SUMMARY: CHAPTER 2 Introductory Concepts

Stoichiometry

- Invented by Lavosier
- Molecules react in fixed proportions

$$
\alpha_{1} \mathrm{~A}+\alpha_{2} \mathrm{~B} \Rightarrow \alpha_{3} \mathrm{C}+\alpha_{4} \mathrm{D}
$$

Stoichiometric Coefficent, β_{n}

- Number of molecules produced when reaction goes once

Example

$$
\begin{aligned}
& 2 \mathrm{CO}+\mathrm{O}_{2} \Rightarrow 2 \mathrm{CO}_{2} \\
& \mathrm{CO}+1 / 2 \mathrm{O}_{2} \Rightarrow \mathrm{CO}_{2}
\end{aligned}
$$

New Topic: Reaction rate:
Original definition due to Priestley moles/hr produced by a reactor.

Van't Hoff showed that as you make a reactor bigger, you produce more product. The production rate is proportional to the volume. i.e.
total
production(moles $/ \mathrm{hr}$)=constant \times Volume.
Van't Hoff defined

$$
\begin{equation*}
\mathrm{r}_{\mathrm{A}}=\frac{\text { production rate }(\text { Moles } / \mathrm{hr})}{\text { reactor volume }(\text { liter })} \tag{1}
\end{equation*}
$$

- r_{A} called the Rate of production of A
- r_{A} has dimensions moles/lit-hr
- r_{A} is positive for a product, negative for a reactant

Equ 1 applies to homogeneous reactions Different equation applies to heterogeneous reactions

Some reactions scale as surface area instead $\mathrm{R}_{\mathrm{A}}=\frac{\text { production rate }(\text { Moles } / \mathrm{hr})}{\text { surface } \operatorname{area}\left(\mathrm{cm}^{2}\right)}$

- R_{A} is also called the Rate of production of A
- R_{A} has dimensions moles $/ \mathrm{cm}^{2}-\mathrm{hr}$
- R_{A} is positive for a product, negative for a reactant

It is also useful to define r_{i} the rate of a reaction i by

$$
\mathrm{r}_{\mathrm{i}}=\frac{1}{\beta_{\mathrm{A}}} \mathrm{r}_{\mathrm{A}}
$$

Stoichiometric coefficient	The amount of product produced when the reaction goes once. The stoichiometric is positive for a product and negative for a reactant.
$\mathrm{r}_{\mathrm{A} 1}$	The net rate of production of a species A. r_{A} is positive for a product and negative for a reactant.
Rate of reaction 1 r_{1}	$r_{1}=\frac{1}{\beta_{A}} r_{A}$ for any species A participating in reaction 1.
Homogeneous reaction	A reaction which happens throughout the reacting phase.
Heterogeneous reaction	A reaction which happens near the boundary of a reacting phase.

New Topic: Variations in rate with conditions

Rates vary with:

- Concentrations of all species (reactants, products, inerts) (factors of 10-100)
- Temperature (factors of 100 or more)
- The presence of solvents (factors of 10^{12} or more)
- The presence of catalysts (factors of 10^{12} or more)

Next Topic: Rate equations definition:

- Rate as a function of the concentration of all of the speices in the reactor.

Typical rate laws for simple $A \Rightarrow C$ reactions:
$r_{A}=-k\left(C_{A}\right)$
$r_{A}=-k\left(C_{A}\right)^{2}$
$r_{A}=-k\left(C_{A}\right)^{3}$
$r_{A}=-k\left(C_{A}\right)^{n} \quad$ nth order
n is the order
k is the rate constant

For reactions $\mathrm{A}+\mathrm{B} \Rightarrow \mathrm{C}$

$$
\mathrm{r}_{\mathrm{A}}=-\mathrm{k}\left(\mathrm{C}_{\mathrm{A}}\right)^{\mathrm{n}}\left(\mathrm{C}_{\mathrm{B}}\right)^{\mathrm{m}}
$$

nth order in A , mth order in B overall $(m+n)$ th order

$$
\mathrm{r}_{\mathrm{A}}=-\mathrm{k}\left(\mathrm{C}_{\mathrm{A}}\right)\left(\mathrm{C}_{\mathrm{B}}\right)^{2}
$$

first order in A , second order in B , third order overall.

Table 2.4 The key definitions from Section 2.3.	
Rate equation	The rate as a function of the concentration of the reactants.
Order	The exponent n is the expression.
First order reaction	A reaction whose rate is preparation to the reactant concentration to the first power (i.e. $\mathrm{n}=1$ in eqn. (2.11)).
Second order reaction	A reaction whose rate is proportional to the reactant concentration to the second order.
Overall order of reaction	The sum of the orders for each of the reactants.

notation
$\mathrm{k}_{1}, \mathrm{k}_{2}$ rate constants
$\mathrm{K}_{1}, \mathrm{~K}_{2}$ equilibrium constants
$\mathrm{C}_{\mathrm{A}}=[\mathrm{A}]$ concentration of species A

Discussion Problems:

Table2.2 Sample rate data to illustrate equation (2.11).

C_{A} Moles/Lit	rate Moles/Lit/ Min	C_{A} Moles/Lit	rate Moles/Lit/ hrs
0.25	0.13	1	0.5
0.5	0.25	2	1.0

1. what is the order of the reaction?

Table2.3 Sample data to illustrate equation (2.12).

C_{A} moles/liter	C_{B} moles/liter	rate moles/liter- min	C_{A} moles/lit er	C_{B} moles/liter	rate moles/liter- min
1	0.25	0.031	0.25	1	0.13
1	0.5	0.13	0.5	1	0.25
1	1	.5	1	1	0.5
1	2	2.0	2	1	1.0

2. what is the order of the reaction?

More complex rate equations

Very few real reactions have simple reaction orders over a wide range of conditions:

Figure 2.1 The reproduction rate of paramecium as a function of the paramecium concentration and the rate of E. Coli growth in sugar solutions as a function of the sugar concentration. Paramecium data of Meyers, H. Experim. Zoology 49 (1927) 1. E. Coli data from Monod[1942].

$$
\mathrm{r}_{\text {ecoli }}=\frac{\mathrm{k}_{1} \mathrm{~K}_{2}[\mathrm{E} . . \mathrm{Coli}][\text { Sugar }]}{\left(1+\mathrm{K}_{2}[\text { Sugar }]\right)}
$$

(2.18)

Figure 2.3 The rate of $\mathrm{CH}_{3} \mathrm{NC}$ isomerization to $\mathrm{CH}_{3} \mathrm{CN}$ as a function of the $\mathrm{CH}_{3} \mathrm{NC}$ pressure.

Figure 2.15 The influence of the CO pressure on the rate of CO oxidation on Rh(111). Data of Schwartz, Schmidt, and Fisher.

$$
\mathrm{r}_{\mathrm{CO}}=\frac{\mathrm{k}_{1} \mathrm{P}_{\mathrm{CO}} \mathrm{P}_{\mathrm{O}_{2}}}{\left(1+\mathrm{K}_{2} \mathrm{P}_{\mathrm{CO}}\right)^{2}}
$$

Called a Langmuir-Hinshelwood rate law. also called Monod rate law

Arises because reaction occurs on catalyst surface:

Figure 12.33 The
changes in θ_{A} and θ_{B} as
a function of P_{A} with
$\mathrm{K}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}=10$.
No industrially important reaction is first or second order over a wide range of conditions

Not all reactions have rate equations:

Figure 2.22 Rate Data for CO Oxidation on $\mathrm{Rh}(100)$ catalyst. Data of Schwartz et al.[1986].

Summary

Table 2.1 Su	ns.
Stoichiometric coefficient	The amount of product produced when the reaction goes once. The stoichiometric is positive for a product and negative for a reactant.
$\mathrm{r}_{\mathrm{A} 1}$	The net rate of production of a species A. r_{A} is positive for a product and negative for a reactant.
Rate of reaction 1 r_{1}	$r_{1}=\frac{1}{\beta_{A}} r_{A}$ for any species A participating in reaction1.
Homogeneous reaction	A reaction which happens throughout the reacting phase.
Heterogeneous reaction	A reaction which happens near the boundary of a reacting phase.

Table 2.4 The key definitions from Section 2.3.	
Rate equation	The rate as a function of the concentration of the reactants.
Order	The exponent n is the expression.
First order reaction	A reaction whose rate is preparation to the reactant concentration to the first power (i.e. $\mathrm{n}=1$ in eqn. (2.11)).
Second order reaction	A reaction whose rate is proportional to the reactant concentration to the second order.
Overall order of reaction	The sum of the orders for each of the reactants.

- Real reactions rarely follow these simple rate laws.
- Some reactions do not have a rate law

Next Topic: Temperature dependence of the rate equation:

Harcourt Equation (assumes energy transfer dominates):

$$
\mathrm{k}=\mathrm{k}^{\mathrm{T}} \mathrm{~T}^{\mathrm{n}}
$$

$\mathrm{k}=$ rate constant
$\mathrm{k}^{\mathrm{T}}=$ preexponential
$\mathrm{n}=$ constant between 1 and 4.

Arrhenius' model (assumes activation barrier to reaction controls rate)
$\mathrm{k}=\mathrm{k}_{\mathrm{o}} \exp \left(-\mathrm{E}_{\mathrm{a}} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$
$\mathrm{k}_{\mathrm{o}}=$ preexponential
$\mathrm{E}_{\mathrm{a}}=$ activation barrier, $\mathrm{kj} /$ molecule
$\mathrm{k}=$ boltzman's constant, $1.381 \times 10^{-23} \mathrm{j} / \mathrm{K}$
$\mathrm{T}=$ temp (kelvin).

Real data somewhere in between

Figure 2.6 The rate of the reaction $\mathrm{CH}+\mathrm{N}_{2} \rightarrow \mathrm{HCN}$ +N as a function of the temperature. Data of Becker, Gelger and Wresen[1996].

$$
\mathrm{k}_{1}=\mathrm{k}_{\mathrm{m}}^{0}(\mathrm{~T})^{\mathrm{m}} \mathrm{e}^{-\mathrm{E}_{\mathrm{A}} / \mathrm{k}_{\mathrm{B}} \mathrm{~T}}
$$

(2.28)

Arrhenius' effect much larger than Harcourt and Essen.

Key implications of Arrhenius' Law

Figure 2.8 A plot of $\tau_{1 / 2}$ vs. E_{A} at 100, 200, 300, 400 , and 500 K .
$\mathrm{E}_{\mathrm{A}}=\left(1 / 15 \mathrm{kcal} /\right.$ mole $\left.^{\circ}{ }^{\circ} \mathrm{K}\right) \mathrm{T}_{\text {minute }}$
(2.31)
$\mathrm{E}_{\mathrm{A}}=\left(0.06 \mathrm{kcal} / \mathrm{mole}-{ }^{\circ} \mathrm{K}\right) \mathrm{T}_{\text {sec }}$
(2.32)
$\mathrm{T}_{\text {minute }}=\frac{15 \mathrm{~K}-\mathrm{mole}^{\mathrm{kcal}}}{} \mathrm{E}_{\mathrm{A}}$
(2.33)

Changes in rate with temp

$$
\mathrm{r}_{2}=\mathrm{r}_{1} \exp \left(\frac{\mathrm{E}_{\mathrm{A}}}{\mathrm{k}_{\mathrm{B}}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)\right)^{1}
$$

(2.36)

Figure 2.4 The
fractional change in the rate of a nth order reaction when the temperature is changed from 25 to $35^{\circ} \mathrm{C}$.

Table 2.6 The variation in rate of a series of reactions with a $10^{\circ} \mathrm{K}$ change in temperature. Data from Van't Hoff[1884].

Reaction	Temp. range C	Rate change with a 10 K temperature change
$\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O} \stackrel{\text { Hr }}{\Rightarrow}$ $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	3.6-30.4	2.03
$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{NaOH} \Rightarrow \\ & \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	23.5-43.6	2.87
$\begin{aligned} & \begin{array}{l} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH} 2 \mathrm{Cl}+\mathrm{NaOH} \\ \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{NaCl} \end{array} \\ & \hline \end{aligned}$	24.5-43.6	2.68
$\mathrm{HPO}_{3}+\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}$	0-61	3.0

Table 2. The variation in the respiration rate of plants with a	
10 0° change in temperature. Data of Clausen[1890].	
Wheat	2.47
Lilac	2.48
Lupine	2.46

Figure 2.10 The rate of E. Coli growth as a function of temperature adapted from Bailey and Ollis [1977].

Figure 2.11 The rate that crickets chirp as a function of temperature. Data for field crickets (Gryllys pennsylvanicus)

Again: not all reactions work:

Figure 2.17 The variation in the rate of the reaction in Figure 2.16 with temperature. Data of Loffler and Schmidt[1976]. A) $P_{\mathrm{xt}}=0.3$, $\left.\left.P_{\mathrm{H}_{2}}=0.15, \mathrm{~B}\right) \quad \mathrm{P}_{\mathrm{Nt}}=0.3, \mathrm{P}_{\mathrm{H}_{2}}=0.44, \mathrm{C}\right)$ $\left.P_{\mathrm{Nt}_{3}}=0.05, \mathrm{P}_{\mathrm{H}_{2}}=0.15, \mathrm{D}\right) \mathrm{P}_{\mathrm{Nt}}=0.05$,
$\mathrm{P}_{\mathrm{H}_{2}}=0.45$

Discussion Problem

Your taste buds work by a chemical reaction where sugar molecules bind to nerve endings in your mouth.
a) What is the activation barrier for the process?
b) How much will the sweetness of bread change if you heat the bread enough that the temperature of your tongue rises by 5 C?

