Biomedical Optics: Principles and Imaging Lihong V. Wang and Hsin-i Wu

Readers:

- 1. Please submit typographical errors or comments to Lihong Wang (lhwang@wustl.edu) or Hsin-i Wu (wwu@tamu.edu)
- 2. Please visit http://oilab.wustl.edu) for a taped tutorial on Biomedical Optics.

May 17, 2007

Erratum to First (May 2007) Print:

Eq. (9.51):

Replace x with r in the numerator.

Second paragraph below Eq. (9.83), page 202:

"... measure the second term" should be "... measure the third term"

Problem 7.6:

Replace "of this fluctuation" with "of the number of received photons due to this fluctuation".

Eq. (10.6):

Change arctan to arctan₂.

After "where $0 \le \theta_o < \pi$.", add the following sentence:

"Here, \arctan_2 denotes four-quadrant inverse tangent, yielding an angle depending on the quadrant of $\left(E_{x0}^2 - E_{y0}^2, \cos\Delta\phi\right)$."

Below Eq. (10.7):

Replace "major and minor" with "semimajor and semiminor".

Replace "right- and left-handed" with "left- and right-handed".

Above Eq. (10.24):

Replace $E_{0x} = E_{0y}$ with $E_{x0} = E_{y0}$.

Eq. (10.27):

Swap signs so that

$$\mathbf{M}_{r}(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos 2\theta & -\sin 2\theta & 0 \\ 0 & \sin 2\theta & \cos 2\theta & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Eq. (10.32):

Swap signs so that

$$\mathbf{M}_{\phi} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\phi & \sin\phi \\ 0 & 0 & -\sin\phi & \cos\phi \end{pmatrix}.$$

Eq. (10.33):

Swap signs so that

$$\mathbf{M}(\theta) = \mathbf{M}_r(\theta)\mathbf{M}(0)\mathbf{M}_r(-\theta)$$

Above Eq. (10.34):

Change from $\phi = \pi/2$ to $\phi = -\pi/2$.

Below Eq. (10.42):

Change from $\phi = -\pi/2$ to $\phi = \pi/2$.

Eq. (10.55):

Swap signs so that
$$\mathbf{J}_{r}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Eq. (10.57):

Swap signs so that

$$\mathbf{J}_{n}(\theta) = \mathbf{J}_{r}(\theta)\mathbf{J}_{n}(0)\mathbf{J}_{r}(-\theta)$$

Eq. (10.60):

Swap signs so that

$$\mathbf{J}_{\phi}(\theta) = \mathbf{J}_{r}(\theta)\mathbf{J}_{\phi}(0)\mathbf{J}_{r}(-\theta)$$

Eq. (10.96):

Swap signs so that

$$\mathbf{U} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 1\\ 1 & 0 & 0 & -1\\ 0 & 1 & 1 & 0\\ 0 & -i & i & 0 \end{pmatrix}$$

Eq. (11.10):

Remove time dependence so that
$$U(\vec{r},t) = U_{DC}(\vec{r}) + U_{AC}(\vec{r}) \exp(-i\omega t)$$
.

Below the equation, change $U_{{\scriptscriptstyle AC}}(\vec{r},t)$ to $U_{{\scriptscriptstyle AC}}(\vec{r}).$

Example 11.1:

Below "figure(2)" in the MATLAB file is redundant.

Below Eq. (11.40):

Change from "h is the side of each grid element" to "h is the side length of each grid element".

Eq. (12.29):

Correct to

$$p_0(\vec{r}') = \Gamma H_s(\vec{r}')$$