{C} 35) \end{aligned}$		2
02		K_2	=1/C1/D1	$\begin{array}{\|l\|} \hline=\text { INTERCEPT(D } \\ \text { 6:D36,C6:C36) } \\ \hline \end{array}$		$=$ SUM(F5:F37)
03			r^{2}	$\begin{aligned} & =\text { RSQ(D6:D36,C } \\ & \text { 6:C36) } \end{aligned}$		
04	conc	rate	1/conc	1/rate	rate calculated from rate equation	error
05	0	0			$\begin{aligned} & =\mathrm{C} \$ 1 * \mathrm{C} \$ 2 * \$ \mathrm{~A} 5 /(1+\mathrm{C} \\ & \$ 2 * \$ \mathrm{~A} 5) \end{aligned}$	$=\mathrm{ABS}(\mathrm{E} 5-\$ \mathrm{~B} 5)^{\wedge}$ \$F\$1
06	2	10.4	=1/A6	=1/B6	$\begin{aligned} & =\mathrm{C} \$ 1 * \mathrm{C} \$ 2 * \$ \mathrm{~A} 6 /(1+\mathrm{C} \\ & \$ 2 * \$ \mathrm{~A} 6) \end{aligned}$	$=\mathrm{ABS}(\mathrm{E} 6-\$ \mathrm{~B})^{\wedge}$ \$F\$1
07	3.6	12.8	=1/A7	=1/B7	$\begin{aligned} & =\mathrm{C} \$ 1 * \mathrm{C} \$ 2 * \$ \mathrm{~A} 7 /(1+\mathrm{C} \\ & \$ 2 * \$ \mathrm{~A} 7) \end{aligned}$	= ABS(E7-\$B7)^\$F\$1

Comparison of equations (3.A.2) and (3.A.3) shows:

$$
\begin{gathered}
\mathrm{k}_{1}=1 / .00717=139.4 \\
\mathrm{k}_{2}=1 /\left(0.194 * \mathrm{k}_{1}\right)=0.037 \\
\mathrm{r}^{2}=0.930
\end{gathered}
$$

Figure 3.A. 1 A LineweaverBurk plot of the data in Table 3.A. 1

Figure 3.A. 2 The LineweaverBurk fit of the data in Table 3.A. 1

The Eadie-Hofstee plot
Rearranging equation (3.A.1):

$$
\mathrm{r}_{\mathrm{p}}\left(1+\mathrm{K}_{2}[\mathrm{par}]\right)=\mathrm{k}_{1} \mathrm{~K}_{2}[\mathrm{par}]
$$

(3.A.4)

Further rearrangement yields:

$$
\frac{\mathrm{r}_{\mathrm{p}}}{[\mathrm{par}]}=\mathrm{k}_{1} \mathrm{~K}_{2}-\quad \mathrm{K}_{2} \mathrm{r}_{\mathrm{p}}
$$

(3.A.5)

Figure 3.A. 3 An Eadie-
Hofstee plot of the data in Table 3.A. 1

Figure 3.A. 4 The EadieHofstee fit of the data in Table 3.A. 1

$$
\begin{equation*}
\frac{r_{p}}{[\mathrm{par}]}=4.18-0.0156 \mathrm{r}_{\mathrm{p}} \tag{3.A.6}
\end{equation*}
$$

$$
\mathrm{r}^{2}=0.34
$$

Figure 3.A. 3 An EadieHofstee plot of the data in Table 3.A. 1

Eadie-Hofstee gives much lower r^{2} but better fit to data!

The last way to fit the data is with a nonlinear least squares.

The idea in nonlinear least squares is to use the solver function of a spreadsheet to calculate the best values of the coefficients based on some criterion. A common criterion is to minimize the total error, where the total error is defined by:

$$
\text { Total Error }=\sum_{\text {Data }}\left[\operatorname{abs}\left(\mathrm{r}_{\mathrm{p}}-\frac{\mathrm{k}_{1} \mathrm{~K}_{2}[\mathrm{par}]}{1+\mathrm{K}_{2}[\mathrm{par}]}\right)\right]^{2}
$$

(3.A.7)

One often uses powers other than 2 to do the fitting.

Figure 3.A. 5 A nonlinear least squares fit to the data in Table

Figure 3.A.6 A comparison of the three fits to the data 3.A. 1

Table 3.A. 5 A comparison of the various fits to the data in Table 3.A. 1

Method	k_{1}	$\mathrm{~K}_{2}$	Total error	R-squared
Lineweaver-Burk	139	0.0370	9643	0.910 (linear plot)
Eadie-Hofstee	267	0.0156	6809	0.344 (linear plot)
non-linear least squares	204	0.0221	4919	0.905 (non-linear)

| Table 3.A. 7 The values of R-squared calculated using the different methods

Method	R-squared from linear regression	R-squared from equation (2.B.9)	R-squared from equation (2.B.10)
Lineweaver-Burk	0.910	0.814	0.552
Eadie-Hofstee	0.344	0.869	0.516
nonlinear least squares	0.905	0.905	0.558

Example 3.B - Tests of Statistical
Significance: Analysis of Variance

Table 3.B.1 Fits to the data in Example 3.A							
Concent ration	Experimental Rate	Calculated rate Non-linear least squares	Calculated rate Lineweaver- Burk	Calculated rate Eadie- Hofstee			
0	0	0	0	0			
2	10.4	8.65	9.6	8.10			
3.6	12.8	15.06	16.38	14.24			
4	23.2	16.60	17.69	15.73			
5.2	17.6	21.07	22.49	20.10			
7.8	46.4	30.05	31.21	29.06			
8	32	30.71	31.83	29.72			
8	34.4	30.71	31.83	29.72			
Continued							
Variance	164					230	321

Which model fits best? Is the difference statistically significant?

First let us see which model fits best. We do that by calculating the variance of the data and seeing which model has the lowest variance. The variance V_{i} is defined by

$$
\mathrm{V}_{\mathrm{i}}=\frac{\sum_{\text {po int } \mathrm{s}}((\text { experimental rate })-(\text { calculated rate }))^{2}}{\text { (number of samples) }-(\text { number of independent parameters in model })}
$$

substituting in equation (3.A.7) yields

$$
\mathrm{V}_{\mathrm{i}}=\frac{\text { total error from Equ. 3.A. } 7}{\text { number of samples }- \text { number of parameters }}
$$

(3.B.2)

It is important to calculate the variance as shown in (3.B.1) and not for example the variance of one over the rate. In order to use the statistical tests below, one will have to assume that the error in the data follows what statisticians call a " χ^{2} distribution." If you calculate the errors in the rate, the errors usually do follow a " χ^{2} distribution".
I used Excel to calculate

$1-$ FDIST $(1.96,30,30)=0.97$

so I am 97\% sure that the non-linear least squares fit better than the Lineweaver-Burk plot. Excel also has a FINV function that calculates $\mathrm{F}_{\text {inverse }}$ via

Analysis of batch reactor data

$$
\int_{C_{A}^{A}}^{C_{A}^{0}} \frac{d C_{A}}{\left(-r_{A}\right)}=\tau
$$

(3.31)
$\frac{1}{(n-1) \mathrm{k}_{\mathrm{n}}\left(\mathrm{C}_{\mathrm{A}}^{\mathrm{o}}\right)^{\mathrm{n}-1}\left[\left(\frac{\mathrm{C}_{\mathrm{A}}^{o}}{\mathrm{C}_{\mathrm{A}}^{\mathrm{f}}}\right)^{\mathrm{n}-1}-1\right]=\tau}$

$$
\frac{1}{\mathrm{k}_{1}} \operatorname{Ln}\left(\frac{\mathrm{C}_{\mathrm{A}}^{\mathrm{o}}}{\mathrm{C}_{\mathrm{A}}^{\mathrm{f}}}\right)=\tau
$$

Typical batch reactor data looks like

Two methods to analyze data Essen's method Van't Hoffs Method

Essen's method:

Essen's Method

Figure 3.15 A replot of the data from Figure 3.14 as a function of $\ln \left(\mathrm{C}_{\mathrm{A}} / \mathrm{C}_{\mathrm{A}}^{0}\right)$ and $\left(\mathrm{C}_{\mathrm{A}}^{0} / \mathrm{C}_{\mathrm{A}}\right.$. .

Never works in practice

Figure 3.16 An Essen plot of the data in Table 3.5 .

Van't hoff's method

Calculate k - is it constant

$$
\begin{equation*}
\mathrm{k}_{1}=\frac{1}{\tau} \operatorname{Ln}\left(\frac{\mathrm{C}_{\mathrm{A}}^{0}}{\mathrm{C}_{\mathrm{A}}}\right) \tag{3.51}
\end{equation*}
$$

$$
\frac{1}{(n-1) k_{n}\left(C_{A}^{0}\right)^{n-1}\left[\left(\frac{C_{A}^{0}}{C_{A}}\right)^{n-1}-1\right]=\tau}
$$

Figure 3.18 Van't Hoff Plot of the data from Table 3.5 and Table 3.6

Another interesting thing in the chapter
Table 3.D. 3 Module used to calculate $\mathrm{k} 1, \mathrm{k} 2$, k 3 , where $\mathrm{k} 1, \mathrm{k} 2$ and k 3 are defined by equation (3.D.2)

Public Function kone(ca0, ca, tau) As Variant kone $=\log (c a 0 / c a) /$ tau
End Function
Public Function ktwo(ca0, ca, tau) As Variant ktwo = ((1\# / ca) - (1\# / ca0)) / tau End Function

Public Function kthree(ca0, ca, tau) As Variant kthree $=\left((1 \# / c a)^{\wedge} 2-(1 \# / c a 0)^{\wedge} 2\right) /$ tau End Function

Table. 1 Summary of key concepts.
Two methods to measure rates: Direct and Indirect

Direct	Indirect
High Accuracy	Lower Accuracy
Need many runs	Fewer experiments

Methods to analyze direct data

- Least squares
- Non-linear least squares

Non-linear least squares easier and more accurate
Methods to analyze indirect data
Essen

- construct plots of $\operatorname{Ln}\left(\mathrm{C}_{\mathrm{A}}^{\mathrm{O}} / \mathrm{C}_{\mathrm{A}}\right),\left(\mathrm{C}_{\mathrm{A}}^{\mathrm{O}} / \mathrm{C}_{\mathrm{A}}\right)^{\mathrm{n}}-1$
- see if linear

Van't Hoff

- calc $\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}$
- see if constant

Van't Hoff - easier and more accurate
Key equations for indirect data

$$
\begin{align*}
& N_{A}^{0} \int_{0}^{X_{A}} \frac{d X_{A}}{V\left(-r_{A}\right)}=\tau \tag{3.26}\\
& C_{A}^{0} \int_{0}^{X_{A}} \frac{d X_{A}}{-r_{A}}=\tau \tag{3.28}\\
& \int_{\mathrm{C}_{\mathrm{A}}^{\mathrm{A}}}^{\mathrm{C}_{\mathrm{A}}^{0}} \frac{\mathrm{dC}_{\mathrm{A}}}{-\mathrm{r}_{\mathrm{A}}}=\tau \tag{3.31}\\
& \frac{1}{\mathrm{k}_{1}} \operatorname{Ln}\left(\frac{\mathrm{C}_{\mathrm{A}}^{0}}{\mathrm{C}_{\mathrm{A}}}\right)=\tau \tag{3.39}\\
& \frac{1}{(\mathrm{n}-1) \mathrm{k}_{\mathrm{n}}\left(\mathrm{C}_{\mathrm{A}}^{0}\right)^{\mathrm{n}-1}}\left[\left(\frac{\mathrm{C}_{\mathrm{A}}^{0}}{\mathrm{C}_{\mathrm{A}}}\right)^{\mathrm{n}-1}-1\right]=\tau \tag{3.42}
\end{align*}
$$

